]> granicus.if.org Git - postgresql/blobdiff - src/backend/storage/lmgr/predicate.c
Phase 2 of pgindent updates.
[postgresql] / src / backend / storage / lmgr / predicate.c
index 8b5a95ceaa0ff460d34231dadc2d3562fa7b0c63..3b355641c250198f331935dcaf28363940073083 100644 (file)
  * examining the MVCC data.)
  *
  * (1) Besides tuples actually read, they must cover ranges of tuples
- *             which would have been read based on the predicate.      This will
+ *             which would have been read based on the predicate.  This will
  *             require modelling the predicates through locks against database
  *             objects such as pages, index ranges, or entire tables.
  *
- * (2) They must be kept in RAM for quick access.      Because of this, it
+ * (2) They must be kept in RAM for quick access.  Because of this, it
  *             isn't possible to always maintain tuple-level granularity -- when
  *             the space allocated to store these approaches exhaustion, a
  *             request for a lock may need to scan for situations where a single
@@ -49,7 +49,7 @@
  *
  * (4) While they are associated with a transaction, they must survive
  *             a successful COMMIT of that transaction, and remain until all
- *             overlapping transactions complete.      This even means that they
+ *             overlapping transactions complete.  This even means that they
  *             must survive termination of the transaction's process.  If a
  *             top level transaction is rolled back, however, it is immediately
  *             flagged so that it can be ignored, and its SIREAD locks can be
@@ -62,7 +62,7 @@
  *             an existing SIREAD lock for the same transaction, the SIREAD lock
  *             can be deleted.
  *
- * (7) A write from a serializable transaction must ensure that a xact
+ * (7) A write from a serializable transaction must ensure that an xact
  *             record exists for the transaction, with the same lifespan (until
  *             all concurrent transaction complete or the transaction is rolled
  *             back) so that rw-dependencies to that transaction can be
@@ -90,7 +90,7 @@
  *                     may yet matter because they overlap still-active transactions.
  *
  *     SerializablePredicateLockListLock
- *             - Protects the linked list of locks held by a transaction.      Note
+ *             - Protects the linked list of locks held by a transaction.  Note
  *                     that the locks themselves are also covered by the partition
  *                     locks of their respective lock targets; this lock only affects
  *                     the linked list connecting the locks related to a transaction.
  *             - It is relatively infrequent that another process needs to
  *                     modify the list for a transaction, but it does happen for such
  *                     things as index page splits for pages with predicate locks and
- *                     freeing of predicate locked pages by a vacuum process.  When
+ *                     freeing of predicate locked pages by a vacuum process.  When
  *                     removing a lock in such cases, the lock itself contains the
  *                     pointers needed to remove it from the list.  When adding a
  *                     lock in such cases, the lock can be added using the anchor in
- *                     the transaction structure.      Neither requires walking the list.
+ *                     the transaction structure.  Neither requires walking the list.
  *             - Cleaning up the list for a terminated transaction is sometimes
  *                     not done on a retail basis, in which case no lock is required.
  *             - Due to the above, a process accessing its active transaction's
  *             - Protects both PredXact and SerializableXidHash.
  *
  *
- * Portions Copyright (c) 1996-2012, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group
  * Portions Copyright (c) 1994, Regents of the University of California
  *
  *
  * predicate lock maintenance
  *             GetSerializableTransactionSnapshot(Snapshot snapshot)
  *             SetSerializableTransactionSnapshot(Snapshot snapshot,
- *                                                                                TransactionId sourcexid)
+ *                                                                                VirtualTransactionId *sourcevxid)
  *             RegisterPredicateLockingXid(void)
  *             PredicateLockRelation(Relation relation, Snapshot snapshot)
  *             PredicateLockPage(Relation relation, BlockNumber blkno,
  *             PredicateLockTuple(Relation relation, HeapTuple tuple,
  *                                             Snapshot snapshot)
  *             PredicateLockPageSplit(Relation relation, BlockNumber oldblkno,
- *                                                        BlockNumber newblkno);
+ *                                                        BlockNumber newblkno)
  *             PredicateLockPageCombine(Relation relation, BlockNumber oldblkno,
- *                                                              BlockNumber newblkno);
+ *                                                              BlockNumber newblkno)
  *             TransferPredicateLocksToHeapRelation(Relation relation)
  *             ReleasePredicateLocks(bool isCommit)
  *
 
 #include "postgres.h"
 
+#include "access/htup_details.h"
 #include "access/slru.h"
 #include "access/subtrans.h"
 #include "access/transam.h"
 #include "access/twophase.h"
 #include "access/twophase_rmgr.h"
 #include "access/xact.h"
+#include "access/xlog.h"
 #include "miscadmin.h"
+#include "pgstat.h"
 #include "storage/bufmgr.h"
 #include "storage/predicate.h"
 #include "storage/predicate_internals.h"
 #define PredicateLockHashPartition(hashcode) \
        ((hashcode) % NUM_PREDICATELOCK_PARTITIONS)
 #define PredicateLockHashPartitionLock(hashcode) \
-       ((LWLockId) (FirstPredicateLockMgrLock + PredicateLockHashPartition(hashcode)))
+       (&MainLWLockArray[PREDICATELOCK_MANAGER_LWLOCK_OFFSET + \
+               PredicateLockHashPartition(hashcode)].lock)
+#define PredicateLockHashPartitionLockByIndex(i) \
+       (&MainLWLockArray[PREDICATELOCK_MANAGER_LWLOCK_OFFSET + (i)].lock)
 
 #define NPREDICATELOCKTARGETENTS() \
        mul_size(max_predicate_locks_per_xact, add_size(MaxBackends, max_prepared_xacts))
  * the lock partition number from the hashcode.
  */
 #define PredicateLockTargetTagHashCode(predicatelocktargettag) \
-       (tag_hash((predicatelocktargettag), sizeof(PREDICATELOCKTARGETTAG)))
+       get_hash_value(PredicateLockTargetHash, predicatelocktargettag)
 
 /*
  * Given a predicate lock tag, and the hash for its target,
@@ -331,7 +337,7 @@ typedef struct OldSerXidControlData
        TransactionId headXid;          /* newest valid Xid in the SLRU */
        TransactionId tailXid;          /* oldest xmin we might be interested in */
        bool            warningIssued;  /* have we issued SLRU wrap-around warning? */
-}      OldSerXidControlData;
+}                      OldSerXidControlData;
 
 typedef struct OldSerXidControlData *OldSerXidControl;
 
@@ -346,12 +352,19 @@ static OldSerXidControl oldSerXidControl;
 static SERIALIZABLEXACT *OldCommittedSxact;
 
 
-/* This configuration variable is used to set the predicate lock table size */
-int                    max_predicate_locks_per_xact;           /* set by guc.c */
+/*
+ * These configuration variables are used to set the predicate lock table size
+ * and to control promotion of predicate locks to coarser granularity in an
+ * attempt to degrade performance (mostly as false positive serialization
+ * failure) gracefully in the face of memory pressurel
+ */
+int                    max_predicate_locks_per_xact;   /* set by guc.c */
+int                    max_predicate_locks_per_relation;       /* set by guc.c */
+int                    max_predicate_locks_per_page;   /* set by guc.c */
 
 /*
  * This provides a list of objects in order to track transactions
- * participating in predicate locking. Entries in the list are fixed size,
+ * participating in predicate locking.  Entries in the list are fixed size,
  * and reside in shared memory.  The memory address of an entry must remain
  * fixed during its lifetime.  The list will be protected from concurrent
  * update externally; no provision is made in this code to manage that.  The
@@ -380,9 +393,9 @@ static SHM_QUEUE *FinishedSerializableTransactions;
  * this entry, you can ensure that there's enough scratch space available for
  * inserting one entry in the hash table. This is an otherwise-invalid tag.
  */
-static const PREDICATELOCKTARGETTAG ScratchTargetTag = {0, 0, 0, 0, 0};
+static const PREDICATELOCKTARGETTAG ScratchTargetTag = {0, 0, 0, 0};
 static uint32 ScratchTargetTagHash;
-static int     ScratchPartitionLock;
+static LWLock *ScratchPartitionLock;
 
 /*
  * The local hash table used to determine when to combine multiple fine-
@@ -421,7 +434,8 @@ static uint32 predicatelock_hash(const void *key, Size keysize);
 static void SummarizeOldestCommittedSxact(void);
 static Snapshot GetSafeSnapshot(Snapshot snapshot);
 static Snapshot GetSerializableTransactionSnapshotInt(Snapshot snapshot,
-                                                                         TransactionId sourcexid);
+                                                                         VirtualTransactionId *sourcevxid,
+                                                                         int sourcepid);
 static bool PredicateLockExists(const PREDICATELOCKTARGETTAG *targettag);
 static bool GetParentPredicateLockTag(const PREDICATELOCKTARGETTAG *tag,
                                                  PREDICATELOCKTARGETTAG *parent);
@@ -431,7 +445,7 @@ static void RestoreScratchTarget(bool lockheld);
 static void RemoveTargetIfNoLongerUsed(PREDICATELOCKTARGET *target,
                                                   uint32 targettaghash);
 static void DeleteChildTargetLocks(const PREDICATELOCKTARGETTAG *newtargettag);
-static int     PredicateLockPromotionThreshold(const PREDICATELOCKTARGETTAG *tag);
+static int     MaxPredicateChildLocks(const PREDICATELOCKTARGETTAG *tag);
 static bool CheckAndPromotePredicateLockRequest(const PREDICATELOCKTARGETTAG *reqtag);
 static void DecrementParentLocks(const PREDICATELOCKTARGETTAG *targettag);
 static void CreatePredicateLock(const PREDICATELOCKTARGETTAG *targettag,
@@ -459,13 +473,14 @@ static void OnConflict_CheckForSerializationFailure(const SERIALIZABLEXACT *read
 
 /*
  * Does this relation participate in predicate locking? Temporary and system
- * relations are exempt.
+ * relations are exempt, as are materialized views.
  */
 static inline bool
 PredicateLockingNeededForRelation(Relation relation)
 {
        return !(relation->rd_id < FirstBootstrapObjectId ||
-                        RelationUsesLocalBuffers(relation));
+                        RelationUsesLocalBuffers(relation) ||
+                        relation->rd_rel->relkind == RELKIND_MATVIEW);
 }
 
 /*
@@ -490,8 +505,8 @@ SerializationNeededForRead(Relation relation, Snapshot snapshot)
         * Don't acquire locks or conflict when scanning with a special snapshot.
         * This excludes things like CLUSTER and REINDEX. They use the wholesale
         * functions TransferPredicateLocksToHeapRelation() and
-        * CheckTableForSerializableConflictIn() to participate serialization, but
-        * the scans involved don't need serialization.
+        * CheckTableForSerializableConflictIn() to participate in serialization,
+        * but the scans involved don't need serialization.
         */
        if (!IsMVCCSnapshot(snapshot))
                return false;
@@ -542,7 +557,7 @@ SerializationNeededForWrite(Relation relation)
 
 /*
  * These functions are a simple implementation of a list for this specific
- * type of struct.     If there is ever a generalized shared memory list, we
+ * type of struct.  If there is ever a generalized shared memory list, we
  * should probably switch to that.
  */
 static SERIALIZABLEXACT *
@@ -762,7 +777,7 @@ OldSerXidPagePrecedesLogically(int p, int q)
        int                     diff;
 
        /*
-        * We have to compare modulo (OLDSERXID_MAX_PAGE+1)/2.  Both inputs should
+        * We have to compare modulo (OLDSERXID_MAX_PAGE+1)/2.  Both inputs should
         * be in the range 0..OLDSERXID_MAX_PAGE.
         */
        Assert(p >= 0 && p <= OLDSERXID_MAX_PAGE);
@@ -788,8 +803,9 @@ OldSerXidInit(void)
         * Set up SLRU management of the pg_serial data.
         */
        OldSerXidSlruCtl->PagePrecedes = OldSerXidPagePrecedesLogically;
-       SimpleLruInit(OldSerXidSlruCtl, "OldSerXid SLRU Ctl",
-                                 NUM_OLDSERXID_BUFFERS, 0, OldSerXidLock, "pg_serial");
+       SimpleLruInit(OldSerXidSlruCtl, "oldserxid",
+                                 NUM_OLDSERXID_BUFFERS, 0, OldSerXidLock, "pg_serial",
+                                 LWTRANCHE_OLDSERXID_BUFFERS);
        /* Override default assumption that writes should be fsync'd */
        OldSerXidSlruCtl->do_fsync = false;
 
@@ -924,7 +940,7 @@ OldSerXidAdd(TransactionId xid, SerCommitSeqNo minConflictCommitSeqNo)
 }
 
 /*
- * Get the minimum commitSeqNo for any conflict out for the given xid. For
+ * Get the minimum commitSeqNo for any conflict out for the given xid.  For
  * a transaction which exists but has no conflict out, InvalidSerCommitSeqNo
  * will be returned.
  */
@@ -977,7 +993,7 @@ OldSerXidSetActiveSerXmin(TransactionId xid)
        /*
         * When no sxacts are active, nothing overlaps, set the xid values to
         * invalid to show that there are no valid entries.  Don't clear headPage,
-        * though.      A new xmin might still land on that page, and we don't want to
+        * though.  A new xmin might still land on that page, and we don't want to
         * repeatedly zero out the same page.
         */
        if (!TransactionIdIsValid(xid))
@@ -1089,7 +1105,6 @@ void
 InitPredicateLocks(void)
 {
        HASHCTL         info;
-       int                     hash_flags;
        long            max_table_size;
        Size            requestSize;
        bool            found;
@@ -1107,15 +1122,14 @@ InitPredicateLocks(void)
        MemSet(&info, 0, sizeof(info));
        info.keysize = sizeof(PREDICATELOCKTARGETTAG);
        info.entrysize = sizeof(PREDICATELOCKTARGET);
-       info.hash = tag_hash;
        info.num_partitions = NUM_PREDICATELOCK_PARTITIONS;
-       hash_flags = (HASH_ELEM | HASH_FUNCTION | HASH_PARTITION | HASH_FIXED_SIZE);
 
        PredicateLockTargetHash = ShmemInitHash("PREDICATELOCKTARGET hash",
                                                                                        max_table_size,
                                                                                        max_table_size,
                                                                                        &info,
-                                                                                       hash_flags);
+                                                                                       HASH_ELEM | HASH_BLOBS |
+                                                                                       HASH_PARTITION | HASH_FIXED_SIZE);
 
        /* Assume an average of 2 xacts per target */
        max_table_size *= 2;
@@ -1137,13 +1151,13 @@ InitPredicateLocks(void)
        info.entrysize = sizeof(PREDICATELOCK);
        info.hash = predicatelock_hash;
        info.num_partitions = NUM_PREDICATELOCK_PARTITIONS;
-       hash_flags = (HASH_ELEM | HASH_FUNCTION | HASH_PARTITION | HASH_FIXED_SIZE);
 
        PredicateLockHash = ShmemInitHash("PREDICATELOCK hash",
                                                                          max_table_size,
                                                                          max_table_size,
                                                                          &info,
-                                                                         hash_flags);
+                                                                         HASH_ELEM | HASH_FUNCTION |
+                                                                         HASH_PARTITION | HASH_FIXED_SIZE);
 
        /*
         * Compute size for serializable transaction hashtable. Note these
@@ -1179,12 +1193,6 @@ InitPredicateLocks(void)
                requestSize = mul_size((Size) max_table_size,
                                                           PredXactListElementDataSize);
                PredXact->element = ShmemAlloc(requestSize);
-               if (PredXact->element == NULL)
-                       ereport(ERROR,
-                                       (errcode(ERRCODE_OUT_OF_MEMORY),
-                        errmsg("not enough shared memory for elements of data structure"
-                                       " \"%s\" (%lu bytes requested)",
-                                       "PredXactList", (unsigned long) requestSize)));
                /* Add all elements to available list, clean. */
                memset(PredXact->element, 0, requestSize);
                for (i = 0; i < max_table_size; i++)
@@ -1218,14 +1226,13 @@ InitPredicateLocks(void)
        MemSet(&info, 0, sizeof(info));
        info.keysize = sizeof(SERIALIZABLEXIDTAG);
        info.entrysize = sizeof(SERIALIZABLEXID);
-       info.hash = tag_hash;
-       hash_flags = (HASH_ELEM | HASH_FUNCTION | HASH_FIXED_SIZE);
 
        SerializableXidHash = ShmemInitHash("SERIALIZABLEXID hash",
                                                                                max_table_size,
                                                                                max_table_size,
                                                                                &info,
-                                                                               hash_flags);
+                                                                               HASH_ELEM | HASH_BLOBS |
+                                                                               HASH_FIXED_SIZE);
 
        /*
         * Allocate space for tracking rw-conflicts in lists attached to the
@@ -1251,12 +1258,6 @@ InitPredicateLocks(void)
                requestSize = mul_size((Size) max_table_size,
                                                           RWConflictDataSize);
                RWConflictPool->element = ShmemAlloc(requestSize);
-               if (RWConflictPool->element == NULL)
-                       ereport(ERROR,
-                                       (errcode(ERRCODE_OUT_OF_MEMORY),
-                        errmsg("not enough shared memory for elements of data structure"
-                                       " \"%s\" (%lu bytes requested)",
-                                       "RWConflictPool", (unsigned long) requestSize)));
                /* Add all elements to available list, clean. */
                memset(RWConflictPool->element, 0, requestSize);
                for (i = 0; i < max_table_size; i++)
@@ -1396,7 +1397,7 @@ GetPredicateLockStatusData(void)
         * in ascending order, then SerializableXactHashLock.
         */
        for (i = 0; i < NUM_PREDICATELOCK_PARTITIONS; i++)
-               LWLockAcquire(FirstPredicateLockMgrLock + i, LW_SHARED);
+               LWLockAcquire(PredicateLockHashPartitionLockByIndex(i), LW_SHARED);
        LWLockAcquire(SerializableXactHashLock, LW_SHARED);
 
        /* Get number of locks and allocate appropriately-sized arrays. */
@@ -1425,7 +1426,7 @@ GetPredicateLockStatusData(void)
        /* Release locks in reverse order */
        LWLockRelease(SerializableXactHashLock);
        for (i = NUM_PREDICATELOCK_PARTITIONS - 1; i >= 0; i--)
-               LWLockRelease(FirstPredicateLockMgrLock + i);
+               LWLockRelease(PredicateLockHashPartitionLockByIndex(i));
 
        return data;
 }
@@ -1462,7 +1463,7 @@ SummarizeOldestCommittedSxact(void)
 
        /*
         * Grab the first sxact off the finished list -- this will be the earliest
-        * commit.      Remove it from the list.
+        * commit.  Remove it from the list.
         */
        sxact = (SERIALIZABLEXACT *)
                SHMQueueNext(FinishedSerializableTransactions,
@@ -1510,7 +1511,7 @@ GetSafeSnapshot(Snapshot origSnapshot)
                 * one passed to it, but we avoid assuming that here.
                 */
                snapshot = GetSerializableTransactionSnapshotInt(origSnapshot,
-                                                                                                          InvalidTransactionId);
+                                                                                                                NULL, InvalidPid);
 
                if (MySerializableXact == InvalidSerializableXact)
                        return snapshot;        /* no concurrent r/w xacts; it's safe */
@@ -1526,7 +1527,7 @@ GetSafeSnapshot(Snapshot origSnapshot)
                                 SxactIsROUnsafe(MySerializableXact)))
                {
                        LWLockRelease(SerializableXactHashLock);
-                       ProcWaitForSignal();
+                       ProcWaitForSignal(WAIT_EVENT_SAFE_SNAPSHOT);
                        LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
                }
                MySerializableXact->flags &= ~SXACT_FLAG_DEFERRABLE_WAITING;
@@ -1555,6 +1556,56 @@ GetSafeSnapshot(Snapshot origSnapshot)
        return snapshot;
 }
 
+/*
+ * GetSafeSnapshotBlockingPids
+ *             If the specified process is currently blocked in GetSafeSnapshot,
+ *             write the process IDs of all processes that it is blocked by
+ *             into the caller-supplied buffer output[].  The list is truncated at
+ *             output_size, and the number of PIDs written into the buffer is
+ *             returned.  Returns zero if the given PID is not currently blocked
+ *             in GetSafeSnapshot.
+ */
+int
+GetSafeSnapshotBlockingPids(int blocked_pid, int *output, int output_size)
+{
+       int                     num_written = 0;
+       SERIALIZABLEXACT *sxact;
+
+       LWLockAcquire(SerializableXactHashLock, LW_SHARED);
+
+       /* Find blocked_pid's SERIALIZABLEXACT by linear search. */
+       for (sxact = FirstPredXact(); sxact != NULL; sxact = NextPredXact(sxact))
+       {
+               if (sxact->pid == blocked_pid)
+                       break;
+       }
+
+       /* Did we find it, and is it currently waiting in GetSafeSnapshot? */
+       if (sxact != NULL && SxactIsDeferrableWaiting(sxact))
+       {
+               RWConflict      possibleUnsafeConflict;
+
+               /* Traverse the list of possible unsafe conflicts collecting PIDs. */
+               possibleUnsafeConflict = (RWConflict)
+                       SHMQueueNext(&sxact->possibleUnsafeConflicts,
+                                                &sxact->possibleUnsafeConflicts,
+                                                offsetof(RWConflictData, inLink));
+
+               while (possibleUnsafeConflict != NULL && num_written < output_size)
+               {
+                       output[num_written++] = possibleUnsafeConflict->sxactOut->pid;
+                       possibleUnsafeConflict = (RWConflict)
+                               SHMQueueNext(&sxact->possibleUnsafeConflicts,
+                                                        &possibleUnsafeConflict->inLink,
+                                                        offsetof(RWConflictData, inLink));
+               }
+       }
+
+       LWLockRelease(SerializableXactHashLock);
+
+       return num_written;
+}
+
 /*
  * Acquire a snapshot that can be used for the current transaction.
  *
@@ -1573,8 +1624,8 @@ GetSerializableTransactionSnapshot(Snapshot snapshot)
 
        /*
         * Can't use serializable mode while recovery is still active, as it is,
-        * for example, on a hot standby.  We could get here despite the check
-        * in check_XactIsoLevel() if default_transaction_isolation is set to
+        * for example, on a hot standby.  We could get here despite the check in
+        * check_XactIsoLevel() if default_transaction_isolation is set to
         * serializable, so phrase the hint accordingly.
         */
        if (RecoveryInProgress())
@@ -1593,7 +1644,7 @@ GetSerializableTransactionSnapshot(Snapshot snapshot)
                return GetSafeSnapshot(snapshot);
 
        return GetSerializableTransactionSnapshotInt(snapshot,
-                                                                                                InvalidTransactionId);
+                                                                                                NULL, InvalidPid);
 }
 
 /*
@@ -1608,14 +1659,15 @@ GetSerializableTransactionSnapshot(Snapshot snapshot)
  */
 void
 SetSerializableTransactionSnapshot(Snapshot snapshot,
-                                                                  TransactionId sourcexid)
+                                                                  VirtualTransactionId *sourcevxid,
+                                                                  int sourcepid)
 {
        Assert(IsolationIsSerializable());
 
        /*
         * We do not allow SERIALIZABLE READ ONLY DEFERRABLE transactions to
         * import snapshots, since there's no way to wait for a safe snapshot when
-        * we're using the snap we're told to.  (XXX instead of throwing an error,
+        * we're using the snap we're told to.  (XXX instead of throwing an error,
         * we could just ignore the XactDeferrable flag?)
         */
        if (XactReadOnly && XactDeferrable)
@@ -1623,7 +1675,8 @@ SetSerializableTransactionSnapshot(Snapshot snapshot,
                                (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
                                 errmsg("a snapshot-importing transaction must not be READ ONLY DEFERRABLE")));
 
-       (void) GetSerializableTransactionSnapshotInt(snapshot, sourcexid);
+       (void) GetSerializableTransactionSnapshotInt(snapshot, sourcevxid,
+                                                                                                sourcepid);
 }
 
 /*
@@ -1637,7 +1690,8 @@ SetSerializableTransactionSnapshot(Snapshot snapshot,
  */
 static Snapshot
 GetSerializableTransactionSnapshotInt(Snapshot snapshot,
-                                                                         TransactionId sourcexid)
+                                                                         VirtualTransactionId *sourcevxid,
+                                                                         int sourcepid)
 {
        PGPROC     *proc;
        VirtualTransactionId vxid;
@@ -1650,6 +1704,14 @@ GetSerializableTransactionSnapshotInt(Snapshot snapshot,
 
        Assert(!RecoveryInProgress());
 
+       /*
+        * Since all parts of a serializable transaction must use the same
+        * snapshot, it is too late to establish one after a parallel operation
+        * has begun.
+        */
+       if (IsInParallelMode())
+               elog(ERROR, "cannot establish serializable snapshot during a parallel operation");
+
        proc = MyProc;
        Assert(proc != NULL);
        GET_VXID_FROM_PGPROC(vxid, *proc);
@@ -1664,7 +1726,7 @@ GetSerializableTransactionSnapshotInt(Snapshot snapshot,
         * release SerializableXactHashLock to call SummarizeOldestCommittedSxact,
         * this means we have to create the sxact first, which is a bit annoying
         * (in particular, an elog(ERROR) in procarray.c would cause us to leak
-        * the sxact).  Consider refactoring to avoid this.
+        * the sxact).  Consider refactoring to avoid this.
         */
 #ifdef TEST_OLDSERXID
        SummarizeOldestCommittedSxact();
@@ -1683,17 +1745,17 @@ GetSerializableTransactionSnapshotInt(Snapshot snapshot,
        } while (!sxact);
 
        /* Get the snapshot, or check that it's safe to use */
-       if (!TransactionIdIsValid(sourcexid))
+       if (!sourcevxid)
                snapshot = GetSnapshotData(snapshot);
-       else if (!ProcArrayInstallImportedXmin(snapshot->xmin, sourcexid))
+       else if (!ProcArrayInstallImportedXmin(snapshot->xmin, sourcevxid))
        {
                ReleasePredXact(sxact);
                LWLockRelease(SerializableXactHashLock);
                ereport(ERROR,
                                (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
                                 errmsg("could not import the requested snapshot"),
-                          errdetail("The source transaction %u is not running anymore.",
-                                                sourcexid)));
+                 errdetail("The source process with pid %d is not running anymore.",
+                                       sourcepid)));
        }
 
        /*
@@ -1787,11 +1849,10 @@ GetSerializableTransactionSnapshotInt(Snapshot snapshot,
        MemSet(&hash_ctl, 0, sizeof(hash_ctl));
        hash_ctl.keysize = sizeof(PREDICATELOCKTARGETTAG);
        hash_ctl.entrysize = sizeof(LOCALPREDICATELOCK);
-       hash_ctl.hash = tag_hash;
        LocalPredicateLockHash = hash_create("Local predicate lock",
                                                                                 max_predicate_locks_per_xact,
                                                                                 &hash_ctl,
-                                                                                HASH_ELEM | HASH_FUNCTION);
+                                                                                HASH_ELEM | HASH_BLOBS);
 
        return snapshot;
 }
@@ -1854,7 +1915,7 @@ PageIsPredicateLocked(Relation relation, BlockNumber blkno)
 {
        PREDICATELOCKTARGETTAG targettag;
        uint32          targettaghash;
-       LWLockId        partitionLock;
+       LWLock     *partitionLock;
        PREDICATELOCKTARGET *target;
 
        SET_PREDICATELOCKTARGETTAG_PAGE(targettag,
@@ -2046,7 +2107,7 @@ RemoveTargetIfNoLongerUsed(PREDICATELOCKTARGET *target, uint32 targettaghash)
 /*
  * Delete child target locks owned by this process.
  * This implementation is assuming that the usage of each target tag field
- * is uniform. No need to make this hard if we don't have to.
+ * is uniform.  No need to make this hard if we don't have to.
  *
  * We aren't acquiring lightweight locks for the predicate lock or lock
  * target structures associated with this transaction unless we're going
@@ -2087,7 +2148,7 @@ DeleteChildTargetLocks(const PREDICATELOCKTARGETTAG *newtargettag)
                if (TargetTagIsCoveredBy(oldtargettag, *newtargettag))
                {
                        uint32          oldtargettaghash;
-                       LWLockId        partitionLock;
+                       LWLock     *partitionLock;
                        PREDICATELOCK *rmpredlock PG_USED_FOR_ASSERTS_ONLY;
 
                        oldtargettaghash = PredicateLockTargetTagHashCode(&oldtargettag);
@@ -2118,28 +2179,35 @@ DeleteChildTargetLocks(const PREDICATELOCKTARGETTAG *newtargettag)
 }
 
 /*
- * Returns the promotion threshold for a given predicate lock
- * target. This is the number of descendant locks required to promote
- * to the specified tag. Note that the threshold includes non-direct
- * descendants, e.g. both tuples and pages for a relation lock.
+ * Returns the promotion limit for a given predicate lock target.  This is the
+ * max number of descendant locks allowed before promoting to the specified
+ * tag. Note that the limit includes non-direct descendants (e.g., both tuples
+ * and pages for a relation lock).
  *
- * TODO SSI: We should do something more intelligent about what the
- * thresholds are, either making it proportional to the number of
- * tuples in a page & pages in a relation, or at least making it a
- * GUC. Currently the threshold is 3 for a page lock, and
- * max_pred_locks_per_transaction/2 for a relation lock, chosen
- * entirely arbitrarily (and without benchmarking).
+ * Currently the default limit is 2 for a page lock, and half of the value of
+ * max_pred_locks_per_transaction - 1 for a relation lock, to match behavior
+ * of earlier releases when upgrading.
+ *
+ * TODO SSI: We should probably add additional GUCs to allow a maximum ratio
+ * of page and tuple locks based on the pages in a relation, and the maximum
+ * ratio of tuple locks to tuples in a page.  This would provide more
+ * generally "balanced" allocation of locks to where they are most useful,
+ * while still allowing the absolute numbers to prevent one relation from
+ * tying up all predicate lock resources.
  */
 static int
-PredicateLockPromotionThreshold(const PREDICATELOCKTARGETTAG *tag)
+MaxPredicateChildLocks(const PREDICATELOCKTARGETTAG *tag)
 {
        switch (GET_PREDICATELOCKTARGETTAG_TYPE(*tag))
        {
                case PREDLOCKTAG_RELATION:
-                       return max_predicate_locks_per_xact / 2;
+                       return max_predicate_locks_per_relation < 0
+                               ? (max_predicate_locks_per_xact
+                                  / (-max_predicate_locks_per_relation)) - 1
+                               : max_predicate_locks_per_relation;
 
                case PREDLOCKTAG_PAGE:
-                       return 3;
+                       return max_predicate_locks_per_page;
 
                case PREDLOCKTAG_TUPLE:
 
@@ -2194,8 +2262,8 @@ CheckAndPromotePredicateLockRequest(const PREDICATELOCKTARGETTAG *reqtag)
                else
                        parentlock->childLocks++;
 
-               if (parentlock->childLocks >=
-                       PredicateLockPromotionThreshold(&targettag))
+               if (parentlock->childLocks >
+                       MaxPredicateChildLocks(&targettag))
                {
                        /*
                         * We should promote to this parent lock. Continue to check its
@@ -2299,7 +2367,7 @@ CreatePredicateLock(const PREDICATELOCKTARGETTAG *targettag,
        PREDICATELOCKTARGET *target;
        PREDICATELOCKTAG locktag;
        PREDICATELOCK *lock;
-       LWLockId        partitionLock;
+       LWLock     *partitionLock;
        bool            found;
 
        partitionLock = PredicateLockHashPartitionLock(targettaghash);
@@ -2490,11 +2558,9 @@ PredicateLockTuple(Relation relation, HeapTuple tuple, Snapshot snapshot)
                        }
                }
        }
-       else
-               targetxmin = InvalidTransactionId;
 
        /*
-        * Do quick-but-not-definitive test for a relation lock first.  This will
+        * Do quick-but-not-definitive test for a relation lock first.  This will
         * never cause a return when the relation is *not* locked, but will
         * occasionally let the check continue when there really *is* a relation
         * level lock.
@@ -2510,8 +2576,7 @@ PredicateLockTuple(Relation relation, HeapTuple tuple, Snapshot snapshot)
                                                                         relation->rd_node.dbNode,
                                                                         relation->rd_id,
                                                                         ItemPointerGetBlockNumber(tid),
-                                                                        ItemPointerGetOffsetNumber(tid),
-                                                                        targetxmin);
+                                                                        ItemPointerGetOffsetNumber(tid));
        PredicateLockAcquire(&tag);
 }
 
@@ -2600,10 +2665,10 @@ TransferPredicateLocksToNewTarget(PREDICATELOCKTARGETTAG oldtargettag,
                                                                  bool removeOld)
 {
        uint32          oldtargettaghash;
-       LWLockId        oldpartitionLock;
+       LWLock     *oldpartitionLock;
        PREDICATELOCKTARGET *oldtarget;
        uint32          newtargettaghash;
-       LWLockId        newpartitionLock;
+       LWLock     *newpartitionLock;
        bool            found;
        bool            outOfShmem = false;
 
@@ -2780,7 +2845,7 @@ exit:
                /* We shouldn't run out of memory if we're moving locks */
                Assert(!outOfShmem);
 
-               /* Put the scrach entry back */
+               /* Put the scratch entry back */
                RestoreScratchTarget(false);
        }
 
@@ -2807,7 +2872,7 @@ exit:
  * transaction which is not serializable.
  *
  * NOTE: This is currently only called with transfer set to true, but that may
- * change.     If we decide to clean up the locks from a table on commit of a
+ * change.  If we decide to clean up the locks from a table on commit of a
  * transaction which executed DROP TABLE, the false condition will be useful.
  */
 static void
@@ -2849,8 +2914,8 @@ DropAllPredicateLocksFromTable(Relation relation, bool transfer)
                heapId = relation->rd_index->indrelid;
        }
        Assert(heapId != InvalidOid);
-       Assert(transfer || !isIndex);           /* index OID only makes sense with
-                                                                                * transfer */
+       Assert(transfer || !isIndex);   /* index OID only makes sense with
+                                                                        * transfer */
 
        /* Retrieve first time needed, then keep. */
        heaptargettaghash = 0;
@@ -2859,7 +2924,7 @@ DropAllPredicateLocksFromTable(Relation relation, bool transfer)
        /* Acquire locks on all lock partitions */
        LWLockAcquire(SerializablePredicateLockListLock, LW_EXCLUSIVE);
        for (i = 0; i < NUM_PREDICATELOCK_PARTITIONS; i++)
-               LWLockAcquire(FirstPredicateLockMgrLock + i, LW_EXCLUSIVE);
+               LWLockAcquire(PredicateLockHashPartitionLockByIndex(i), LW_EXCLUSIVE);
        LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
 
        /*
@@ -2888,7 +2953,7 @@ DropAllPredicateLocksFromTable(Relation relation, bool transfer)
                        continue;                       /* already the right lock */
 
                /*
-                * If we made it here, we have work to do.      We make sure the heap
+                * If we made it here, we have work to do.  We make sure the heap
                 * relation lock exists, then we walk the list of predicate locks for
                 * the old target we found, moving all locks to the heap relation lock
                 * -- unless they already hold that.
@@ -2997,7 +3062,7 @@ DropAllPredicateLocksFromTable(Relation relation, bool transfer)
        /* Release locks in reverse order */
        LWLockRelease(SerializableXactHashLock);
        for (i = NUM_PREDICATELOCK_PARTITIONS - 1; i >= 0; i--)
-               LWLockRelease(FirstPredicateLockMgrLock + i);
+               LWLockRelease(PredicateLockHashPartitionLockByIndex(i));
        LWLockRelease(SerializablePredicateLockListLock);
 }
 
@@ -3196,7 +3261,7 @@ ReleasePredicateLocks(bool isCommit)
        /*
         * We can't trust XactReadOnly here, because a transaction which started
         * as READ WRITE can show as READ ONLY later, e.g., within
-        * substransactions.  We want to flag a transaction as READ ONLY if it
+        * subtransactions.  We want to flag a transaction as READ ONLY if it
         * commits without writing so that de facto READ ONLY transactions get the
         * benefit of some RO optimizations, so we will use this local variable to
         * get some cleanup logic right which is based on whether the transaction
@@ -3210,30 +3275,29 @@ ReleasePredicateLocks(bool isCommit)
                return;
        }
 
+       LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
+
        Assert(!isCommit || SxactIsPrepared(MySerializableXact));
        Assert(!isCommit || !SxactIsDoomed(MySerializableXact));
        Assert(!SxactIsCommitted(MySerializableXact));
        Assert(!SxactIsRolledBack(MySerializableXact));
 
        /* may not be serializable during COMMIT/ROLLBACK PREPARED */
-       if (MySerializableXact->pid != 0)
-               Assert(IsolationIsSerializable());
+       Assert(MySerializableXact->pid == 0 || IsolationIsSerializable());
 
        /* We'd better not already be on the cleanup list. */
        Assert(!SxactIsOnFinishedList(MySerializableXact));
 
        topLevelIsDeclaredReadOnly = SxactIsReadOnly(MySerializableXact);
 
-       LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
-
        /*
         * We don't hold XidGenLock lock here, assuming that TransactionId is
         * atomic!
         *
         * If this value is changing, we don't care that much whether we get the
         * old or new value -- it is just used to determine how far
-        * GlobalSerizableXmin must advance before this transaction can be fully
-        * cleaned up.  The worst that could happen is we wait for one more
+        * GlobalSerializableXmin must advance before this transaction can be
+        * fully cleaned up.  The worst that could happen is we wait for one more
         * transaction to complete before freeing some RAM; correctness of visible
         * behavior is not affected.
         */
@@ -3336,7 +3400,7 @@ ReleasePredicateLocks(bool isCommit)
        }
 
        /*
-        * Release all outConflicts to committed transactions.  If we're rolling
+        * Release all outConflicts to committed transactions.  If we're rolling
         * back clear them all.  Set SXACT_FLAG_CONFLICT_OUT if any point to
         * previously committed transactions.
         */
@@ -3612,7 +3676,7 @@ ClearOldPredicateLocks(void)
                        PREDICATELOCKTARGET *target;
                        PREDICATELOCKTARGETTAG targettag;
                        uint32          targettaghash;
-                       LWLockId        partitionLock;
+                       LWLock     *partitionLock;
 
                        tag = predlock->tag;
                        target = tag.myTarget;
@@ -3655,7 +3719,7 @@ ClearOldPredicateLocks(void)
  * matter -- but keep the transaction entry itself and any outConflicts.
  *
  * When the summarize flag is set, we've run short of room for sxact data
- * and must summarize to the SLRU.     Predicate locks are transferred to a
+ * and must summarize to the SLRU.  Predicate locks are transferred to a
  * dummy "old" transaction, with duplicate locks on a single target
  * collapsing to a single lock with the "latest" commitSeqNo from among
  * the conflicting locks..
@@ -3691,7 +3755,7 @@ ReleaseOneSerializableXact(SERIALIZABLEXACT *sxact, bool partial,
                PREDICATELOCKTARGET *target;
                PREDICATELOCKTARGETTAG targettag;
                uint32          targettaghash;
-               LWLockId        partitionLock;
+               LWLock     *partitionLock;
 
                nextpredlock = (PREDICATELOCK *)
                        SHMQueueNext(&(sxact->predicateLocks),
@@ -3848,7 +3912,7 @@ XidIsConcurrent(TransactionId xid)
 /*
  * CheckForSerializableConflictOut
  *             We are reading a tuple which has been modified.  If it is visible to
- *             us but has been deleted, that indicates a rw-conflict out.      If it's
+ *             us but has been deleted, that indicates a rw-conflict out.  If it's
  *             not visible and was created by a concurrent (overlapping)
  *             serializable transaction, that is also a rw-conflict out,
  *
@@ -3893,7 +3957,7 @@ CheckForSerializableConflictOut(bool visible, Relation relation,
         * tuple is visible to us, while HeapTupleSatisfiesVacuum checks what else
         * is going on with it.
         */
-       htsvResult = HeapTupleSatisfiesVacuum(tuple->t_data, TransactionXmin, buffer);
+       htsvResult = HeapTupleSatisfiesVacuum(tuple, TransactionXmin, buffer);
        switch (htsvResult)
        {
                case HEAPTUPLE_LIVE:
@@ -3904,10 +3968,10 @@ CheckForSerializableConflictOut(bool visible, Relation relation,
                case HEAPTUPLE_RECENTLY_DEAD:
                        if (!visible)
                                return;
-                       xid = HeapTupleHeaderGetXmax(tuple->t_data);
+                       xid = HeapTupleHeaderGetUpdateXid(tuple->t_data);
                        break;
                case HEAPTUPLE_DELETE_IN_PROGRESS:
-                       xid = HeapTupleHeaderGetXmax(tuple->t_data);
+                       xid = HeapTupleHeaderGetUpdateXid(tuple->t_data);
                        break;
                case HEAPTUPLE_INSERT_IN_PROGRESS:
                        xid = HeapTupleHeaderGetXmin(tuple->t_data);
@@ -3935,7 +3999,7 @@ CheckForSerializableConflictOut(bool visible, Relation relation,
        Assert(TransactionIdFollowsOrEquals(xid, TransactionXmin));
 
        /*
-        * Find top level xid.  Bail out if xid is too early to be a conflict, or
+        * Find top level xid.  Bail out if xid is too early to be a conflict, or
         * if it's our own xid.
         */
        if (TransactionIdEquals(xid, GetTopTransactionIdIfAny()))
@@ -4000,7 +4064,7 @@ CheckForSerializableConflictOut(bool visible, Relation relation,
 
        /*
         * We have a conflict out to a transaction which has a conflict out to a
-        * summarized transaction.      That summarized transaction must have
+        * summarized transaction.  That summarized transaction must have
         * committed first, and we can't tell when it committed in relation to our
         * snapshot acquisition, so something needs to be canceled.
         */
@@ -4034,7 +4098,7 @@ CheckForSerializableConflictOut(bool visible, Relation relation,
                && (!SxactHasConflictOut(sxact)
                        || MySerializableXact->SeqNo.lastCommitBeforeSnapshot < sxact->SeqNo.earliestOutConflictCommit))
        {
-               /* Read-only transaction will appear to run first.      No conflict. */
+               /* Read-only transaction will appear to run first.  No conflict. */
                LWLockRelease(SerializableXactHashLock);
                return;
        }
@@ -4069,7 +4133,7 @@ static void
 CheckTargetForConflictsIn(PREDICATELOCKTARGETTAG *targettag)
 {
        uint32          targettaghash;
-       LWLockId        partitionLock;
+       LWLock     *partitionLock;
        PREDICATELOCKTARGET *target;
        PREDICATELOCK *predlock;
        PREDICATELOCK *mypredlock = NULL;
@@ -4280,9 +4344,8 @@ CheckForSerializableConflictIn(Relation relation, HeapTuple tuple,
                SET_PREDICATELOCKTARGETTAG_TUPLE(targettag,
                                                                                 relation->rd_node.dbNode,
                                                                                 relation->rd_id,
-                                                ItemPointerGetBlockNumber(&(tuple->t_data->t_ctid)),
-                                               ItemPointerGetOffsetNumber(&(tuple->t_data->t_ctid)),
-                                                                         HeapTupleHeaderGetXmin(tuple->t_data));
+                                                                ItemPointerGetBlockNumber(&(tuple->t_self)),
+                                                          ItemPointerGetOffsetNumber(&(tuple->t_self)));
                CheckTargetForConflictsIn(&targettag);
        }
 
@@ -4362,8 +4425,8 @@ CheckTableForSerializableConflictIn(Relation relation)
 
        LWLockAcquire(SerializablePredicateLockListLock, LW_EXCLUSIVE);
        for (i = 0; i < NUM_PREDICATELOCK_PARTITIONS; i++)
-               LWLockAcquire(FirstPredicateLockMgrLock + i, LW_SHARED);
-       LWLockAcquire(SerializableXactHashLock, LW_SHARED);
+               LWLockAcquire(PredicateLockHashPartitionLockByIndex(i), LW_SHARED);
+       LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
 
        /* Scan through target list */
        hash_seq_init(&seqstat, PredicateLockTargetHash);
@@ -4409,7 +4472,7 @@ CheckTableForSerializableConflictIn(Relation relation)
        /* Release locks in reverse order */
        LWLockRelease(SerializableXactHashLock);
        for (i = NUM_PREDICATELOCK_PARTITIONS - 1; i >= 0; i--)
-               LWLockRelease(FirstPredicateLockMgrLock + i);
+               LWLockRelease(PredicateLockHashPartitionLockByIndex(i));
        LWLockRelease(SerializablePredicateLockListLock);
 }
 
@@ -4626,7 +4689,7 @@ OnConflict_CheckForSerializationFailure(const SERIALIZABLEXACT *reader,
  *
  * If a dangerous structure is found, the pivot (the near conflict) is
  * marked for death, because rolling back another transaction might mean
- * that we flail without ever making progress. This transaction is
+ * that we flail without ever making progress.  This transaction is
  * committing writes, so letting it commit ensures progress.  If we
  * canceled the far conflict, it might immediately fail again on retry.
  */
@@ -4739,7 +4802,7 @@ AtPrepare_PredicateLocks(void)
        if (MySerializableXact == InvalidSerializableXact)
                return;
 
-       /* Generate a xact record for our SERIALIZABLEXACT */
+       /* Generate an xact record for our SERIALIZABLEXACT */
        record.type = TWOPHASEPREDICATERECORD_XACT;
        xactRecord->xmin = MySerializableXact->xmin;
        xactRecord->flags = MySerializableXact->flags;