We have for a long time checked the head pointer of each of the backend's
proclock lists and skipped acquiring the corresponding locktable partition
lock if the head pointer was NULL. This was safe enough in the days when
proclock lists were changed only by the owning backend, but it is pretty
questionable now that the fast-path patch added cases where backends add
entries to other backends' proclock lists. However, we don't really wish
to revert to locking each partition lock every time, because in simple
transactions that would add a lot of useless lock/unlock cycles on
already-heavily-contended LWLocks. Fortunately, the only way that another
backend could be modifying our proclock list at this point would be if it
was promoting a formerly fast-path lock of ours; and any such lock must be
one that we'd decided not to delete in the previous loop over the locallock
table. So it's okay if we miss seeing it in this loop; we'd just decide
not to delete it again. However, once we've detected a non-empty list,
we'd better re-fetch the list head pointer after acquiring the partition
lock. This guards against possibly fetching a corrupt-but-non-null pointer
if pointer fetch/store isn't atomic. It's not clear if any practical
architectures are like that, but we've never assumed that before and don't
wish to start here. In any case, the situation certainly deserves a code
comment.
While at it, refactor the partition traversal loop to use a for() construct
instead of a while() loop with goto's.
Back-patch, just in case the risk is real and not hypothetical.