]> granicus.if.org Git - postgresql/blobdiff - src/backend/storage/lmgr/predicate.c
Phase 2 of pgindent updates.
[postgresql] / src / backend / storage / lmgr / predicate.c
index 28da729b6dd0250c5a956348326b8181d280f0cc..3b355641c250198f331935dcaf28363940073083 100644 (file)
  * examining the MVCC data.)
  *
  * (1) Besides tuples actually read, they must cover ranges of tuples
- *             which would have been read based on the predicate.      This will
+ *             which would have been read based on the predicate.  This will
  *             require modelling the predicates through locks against database
  *             objects such as pages, index ranges, or entire tables.
  *
- * (2) They must be kept in RAM for quick access.      Because of this, it
+ * (2) They must be kept in RAM for quick access.  Because of this, it
  *             isn't possible to always maintain tuple-level granularity -- when
  *             the space allocated to store these approaches exhaustion, a
  *             request for a lock may need to scan for situations where a single
@@ -49,7 +49,7 @@
  *
  * (4) While they are associated with a transaction, they must survive
  *             a successful COMMIT of that transaction, and remain until all
- *             overlapping transactions complete.      This even means that they
+ *             overlapping transactions complete.  This even means that they
  *             must survive termination of the transaction's process.  If a
  *             top level transaction is rolled back, however, it is immediately
  *             flagged so that it can be ignored, and its SIREAD locks can be
@@ -62,7 +62,7 @@
  *             an existing SIREAD lock for the same transaction, the SIREAD lock
  *             can be deleted.
  *
- * (7) A write from a serializable transaction must ensure that a xact
+ * (7) A write from a serializable transaction must ensure that an xact
  *             record exists for the transaction, with the same lifespan (until
  *             all concurrent transaction complete or the transaction is rolled
  *             back) so that rw-dependencies to that transaction can be
@@ -90,7 +90,7 @@
  *                     may yet matter because they overlap still-active transactions.
  *
  *     SerializablePredicateLockListLock
- *             - Protects the linked list of locks held by a transaction.      Note
+ *             - Protects the linked list of locks held by a transaction.  Note
  *                     that the locks themselves are also covered by the partition
  *                     locks of their respective lock targets; this lock only affects
  *                     the linked list connecting the locks related to a transaction.
  *             - It is relatively infrequent that another process needs to
  *                     modify the list for a transaction, but it does happen for such
  *                     things as index page splits for pages with predicate locks and
- *                     freeing of predicate locked pages by a vacuum process.  When
+ *                     freeing of predicate locked pages by a vacuum process.  When
  *                     removing a lock in such cases, the lock itself contains the
  *                     pointers needed to remove it from the list.  When adding a
  *                     lock in such cases, the lock can be added using the anchor in
- *                     the transaction structure.      Neither requires walking the list.
+ *                     the transaction structure.  Neither requires walking the list.
  *             - Cleaning up the list for a terminated transaction is sometimes
  *                     not done on a retail basis, in which case no lock is required.
  *             - Due to the above, a process accessing its active transaction's
  *             - Protects both PredXact and SerializableXidHash.
  *
  *
- * Portions Copyright (c) 1996-2011, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group
  * Portions Copyright (c) 1994, Regents of the University of California
  *
  *
  *             PageIsPredicateLocked(Relation relation, BlockNumber blkno)
  *
  * predicate lock maintenance
- *             RegisterSerializableTransaction(Snapshot snapshot)
+ *             GetSerializableTransactionSnapshot(Snapshot snapshot)
+ *             SetSerializableTransactionSnapshot(Snapshot snapshot,
+ *                                                                                VirtualTransactionId *sourcevxid)
  *             RegisterPredicateLockingXid(void)
- *             PredicateLockRelation(Relation relation)
- *             PredicateLockPage(Relation relation, BlockNumber blkno)
- *             PredicateLockTuple(Relation relation, HeapTuple tuple)
+ *             PredicateLockRelation(Relation relation, Snapshot snapshot)
+ *             PredicateLockPage(Relation relation, BlockNumber blkno,
+ *                                             Snapshot snapshot)
+ *             PredicateLockTuple(Relation relation, HeapTuple tuple,
+ *                                             Snapshot snapshot)
  *             PredicateLockPageSplit(Relation relation, BlockNumber oldblkno,
- *                                                        BlockNumber newblkno);
+ *                                                        BlockNumber newblkno)
  *             PredicateLockPageCombine(Relation relation, BlockNumber oldblkno,
- *                                                              BlockNumber newblkno);
+ *                                                              BlockNumber newblkno)
  *             TransferPredicateLocksToHeapRelation(Relation relation)
  *             ReleasePredicateLocks(bool isCommit)
  *
  * conflict detection (may also trigger rollback)
  *             CheckForSerializableConflictOut(bool visible, Relation relation,
- *                                                                             HeapTupleData *tup, Buffer buffer)
+ *                                                                             HeapTupleData *tup, Buffer buffer,
+ *                                                                             Snapshot snapshot)
  *             CheckForSerializableConflictIn(Relation relation, HeapTupleData *tup,
  *                                                                        Buffer buffer)
  *             CheckTableForSerializableConflictIn(Relation relation)
 
 #include "postgres.h"
 
+#include "access/htup_details.h"
 #include "access/slru.h"
 #include "access/subtrans.h"
 #include "access/transam.h"
 #include "access/twophase.h"
 #include "access/twophase_rmgr.h"
 #include "access/xact.h"
+#include "access/xlog.h"
 #include "miscadmin.h"
+#include "pgstat.h"
 #include "storage/bufmgr.h"
 #include "storage/predicate.h"
 #include "storage/predicate_internals.h"
+#include "storage/proc.h"
 #include "storage/procarray.h"
 #include "utils/rel.h"
 #include "utils/snapmgr.h"
 #define PredicateLockHashPartition(hashcode) \
        ((hashcode) % NUM_PREDICATELOCK_PARTITIONS)
 #define PredicateLockHashPartitionLock(hashcode) \
-       ((LWLockId) (FirstPredicateLockMgrLock + PredicateLockHashPartition(hashcode)))
+       (&MainLWLockArray[PREDICATELOCK_MANAGER_LWLOCK_OFFSET + \
+               PredicateLockHashPartition(hashcode)].lock)
+#define PredicateLockHashPartitionLockByIndex(i) \
+       (&MainLWLockArray[PREDICATELOCK_MANAGER_LWLOCK_OFFSET + (i)].lock)
 
 #define NPREDICATELOCKTARGETENTS() \
        mul_size(max_predicate_locks_per_xact, add_size(MaxBackends, max_prepared_xacts))
 
 #define SxactIsOnFinishedList(sxact) (!SHMQueueIsDetached(&((sxact)->finishedLink)))
 
-#define SxactIsPrepared(sxact) (((sxact)->flags & SXACT_FLAG_PREPARED) != 0)
+/*
+ * Note that a sxact is marked "prepared" once it has passed
+ * PreCommit_CheckForSerializationFailure, even if it isn't using
+ * 2PC. This is the point at which it can no longer be aborted.
+ *
+ * The PREPARED flag remains set after commit, so SxactIsCommitted
+ * implies SxactIsPrepared.
+ */
 #define SxactIsCommitted(sxact) (((sxact)->flags & SXACT_FLAG_COMMITTED) != 0)
+#define SxactIsPrepared(sxact) (((sxact)->flags & SXACT_FLAG_PREPARED) != 0)
 #define SxactIsRolledBack(sxact) (((sxact)->flags & SXACT_FLAG_ROLLED_BACK) != 0)
+#define SxactIsDoomed(sxact) (((sxact)->flags & SXACT_FLAG_DOOMED) != 0)
 #define SxactIsReadOnly(sxact) (((sxact)->flags & SXACT_FLAG_READ_ONLY) != 0)
 #define SxactHasSummaryConflictIn(sxact) (((sxact)->flags & SXACT_FLAG_SUMMARY_CONFLICT_IN) != 0)
 #define SxactHasSummaryConflictOut(sxact) (((sxact)->flags & SXACT_FLAG_SUMMARY_CONFLICT_OUT) != 0)
 #define SxactIsDeferrableWaiting(sxact) (((sxact)->flags & SXACT_FLAG_DEFERRABLE_WAITING) != 0)
 #define SxactIsROSafe(sxact) (((sxact)->flags & SXACT_FLAG_RO_SAFE) != 0)
 #define SxactIsROUnsafe(sxact) (((sxact)->flags & SXACT_FLAG_RO_UNSAFE) != 0)
-#define SxactIsMarkedForDeath(sxact) (((sxact)->flags & SXACT_FLAG_MARKED_FOR_DEATH) != 0)
-
-/*
- * Is this relation exempt from predicate locking? We don't do predicate
- * locking on system or temporary relations.
- */
-#define SkipPredicateLocksForRelation(relation) \
-       (((relation)->rd_id < FirstBootstrapObjectId) \
-       || RelationUsesLocalBuffers(relation))
-
-/*
- * When a public interface method is called for serializing a relation within
- * the current transaction, this is the test to see if we should do a quick
- * return.
- */
-#define SkipSerialization(relation) \
-       ((!IsolationIsSerializable()) \
-       || ((MySerializableXact == InvalidSerializableXact)) \
-       || ReleasePredicateLocksIfROSafe() \
-       || SkipPredicateLocksForRelation(relation))
-
 
 /*
  * Compute the hash code associated with a PREDICATELOCKTARGETTAG.
  * the lock partition number from the hashcode.
  */
 #define PredicateLockTargetTagHashCode(predicatelocktargettag) \
-       (tag_hash((predicatelocktargettag), sizeof(PREDICATELOCKTARGETTAG)))
+       get_hash_value(PredicateLockTargetHash, predicatelocktargettag)
 
 /*
  * Given a predicate lock tag, and the hash for its target,
@@ -314,7 +314,13 @@ static SlruCtlData OldSerXidSlruCtlData;
 #define OLDSERXID_PAGESIZE                     BLCKSZ
 #define OLDSERXID_ENTRYSIZE                    sizeof(SerCommitSeqNo)
 #define OLDSERXID_ENTRIESPERPAGE       (OLDSERXID_PAGESIZE / OLDSERXID_ENTRYSIZE)
-#define OLDSERXID_MAX_PAGE                     (SLRU_PAGES_PER_SEGMENT * 0x10000 - 1)
+
+/*
+ * Set maximum pages based on the lesser of the number needed to track all
+ * transactions and the maximum that SLRU supports.
+ */
+#define OLDSERXID_MAX_PAGE                     Min(SLRU_PAGES_PER_SEGMENT * 0x10000 - 1, \
+                                                                               (MaxTransactionId) / OLDSERXID_ENTRIESPERPAGE)
 
 #define OldSerXidNextPage(page) (((page) >= OLDSERXID_MAX_PAGE) ? 0 : (page) + 1)
 
@@ -330,8 +336,8 @@ typedef struct OldSerXidControlData
        int                     headPage;               /* newest initialized page */
        TransactionId headXid;          /* newest valid Xid in the SLRU */
        TransactionId tailXid;          /* oldest xmin we might be interested in */
-       bool            warningIssued;
-}      OldSerXidControlData;
+       bool            warningIssued;  /* have we issued SLRU wrap-around warning? */
+}                      OldSerXidControlData;
 
 typedef struct OldSerXidControlData *OldSerXidControl;
 
@@ -346,12 +352,19 @@ static OldSerXidControl oldSerXidControl;
 static SERIALIZABLEXACT *OldCommittedSxact;
 
 
-/* This configuration variable is used to set the predicate lock table size */
-int                    max_predicate_locks_per_xact;           /* set by guc.c */
+/*
+ * These configuration variables are used to set the predicate lock table size
+ * and to control promotion of predicate locks to coarser granularity in an
+ * attempt to degrade performance (mostly as false positive serialization
+ * failure) gracefully in the face of memory pressurel
+ */
+int                    max_predicate_locks_per_xact;   /* set by guc.c */
+int                    max_predicate_locks_per_relation;       /* set by guc.c */
+int                    max_predicate_locks_per_page;   /* set by guc.c */
 
 /*
  * This provides a list of objects in order to track transactions
- * participating in predicate locking. Entries in the list are fixed size,
+ * participating in predicate locking.  Entries in the list are fixed size,
  * and reside in shared memory.  The memory address of an entry must remain
  * fixed during its lifetime.  The list will be protected from concurrent
  * update externally; no provision is made in this code to manage that.  The
@@ -380,9 +393,9 @@ static SHM_QUEUE *FinishedSerializableTransactions;
  * this entry, you can ensure that there's enough scratch space available for
  * inserting one entry in the hash table. This is an otherwise-invalid tag.
  */
-static const PREDICATELOCKTARGETTAG ScratchTargetTag = {0, 0, 0, 0, 0};
+static const PREDICATELOCKTARGETTAG ScratchTargetTag = {0, 0, 0, 0};
 static uint32 ScratchTargetTagHash;
-static int     ScratchPartitionLock;
+static LWLock *ScratchPartitionLock;
 
 /*
  * The local hash table used to determine when to combine multiple fine-
@@ -392,10 +405,11 @@ static HTAB *LocalPredicateLockHash = NULL;
 
 /*
  * Keep a pointer to the currently-running serializable transaction (if any)
- * for quick reference.
- * TODO SSI: Remove volatile qualifier and the then-unnecessary casts?
+ * for quick reference. Also, remember if we have written anything that could
+ * cause a rw-conflict.
  */
-static volatile SERIALIZABLEXACT *MySerializableXact = InvalidSerializableXact;
+static SERIALIZABLEXACT *MySerializableXact = InvalidSerializableXact;
+static bool MyXactDidWrite = false;
 
 /* local functions */
 
@@ -419,7 +433,9 @@ static void OldSerXidSetActiveSerXmin(TransactionId xid);
 static uint32 predicatelock_hash(const void *key, Size keysize);
 static void SummarizeOldestCommittedSxact(void);
 static Snapshot GetSafeSnapshot(Snapshot snapshot);
-static Snapshot RegisterSerializableTransactionInt(Snapshot snapshot);
+static Snapshot GetSerializableTransactionSnapshotInt(Snapshot snapshot,
+                                                                         VirtualTransactionId *sourcevxid,
+                                                                         int sourcepid);
 static bool PredicateLockExists(const PREDICATELOCKTARGETTAG *targettag);
 static bool GetParentPredicateLockTag(const PREDICATELOCKTARGETTAG *tag,
                                                  PREDICATELOCKTARGETTAG *parent);
@@ -429,21 +445,20 @@ static void RestoreScratchTarget(bool lockheld);
 static void RemoveTargetIfNoLongerUsed(PREDICATELOCKTARGET *target,
                                                   uint32 targettaghash);
 static void DeleteChildTargetLocks(const PREDICATELOCKTARGETTAG *newtargettag);
-static int     PredicateLockPromotionThreshold(const PREDICATELOCKTARGETTAG *tag);
+static int     MaxPredicateChildLocks(const PREDICATELOCKTARGETTAG *tag);
 static bool CheckAndPromotePredicateLockRequest(const PREDICATELOCKTARGETTAG *reqtag);
 static void DecrementParentLocks(const PREDICATELOCKTARGETTAG *targettag);
 static void CreatePredicateLock(const PREDICATELOCKTARGETTAG *targettag,
                                        uint32 targettaghash,
                                        SERIALIZABLEXACT *sxact);
 static void DeleteLockTarget(PREDICATELOCKTARGET *target, uint32 targettaghash);
-static bool TransferPredicateLocksToNewTarget(const PREDICATELOCKTARGETTAG oldtargettag,
-                                                                 const PREDICATELOCKTARGETTAG newtargettag,
+static bool TransferPredicateLocksToNewTarget(PREDICATELOCKTARGETTAG oldtargettag,
+                                                                 PREDICATELOCKTARGETTAG newtargettag,
                                                                  bool removeOld);
 static void PredicateLockAcquire(const PREDICATELOCKTARGETTAG *targettag);
-static void DropAllPredicateLocksFromTable(const Relation relation,
+static void DropAllPredicateLocksFromTable(Relation relation,
                                                           bool transfer);
 static void SetNewSxactGlobalXmin(void);
-static bool ReleasePredicateLocksIfROSafe(void);
 static void ClearOldPredicateLocks(void);
 static void ReleaseOneSerializableXact(SERIALIZABLEXACT *sxact, bool partial,
                                                   bool summarize);
@@ -453,11 +468,96 @@ static void FlagRWConflict(SERIALIZABLEXACT *reader, SERIALIZABLEXACT *writer);
 static void OnConflict_CheckForSerializationFailure(const SERIALIZABLEXACT *reader,
                                                                                SERIALIZABLEXACT *writer);
 
+
+/*------------------------------------------------------------------------*/
+
+/*
+ * Does this relation participate in predicate locking? Temporary and system
+ * relations are exempt, as are materialized views.
+ */
+static inline bool
+PredicateLockingNeededForRelation(Relation relation)
+{
+       return !(relation->rd_id < FirstBootstrapObjectId ||
+                        RelationUsesLocalBuffers(relation) ||
+                        relation->rd_rel->relkind == RELKIND_MATVIEW);
+}
+
+/*
+ * When a public interface method is called for a read, this is the test to
+ * see if we should do a quick return.
+ *
+ * Note: this function has side-effects! If this transaction has been flagged
+ * as RO-safe since the last call, we release all predicate locks and reset
+ * MySerializableXact. That makes subsequent calls to return quickly.
+ *
+ * This is marked as 'inline' to make to eliminate the function call overhead
+ * in the common case that serialization is not needed.
+ */
+static inline bool
+SerializationNeededForRead(Relation relation, Snapshot snapshot)
+{
+       /* Nothing to do if this is not a serializable transaction */
+       if (MySerializableXact == InvalidSerializableXact)
+               return false;
+
+       /*
+        * Don't acquire locks or conflict when scanning with a special snapshot.
+        * This excludes things like CLUSTER and REINDEX. They use the wholesale
+        * functions TransferPredicateLocksToHeapRelation() and
+        * CheckTableForSerializableConflictIn() to participate in serialization,
+        * but the scans involved don't need serialization.
+        */
+       if (!IsMVCCSnapshot(snapshot))
+               return false;
+
+       /*
+        * Check if we have just become "RO-safe". If we have, immediately release
+        * all locks as they're not needed anymore. This also resets
+        * MySerializableXact, so that subsequent calls to this function can exit
+        * quickly.
+        *
+        * A transaction is flagged as RO_SAFE if all concurrent R/W transactions
+        * commit without having conflicts out to an earlier snapshot, thus
+        * ensuring that no conflicts are possible for this transaction.
+        */
+       if (SxactIsROSafe(MySerializableXact))
+       {
+               ReleasePredicateLocks(false);
+               return false;
+       }
+
+       /* Check if the relation doesn't participate in predicate locking */
+       if (!PredicateLockingNeededForRelation(relation))
+               return false;
+
+       return true;                            /* no excuse to skip predicate locking */
+}
+
+/*
+ * Like SerializationNeededForRead(), but called on writes.
+ * The logic is the same, but there is no snapshot and we can't be RO-safe.
+ */
+static inline bool
+SerializationNeededForWrite(Relation relation)
+{
+       /* Nothing to do if this is not a serializable transaction */
+       if (MySerializableXact == InvalidSerializableXact)
+               return false;
+
+       /* Check if the relation doesn't participate in predicate locking */
+       if (!PredicateLockingNeededForRelation(relation))
+               return false;
+
+       return true;                            /* no excuse to skip predicate locking */
+}
+
+
 /*------------------------------------------------------------------------*/
 
 /*
  * These functions are a simple implementation of a list for this specific
- * type of struct.     If there is ever a generalized shared memory list, we
+ * type of struct.  If there is ever a generalized shared memory list, we
  * should probably switch to that.
  */
 static SERIALIZABLEXACT *
@@ -541,8 +641,8 @@ RWConflictExists(const SERIALIZABLEXACT *reader, const SERIALIZABLEXACT *writer)
        Assert(reader != writer);
 
        /* Check the ends of the purported conflict first. */
-       if (SxactIsRolledBack(reader)
-               || SxactIsRolledBack(writer)
+       if (SxactIsDoomed(reader)
+               || SxactIsDoomed(writer)
                || SHMQueueEmpty(&reader->outConflicts)
                || SHMQueueEmpty(&writer->inConflicts))
                return false;
@@ -581,7 +681,7 @@ SetRWConflict(SERIALIZABLEXACT *reader, SERIALIZABLEXACT *writer)
        if (!conflict)
                ereport(ERROR,
                                (errcode(ERRCODE_OUT_OF_MEMORY),
-                                errmsg("not enough elements in RWConflictPool to record a rw-conflict"),
+                                errmsg("not enough elements in RWConflictPool to record a read/write conflict"),
                                 errhint("You might need to run fewer transactions at a time or increase max_connections.")));
 
        SHMQueueDelete(&conflict->outLink);
@@ -609,7 +709,7 @@ SetPossibleUnsafeConflict(SERIALIZABLEXACT *roXact,
        if (!conflict)
                ereport(ERROR,
                                (errcode(ERRCODE_OUT_OF_MEMORY),
-                                errmsg("not enough elements in RWConflictPool to record a potential rw-conflict"),
+                                errmsg("not enough elements in RWConflictPool to record a potential read/write conflict"),
                                 errhint("You might need to run fewer transactions at a time or increase max_connections.")));
 
        SHMQueueDelete(&conflict->outLink);
@@ -677,7 +777,7 @@ OldSerXidPagePrecedesLogically(int p, int q)
        int                     diff;
 
        /*
-        * We have to compare modulo (OLDSERXID_MAX_PAGE+1)/2.  Both inputs should
+        * We have to compare modulo (OLDSERXID_MAX_PAGE+1)/2.  Both inputs should
         * be in the range 0..OLDSERXID_MAX_PAGE.
         */
        Assert(p >= 0 && p <= OLDSERXID_MAX_PAGE);
@@ -686,7 +786,7 @@ OldSerXidPagePrecedesLogically(int p, int q)
        diff = p - q;
        if (diff >= ((OLDSERXID_MAX_PAGE + 1) / 2))
                diff -= OLDSERXID_MAX_PAGE + 1;
-       else if (diff < -((OLDSERXID_MAX_PAGE + 1) / 2))
+       else if (diff < -((int) (OLDSERXID_MAX_PAGE + 1) / 2))
                diff += OLDSERXID_MAX_PAGE + 1;
        return diff < 0;
 }
@@ -703,8 +803,9 @@ OldSerXidInit(void)
         * Set up SLRU management of the pg_serial data.
         */
        OldSerXidSlruCtl->PagePrecedes = OldSerXidPagePrecedesLogically;
-       SimpleLruInit(OldSerXidSlruCtl, "OldSerXid SLRU Ctl", NUM_OLDSERXID_BUFFERS, 0,
-                                 OldSerXidLock, "pg_serial");
+       SimpleLruInit(OldSerXidSlruCtl, "oldserxid",
+                                 NUM_OLDSERXID_BUFFERS, 0, OldSerXidLock, "pg_serial",
+                                 LWTRANCHE_OLDSERXID_BUFFERS);
        /* Override default assumption that writes should be fsync'd */
        OldSerXidSlruCtl->do_fsync = false;
 
@@ -729,7 +830,7 @@ OldSerXidInit(void)
 /*
  * Record a committed read write serializable xid and the minimum
  * commitSeqNo of any transactions to which this xid had a rw-conflict out.
- * A zero seqNo means that there were no conflicts out from xid.
+ * An invalid seqNo means that there were no conflicts out from xid.
  */
 static void
 OldSerXidAdd(TransactionId xid, SerCommitSeqNo minConflictCommitSeqNo)
@@ -738,7 +839,6 @@ OldSerXidAdd(TransactionId xid, SerCommitSeqNo minConflictCommitSeqNo)
        int                     targetPage;
        int                     slotno;
        int                     firstZeroPage;
-       int                     xidSpread;
        bool            isNewPage;
 
        Assert(TransactionIdIsValid(xid));
@@ -779,18 +879,45 @@ OldSerXidAdd(TransactionId xid, SerCommitSeqNo minConflictCommitSeqNo)
        if (isNewPage)
                oldSerXidControl->headPage = targetPage;
 
-       xidSpread = (((uint32) xid) - ((uint32) tailXid));
+       /*
+        * Give a warning if we're about to run out of SLRU pages.
+        *
+        * slru.c has a maximum of 64k segments, with 32 (SLRU_PAGES_PER_SEGMENT)
+        * pages each. We need to store a 64-bit integer for each Xid, and with
+        * default 8k block size, 65536*32 pages is only enough to cover 2^30
+        * XIDs. If we're about to hit that limit and wrap around, warn the user.
+        *
+        * To avoid spamming the user, we only give one warning when we've used 1
+        * billion XIDs, and stay silent until the situation is fixed and the
+        * number of XIDs used falls below 800 million again.
+        *
+        * XXX: We have no safeguard to actually *prevent* the wrap-around,
+        * though. All you get is a warning.
+        */
        if (oldSerXidControl->warningIssued)
        {
-               if (xidSpread < 800000000)
+               TransactionId lowWatermark;
+
+               lowWatermark = tailXid + 800000000;
+               if (lowWatermark < FirstNormalTransactionId)
+                       lowWatermark = FirstNormalTransactionId;
+               if (TransactionIdPrecedes(xid, lowWatermark))
                        oldSerXidControl->warningIssued = false;
        }
-       else if (xidSpread >= 1000000000)
+       else
        {
-               oldSerXidControl->warningIssued = true;
-               ereport(WARNING,
-                               (errmsg("memory for serializable conflict tracking is nearly exhausted"),
-                                errhint("There may be an idle transaction or a forgotten prepared transaction causing this.")));
+               TransactionId highWatermark;
+
+               highWatermark = tailXid + 1000000000;
+               if (highWatermark < FirstNormalTransactionId)
+                       highWatermark = FirstNormalTransactionId;
+               if (TransactionIdFollows(xid, highWatermark))
+               {
+                       oldSerXidControl->warningIssued = true;
+                       ereport(WARNING,
+                                       (errmsg("memory for serializable conflict tracking is nearly exhausted"),
+                                        errhint("There might be an idle transaction or a forgotten prepared transaction causing this.")));
+               }
        }
 
        if (isNewPage)
@@ -807,12 +934,13 @@ OldSerXidAdd(TransactionId xid, SerCommitSeqNo minConflictCommitSeqNo)
                slotno = SimpleLruReadPage(OldSerXidSlruCtl, targetPage, true, xid);
 
        OldSerXidValue(slotno, xid) = minConflictCommitSeqNo;
+       OldSerXidSlruCtl->shared->page_dirty[slotno] = true;
 
        LWLockRelease(OldSerXidLock);
 }
 
 /*
- * Get the minimum commitSeqNo for any conflict out for the given xid. For
+ * Get the minimum commitSeqNo for any conflict out for the given xid.  For
  * a transaction which exists but has no conflict out, InvalidSerCommitSeqNo
  * will be returned.
  */
@@ -865,7 +993,7 @@ OldSerXidSetActiveSerXmin(TransactionId xid)
        /*
         * When no sxacts are active, nothing overlaps, set the xid values to
         * invalid to show that there are no valid entries.  Don't clear headPage,
-        * though.      A new xmin might still land on that page, and we don't want to
+        * though.  A new xmin might still land on that page, and we don't want to
         * repeatedly zero out the same page.
         */
        if (!TransactionIdIsValid(xid))
@@ -930,18 +1058,16 @@ CheckPointPredicate(void)
        else
        {
                /*
-                * The SLRU is no longer needed. Truncate everything.  If we try to
-                * leave the head page around to avoid re-zeroing it, we might not use
-                * the SLRU again until we're past the wrap-around point, which makes
-                * SLRU unhappy.
+                * The SLRU is no longer needed. Truncate to head before we set head
+                * invalid.
                 *
-                * While the API asks you to specify truncation by page, it silently
-                * ignores the request unless the specified page is in a segment past
-                * some allocated portion of the SLRU.  We don't care which page in a
-                * later segment we hit, so just add the number of pages per segment
-                * to the head page to land us *somewhere* in the next segment.
+                * XXX: It's possible that the SLRU is not needed again until XID
+                * wrap-around has happened, so that the segment containing headPage
+                * that we leave behind will appear to be new again. In that case it
+                * won't be removed until XID horizon advances enough to make it
+                * current again.
                 */
-               tailPage = oldSerXidControl->headPage + SLRU_PAGES_PER_SEGMENT;
+               tailPage = oldSerXidControl->headPage;
                oldSerXidControl->headPage = -1;
        }
 
@@ -979,7 +1105,6 @@ void
 InitPredicateLocks(void)
 {
        HASHCTL         info;
-       int                     hash_flags;
        long            max_table_size;
        Size            requestSize;
        bool            found;
@@ -997,15 +1122,14 @@ InitPredicateLocks(void)
        MemSet(&info, 0, sizeof(info));
        info.keysize = sizeof(PREDICATELOCKTARGETTAG);
        info.entrysize = sizeof(PREDICATELOCKTARGET);
-       info.hash = tag_hash;
        info.num_partitions = NUM_PREDICATELOCK_PARTITIONS;
-       hash_flags = (HASH_ELEM | HASH_FUNCTION | HASH_PARTITION | HASH_FIXED_SIZE);
 
        PredicateLockTargetHash = ShmemInitHash("PREDICATELOCKTARGET hash",
                                                                                        max_table_size,
                                                                                        max_table_size,
                                                                                        &info,
-                                                                                       hash_flags);
+                                                                                       HASH_ELEM | HASH_BLOBS |
+                                                                                       HASH_PARTITION | HASH_FIXED_SIZE);
 
        /* Assume an average of 2 xacts per target */
        max_table_size *= 2;
@@ -1027,13 +1151,13 @@ InitPredicateLocks(void)
        info.entrysize = sizeof(PREDICATELOCK);
        info.hash = predicatelock_hash;
        info.num_partitions = NUM_PREDICATELOCK_PARTITIONS;
-       hash_flags = (HASH_ELEM | HASH_FUNCTION | HASH_PARTITION | HASH_FIXED_SIZE);
 
        PredicateLockHash = ShmemInitHash("PREDICATELOCK hash",
                                                                          max_table_size,
                                                                          max_table_size,
                                                                          &info,
-                                                                         hash_flags);
+                                                                         HASH_ELEM | HASH_FUNCTION |
+                                                                         HASH_PARTITION | HASH_FIXED_SIZE);
 
        /*
         * Compute size for serializable transaction hashtable. Note these
@@ -1069,12 +1193,6 @@ InitPredicateLocks(void)
                requestSize = mul_size((Size) max_table_size,
                                                           PredXactListElementDataSize);
                PredXact->element = ShmemAlloc(requestSize);
-               if (PredXact->element == NULL)
-                       ereport(ERROR,
-                                       (errcode(ERRCODE_OUT_OF_MEMORY),
-                        errmsg("not enough shared memory for elements of data structure"
-                                       " \"%s\" (%lu bytes requested)",
-                                       "PredXactList", (unsigned long) requestSize)));
                /* Add all elements to available list, clean. */
                memset(PredXact->element, 0, requestSize);
                for (i = 0; i < max_table_size; i++)
@@ -1084,6 +1202,7 @@ InitPredicateLocks(void)
                }
                PredXact->OldCommittedSxact = CreatePredXact();
                SetInvalidVirtualTransactionId(PredXact->OldCommittedSxact->vxid);
+               PredXact->OldCommittedSxact->prepareSeqNo = 0;
                PredXact->OldCommittedSxact->commitSeqNo = 0;
                PredXact->OldCommittedSxact->SeqNo.lastCommitBeforeSnapshot = 0;
                SHMQueueInit(&PredXact->OldCommittedSxact->outConflicts);
@@ -1107,14 +1226,13 @@ InitPredicateLocks(void)
        MemSet(&info, 0, sizeof(info));
        info.keysize = sizeof(SERIALIZABLEXIDTAG);
        info.entrysize = sizeof(SERIALIZABLEXID);
-       info.hash = tag_hash;
-       hash_flags = (HASH_ELEM | HASH_FUNCTION | HASH_FIXED_SIZE);
 
        SerializableXidHash = ShmemInitHash("SERIALIZABLEXID hash",
                                                                                max_table_size,
                                                                                max_table_size,
                                                                                &info,
-                                                                               hash_flags);
+                                                                               HASH_ELEM | HASH_BLOBS |
+                                                                               HASH_FIXED_SIZE);
 
        /*
         * Allocate space for tracking rw-conflicts in lists attached to the
@@ -1124,7 +1242,7 @@ InitPredicateLocks(void)
         * that this will prevent resource exhaustion in even the most pessimal
         * loads up to max_connections = 200 with all 200 connections pounding the
         * database with serializable transactions.  Beyond that, there may be
-        * occassional transactions canceled when trying to flag conflicts. That's
+        * occasional transactions canceled when trying to flag conflicts. That's
         * probably OK.
         */
        max_table_size *= 5;
@@ -1140,12 +1258,6 @@ InitPredicateLocks(void)
                requestSize = mul_size((Size) max_table_size,
                                                           RWConflictDataSize);
                RWConflictPool->element = ShmemAlloc(requestSize);
-               if (RWConflictPool->element == NULL)
-                       ereport(ERROR,
-                                       (errcode(ERRCODE_OUT_OF_MEMORY),
-                        errmsg("not enough shared memory for elements of data structure"
-                                       " \"%s\" (%lu bytes requested)",
-                                       "RWConflictPool", (unsigned long) requestSize)));
                /* Add all elements to available list, clean. */
                memset(RWConflictPool->element, 0, requestSize);
                for (i = 0; i < max_table_size; i++)
@@ -1285,7 +1397,7 @@ GetPredicateLockStatusData(void)
         * in ascending order, then SerializableXactHashLock.
         */
        for (i = 0; i < NUM_PREDICATELOCK_PARTITIONS; i++)
-               LWLockAcquire(FirstPredicateLockMgrLock + i, LW_SHARED);
+               LWLockAcquire(PredicateLockHashPartitionLockByIndex(i), LW_SHARED);
        LWLockAcquire(SerializableXactHashLock, LW_SHARED);
 
        /* Get number of locks and allocate appropriately-sized arrays. */
@@ -1314,7 +1426,7 @@ GetPredicateLockStatusData(void)
        /* Release locks in reverse order */
        LWLockRelease(SerializableXactHashLock);
        for (i = NUM_PREDICATELOCK_PARTITIONS - 1; i >= 0; i--)
-               LWLockRelease(FirstPredicateLockMgrLock + i);
+               LWLockRelease(PredicateLockHashPartitionLockByIndex(i));
 
        return data;
 }
@@ -1351,7 +1463,7 @@ SummarizeOldestCommittedSxact(void)
 
        /*
         * Grab the first sxact off the finished list -- this will be the earliest
-        * commit.      Remove it from the list.
+        * commit.  Remove it from the list.
         */
        sxact = (SERIALIZABLEXACT *)
                SHMQueueNext(FinishedSerializableTransactions,
@@ -1378,6 +1490,10 @@ SummarizeOldestCommittedSxact(void)
  *             without further checks. This requires waiting for concurrent
  *             transactions to complete, and retrying with a new snapshot if
  *             one of them could possibly create a conflict.
+ *
+ *             As with GetSerializableTransactionSnapshot (which this is a subroutine
+ *             for), the passed-in Snapshot pointer should reference a static data
+ *             area that can safely be passed to GetSnapshotData.
  */
 static Snapshot
 GetSafeSnapshot(Snapshot origSnapshot)
@@ -1389,38 +1505,46 @@ GetSafeSnapshot(Snapshot origSnapshot)
        while (true)
        {
                /*
-                * RegisterSerializableTransactionInt is going to call
-                * GetSnapshotData, so we need to provide it the static snapshot our
-                * caller passed to us. It returns a copy of that snapshot and
-                * registers it on TopTransactionResourceOwner.
+                * GetSerializableTransactionSnapshotInt is going to call
+                * GetSnapshotData, so we need to provide it the static snapshot area
+                * our caller passed to us.  The pointer returned is actually the same
+                * one passed to it, but we avoid assuming that here.
                 */
-               snapshot = RegisterSerializableTransactionInt(origSnapshot);
+               snapshot = GetSerializableTransactionSnapshotInt(origSnapshot,
+                                                                                                                NULL, InvalidPid);
 
                if (MySerializableXact == InvalidSerializableXact)
                        return snapshot;        /* no concurrent r/w xacts; it's safe */
 
-               MySerializableXact->flags |= SXACT_FLAG_DEFERRABLE_WAITING;
+               LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
 
                /*
                 * Wait for concurrent transactions to finish. Stop early if one of
                 * them marked us as conflicted.
                 */
-               while (!(SHMQueueEmpty((SHM_QUEUE *)
-                                                        &MySerializableXact->possibleUnsafeConflicts) ||
+               MySerializableXact->flags |= SXACT_FLAG_DEFERRABLE_WAITING;
+               while (!(SHMQueueEmpty(&MySerializableXact->possibleUnsafeConflicts) ||
                                 SxactIsROUnsafe(MySerializableXact)))
-                       ProcWaitForSignal();
-
+               {
+                       LWLockRelease(SerializableXactHashLock);
+                       ProcWaitForSignal(WAIT_EVENT_SAFE_SNAPSHOT);
+                       LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
+               }
                MySerializableXact->flags &= ~SXACT_FLAG_DEFERRABLE_WAITING;
+
                if (!SxactIsROUnsafe(MySerializableXact))
+               {
+                       LWLockRelease(SerializableXactHashLock);
                        break;                          /* success */
+               }
+
+               LWLockRelease(SerializableXactHashLock);
 
                /* else, need to retry... */
                ereport(DEBUG2,
                                (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
                                 errmsg("deferrable snapshot was unsafe; trying a new one")));
                ReleasePredicateLocks(false);
-               UnregisterSnapshotFromOwner(snapshot,
-                                                                       TopTransactionResourceOwner);
        }
 
        /*
@@ -1433,28 +1557,141 @@ GetSafeSnapshot(Snapshot origSnapshot)
 }
 
 /*
- * Acquire and register a snapshot which can be used for this transaction..
+ * GetSafeSnapshotBlockingPids
+ *             If the specified process is currently blocked in GetSafeSnapshot,
+ *             write the process IDs of all processes that it is blocked by
+ *             into the caller-supplied buffer output[].  The list is truncated at
+ *             output_size, and the number of PIDs written into the buffer is
+ *             returned.  Returns zero if the given PID is not currently blocked
+ *             in GetSafeSnapshot.
+ */
+int
+GetSafeSnapshotBlockingPids(int blocked_pid, int *output, int output_size)
+{
+       int                     num_written = 0;
+       SERIALIZABLEXACT *sxact;
+
+       LWLockAcquire(SerializableXactHashLock, LW_SHARED);
+
+       /* Find blocked_pid's SERIALIZABLEXACT by linear search. */
+       for (sxact = FirstPredXact(); sxact != NULL; sxact = NextPredXact(sxact))
+       {
+               if (sxact->pid == blocked_pid)
+                       break;
+       }
+
+       /* Did we find it, and is it currently waiting in GetSafeSnapshot? */
+       if (sxact != NULL && SxactIsDeferrableWaiting(sxact))
+       {
+               RWConflict      possibleUnsafeConflict;
+
+               /* Traverse the list of possible unsafe conflicts collecting PIDs. */
+               possibleUnsafeConflict = (RWConflict)
+                       SHMQueueNext(&sxact->possibleUnsafeConflicts,
+                                                &sxact->possibleUnsafeConflicts,
+                                                offsetof(RWConflictData, inLink));
+
+               while (possibleUnsafeConflict != NULL && num_written < output_size)
+               {
+                       output[num_written++] = possibleUnsafeConflict->sxactOut->pid;
+                       possibleUnsafeConflict = (RWConflict)
+                               SHMQueueNext(&sxact->possibleUnsafeConflicts,
+                                                        &possibleUnsafeConflict->inLink,
+                                                        offsetof(RWConflictData, inLink));
+               }
+       }
+
+       LWLockRelease(SerializableXactHashLock);
+
+       return num_written;
+}
+
+/*
+ * Acquire a snapshot that can be used for the current transaction.
+ *
  * Make sure we have a SERIALIZABLEXACT reference in MySerializableXact.
  * It should be current for this process and be contained in PredXact.
+ *
+ * The passed-in Snapshot pointer should reference a static data area that
+ * can safely be passed to GetSnapshotData.  The return value is actually
+ * always this same pointer; no new snapshot data structure is allocated
+ * within this function.
  */
 Snapshot
-RegisterSerializableTransaction(Snapshot snapshot)
+GetSerializableTransactionSnapshot(Snapshot snapshot)
 {
        Assert(IsolationIsSerializable());
 
+       /*
+        * Can't use serializable mode while recovery is still active, as it is,
+        * for example, on a hot standby.  We could get here despite the check in
+        * check_XactIsoLevel() if default_transaction_isolation is set to
+        * serializable, so phrase the hint accordingly.
+        */
+       if (RecoveryInProgress())
+               ereport(ERROR,
+                               (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
+                                errmsg("cannot use serializable mode in a hot standby"),
+                                errdetail("\"default_transaction_isolation\" is set to \"serializable\"."),
+                                errhint("You can use \"SET default_transaction_isolation = 'repeatable read'\" to change the default.")));
+
        /*
         * A special optimization is available for SERIALIZABLE READ ONLY
         * DEFERRABLE transactions -- we can wait for a suitable snapshot and
-        * thereby avoid all SSI overhead once it's running..
+        * thereby avoid all SSI overhead once it's running.
         */
        if (XactReadOnly && XactDeferrable)
                return GetSafeSnapshot(snapshot);
 
-       return RegisterSerializableTransactionInt(snapshot);
+       return GetSerializableTransactionSnapshotInt(snapshot,
+                                                                                                NULL, InvalidPid);
+}
+
+/*
+ * Import a snapshot to be used for the current transaction.
+ *
+ * This is nearly the same as GetSerializableTransactionSnapshot, except that
+ * we don't take a new snapshot, but rather use the data we're handed.
+ *
+ * The caller must have verified that the snapshot came from a serializable
+ * transaction; and if we're read-write, the source transaction must not be
+ * read-only.
+ */
+void
+SetSerializableTransactionSnapshot(Snapshot snapshot,
+                                                                  VirtualTransactionId *sourcevxid,
+                                                                  int sourcepid)
+{
+       Assert(IsolationIsSerializable());
+
+       /*
+        * We do not allow SERIALIZABLE READ ONLY DEFERRABLE transactions to
+        * import snapshots, since there's no way to wait for a safe snapshot when
+        * we're using the snap we're told to.  (XXX instead of throwing an error,
+        * we could just ignore the XactDeferrable flag?)
+        */
+       if (XactReadOnly && XactDeferrable)
+               ereport(ERROR,
+                               (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
+                                errmsg("a snapshot-importing transaction must not be READ ONLY DEFERRABLE")));
+
+       (void) GetSerializableTransactionSnapshotInt(snapshot, sourcevxid,
+                                                                                                sourcepid);
 }
 
+/*
+ * Guts of GetSerializableTransactionSnapshot
+ *
+ * If sourcexid is valid, this is actually an import operation and we should
+ * skip calling GetSnapshotData, because the snapshot contents are already
+ * loaded up.  HOWEVER: to avoid race conditions, we must check that the
+ * source xact is still running after we acquire SerializableXactHashLock.
+ * We do that by calling ProcArrayInstallImportedXmin.
+ */
 static Snapshot
-RegisterSerializableTransactionInt(Snapshot snapshot)
+GetSerializableTransactionSnapshotInt(Snapshot snapshot,
+                                                                         VirtualTransactionId *sourcevxid,
+                                                                         int sourcepid)
 {
        PGPROC     *proc;
        VirtualTransactionId vxid;
@@ -1467,6 +1704,14 @@ RegisterSerializableTransactionInt(Snapshot snapshot)
 
        Assert(!RecoveryInProgress());
 
+       /*
+        * Since all parts of a serializable transaction must use the same
+        * snapshot, it is too late to establish one after a parallel operation
+        * has begun.
+        */
+       if (IsInParallelMode())
+               elog(ERROR, "cannot establish serializable snapshot during a parallel operation");
+
        proc = MyProc;
        Assert(proc != NULL);
        GET_VXID_FROM_PGPROC(vxid, *proc);
@@ -1474,6 +1719,14 @@ RegisterSerializableTransactionInt(Snapshot snapshot)
        /*
         * First we get the sxact structure, which may involve looping and access
         * to the "finished" list to free a structure for use.
+        *
+        * We must hold SerializableXactHashLock when taking/checking the snapshot
+        * to avoid race conditions, for much the same reasons that
+        * GetSnapshotData takes the ProcArrayLock.  Since we might have to
+        * release SerializableXactHashLock to call SummarizeOldestCommittedSxact,
+        * this means we have to create the sxact first, which is a bit annoying
+        * (in particular, an elog(ERROR) in procarray.c would cause us to leak
+        * the sxact).  Consider refactoring to avoid this.
         */
 #ifdef TEST_OLDSERXID
        SummarizeOldestCommittedSxact();
@@ -1491,9 +1744,19 @@ RegisterSerializableTransactionInt(Snapshot snapshot)
                }
        } while (!sxact);
 
-       /* Get and register a snapshot */
-       snapshot = GetSnapshotData(snapshot);
-       snapshot = RegisterSnapshotOnOwner(snapshot, TopTransactionResourceOwner);
+       /* Get the snapshot, or check that it's safe to use */
+       if (!sourcevxid)
+               snapshot = GetSnapshotData(snapshot);
+       else if (!ProcArrayInstallImportedXmin(snapshot->xmin, sourcevxid))
+       {
+               ReleasePredXact(sxact);
+               LWLockRelease(SerializableXactHashLock);
+               ereport(ERROR,
+                               (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
+                                errmsg("could not import the requested snapshot"),
+                 errdetail("The source process with pid %d is not running anymore.",
+                                       sourcepid)));
+       }
 
        /*
         * If there are no serializable transactions which are not read-only, we
@@ -1535,6 +1798,7 @@ RegisterSerializableTransactionInt(Snapshot snapshot)
        /* Initialize the structure. */
        sxact->vxid = vxid;
        sxact->SeqNo.lastCommitBeforeSnapshot = PredXact->LastSxactCommitSeqNo;
+       sxact->prepareSeqNo = InvalidSerCommitSeqNo;
        sxact->commitSeqNo = InvalidSerCommitSeqNo;
        SHMQueueInit(&(sxact->outConflicts));
        SHMQueueInit(&(sxact->inConflicts));
@@ -1560,8 +1824,9 @@ RegisterSerializableTransactionInt(Snapshot snapshot)
                         othersxact != NULL;
                         othersxact = NextPredXact(othersxact))
                {
-                       if (!SxactIsOnFinishedList(othersxact) &&
-                               !SxactIsReadOnly(othersxact))
+                       if (!SxactIsCommitted(othersxact)
+                               && !SxactIsDoomed(othersxact)
+                               && !SxactIsReadOnly(othersxact))
                        {
                                SetPossibleUnsafeConflict(sxact, othersxact);
                        }
@@ -1575,6 +1840,7 @@ RegisterSerializableTransactionInt(Snapshot snapshot)
        }
 
        MySerializableXact = sxact;
+       MyXactDidWrite = false;         /* haven't written anything yet */
 
        LWLockRelease(SerializableXactHashLock);
 
@@ -1583,11 +1849,10 @@ RegisterSerializableTransactionInt(Snapshot snapshot)
        MemSet(&hash_ctl, 0, sizeof(hash_ctl));
        hash_ctl.keysize = sizeof(PREDICATELOCKTARGETTAG);
        hash_ctl.entrysize = sizeof(LOCALPREDICATELOCK);
-       hash_ctl.hash = tag_hash;
        LocalPredicateLockHash = hash_create("Local predicate lock",
                                                                                 max_predicate_locks_per_xact,
                                                                                 &hash_ctl,
-                                                                                HASH_ELEM | HASH_FUNCTION);
+                                                                                HASH_ELEM | HASH_BLOBS);
 
        return snapshot;
 }
@@ -1597,7 +1862,7 @@ RegisterSerializableTransactionInt(Snapshot snapshot)
  * Also store it for easy reference in MySerializableXact.
  */
 void
-RegisterPredicateLockingXid(const TransactionId xid)
+RegisterPredicateLockingXid(TransactionId xid)
 {
        SERIALIZABLEXIDTAG sxidtag;
        SERIALIZABLEXID *sxid;
@@ -1610,24 +1875,24 @@ RegisterPredicateLockingXid(const TransactionId xid)
        if (MySerializableXact == InvalidSerializableXact)
                return;
 
-       /* This should only be done once per transaction. */
-       Assert(MySerializableXact->topXid == InvalidTransactionId);
-
        /* We should have a valid XID and be at the top level. */
        Assert(TransactionIdIsValid(xid));
 
+       LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
+
+       /* This should only be done once per transaction. */
+       Assert(MySerializableXact->topXid == InvalidTransactionId);
+
        MySerializableXact->topXid = xid;
 
        sxidtag.xid = xid;
-       LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
        sxid = (SERIALIZABLEXID *) hash_search(SerializableXidHash,
                                                                                   &sxidtag,
                                                                                   HASH_ENTER, &found);
-       Assert(sxid != NULL);
        Assert(!found);
 
        /* Initialize the structure. */
-       sxid->myXact = (SERIALIZABLEXACT *) MySerializableXact;
+       sxid->myXact = MySerializableXact;
        LWLockRelease(SerializableXactHashLock);
 }
 
@@ -1646,11 +1911,11 @@ RegisterPredicateLockingXid(const TransactionId xid)
  * One use is to support proper behavior during GiST index vacuum.
  */
 bool
-PageIsPredicateLocked(const Relation relation, const BlockNumber blkno)
+PageIsPredicateLocked(Relation relation, BlockNumber blkno)
 {
        PREDICATELOCKTARGETTAG targettag;
        uint32          targettaghash;
-       LWLockId        partitionLock;
+       LWLock     *partitionLock;
        PREDICATELOCKTARGET *target;
 
        SET_PREDICATELOCKTARGETTAG_PAGE(targettag,
@@ -1823,7 +2088,7 @@ RestoreScratchTarget(bool lockheld)
 static void
 RemoveTargetIfNoLongerUsed(PREDICATELOCKTARGET *target, uint32 targettaghash)
 {
-       PREDICATELOCKTARGET *rmtarget;
+       PREDICATELOCKTARGET *rmtarget PG_USED_FOR_ASSERTS_ONLY;
 
        Assert(LWLockHeldByMe(SerializablePredicateLockListLock));
 
@@ -1842,7 +2107,7 @@ RemoveTargetIfNoLongerUsed(PREDICATELOCKTARGET *target, uint32 targettaghash)
 /*
  * Delete child target locks owned by this process.
  * This implementation is assuming that the usage of each target tag field
- * is uniform. No need to make this hard if we don't have to.
+ * is uniform.  No need to make this hard if we don't have to.
  *
  * We aren't acquiring lightweight locks for the predicate lock or lock
  * target structures associated with this transaction unless we're going
@@ -1856,7 +2121,7 @@ DeleteChildTargetLocks(const PREDICATELOCKTARGETTAG *newtargettag)
        PREDICATELOCK *predlock;
 
        LWLockAcquire(SerializablePredicateLockListLock, LW_SHARED);
-       sxact = (SERIALIZABLEXACT *) MySerializableXact;
+       sxact = MySerializableXact;
        predlock = (PREDICATELOCK *)
                SHMQueueNext(&(sxact->predicateLocks),
                                         &(sxact->predicateLocks),
@@ -1883,8 +2148,8 @@ DeleteChildTargetLocks(const PREDICATELOCKTARGETTAG *newtargettag)
                if (TargetTagIsCoveredBy(oldtargettag, *newtargettag))
                {
                        uint32          oldtargettaghash;
-                       LWLockId        partitionLock;
-                       PREDICATELOCK *rmpredlock;
+                       LWLock     *partitionLock;
+                       PREDICATELOCK *rmpredlock PG_USED_FOR_ASSERTS_ONLY;
 
                        oldtargettaghash = PredicateLockTargetTagHashCode(&oldtargettag);
                        partitionLock = PredicateLockHashPartitionLock(oldtargettaghash);
@@ -1914,28 +2179,35 @@ DeleteChildTargetLocks(const PREDICATELOCKTARGETTAG *newtargettag)
 }
 
 /*
- * Returns the promotion threshold for a given predicate lock
- * target. This is the number of descendant locks required to promote
- * to the specified tag. Note that the threshold includes non-direct
- * descendants, e.g. both tuples and pages for a relation lock.
+ * Returns the promotion limit for a given predicate lock target.  This is the
+ * max number of descendant locks allowed before promoting to the specified
+ * tag. Note that the limit includes non-direct descendants (e.g., both tuples
+ * and pages for a relation lock).
+ *
+ * Currently the default limit is 2 for a page lock, and half of the value of
+ * max_pred_locks_per_transaction - 1 for a relation lock, to match behavior
+ * of earlier releases when upgrading.
  *
- * TODO SSI: We should do something more intelligent about what the
- * thresholds are, either making it proportional to the number of
- * tuples in a page & pages in a relation, or at least making it a
- * GUC. Currently the threshold is 3 for a page lock, and
- * max_pred_locks_per_transaction/2 for a relation lock, chosen
- * entirely arbitrarily (and without benchmarking).
+ * TODO SSI: We should probably add additional GUCs to allow a maximum ratio
+ * of page and tuple locks based on the pages in a relation, and the maximum
+ * ratio of tuple locks to tuples in a page.  This would provide more
+ * generally "balanced" allocation of locks to where they are most useful,
+ * while still allowing the absolute numbers to prevent one relation from
+ * tying up all predicate lock resources.
  */
 static int
-PredicateLockPromotionThreshold(const PREDICATELOCKTARGETTAG *tag)
+MaxPredicateChildLocks(const PREDICATELOCKTARGETTAG *tag)
 {
        switch (GET_PREDICATELOCKTARGETTAG_TYPE(*tag))
        {
                case PREDLOCKTAG_RELATION:
-                       return max_predicate_locks_per_xact / 2;
+                       return max_predicate_locks_per_relation < 0
+                               ? (max_predicate_locks_per_xact
+                                  / (-max_predicate_locks_per_relation)) - 1
+                               : max_predicate_locks_per_relation;
 
                case PREDLOCKTAG_PAGE:
-                       return 3;
+                       return max_predicate_locks_per_page;
 
                case PREDLOCKTAG_TUPLE:
 
@@ -1990,8 +2262,8 @@ CheckAndPromotePredicateLockRequest(const PREDICATELOCKTARGETTAG *reqtag)
                else
                        parentlock->childLocks++;
 
-               if (parentlock->childLocks >=
-                       PredicateLockPromotionThreshold(&targettag))
+               if (parentlock->childLocks >
+                       MaxPredicateChildLocks(&targettag))
                {
                        /*
                         * We should promote to this parent lock. Continue to check its
@@ -2037,7 +2309,7 @@ DecrementParentLocks(const PREDICATELOCKTARGETTAG *targettag)
        {
                uint32          targettaghash;
                LOCALPREDICATELOCK *parentlock,
-                                  *rmlock;
+                                  *rmlock PG_USED_FOR_ASSERTS_ONLY;
 
                parenttag = nexttag;
                targettaghash = PredicateLockTargetTagHashCode(&parenttag);
@@ -2095,7 +2367,7 @@ CreatePredicateLock(const PREDICATELOCKTARGETTAG *targettag,
        PREDICATELOCKTARGET *target;
        PREDICATELOCKTAG locktag;
        PREDICATELOCK *lock;
-       LWLockId        partitionLock;
+       LWLock     *partitionLock;
        bool            found;
 
        partitionLock = PredicateLockHashPartitionLock(targettaghash);
@@ -2175,8 +2447,7 @@ PredicateLockAcquire(const PREDICATELOCKTARGETTAG *targettag)
                locallock->childLocks = 0;
 
        /* Actually create the lock */
-       CreatePredicateLock(targettag, targettaghash,
-                                               (SERIALIZABLEXACT *) MySerializableXact);
+       CreatePredicateLock(targettag, targettaghash, MySerializableXact);
 
        /*
         * Lock has been acquired. Check whether it should be promoted to a
@@ -2209,11 +2480,11 @@ PredicateLockAcquire(const PREDICATELOCKTARGETTAG *targettag)
  * Clear any finer-grained predicate locks this session has on the relation.
  */
 void
-PredicateLockRelation(const Relation relation)
+PredicateLockRelation(Relation relation, Snapshot snapshot)
 {
        PREDICATELOCKTARGETTAG tag;
 
-       if (SkipSerialization(relation))
+       if (!SerializationNeededForRead(relation, snapshot))
                return;
 
        SET_PREDICATELOCKTARGETTAG_RELATION(tag,
@@ -2232,11 +2503,11 @@ PredicateLockRelation(const Relation relation)
  * Clear any finer-grained predicate locks this session has on the relation.
  */
 void
-PredicateLockPage(const Relation relation, const BlockNumber blkno)
+PredicateLockPage(Relation relation, BlockNumber blkno, Snapshot snapshot)
 {
        PREDICATELOCKTARGETTAG tag;
 
-       if (SkipSerialization(relation))
+       if (!SerializationNeededForRead(relation, snapshot))
                return;
 
        SET_PREDICATELOCKTARGETTAG_PAGE(tag,
@@ -2254,13 +2525,13 @@ PredicateLockPage(const Relation relation, const BlockNumber blkno)
  * Skip if this is a temporary table.
  */
 void
-PredicateLockTuple(const Relation relation, const HeapTuple tuple)
+PredicateLockTuple(Relation relation, HeapTuple tuple, Snapshot snapshot)
 {
        PREDICATELOCKTARGETTAG tag;
        ItemPointer tid;
        TransactionId targetxmin;
 
-       if (SkipSerialization(relation))
+       if (!SerializationNeededForRead(relation, snapshot))
                return;
 
        /*
@@ -2287,11 +2558,9 @@ PredicateLockTuple(const Relation relation, const HeapTuple tuple)
                        }
                }
        }
-       else
-               targetxmin = InvalidTransactionId;
 
        /*
-        * Do quick-but-not-definitive test for a relation lock first.  This will
+        * Do quick-but-not-definitive test for a relation lock first.  This will
         * never cause a return when the relation is *not* locked, but will
         * occasionally let the check continue when there really *is* a relation
         * level lock.
@@ -2307,8 +2576,7 @@ PredicateLockTuple(const Relation relation, const HeapTuple tuple)
                                                                         relation->rd_node.dbNode,
                                                                         relation->rd_id,
                                                                         ItemPointerGetBlockNumber(tid),
-                                                                        ItemPointerGetOffsetNumber(tid),
-                                                                        targetxmin);
+                                                                        ItemPointerGetOffsetNumber(tid));
        PredicateLockAcquire(&tag);
 }
 
@@ -2392,15 +2660,15 @@ DeleteLockTarget(PREDICATELOCKTARGET *target, uint32 targettaghash)
  * Caller must hold SerializablePredicateLockListLock.
  */
 static bool
-TransferPredicateLocksToNewTarget(const PREDICATELOCKTARGETTAG oldtargettag,
-                                                                 const PREDICATELOCKTARGETTAG newtargettag,
+TransferPredicateLocksToNewTarget(PREDICATELOCKTARGETTAG oldtargettag,
+                                                                 PREDICATELOCKTARGETTAG newtargettag,
                                                                  bool removeOld)
 {
        uint32          oldtargettaghash;
-       LWLockId        oldpartitionLock;
+       LWLock     *oldpartitionLock;
        PREDICATELOCKTARGET *oldtarget;
        uint32          newtargettaghash;
-       LWLockId        newpartitionLock;
+       LWLock     *newpartitionLock;
        bool            found;
        bool            outOfShmem = false;
 
@@ -2512,14 +2780,13 @@ TransferPredicateLocksToNewTarget(const PREDICATELOCKTARGETTAG oldtargettag,
                                Assert(found);
                        }
 
-
                        newpredlock = (PREDICATELOCK *)
-                               hash_search_with_hash_value
-                               (PredicateLockHash,
-                                &newpredlocktag,
-                                PredicateLockHashCodeFromTargetHashCode(&newpredlocktag,
-                                                                                                                newtargettaghash),
-                                HASH_ENTER_NULL, &found);
+                               hash_search_with_hash_value(PredicateLockHash,
+                                                                                       &newpredlocktag,
+                                        PredicateLockHashCodeFromTargetHashCode(&newpredlocktag,
+                                                                                                                  newtargettaghash),
+                                                                                       HASH_ENTER_NULL,
+                                                                                       &found);
                        if (!newpredlock)
                        {
                                /* Out of shared memory. Undo what we've done so far. */
@@ -2578,7 +2845,7 @@ exit:
                /* We shouldn't run out of memory if we're moving locks */
                Assert(!outOfShmem);
 
-               /* Put the scrach entry back */
+               /* Put the scratch entry back */
                RestoreScratchTarget(false);
        }
 
@@ -2605,11 +2872,11 @@ exit:
  * transaction which is not serializable.
  *
  * NOTE: This is currently only called with transfer set to true, but that may
- * change.     If we decide to clean up the locks from a table on commit of a
+ * change.  If we decide to clean up the locks from a table on commit of a
  * transaction which executed DROP TABLE, the false condition will be useful.
  */
 static void
-DropAllPredicateLocksFromTable(const Relation relation, bool transfer)
+DropAllPredicateLocksFromTable(Relation relation, bool transfer)
 {
        HASH_SEQ_STATUS seqstat;
        PREDICATELOCKTARGET *oldtarget;
@@ -2631,7 +2898,7 @@ DropAllPredicateLocksFromTable(const Relation relation, bool transfer)
        if (!TransactionIdIsValid(PredXact->SxactGlobalXmin))
                return;
 
-       if (SkipPredicateLocksForRelation(relation))
+       if (!PredicateLockingNeededForRelation(relation))
                return;
 
        dbId = relation->rd_node.dbNode;
@@ -2647,8 +2914,8 @@ DropAllPredicateLocksFromTable(const Relation relation, bool transfer)
                heapId = relation->rd_index->indrelid;
        }
        Assert(heapId != InvalidOid);
-       Assert(transfer || !isIndex);           /* index OID only makes sense with
-                                                                                * transfer */
+       Assert(transfer || !isIndex);   /* index OID only makes sense with
+                                                                        * transfer */
 
        /* Retrieve first time needed, then keep. */
        heaptargettaghash = 0;
@@ -2657,7 +2924,7 @@ DropAllPredicateLocksFromTable(const Relation relation, bool transfer)
        /* Acquire locks on all lock partitions */
        LWLockAcquire(SerializablePredicateLockListLock, LW_EXCLUSIVE);
        for (i = 0; i < NUM_PREDICATELOCK_PARTITIONS; i++)
-               LWLockAcquire(FirstPredicateLockMgrLock + i, LW_EXCLUSIVE);
+               LWLockAcquire(PredicateLockHashPartitionLockByIndex(i), LW_EXCLUSIVE);
        LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
 
        /*
@@ -2686,7 +2953,7 @@ DropAllPredicateLocksFromTable(const Relation relation, bool transfer)
                        continue;                       /* already the right lock */
 
                /*
-                * If we made it here, we have work to do.      We make sure the heap
+                * If we made it here, we have work to do.  We make sure the heap
                 * relation lock exists, then we walk the list of predicate locks for
                 * the old target we found, moving all locks to the heap relation lock
                 * -- unless they already hold that.
@@ -2755,12 +3022,12 @@ DropAllPredicateLocksFromTable(const Relation relation, bool transfer)
                                newpredlocktag.myTarget = heaptarget;
                                newpredlocktag.myXact = oldXact;
                                newpredlock = (PREDICATELOCK *)
-                                       hash_search_with_hash_value
-                                       (PredicateLockHash,
-                                        &newpredlocktag,
+                                       hash_search_with_hash_value(PredicateLockHash,
+                                                                                               &newpredlocktag,
                                         PredicateLockHashCodeFromTargetHashCode(&newpredlocktag,
                                                                                                                  heaptargettaghash),
-                                        HASH_ENTER, &found);
+                                                                                               HASH_ENTER,
+                                                                                               &found);
                                if (!found)
                                {
                                        SHMQueueInsertBefore(&(heaptarget->predicateLocks),
@@ -2795,7 +3062,7 @@ DropAllPredicateLocksFromTable(const Relation relation, bool transfer)
        /* Release locks in reverse order */
        LWLockRelease(SerializableXactHashLock);
        for (i = NUM_PREDICATELOCK_PARTITIONS - 1; i >= 0; i--)
-               LWLockRelease(FirstPredicateLockMgrLock + i);
+               LWLockRelease(PredicateLockHashPartitionLockByIndex(i));
        LWLockRelease(SerializablePredicateLockListLock);
 }
 
@@ -2805,7 +3072,7 @@ DropAllPredicateLocksFromTable(const Relation relation, bool transfer)
  *             relation to a single relation lock on the heap.
  */
 void
-TransferPredicateLocksToHeapRelation(const Relation relation)
+TransferPredicateLocksToHeapRelation(Relation relation)
 {
        DropAllPredicateLocksFromTable(relation, true);
 }
@@ -2826,8 +3093,8 @@ TransferPredicateLocksToHeapRelation(const Relation relation)
  * which hold the locks getting in and noticing.
  */
 void
-PredicateLockPageSplit(const Relation relation, const BlockNumber oldblkno,
-                                          const BlockNumber newblkno)
+PredicateLockPageSplit(Relation relation, BlockNumber oldblkno,
+                                          BlockNumber newblkno)
 {
        PREDICATELOCKTARGETTAG oldtargettag;
        PREDICATELOCKTARGETTAG newtargettag;
@@ -2846,7 +3113,7 @@ PredicateLockPageSplit(const Relation relation, const BlockNumber oldblkno,
        if (!TransactionIdIsValid(PredXact->SxactGlobalXmin))
                return;
 
-       if (SkipPredicateLocksForRelation(relation))
+       if (!PredicateLockingNeededForRelation(relation))
                return;
 
        Assert(oldblkno != newblkno);
@@ -2911,8 +3178,8 @@ PredicateLockPageSplit(const Relation relation, const BlockNumber oldblkno,
  * occurs in the context of another transaction isolation level.
  */
 void
-PredicateLockPageCombine(const Relation relation, const BlockNumber oldblkno,
-                                                const BlockNumber newblkno)
+PredicateLockPageCombine(Relation relation, BlockNumber oldblkno,
+                                                BlockNumber newblkno)
 {
        /*
         * Page combines differ from page splits in that we ought to be able to
@@ -2929,7 +3196,8 @@ PredicateLockPageCombine(const Relation relation, const BlockNumber oldblkno,
 }
 
 /*
- * Walk the hash table and find the new xmin.
+ * Walk the list of in-progress serializable transactions and find the new
+ * xmin.
  */
 static void
 SetNewSxactGlobalXmin(void)
@@ -2982,7 +3250,7 @@ SetNewSxactGlobalXmin(void)
  * holding locks.
  */
 void
-ReleasePredicateLocks(const bool isCommit)
+ReleasePredicateLocks(bool isCommit)
 {
        bool            needToClear;
        RWConflict      conflict,
@@ -2993,7 +3261,7 @@ ReleasePredicateLocks(const bool isCommit)
        /*
         * We can't trust XactReadOnly here, because a transaction which started
         * as READ WRITE can show as READ ONLY later, e.g., within
-        * substransactions.  We want to flag a transaction as READ ONLY if it
+        * subtransactions.  We want to flag a transaction as READ ONLY if it
         * commits without writing so that de facto READ ONLY transactions get the
         * benefit of some RO optimizations, so we will use this local variable to
         * get some cleanup logic right which is based on whether the transaction
@@ -3007,29 +3275,29 @@ ReleasePredicateLocks(const bool isCommit)
                return;
        }
 
+       LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
+
        Assert(!isCommit || SxactIsPrepared(MySerializableXact));
-       Assert(!SxactIsRolledBack(MySerializableXact));
+       Assert(!isCommit || !SxactIsDoomed(MySerializableXact));
        Assert(!SxactIsCommitted(MySerializableXact));
+       Assert(!SxactIsRolledBack(MySerializableXact));
 
        /* may not be serializable during COMMIT/ROLLBACK PREPARED */
-       if (MySerializableXact->pid != 0)
-               Assert(IsolationIsSerializable());
+       Assert(MySerializableXact->pid == 0 || IsolationIsSerializable());
 
        /* We'd better not already be on the cleanup list. */
-       Assert(!SxactIsOnFinishedList((SERIALIZABLEXACT *) MySerializableXact));
+       Assert(!SxactIsOnFinishedList(MySerializableXact));
 
        topLevelIsDeclaredReadOnly = SxactIsReadOnly(MySerializableXact);
 
-       LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
-
        /*
         * We don't hold XidGenLock lock here, assuming that TransactionId is
         * atomic!
         *
         * If this value is changing, we don't care that much whether we get the
         * old or new value -- it is just used to determine how far
-        * GlobalSerizableXmin must advance before this transaction can be fully
-        * cleaned up.  The worst that could happen is we wait for one more
+        * GlobalSerializableXmin must advance before this transaction can be
+        * fully cleaned up.  The worst that could happen is we wait for one more
         * transaction to complete before freeing some RAM; correctness of visible
         * behavior is not affected.
         */
@@ -3044,12 +3312,33 @@ ReleasePredicateLocks(const bool isCommit)
                MySerializableXact->flags |= SXACT_FLAG_COMMITTED;
                MySerializableXact->commitSeqNo = ++(PredXact->LastSxactCommitSeqNo);
                /* Recognize implicit read-only transaction (commit without write). */
-               if (!(MySerializableXact->flags & SXACT_FLAG_DID_WRITE))
+               if (!MyXactDidWrite)
                        MySerializableXact->flags |= SXACT_FLAG_READ_ONLY;
        }
        else
        {
+               /*
+                * The DOOMED flag indicates that we intend to roll back this
+                * transaction and so it should not cause serialization failures for
+                * other transactions that conflict with it. Note that this flag might
+                * already be set, if another backend marked this transaction for
+                * abort.
+                *
+                * The ROLLED_BACK flag further indicates that ReleasePredicateLocks
+                * has been called, and so the SerializableXact is eligible for
+                * cleanup. This means it should not be considered when calculating
+                * SxactGlobalXmin.
+                */
+               MySerializableXact->flags |= SXACT_FLAG_DOOMED;
                MySerializableXact->flags |= SXACT_FLAG_ROLLED_BACK;
+
+               /*
+                * If the transaction was previously prepared, but is now failing due
+                * to a ROLLBACK PREPARED or (hopefully very rare) error after the
+                * prepare, clear the prepared flag.  This simplifies conflict
+                * checking.
+                */
+               MySerializableXact->flags &= ~SXACT_FLAG_PREPARED;
        }
 
        if (!topLevelIsDeclaredReadOnly)
@@ -3077,13 +3366,13 @@ ReleasePredicateLocks(const bool isCommit)
                 * opposed to 'outLink' for the r/w xacts.
                 */
                possibleUnsafeConflict = (RWConflict)
-                       SHMQueueNext((SHM_QUEUE *) &MySerializableXact->possibleUnsafeConflicts,
-                                 (SHM_QUEUE *) &MySerializableXact->possibleUnsafeConflicts,
+                       SHMQueueNext(&MySerializableXact->possibleUnsafeConflicts,
+                                                &MySerializableXact->possibleUnsafeConflicts,
                                                 offsetof(RWConflictData, inLink));
                while (possibleUnsafeConflict)
                {
                        nextConflict = (RWConflict)
-                               SHMQueueNext((SHM_QUEUE *) &MySerializableXact->possibleUnsafeConflicts,
+                               SHMQueueNext(&MySerializableXact->possibleUnsafeConflicts,
                                                         &possibleUnsafeConflict->inLink,
                                                         offsetof(RWConflictData, inLink));
 
@@ -3101,24 +3390,28 @@ ReleasePredicateLocks(const bool isCommit)
                && !SxactIsReadOnly(MySerializableXact)
                && SxactHasSummaryConflictOut(MySerializableXact))
        {
+               /*
+                * we don't know which old committed transaction we conflicted with,
+                * so be conservative and use FirstNormalSerCommitSeqNo here
+                */
                MySerializableXact->SeqNo.earliestOutConflictCommit =
                        FirstNormalSerCommitSeqNo;
                MySerializableXact->flags |= SXACT_FLAG_CONFLICT_OUT;
        }
 
        /*
-        * Release all outConflicts to committed transactions.  If we're rolling
+        * Release all outConflicts to committed transactions.  If we're rolling
         * back clear them all.  Set SXACT_FLAG_CONFLICT_OUT if any point to
         * previously committed transactions.
         */
        conflict = (RWConflict)
-               SHMQueueNext((SHM_QUEUE *) &MySerializableXact->outConflicts,
-                                        (SHM_QUEUE *) &MySerializableXact->outConflicts,
+               SHMQueueNext(&MySerializableXact->outConflicts,
+                                        &MySerializableXact->outConflicts,
                                         offsetof(RWConflictData, outLink));
        while (conflict)
        {
                nextConflict = (RWConflict)
-                       SHMQueueNext((SHM_QUEUE *) &MySerializableXact->outConflicts,
+                       SHMQueueNext(&MySerializableXact->outConflicts,
                                                 &conflict->outLink,
                                                 offsetof(RWConflictData, outLink));
 
@@ -3127,8 +3420,8 @@ ReleasePredicateLocks(const bool isCommit)
                        && SxactIsCommitted(conflict->sxactIn))
                {
                        if ((MySerializableXact->flags & SXACT_FLAG_CONFLICT_OUT) == 0
-                               || conflict->sxactIn->commitSeqNo < MySerializableXact->SeqNo.earliestOutConflictCommit)
-                               MySerializableXact->SeqNo.earliestOutConflictCommit = conflict->sxactIn->commitSeqNo;
+                               || conflict->sxactIn->prepareSeqNo < MySerializableXact->SeqNo.earliestOutConflictCommit)
+                               MySerializableXact->SeqNo.earliestOutConflictCommit = conflict->sxactIn->prepareSeqNo;
                        MySerializableXact->flags |= SXACT_FLAG_CONFLICT_OUT;
                }
 
@@ -3145,13 +3438,13 @@ ReleasePredicateLocks(const bool isCommit)
         * we're rolling back, clear them all.
         */
        conflict = (RWConflict)
-               SHMQueueNext((SHM_QUEUE *) &MySerializableXact->inConflicts,
-                                        (SHM_QUEUE *) &MySerializableXact->inConflicts,
+               SHMQueueNext(&MySerializableXact->inConflicts,
+                                        &MySerializableXact->inConflicts,
                                         offsetof(RWConflictData, inLink));
        while (conflict)
        {
                nextConflict = (RWConflict)
-                       SHMQueueNext((SHM_QUEUE *) &MySerializableXact->inConflicts,
+                       SHMQueueNext(&MySerializableXact->inConflicts,
                                                 &conflict->inLink,
                                                 offsetof(RWConflictData, inLink));
 
@@ -3172,13 +3465,13 @@ ReleasePredicateLocks(const bool isCommit)
                 * up if they are known safe or known unsafe.
                 */
                possibleUnsafeConflict = (RWConflict)
-                       SHMQueueNext((SHM_QUEUE *) &MySerializableXact->possibleUnsafeConflicts,
-                                 (SHM_QUEUE *) &MySerializableXact->possibleUnsafeConflicts,
+                       SHMQueueNext(&MySerializableXact->possibleUnsafeConflicts,
+                                                &MySerializableXact->possibleUnsafeConflicts,
                                                 offsetof(RWConflictData, outLink));
                while (possibleUnsafeConflict)
                {
                        nextConflict = (RWConflict)
-                               SHMQueueNext((SHM_QUEUE *) &MySerializableXact->possibleUnsafeConflicts,
+                               SHMQueueNext(&MySerializableXact->possibleUnsafeConflicts,
                                                         &possibleUnsafeConflict->outLink,
                                                         offsetof(RWConflictData, outLink));
 
@@ -3188,7 +3481,7 @@ ReleasePredicateLocks(const bool isCommit)
 
                        /* Mark conflicted if necessary. */
                        if (isCommit
-                               && (MySerializableXact->flags & SXACT_FLAG_DID_WRITE)
+                               && MyXactDidWrite
                                && SxactHasConflictOut(MySerializableXact)
                                && (MySerializableXact->SeqNo.earliestOutConflictCommit
                                        <= roXact->SeqNo.lastCommitBeforeSnapshot))
@@ -3249,11 +3542,10 @@ ReleasePredicateLocks(const bool isCommit)
        /* Add this to the list of transactions to check for later cleanup. */
        if (isCommit)
                SHMQueueInsertBefore(FinishedSerializableTransactions,
-                                                 (SHM_QUEUE *) &(MySerializableXact->finishedLink));
+                                                        &MySerializableXact->finishedLink);
 
        if (!isCommit)
-               ReleaseOneSerializableXact((SERIALIZABLEXACT *) MySerializableXact,
-                                                                  false, false);
+               ReleaseOneSerializableXact(MySerializableXact, false, false);
 
        LWLockRelease(SerializableFinishedListLock);
 
@@ -3261,6 +3553,7 @@ ReleasePredicateLocks(const bool isCommit)
                ClearOldPredicateLocks();
 
        MySerializableXact = InvalidSerializableXact;
+       MyXactDidWrite = false;
 
        /* Delete per-transaction lock table */
        if (LocalPredicateLockHash != NULL)
@@ -3271,31 +3564,8 @@ ReleasePredicateLocks(const bool isCommit)
 }
 
 /*
- * ReleasePredicateLocksIfROSafe
- *             Check if the current transaction is read only and operating on
- *             a safe snapshot. If so, release predicate locks and return
- *             true.
- *
- * A transaction is flagged as RO_SAFE if all concurrent R/W
- * transactions commit without having conflicts out to an earlier
- * snapshot, thus ensuring that no conflicts are possible for this
- * transaction. Thus, we call this function as part of the
- * SkipSerialization check on all public interface methods.
- */
-static bool
-ReleasePredicateLocksIfROSafe(void)
-{
-       if (SxactIsROSafe(MySerializableXact))
-       {
-               ReleasePredicateLocks(false);
-               return true;
-       }
-       else
-               return false;
-}
-
-/*
- * Clear old predicate locks.
+ * Clear old predicate locks, belonging to committed transactions that are no
+ * longer interesting to any in-progress transaction.
  */
 static void
 ClearOldPredicateLocks(void)
@@ -3303,6 +3573,10 @@ ClearOldPredicateLocks(void)
        SERIALIZABLEXACT *finishedSxact;
        PREDICATELOCK *predlock;
 
+       /*
+        * Loop through finished transactions. They are in commit order, so we can
+        * stop as soon as we find one that's still interesting.
+        */
        LWLockAcquire(SerializableFinishedListLock, LW_EXCLUSIVE);
        finishedSxact = (SERIALIZABLEXACT *)
                SHMQueueNext(FinishedSerializableTransactions,
@@ -3321,6 +3595,10 @@ ClearOldPredicateLocks(void)
                        || TransactionIdPrecedesOrEquals(finishedSxact->finishedBefore,
                                                                                         PredXact->SxactGlobalXmin))
                {
+                       /*
+                        * This transaction committed before any in-progress transaction
+                        * took its snapshot. It's no longer interesting.
+                        */
                        LWLockRelease(SerializableXactHashLock);
                        SHMQueueDelete(&(finishedSxact->finishedLink));
                        ReleaseOneSerializableXact(finishedSxact, false, false);
@@ -3329,15 +3607,37 @@ ClearOldPredicateLocks(void)
                else if (finishedSxact->commitSeqNo > PredXact->HavePartialClearedThrough
                   && finishedSxact->commitSeqNo <= PredXact->CanPartialClearThrough)
                {
+                       /*
+                        * Any active transactions that took their snapshot before this
+                        * transaction committed are read-only, so we can clear part of
+                        * its state.
+                        */
                        LWLockRelease(SerializableXactHashLock);
-                       ReleaseOneSerializableXact(finishedSxact,
-                                                                          !SxactIsReadOnly(finishedSxact),
-                                                                          false);
+
+                       if (SxactIsReadOnly(finishedSxact))
+                       {
+                               /* A read-only transaction can be removed entirely */
+                               SHMQueueDelete(&(finishedSxact->finishedLink));
+                               ReleaseOneSerializableXact(finishedSxact, false, false);
+                       }
+                       else
+                       {
+                               /*
+                                * A read-write transaction can only be partially cleared. We
+                                * need to keep the SERIALIZABLEXACT but can release the
+                                * SIREAD locks and conflicts in.
+                                */
+                               ReleaseOneSerializableXact(finishedSxact, true, false);
+                       }
+
                        PredXact->HavePartialClearedThrough = finishedSxact->commitSeqNo;
                        LWLockAcquire(SerializableXactHashLock, LW_SHARED);
                }
                else
+               {
+                       /* Still interesting. */
                        break;
+               }
                finishedSxact = nextSxact;
        }
        LWLockRelease(SerializableXactHashLock);
@@ -3366,17 +3666,19 @@ ClearOldPredicateLocks(void)
                canDoPartialCleanup = (predlock->commitSeqNo <= PredXact->CanPartialClearThrough);
                LWLockRelease(SerializableXactHashLock);
 
+               /*
+                * If this lock originally belonged to an old enough transaction, we
+                * can release it.
+                */
                if (canDoPartialCleanup)
                {
                        PREDICATELOCKTAG tag;
-                       SHM_QUEUE  *targetLink;
                        PREDICATELOCKTARGET *target;
                        PREDICATELOCKTARGETTAG targettag;
                        uint32          targettaghash;
-                       LWLockId        partitionLock;
+                       LWLock     *partitionLock;
 
                        tag = predlock->tag;
-                       targetLink = &(predlock->targetLink);
                        target = tag.myTarget;
                        targettag = target->tag;
                        targettaghash = PredicateLockTargetTagHashCode(&targettag);
@@ -3384,7 +3686,7 @@ ClearOldPredicateLocks(void)
 
                        LWLockAcquire(partitionLock, LW_EXCLUSIVE);
 
-                       SHMQueueDelete(targetLink);
+                       SHMQueueDelete(&(predlock->targetLink));
                        SHMQueueDelete(&(predlock->xactLink));
 
                        hash_search_with_hash_value(PredicateLockHash, &tag,
@@ -3412,12 +3714,12 @@ ClearOldPredicateLocks(void)
  * delete the transaction.
  *
  * When the partial flag is set, we can release all predicate locks and
- * out-conflict information -- we've established that there are no longer
+ * in-conflict information -- we've established that there are no longer
  * any overlapping read write transactions for which this transaction could
- * matter.
+ * matter -- but keep the transaction entry itself and any outConflicts.
  *
  * When the summarize flag is set, we've run short of room for sxact data
- * and must summarize to the SLRU.     Predicate locks are transferred to a
+ * and must summarize to the SLRU.  Predicate locks are transferred to a
  * dummy "old" transaction, with duplicate locks on a single target
  * collapsing to a single lock with the "latest" commitSeqNo from among
  * the conflicting locks..
@@ -3433,8 +3735,13 @@ ReleaseOneSerializableXact(SERIALIZABLEXACT *sxact, bool partial,
 
        Assert(sxact != NULL);
        Assert(SxactIsRolledBack(sxact) || SxactIsCommitted(sxact));
+       Assert(partial || !SxactIsOnFinishedList(sxact));
        Assert(LWLockHeldByMe(SerializableFinishedListLock));
 
+       /*
+        * First release all the predicate locks held by this xact (or transfer
+        * them to OldCommittedSxact if summarize is true)
+        */
        LWLockAcquire(SerializablePredicateLockListLock, LW_SHARED);
        predlock = (PREDICATELOCK *)
                SHMQueueNext(&(sxact->predicateLocks),
@@ -3448,7 +3755,7 @@ ReleaseOneSerializableXact(SERIALIZABLEXACT *sxact, bool partial,
                PREDICATELOCKTARGET *target;
                PREDICATELOCKTARGETTAG targettag;
                uint32          targettaghash;
-               LWLockId        partitionLock;
+               LWLock     *partitionLock;
 
                nextpredlock = (PREDICATELOCK *)
                        SHMQueueNext(&(sxact->predicateLocks),
@@ -3520,9 +3827,9 @@ ReleaseOneSerializableXact(SERIALIZABLEXACT *sxact, bool partial,
        sxidtag.xid = sxact->topXid;
        LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
 
+       /* Release all outConflicts (unless 'partial' is true) */
        if (!partial)
        {
-               /* Release all outConflicts. */
                conflict = (RWConflict)
                        SHMQueueNext(&sxact->outConflicts,
                                                 &sxact->outConflicts,
@@ -3557,9 +3864,9 @@ ReleaseOneSerializableXact(SERIALIZABLEXACT *sxact, bool partial,
                conflict = nextConflict;
        }
 
+       /* Finally, get rid of the xid and the record of the transaction itself. */
        if (!partial)
        {
-               /* Get rid of the xid and the record of the transaction itself. */
                if (sxidtag.xid != InvalidTransactionId)
                        hash_search(SerializableXidHash, &sxidtag, HASH_REMOVE, NULL);
                ReleasePredXact(sxact);
@@ -3605,7 +3912,7 @@ XidIsConcurrent(TransactionId xid)
 /*
  * CheckForSerializableConflictOut
  *             We are reading a tuple which has been modified.  If it is visible to
- *             us but has been deleted, that indicates a rw-conflict out.      If it's
+ *             us but has been deleted, that indicates a rw-conflict out.  If it's
  *             not visible and was created by a concurrent (overlapping)
  *             serializable transaction, that is also a rw-conflict out,
  *
@@ -3620,8 +3927,9 @@ XidIsConcurrent(TransactionId xid)
  * currently no known reason to call this function from an index AM.
  */
 void
-CheckForSerializableConflictOut(const bool visible, const Relation relation,
-                                                               const HeapTuple tuple, const Buffer buffer)
+CheckForSerializableConflictOut(bool visible, Relation relation,
+                                                               HeapTuple tuple, Buffer buffer,
+                                                               Snapshot snapshot)
 {
        TransactionId xid;
        SERIALIZABLEXIDTAG sxidtag;
@@ -3629,15 +3937,16 @@ CheckForSerializableConflictOut(const bool visible, const Relation relation,
        SERIALIZABLEXACT *sxact;
        HTSV_Result htsvResult;
 
-       if (SkipSerialization(relation))
+       if (!SerializationNeededForRead(relation, snapshot))
                return;
 
-       if (SxactIsMarkedForDeath(MySerializableXact))
+       /* Check if someone else has already decided that we need to die */
+       if (SxactIsDoomed(MySerializableXact))
        {
                ereport(ERROR,
                                (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
                                 errmsg("could not serialize access due to read/write dependencies among transactions"),
-                                errdetail("Cancelled on identification as a pivot, during conflict out checking."),
+                                errdetail_internal("Reason code: Canceled on identification as a pivot, during conflict out checking."),
                                 errhint("The transaction might succeed if retried.")));
        }
 
@@ -3648,7 +3957,7 @@ CheckForSerializableConflictOut(const bool visible, const Relation relation,
         * tuple is visible to us, while HeapTupleSatisfiesVacuum checks what else
         * is going on with it.
         */
-       htsvResult = HeapTupleSatisfiesVacuum(tuple->t_data, TransactionXmin, buffer);
+       htsvResult = HeapTupleSatisfiesVacuum(tuple, TransactionXmin, buffer);
        switch (htsvResult)
        {
                case HEAPTUPLE_LIVE:
@@ -3659,10 +3968,10 @@ CheckForSerializableConflictOut(const bool visible, const Relation relation,
                case HEAPTUPLE_RECENTLY_DEAD:
                        if (!visible)
                                return;
-                       xid = HeapTupleHeaderGetXmax(tuple->t_data);
+                       xid = HeapTupleHeaderGetUpdateXid(tuple->t_data);
                        break;
                case HEAPTUPLE_DELETE_IN_PROGRESS:
-                       xid = HeapTupleHeaderGetXmax(tuple->t_data);
+                       xid = HeapTupleHeaderGetUpdateXid(tuple->t_data);
                        break;
                case HEAPTUPLE_INSERT_IN_PROGRESS:
                        xid = HeapTupleHeaderGetXmin(tuple->t_data);
@@ -3690,7 +3999,7 @@ CheckForSerializableConflictOut(const bool visible, const Relation relation,
        Assert(TransactionIdFollowsOrEquals(xid, TransactionXmin));
 
        /*
-        * Find top level xid.  Bail out if xid is too early to be a conflict, or
+        * Find top level xid.  Bail out if xid is too early to be a conflict, or
         * if it's our own xid.
         */
        if (TransactionIdEquals(xid, GetTopTransactionIdIfAny()))
@@ -3726,15 +4035,15 @@ CheckForSerializableConflictOut(const bool visible, const Relation relation,
                                ereport(ERROR,
                                                (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
                                                 errmsg("could not serialize access due to read/write dependencies among transactions"),
-                               errdetail("Cancelled on conflict out to old pivot %u.", xid),
+                                                errdetail_internal("Reason code: Canceled on conflict out to old pivot %u.", xid),
                                          errhint("The transaction might succeed if retried.")));
 
                        if (SxactHasSummaryConflictIn(MySerializableXact)
-                       || !SHMQueueEmpty((SHM_QUEUE *) &MySerializableXact->inConflicts))
+                               || !SHMQueueEmpty(&MySerializableXact->inConflicts))
                                ereport(ERROR,
                                                (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
                                                 errmsg("could not serialize access due to read/write dependencies among transactions"),
-                                                errdetail("Cancelled on identification as a pivot, with conflict out to old committed transaction %u.", xid),
+                                                errdetail_internal("Reason code: Canceled on identification as a pivot, with conflict out to old committed transaction %u.", xid),
                                          errhint("The transaction might succeed if retried.")));
 
                        MySerializableXact->flags |= SXACT_FLAG_SUMMARY_CONFLICT_OUT;
@@ -3746,26 +4055,24 @@ CheckForSerializableConflictOut(const bool visible, const Relation relation,
        }
        sxact = sxid->myXact;
        Assert(TransactionIdEquals(sxact->topXid, xid));
-       if (sxact == MySerializableXact
-               || SxactIsRolledBack(sxact)
-               || SxactIsMarkedForDeath(sxact))
+       if (sxact == MySerializableXact || SxactIsDoomed(sxact))
        {
-               /* We can't conflict with our own transaction or one rolled back. */
+               /* Can't conflict with ourself or a transaction that will roll back. */
                LWLockRelease(SerializableXactHashLock);
                return;
        }
 
        /*
         * We have a conflict out to a transaction which has a conflict out to a
-        * summarized transaction.      That summarized transaction must have
+        * summarized transaction.  That summarized transaction must have
         * committed first, and we can't tell when it committed in relation to our
-        * snapshot acquisition, so something needs to be cancelled.
+        * snapshot acquisition, so something needs to be canceled.
         */
        if (SxactHasSummaryConflictOut(sxact))
        {
                if (!SxactIsPrepared(sxact))
                {
-                       sxact->flags |= SXACT_FLAG_MARKED_FOR_DEATH;
+                       sxact->flags |= SXACT_FLAG_DOOMED;
                        LWLockRelease(SerializableXactHashLock);
                        return;
                }
@@ -3775,7 +4082,7 @@ CheckForSerializableConflictOut(const bool visible, const Relation relation,
                        ereport(ERROR,
                                        (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
                                         errmsg("could not serialize access due to read/write dependencies among transactions"),
-                                        errdetail("Cancelled on conflict out to old pivot."),
+                                        errdetail_internal("Reason code: Canceled on conflict out to old pivot."),
                                         errhint("The transaction might succeed if retried.")));
                }
        }
@@ -3791,7 +4098,7 @@ CheckForSerializableConflictOut(const bool visible, const Relation relation,
                && (!SxactHasConflictOut(sxact)
                        || MySerializableXact->SeqNo.lastCommitBeforeSnapshot < sxact->SeqNo.earliestOutConflictCommit))
        {
-               /* Read-only transaction will appear to run first.      No conflict. */
+               /* Read-only transaction will appear to run first.  No conflict. */
                LWLockRelease(SerializableXactHashLock);
                return;
        }
@@ -3803,7 +4110,7 @@ CheckForSerializableConflictOut(const bool visible, const Relation relation,
                return;
        }
 
-       if (RWConflictExists((SERIALIZABLEXACT *) MySerializableXact, sxact))
+       if (RWConflictExists(MySerializableXact, sxact))
        {
                /* We don't want duplicate conflict records in the list. */
                LWLockRelease(SerializableXactHashLock);
@@ -3814,18 +4121,19 @@ CheckForSerializableConflictOut(const bool visible, const Relation relation,
         * Flag the conflict.  But first, if this conflict creates a dangerous
         * structure, ereport an error.
         */
-       FlagRWConflict((SERIALIZABLEXACT *) MySerializableXact, sxact);
+       FlagRWConflict(MySerializableXact, sxact);
        LWLockRelease(SerializableXactHashLock);
 }
 
 /*
- * Check a particular target for rw-dependency conflict in.
+ * Check a particular target for rw-dependency conflict in. A subroutine of
+ * CheckForSerializableConflictIn().
  */
 static void
 CheckTargetForConflictsIn(PREDICATELOCKTARGETTAG *targettag)
 {
        uint32          targettaghash;
-       LWLockId        partitionLock;
+       LWLock     *partitionLock;
        PREDICATELOCKTARGET *target;
        PREDICATELOCK *predlock;
        PREDICATELOCK *mypredlock = NULL;
@@ -3891,11 +4199,11 @@ CheckTargetForConflictsIn(PREDICATELOCKTARGETTAG *targettag)
                                mypredlocktag = predlock->tag;
                        }
                }
-               else if (!SxactIsRolledBack(sxact)
+               else if (!SxactIsDoomed(sxact)
                                 && (!SxactIsCommitted(sxact)
                                         || TransactionIdPrecedes(GetTransactionSnapshot()->xmin,
                                                                                          sxact->finishedBefore))
-               && !RWConflictExists(sxact, (SERIALIZABLEXACT *) MySerializableXact))
+                                && !RWConflictExists(sxact, MySerializableXact))
                {
                        LWLockRelease(SerializableXactHashLock);
                        LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
@@ -3904,14 +4212,13 @@ CheckTargetForConflictsIn(PREDICATELOCKTARGETTAG *targettag)
                         * Re-check after getting exclusive lock because the other
                         * transaction may have flagged a conflict.
                         */
-                       if (!SxactIsRolledBack(sxact)
+                       if (!SxactIsDoomed(sxact)
                                && (!SxactIsCommitted(sxact)
                                        || TransactionIdPrecedes(GetTransactionSnapshot()->xmin,
                                                                                         sxact->finishedBefore))
-                               && !RWConflictExists(sxact,
-                                                                        (SERIALIZABLEXACT *) MySerializableXact))
+                               && !RWConflictExists(sxact, MySerializableXact))
                        {
-                               FlagRWConflict(sxact, (SERIALIZABLEXACT *) MySerializableXact);
+                               FlagRWConflict(sxact, MySerializableXact);
                        }
 
                        LWLockRelease(SerializableXactHashLock);
@@ -4001,22 +4308,27 @@ CheckTargetForConflictsIn(PREDICATELOCKTARGETTAG *targettag)
  * tuple itself.
  */
 void
-CheckForSerializableConflictIn(const Relation relation, const HeapTuple tuple,
-                                                          const Buffer buffer)
+CheckForSerializableConflictIn(Relation relation, HeapTuple tuple,
+                                                          Buffer buffer)
 {
        PREDICATELOCKTARGETTAG targettag;
 
-       if (SkipSerialization(relation))
+       if (!SerializationNeededForWrite(relation))
                return;
 
-       if (SxactIsMarkedForDeath(MySerializableXact))
+       /* Check if someone else has already decided that we need to die */
+       if (SxactIsDoomed(MySerializableXact))
                ereport(ERROR,
                                (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
                                 errmsg("could not serialize access due to read/write dependencies among transactions"),
-                                errdetail("Cancelled on identification as a pivot, during conflict in checking."),
+                                errdetail_internal("Reason code: Canceled on identification as a pivot, during conflict in checking."),
                                 errhint("The transaction might succeed if retried.")));
 
-       MySerializableXact->flags |= SXACT_FLAG_DID_WRITE;
+       /*
+        * We're doing a write which might cause rw-conflicts now or later.
+        * Memorize that fact.
+        */
+       MyXactDidWrite = true;
 
        /*
         * It is important that we check for locks from the finest granularity to
@@ -4032,9 +4344,8 @@ CheckForSerializableConflictIn(const Relation relation, const HeapTuple tuple,
                SET_PREDICATELOCKTARGETTAG_TUPLE(targettag,
                                                                                 relation->rd_node.dbNode,
                                                                                 relation->rd_id,
-                                                ItemPointerGetBlockNumber(&(tuple->t_data->t_ctid)),
-                                               ItemPointerGetOffsetNumber(&(tuple->t_data->t_ctid)),
-                                                                         HeapTupleHeaderGetXmin(tuple->t_data));
+                                                                ItemPointerGetBlockNumber(&(tuple->t_self)),
+                                                          ItemPointerGetOffsetNumber(&(tuple->t_self)));
                CheckTargetForConflictsIn(&targettag);
        }
 
@@ -4081,7 +4392,7 @@ CheckForSerializableConflictIn(const Relation relation, const HeapTuple tuple,
  * lead to some false positives, but it doesn't seem worth the trouble.)
  */
 void
-CheckTableForSerializableConflictIn(const Relation relation)
+CheckTableForSerializableConflictIn(Relation relation)
 {
        HASH_SEQ_STATUS seqstat;
        PREDICATELOCKTARGET *target;
@@ -4098,9 +4409,15 @@ CheckTableForSerializableConflictIn(const Relation relation)
        if (!TransactionIdIsValid(PredXact->SxactGlobalXmin))
                return;
 
-       if (SkipSerialization(relation))
+       if (!SerializationNeededForWrite(relation))
                return;
 
+       /*
+        * We're doing a write which might cause rw-conflicts now or later.
+        * Memorize that fact.
+        */
+       MyXactDidWrite = true;
+
        Assert(relation->rd_index == NULL); /* not an index relation */
 
        dbId = relation->rd_node.dbNode;
@@ -4108,8 +4425,8 @@ CheckTableForSerializableConflictIn(const Relation relation)
 
        LWLockAcquire(SerializablePredicateLockListLock, LW_EXCLUSIVE);
        for (i = 0; i < NUM_PREDICATELOCK_PARTITIONS; i++)
-               LWLockAcquire(FirstPredicateLockMgrLock + i, LW_SHARED);
-       LWLockAcquire(SerializableXactHashLock, LW_SHARED);
+               LWLockAcquire(PredicateLockHashPartitionLockByIndex(i), LW_SHARED);
+       LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
 
        /* Scan through target list */
        hash_seq_init(&seqstat, PredicateLockTargetHash);
@@ -4143,10 +4460,10 @@ CheckTableForSerializableConflictIn(const Relation relation)
                                                         offsetof(PREDICATELOCK, targetLink));
 
                        if (predlock->tag.myXact != MySerializableXact
-                               && !RWConflictExists(predlock->tag.myXact,
-                                                                        (SERIALIZABLEXACT *) MySerializableXact))
-                               FlagRWConflict(predlock->tag.myXact,
-                                                          (SERIALIZABLEXACT *) MySerializableXact);
+                         && !RWConflictExists(predlock->tag.myXact, MySerializableXact))
+                       {
+                               FlagRWConflict(predlock->tag.myXact, MySerializableXact);
+                       }
 
                        predlock = nextpredlock;
                }
@@ -4155,7 +4472,7 @@ CheckTableForSerializableConflictIn(const Relation relation)
        /* Release locks in reverse order */
        LWLockRelease(SerializableXactHashLock);
        for (i = NUM_PREDICATELOCK_PARTITIONS - 1; i >= 0; i--)
-               LWLockRelease(FirstPredicateLockMgrLock + i);
+               LWLockRelease(PredicateLockHashPartitionLockByIndex(i));
        LWLockRelease(SerializablePredicateLockListLock);
 }
 
@@ -4239,6 +4556,11 @@ OnConflict_CheckForSerializationFailure(const SERIALIZABLEXACT *reader,
         * - the writer committed before T2
         * - the reader is a READ ONLY transaction and the reader was concurrent
         *       with T2 (= reader acquired its snapshot before T2 committed)
+        *
+        * We also handle the case that T2 is prepared but not yet committed
+        * here. In that case T2 has already checked for conflicts, so if it
+        * commits first, making the above conflict real, it's too late for it
+        * to abort.
         *------------------------------------------------------------------------
         */
        if (!failure)
@@ -4257,13 +4579,13 @@ OnConflict_CheckForSerializationFailure(const SERIALIZABLEXACT *reader,
                {
                        SERIALIZABLEXACT *t2 = conflict->sxactIn;
 
-                       if (SxactIsCommitted(t2)
+                       if (SxactIsPrepared(t2)
                                && (!SxactIsCommitted(reader)
-                                       || t2->commitSeqNo <= reader->commitSeqNo)
+                                       || t2->prepareSeqNo <= reader->commitSeqNo)
                                && (!SxactIsCommitted(writer)
-                                       || t2->commitSeqNo <= writer->commitSeqNo)
+                                       || t2->prepareSeqNo <= writer->commitSeqNo)
                                && (!SxactIsReadOnly(reader)
-                          || t2->commitSeqNo <= reader->SeqNo.lastCommitBeforeSnapshot))
+                         || t2->prepareSeqNo <= reader->SeqNo.lastCommitBeforeSnapshot))
                        {
                                failure = true;
                                break;
@@ -4276,7 +4598,8 @@ OnConflict_CheckForSerializationFailure(const SERIALIZABLEXACT *reader,
        }
 
        /*------------------------------------------------------------------------
-        * Check whether the reader has become a pivot with a committed writer:
+        * Check whether the reader has become a pivot with a writer
+        * that's committed (or prepared):
         *
         *              T0 ------> R ------> W
         *                       rw                rw
@@ -4287,7 +4610,7 @@ OnConflict_CheckForSerializationFailure(const SERIALIZABLEXACT *reader,
         * - T0 is READ ONLY, and overlaps the writer
         *------------------------------------------------------------------------
         */
-       if (!failure && SxactIsCommitted(writer) && !SxactIsReadOnly(reader))
+       if (!failure && SxactIsPrepared(writer) && !SxactIsReadOnly(reader))
        {
                if (SxactHasSummaryConflictIn(reader))
                {
@@ -4303,11 +4626,11 @@ OnConflict_CheckForSerializationFailure(const SERIALIZABLEXACT *reader,
                {
                        SERIALIZABLEXACT *t0 = conflict->sxactOut;
 
-                       if (!SxactIsRolledBack(t0)
+                       if (!SxactIsDoomed(t0)
                                && (!SxactIsCommitted(t0)
-                                       || t0->commitSeqNo >= writer->commitSeqNo)
+                                       || t0->commitSeqNo >= writer->prepareSeqNo)
                                && (!SxactIsReadOnly(t0)
-                          || t0->SeqNo.lastCommitBeforeSnapshot >= writer->commitSeqNo))
+                         || t0->SeqNo.lastCommitBeforeSnapshot >= writer->prepareSeqNo))
                        {
                                failure = true;
                                break;
@@ -4335,7 +4658,7 @@ OnConflict_CheckForSerializationFailure(const SERIALIZABLEXACT *reader,
                        ereport(ERROR,
                                        (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
                                         errmsg("could not serialize access due to read/write dependencies among transactions"),
-                                        errdetail("Cancelled on identification as a pivot, during write."),
+                                        errdetail_internal("Reason code: Canceled on identification as a pivot, during write."),
                                         errhint("The transaction might succeed if retried.")));
                }
                else if (SxactIsPrepared(writer))
@@ -4347,10 +4670,10 @@ OnConflict_CheckForSerializationFailure(const SERIALIZABLEXACT *reader,
                        ereport(ERROR,
                                        (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
                                         errmsg("could not serialize access due to read/write dependencies among transactions"),
-                                        errdetail("Cancelled on conflict out to pivot %u, during read.", writer->topXid),
+                                        errdetail_internal("Reason code: Canceled on conflict out to pivot %u, during read.", writer->topXid),
                                         errhint("The transaction might succeed if retried.")));
                }
-               writer->flags |= SXACT_FLAG_MARKED_FOR_DEATH;
+               writer->flags |= SXACT_FLAG_DOOMED;
        }
 }
 
@@ -4366,9 +4689,9 @@ OnConflict_CheckForSerializationFailure(const SERIALIZABLEXACT *reader,
  *
  * If a dangerous structure is found, the pivot (the near conflict) is
  * marked for death, because rolling back another transaction might mean
- * that we flail without ever making progress. This transaction is
+ * that we flail without ever making progress.  This transaction is
  * committing writes, so letting it commit ensures progress.  If we
- * cancelled the far conflict, it might immediately fail again on retry.
+ * canceled the far conflict, it might immediately fail again on retry.
  */
 void
 PreCommit_CheckForSerializationFailure(void)
@@ -4382,25 +4705,25 @@ PreCommit_CheckForSerializationFailure(void)
 
        LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
 
-       if (SxactIsMarkedForDeath(MySerializableXact))
+       /* Check if someone else has already decided that we need to die */
+       if (SxactIsDoomed(MySerializableXact))
        {
                LWLockRelease(SerializableXactHashLock);
                ereport(ERROR,
                                (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
                                 errmsg("could not serialize access due to read/write dependencies among transactions"),
-                                errdetail("Cancelled on identification as a pivot, during commit attempt."),
+                                errdetail_internal("Reason code: Canceled on identification as a pivot, during commit attempt."),
                                 errhint("The transaction might succeed if retried.")));
        }
 
        nearConflict = (RWConflict)
-               SHMQueueNext((SHM_QUEUE *) &MySerializableXact->inConflicts,
-                                        (SHM_QUEUE *) &MySerializableXact->inConflicts,
+               SHMQueueNext(&MySerializableXact->inConflicts,
+                                        &MySerializableXact->inConflicts,
                                         offsetof(RWConflictData, inLink));
        while (nearConflict)
        {
                if (!SxactIsCommitted(nearConflict->sxactOut)
-                       && !SxactIsRolledBack(nearConflict->sxactOut)
-                       && !SxactIsMarkedForDeath(nearConflict->sxactOut))
+                       && !SxactIsDoomed(nearConflict->sxactOut))
                {
                        RWConflict      farConflict;
 
@@ -4413,10 +4736,24 @@ PreCommit_CheckForSerializationFailure(void)
                                if (farConflict->sxactOut == MySerializableXact
                                        || (!SxactIsCommitted(farConflict->sxactOut)
                                                && !SxactIsReadOnly(farConflict->sxactOut)
-                                               && !SxactIsRolledBack(farConflict->sxactOut)
-                                               && !SxactIsMarkedForDeath(farConflict->sxactOut)))
+                                               && !SxactIsDoomed(farConflict->sxactOut)))
                                {
-                                       nearConflict->sxactOut->flags |= SXACT_FLAG_MARKED_FOR_DEATH;
+                                       /*
+                                        * Normally, we kill the pivot transaction to make sure we
+                                        * make progress if the failing transaction is retried.
+                                        * However, we can't kill it if it's already prepared, so
+                                        * in that case we commit suicide instead.
+                                        */
+                                       if (SxactIsPrepared(nearConflict->sxactOut))
+                                       {
+                                               LWLockRelease(SerializableXactHashLock);
+                                               ereport(ERROR,
+                                                               (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
+                                                                errmsg("could not serialize access due to read/write dependencies among transactions"),
+                                                                errdetail_internal("Reason code: Canceled on commit attempt with conflict in from prepared pivot."),
+                                                                errhint("The transaction might succeed if retried.")));
+                                       }
+                                       nearConflict->sxactOut->flags |= SXACT_FLAG_DOOMED;
                                        break;
                                }
                                farConflict = (RWConflict)
@@ -4427,11 +4764,12 @@ PreCommit_CheckForSerializationFailure(void)
                }
 
                nearConflict = (RWConflict)
-                       SHMQueueNext((SHM_QUEUE *) &MySerializableXact->inConflicts,
+                       SHMQueueNext(&MySerializableXact->inConflicts,
                                                 &nearConflict->inLink,
                                                 offsetof(RWConflictData, inLink));
        }
 
+       MySerializableXact->prepareSeqNo = ++(PredXact->LastSxactCommitSeqNo);
        MySerializableXact->flags |= SXACT_FLAG_PREPARED;
 
        LWLockRelease(SerializableXactHashLock);
@@ -4457,27 +4795,24 @@ AtPrepare_PredicateLocks(void)
        TwoPhasePredicateXactRecord *xactRecord;
        TwoPhasePredicateLockRecord *lockRecord;
 
-       sxact = (SERIALIZABLEXACT *) MySerializableXact;
+       sxact = MySerializableXact;
        xactRecord = &(record.data.xactRecord);
        lockRecord = &(record.data.lockRecord);
 
        if (MySerializableXact == InvalidSerializableXact)
                return;
 
-       /* Generate a xact record for our SERIALIZABLEXACT */
+       /* Generate an xact record for our SERIALIZABLEXACT */
        record.type = TWOPHASEPREDICATERECORD_XACT;
        xactRecord->xmin = MySerializableXact->xmin;
        xactRecord->flags = MySerializableXact->flags;
 
        /*
-        * Tweak the flags. Since we're not going to output the inConflicts and
-        * outConflicts lists, if they're non-empty we'll represent that by
-        * setting the appropriate summary conflict flags.
+        * Note that we don't include the list of conflicts in our out in the
+        * statefile, because new conflicts can be added even after the
+        * transaction prepares. We'll just make a conservative assumption during
+        * recovery instead.
         */
-       if (!SHMQueueEmpty((SHM_QUEUE *) &MySerializableXact->inConflicts))
-               xactRecord->flags |= SXACT_FLAG_SUMMARY_CONFLICT_IN;
-       if (!SHMQueueEmpty((SHM_QUEUE *) &MySerializableXact->outConflicts))
-               xactRecord->flags |= SXACT_FLAG_SUMMARY_CONFLICT_OUT;
 
        RegisterTwoPhaseRecord(TWOPHASE_RM_PREDICATELOCK_ID, 0,
                                                   &record, sizeof(record));
@@ -4534,6 +4869,7 @@ PostPrepare_PredicateLocks(TransactionId xid)
        LocalPredicateLockHash = NULL;
 
        MySerializableXact = InvalidSerializableXact;
+       MyXactDidWrite = false;
 }
 
 /*
@@ -4560,6 +4896,8 @@ PredicateLockTwoPhaseFinish(TransactionId xid, bool isCommit)
 
        /* Release its locks */
        MySerializableXact = sxid->myXact;
+       MyXactDidWrite = true;          /* conservatively assume that we wrote
+                                                                * something */
        ReleasePredicateLocks(isCommit);
 }
 
@@ -4603,20 +4941,12 @@ predicatelock_twophase_recover(TransactionId xid, uint16 info,
                sxact->pid = 0;
 
                /* a prepared xact hasn't committed yet */
+               sxact->prepareSeqNo = RecoverySerCommitSeqNo;
                sxact->commitSeqNo = InvalidSerCommitSeqNo;
                sxact->finishedBefore = InvalidTransactionId;
 
                sxact->SeqNo.lastCommitBeforeSnapshot = RecoverySerCommitSeqNo;
 
-
-               /*
-                * We don't need the details of a prepared transaction's conflicts,
-                * just whether it had conflicts in or out (which we get from the
-                * flags)
-                */
-               SHMQueueInit(&(sxact->outConflicts));
-               SHMQueueInit(&(sxact->inConflicts));
-
                /*
                 * Don't need to track this; no transactions running at the time the
                 * recovered xact started are still active, except possibly other
@@ -4638,6 +4968,16 @@ predicatelock_twophase_recover(TransactionId xid, uint16 info,
                                   (MaxBackends + max_prepared_xacts));
                }
 
+               /*
+                * We don't know whether the transaction had any conflicts or not, so
+                * we'll conservatively assume that it had both a conflict in and a
+                * conflict out, and represent that with the summary conflict flags.
+                */
+               SHMQueueInit(&(sxact->outConflicts));
+               SHMQueueInit(&(sxact->inConflicts));
+               sxact->flags |= SXACT_FLAG_SUMMARY_CONFLICT_IN;
+               sxact->flags |= SXACT_FLAG_SUMMARY_CONFLICT_OUT;
+
                /* Register the transaction's xid */
                sxidtag.xid = xid;
                sxid = (SERIALIZABLEXID *) hash_search(SerializableXidHash,