Like several other loop passes (the vectorizer, etc) this pass doesn't
really fit the model of a loop pass. The critical distinction is that it
isn't intended to be pipelined together with other loop passes. I plan
to add some documentation to the loop pass manager to make this more
clear on that side.
LoopSink is also different because it doesn't really need a lot of the
infrastructure of our loop passes. For example, if there aren't loop
invariant instructions causing a preheader to exist, there is no need to
form a preheader. It also doesn't need LCSSA because this pass is
only involved in sinking invariant instructions from a preheader into
the loop, not reasoning about live-outs.
This allows some nice simplifications to the pass in the new PM where we
can directly walk the loops once without restructuring them.
Differential Revision: https://reviews.llvm.org/D28921
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292589
91177308-0d34-0410-b5e6-
96231b3b80d8
--- /dev/null
+//===- LoopSink.h - Loop Sink Pass ------------------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file provides the interface for the Loop Sink pass.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TRANSFORMS_SCALAR_LOOPSINK_H
+#define LLVM_TRANSFORMS_SCALAR_LOOPSINK_H
+
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/IR/PassManager.h"
+#include "llvm/Transforms/Scalar/LoopPassManager.h"
+
+namespace llvm {
+
+/// A pass that does profile-guided sinking of instructions into loops.
+///
+/// This is a function pass as it shouldn't be composed into any kind of
+/// unified loop pass pipeline. The goal of it is to sink code into loops that
+/// is loop invariant but only required within the loop body when doing so
+/// reduces the global expected dynamic frequency with which it executes.
+/// A classic example is an extremely cold branch within a loop body.
+///
+/// We do this as a separate pass so that during normal optimization all
+/// invariant operations can be held outside the loop body to simplify
+/// fundamental analyses and transforms of the loop.
+class LoopSinkPass : public PassInfoMixin<LoopSinkPass> {
+public:
+ PreservedAnalyses run(Function &F, FunctionAnalysisManager &FAM);
+};
+}
+
+#endif // LLVM_TRANSFORMS_SCALAR_LOOPSINK_H
#include "llvm/Transforms/Scalar/LoopPassManager.h"
#include "llvm/Transforms/Scalar/LoopRotation.h"
#include "llvm/Transforms/Scalar/LoopSimplifyCFG.h"
+#include "llvm/Transforms/Scalar/LoopSink.h"
#include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
#include "llvm/Transforms/Scalar/LoopUnrollPass.h"
#include "llvm/Transforms/Scalar/LowerAtomic.h"
FUNCTION_PASS("guard-widening", GuardWideningPass())
FUNCTION_PASS("gvn", GVN())
FUNCTION_PASS("loop-simplify", LoopSimplifyPass())
+FUNCTION_PASS("loop-sink", LoopSinkPass())
FUNCTION_PASS("lowerinvoke", LowerInvokePass())
FUNCTION_PASS("mem2reg", PromotePass())
FUNCTION_PASS("memcpyopt", MemCpyOptPass())
//
//===----------------------------------------------------------------------===//
+#include "llvm/Transforms/Scalar/LoopSink.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AliasSetTracker.h"
return Changed;
}
+PreservedAnalyses LoopSinkPass::run(Function &F, FunctionAnalysisManager &FAM) {
+ LoopInfo &LI = FAM.getResult<LoopAnalysis>(F);
+ // Nothing to do if there are no loops.
+ if (LI.empty())
+ return PreservedAnalyses::all();
+
+ AAResults &AA = FAM.getResult<AAManager>(F);
+ DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
+ BlockFrequencyInfo &BFI = FAM.getResult<BlockFrequencyAnalysis>(F);
+
+ // We want to do a postorder walk over the loops. Since loops are a tree this
+ // is equivalent to a reversed preorder walk and preorder is easy to compute
+ // without recursion. Since we reverse the preorder, we will visit siblings
+ // in reverse program order. This isn't expected to matter at all but is more
+ // consistent with sinking algorithms which generally work bottom-up.
+ SmallVector<Loop *, 4> PreorderLoops = LI.getLoopsInPreorder();
+
+ bool Changed = false;
+ do {
+ Loop &L = *PreorderLoops.pop_back_val();
+
+ // Note that we don't pass SCEV here because it is only used to invalidate
+ // loops in SCEV and we don't preserve (or request) SCEV at all making that
+ // unnecessary.
+ Changed |= sinkLoopInvariantInstructions(L, AA, LI, DT, BFI,
+ /*ScalarEvolution*/ nullptr);
+ } while (!PreorderLoops.empty());
+
+ if (!Changed)
+ return PreservedAnalyses::all();
+
+ PreservedAnalyses PA;
+ PA.preserveSet<CFGAnalyses>();
+ return PA;
+}
+
namespace {
struct LegacyLoopSinkPass : public LoopPass {
static char ID;
; RUN: opt -S -loop-sink < %s | FileCheck %s
+; RUN: opt -S -passes=loop-sink < %s | FileCheck %s
@g = global i32 0, align 4
; RUN: opt -S -licm < %s | FileCheck %s --check-prefix=CHECK-LICM
; RUN: opt -S -licm < %s | opt -S -loop-sink | FileCheck %s --check-prefix=CHECK-SINK
+; RUN: opt -S < %s -passes='require<opt-remark-emit>,loop(licm),loop-sink' \
+; RUN: | FileCheck %s --check-prefix=CHECK-SINK
; Original source code:
; int g;