LoadSDNode *Ld = cast<LoadSDNode>(N);
EVT RegVT = Ld->getValueType(0);
EVT MemVT = Ld->getMemoryVT();
- SDValue Ptr = Ld->getBasePtr();
- SDValue Chain = Ld->getChain();
SDLoc dl(Ld);
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
return DCI.CombineTo(N, NewVec, TF, true);
}
- // Conversion from x86mmx/i64 to v2i64 types is often done via stack
- // store/load. Under certain conditions we can bypass the memory access and
- // combine this load to use a scalar_to_vector instead. This leads to
- // a reduction in the stack use, redundant emission of shuffles and create
- // isel matching candidates for movq2dq instructions.
- if (RegVT == MVT::v2i64 && Subtarget->hasSSE2() && Ext == ISD::EXTLOAD &&
- !Ld->isVolatile() && ISD::isNON_TRUNCStore(Chain.getNode())) {
-
- // If this load is directly stored, get the original source value.
- StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
- EVT SrcTy = PrevST->getValue().getValueType();
- if (PrevST->getBasePtr() != Ptr ||
- !(SrcTy == MVT::i64 || SrcTy == MVT::x86mmx))
- return SDValue();
- SDValue SrcVal = Chain.getOperand(1);
-
- // On 32bit systems, we can't store 64bit integers, use f64 instead.
- bool Usef64 = TLI.isTypeLegal(MVT::f64) && !Subtarget->is64Bit();
- if (Usef64)
- SrcVal = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SrcVal);
- SrcVal = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, Usef64 ? MVT::v2f64 : RegVT,
- SrcVal);
-
- return DCI.CombineTo(N, Usef64 ?
- DAG.getNode(ISD::BITCAST, dl, RegVT, SrcVal) : SrcVal, Chain);
- }
-
return SDValue();
}
; RUN: llc < %s -march=x86-64 -mcpu=corei7 -mtriple=x86_64-pc-win32 | FileCheck %s
-; CHECK-LABEL: vcast:
+;CHECK-LABEL: vcast:
define <2 x i32> @vcast(<2 x float> %a, <2 x float> %b) {
-; CHECK-NOT: pmovzxdq
-; CHECK-NOT: pmovzxdq
-; CHECK: movdqa (%{{.*}}), %[[R0:xmm[0-9]+]]
+;CHECK: pmovzxdq
+;CHECK: pmovzxdq
%af = bitcast <2 x float> %a to <2 x i32>
%bf = bitcast <2 x float> %b to <2 x i32>
-; CHECK-NEXT: psubq (%{{.*}}), %[[R0]]
%x = sub <2 x i32> %af, %bf
-; CHECK: ret
+;CHECK: psubq
ret <2 x i32> %x
+;CHECK: ret
}
%2 = bitcast <2 x i32> %add to i64
ret i64 %2
}
-; FIXME: At the moment we still produce the sequence paddd+pshufd.
+; FIXME: At the moment we still produce the sequence pshufd+paddd+pshufd.
; Ideally, we should fold that sequence into a single paddd. This is fixed with
; the widening legalization.
;
; CHECK-LABEL: test4
-; CHECK: movd
-; CHECK-NOT: pshufd
+; CHECK: pshufd
; CHECK-NEXT: paddd
; CHECK-NEXT: pshufd
; CHECK: ret
+++ /dev/null
-; RUN: llc < %s -march=x86 -mattr=+mmx,+sse2 | FileCheck %s -check-prefix=X86-32
-; RUN: llc < %s -march=x86-64 -mattr=+mmx,+sse2 | FileCheck %s -check-prefix=X86-64
-
-; X86-32-LABEL: test0
-; X86-64-LABEL: test0
-define i32 @test0(<1 x i64>* %v4) {
- %v5 = load <1 x i64>* %v4, align 8
- %v12 = bitcast <1 x i64> %v5 to <4 x i16>
- %v13 = bitcast <4 x i16> %v12 to x86_mmx
- ; X86-32: pshufw $238
- ; X86-32-NOT: movq
- ; X86-32-NOT: movsd
- ; X86-32: movq2dq
- ; X86-64: pshufw $238
- ; X86-64-NOT: movq
- ; X86-64-NOT: pshufd
- ; X86-64: movq2dq
- ; X86-64-NEXT: movd
- %v14 = tail call x86_mmx @llvm.x86.sse.pshuf.w(x86_mmx %v13, i8 -18)
- %v15 = bitcast x86_mmx %v14 to <4 x i16>
- %v16 = bitcast <4 x i16> %v15 to <1 x i64>
- %v17 = extractelement <1 x i64> %v16, i32 0
- %v18 = bitcast i64 %v17 to <2 x i32>
- %v19 = extractelement <2 x i32> %v18, i32 0
- %v20 = add i32 %v19, 32
- ret i32 %v20
-}
-
-declare x86_mmx @llvm.x86.sse.pshuf.w(x86_mmx, i8)
; CHECK-NEXT: paddd %[[R0]], %[[R1]]
; CHECK-NEXT: pextrw $4, %[[R1]], 4(%{{.*}})
; CHECK-NEXT: pshufb {{.*}}, %[[R1]]
-; CHECK-NEXT: movd %[[R1]], (%{{.*}})
+; CHECK-NEXT: pmovzxdq %[[R1]], %[[R0]]
+; CHECK-NEXT: movd %[[R0]], (%{{.*}})
%a = load %i16vec3* %ap, align 16
%b = load %i16vec3* %bp, align 16
%x = add %i16vec3 %a, %b