]> granicus.if.org Git - postgresql/blobdiff - src/backend/optimizer/plan/planner.c
Repair two constraint-exclusion corner cases triggered by proving that an
[postgresql] / src / backend / optimizer / plan / planner.c
index d87e4089b51abf31d46a36f23fb5bb9136be82d0..e2396d42ca6a279a67580c793b620d1078bf755e 100644 (file)
@@ -3,12 +3,12 @@
  * planner.c
  *       The query optimizer external interface.
  *
- * Portions Copyright (c) 1996-2005, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1996-2007, PostgreSQL Global Development Group
  * Portions Copyright (c) 1994, Regents of the University of California
  *
  *
  * IDENTIFICATION
- *       $PostgreSQL: pgsql/src/backend/optimizer/plan/planner.c,v 1.192 2005/08/27 22:13:43 tgl Exp $
+ *       $PostgreSQL: pgsql/src/backend/optimizer/plan/planner.c,v 1.221 2007/05/26 18:23:01 tgl Exp $
  *
  *-------------------------------------------------------------------------
  */
 #include <limits.h>
 
 #include "catalog/pg_operator.h"
-#include "catalog/pg_type.h"
 #include "executor/executor.h"
 #include "executor/nodeAgg.h"
 #include "miscadmin.h"
 #include "nodes/makefuncs.h"
-#ifdef OPTIMIZER_DEBUG
-#include "nodes/print.h"
-#endif
 #include "optimizer/clauses.h"
 #include "optimizer/cost.h"
 #include "optimizer/pathnode.h"
 #include "optimizer/subselect.h"
 #include "optimizer/tlist.h"
 #include "optimizer/var.h"
-#include "parser/parsetree.h"
+#ifdef OPTIMIZER_DEBUG
+#include "nodes/print.h"
+#endif
 #include "parser/parse_expr.h"
 #include "parser/parse_oper.h"
-#include "utils/selfuncs.h"
+#include "parser/parsetree.h"
+#include "utils/lsyscache.h"
 #include "utils/syscache.h"
 
 
-ParamListInfo PlannerBoundParamList = NULL;            /* current boundParams */
+/* Hook for plugins to get control in planner() */
+planner_hook_type planner_hook = NULL;
 
 
 /* Expression kind codes for preprocess_expression */
-#define EXPRKIND_QUAL  0
-#define EXPRKIND_TARGET 1
-#define EXPRKIND_RTFUNC 2
-#define EXPRKIND_LIMIT 3
-#define EXPRKIND_ININFO 4
+#define EXPRKIND_QUAL          0
+#define EXPRKIND_TARGET                1
+#define EXPRKIND_RTFUNC                2
+#define EXPRKIND_VALUES                3
+#define EXPRKIND_LIMIT         4
+#define EXPRKIND_ININFO                5
+#define EXPRKIND_APPINFO       6
 
 
 static Node *preprocess_expression(PlannerInfo *root, Node *expr, int kind);
 static void preprocess_qual_conditions(PlannerInfo *root, Node *jtnode);
-static Plan *inheritance_planner(PlannerInfo *root, List *inheritlist);
+static Plan *inheritance_planner(PlannerInfo *root);
 static Plan *grouping_planner(PlannerInfo *root, double tuple_fraction);
+static bool is_dummy_plan(Plan *plan);
 static double preprocess_limit(PlannerInfo *root,
-                                                          double tuple_fraction,
-                                                          int *offset_est, int *count_est);
-static bool choose_hashed_grouping(PlannerInfo *root, double tuple_fraction,
+                                double tuple_fraction,
+                                int64 *offset_est, int64 *count_est);
+static Oid *extract_grouping_ops(List *groupClause);
+static bool choose_hashed_grouping(PlannerInfo *root,
+                                          double tuple_fraction, double limit_tuples,
                                           Path *cheapest_path, Path *sorted_path,
-                                          double dNumGroups, AggClauseCounts *agg_counts);
-static bool hash_safe_grouping(PlannerInfo *root);
+                                          Oid *groupOperators, double dNumGroups,
+                                          AggClauseCounts *agg_counts);
 static List *make_subplanTargetList(PlannerInfo *root, List *tlist,
                                           AttrNumber **groupColIdx, bool *need_tlist_eval);
 static void locate_grouping_columns(PlannerInfo *root,
@@ -78,50 +83,66 @@ static List *postprocess_setop_tlist(List *new_tlist, List *orig_tlist);
  *
  *        Query optimizer entry point
  *
+ * To support loadable plugins that monitor or modify planner behavior,
+ * we provide a hook variable that lets a plugin get control before and
+ * after the standard planning process.  The plugin would normally call
+ * standard_planner().
+ *
+ * Note to plugin authors: standard_planner() scribbles on its Query input,
+ * so you'd better copy that data structure if you want to plan more than once.
+ *
  *****************************************************************************/
-Plan *
-planner(Query *parse, bool isCursor, int cursorOptions,
-               ParamListInfo boundParams)
+PlannedStmt *
+planner(Query *parse, int cursorOptions, ParamListInfo boundParams)
+{
+       PlannedStmt *result;
+
+       if (planner_hook)
+               result = (*planner_hook) (parse, cursorOptions, boundParams);
+       else
+               result = standard_planner(parse, cursorOptions, boundParams);
+       return result;
+}
+
+PlannedStmt *
+standard_planner(Query *parse, int cursorOptions, ParamListInfo boundParams)
 {
+       PlannedStmt *result;
+       PlannerGlobal *glob;
        double          tuple_fraction;
-       Plan       *result_plan;
-       Index           save_PlannerQueryLevel;
-       List       *save_PlannerParamList;
-       ParamListInfo save_PlannerBoundParamList;
+       PlannerInfo *root;
+       Plan       *top_plan;
+       ListCell   *lp,
+                          *lr;
+
+       /* Cursor options may come from caller or from DECLARE CURSOR stmt */
+       if (parse->utilityStmt &&
+               IsA(parse->utilityStmt, DeclareCursorStmt))
+               cursorOptions |= ((DeclareCursorStmt *) parse->utilityStmt)->options;
 
        /*
-        * The planner can be called recursively (an example is when
-        * eval_const_expressions tries to pre-evaluate an SQL function). So,
-        * these global state variables must be saved and restored.
-        *
-        * Query level and the param list cannot be moved into the per-query
-        * PlannerInfo structure since their whole purpose is communication
-        * across multiple sub-queries. Also, boundParams is explicitly info
-        * from outside the query, and so is likewise better handled as a global
-        * variable.
-        *
-        * Note we do NOT save and restore PlannerPlanId: it exists to assign
-        * unique IDs to SubPlan nodes, and we want those IDs to be unique for
-        * the life of a backend.  Also, PlannerInitPlan is saved/restored in
-        * subquery_planner, not here.
+        * Set up global state for this planner invocation.  This data is needed
+        * across all levels of sub-Query that might exist in the given command,
+        * so we keep it in a separate struct that's linked to by each per-Query
+        * PlannerInfo.
         */
-       save_PlannerQueryLevel = PlannerQueryLevel;
-       save_PlannerParamList = PlannerParamList;
-       save_PlannerBoundParamList = PlannerBoundParamList;
+       glob = makeNode(PlannerGlobal);
 
-       /* Initialize state for handling outer-level references and params */
-       PlannerQueryLevel = 0;          /* will be 1 in top-level subquery_planner */
-       PlannerParamList = NIL;
-       PlannerBoundParamList = boundParams;
+       glob->boundParams = boundParams;
+       glob->paramlist = NIL;
+       glob->subplans = NIL;
+       glob->subrtables = NIL;
+       glob->rewindPlanIDs = NULL;
+       glob->finalrtable = NIL;
 
        /* Determine what fraction of the plan is likely to be scanned */
-       if (isCursor)
+       if (cursorOptions & CURSOR_OPT_FAST_PLAN)
        {
                /*
-                * We have no real idea how many tuples the user will ultimately
-                * FETCH from a cursor, but it seems a good bet that he doesn't
-                * want 'em all.  Optimize for 10% retrieval (you gotta better
-                * number?      Should this be a SETtable parameter?)
+                * We have no real idea how many tuples the user will ultimately FETCH
+                * from a cursor, but it seems a good bet that he doesn't want 'em
+                * all.  Optimize for 10% retrieval (you gotta better number?  Should
+                * this be a SETtable parameter?)
                 */
                tuple_fraction = 0.10;
        }
@@ -132,33 +153,48 @@ planner(Query *parse, bool isCursor, int cursorOptions,
        }
 
        /* primary planning entry point (may recurse for subqueries) */
-       result_plan = subquery_planner(parse, tuple_fraction, NULL);
-
-       /* check we popped out the right number of levels */
-       Assert(PlannerQueryLevel == 0);
+       top_plan = subquery_planner(glob, parse, 1, tuple_fraction, &root);
 
        /*
         * If creating a plan for a scrollable cursor, make sure it can run
         * backwards on demand.  Add a Material node at the top at need.
         */
-       if (isCursor && (cursorOptions & CURSOR_OPT_SCROLL))
+       if (cursorOptions & CURSOR_OPT_SCROLL)
        {
-               if (!ExecSupportsBackwardScan(result_plan))
-                       result_plan = materialize_finished_plan(result_plan);
+               if (!ExecSupportsBackwardScan(top_plan))
+                       top_plan = materialize_finished_plan(top_plan);
        }
 
        /* final cleanup of the plan */
-       result_plan = set_plan_references(result_plan, parse->rtable);
-
-       /* executor wants to know total number of Params used overall */
-       result_plan->nParamExec = list_length(PlannerParamList);
+       Assert(glob->finalrtable == NIL);
+       top_plan = set_plan_references(glob, top_plan, root->parse->rtable);
+       /* ... and the subplans (both regular subplans and initplans) */
+       Assert(list_length(glob->subplans) == list_length(glob->subrtables));
+       forboth(lp, glob->subplans, lr, glob->subrtables)
+       {
+               Plan   *subplan = (Plan *) lfirst(lp);
+               List   *subrtable = (List *) lfirst(lr);
 
-       /* restore state for outer planner, if any */
-       PlannerQueryLevel = save_PlannerQueryLevel;
-       PlannerParamList = save_PlannerParamList;
-       PlannerBoundParamList = save_PlannerBoundParamList;
+               lfirst(lp) = set_plan_references(glob, subplan, subrtable);
+       }
 
-       return result_plan;
+       /* build the PlannedStmt result */
+       result = makeNode(PlannedStmt);
+
+       result->commandType = parse->commandType;
+       result->canSetTag = parse->canSetTag;
+       result->planTree = top_plan;
+       result->rtable = glob->finalrtable;
+       result->resultRelations = root->resultRelations;
+       result->utilityStmt = parse->utilityStmt;
+       result->intoClause = parse->intoClause;
+       result->subplans = glob->subplans;
+       result->rewindPlanIDs = glob->rewindPlanIDs;
+       result->returningLists = root->returningLists;
+       result->rowMarks = parse->rowMarks;
+       result->nParamExec = list_length(glob->paramlist);
+
+       return result;
 }
 
 
@@ -167,12 +203,14 @@ planner(Query *parse, bool isCursor, int cursorOptions,
  *       Invokes the planner on a subquery.  We recurse to here for each
  *       sub-SELECT found in the query tree.
  *
+ * glob is the global state for the current planner run.
  * parse is the querytree produced by the parser & rewriter.
+ * level is the current recursion depth (1 at the top-level Query).
  * tuple_fraction is the fraction of tuples we expect will be retrieved.
  * tuple_fraction is interpreted as explained for grouping_planner, below.
  *
- * If subquery_pathkeys isn't NULL, it receives a list of pathkeys indicating
- * the output sort ordering of the completed plan.
+ * If subroot isn't NULL, we pass back the query's final PlannerInfo struct;
+ * among other things this tells the output sort ordering of the plan.
  *
  * Basically, this routine does the stuff that should only be done once
  * per Query object.  It then calls grouping_planner.  At one time,
@@ -187,32 +225,33 @@ planner(Query *parse, bool isCursor, int cursorOptions,
  *--------------------
  */
 Plan *
-subquery_planner(Query *parse, double tuple_fraction,
-                                List **subquery_pathkeys)
+subquery_planner(PlannerGlobal *glob, Query *parse,
+                                Index level, double tuple_fraction,
+                                PlannerInfo **subroot)
 {
-       List       *saved_initplan = PlannerInitPlan;
-       int                     saved_planid = PlannerPlanId;
+       int                     num_old_subplans = list_length(glob->subplans);
        PlannerInfo *root;
        Plan       *plan;
        List       *newHaving;
-       List       *lst;
        ListCell   *l;
 
-       /* Set up for a new level of subquery */
-       PlannerQueryLevel++;
-       PlannerInitPlan = NIL;
-
        /* Create a PlannerInfo data structure for this subquery */
        root = makeNode(PlannerInfo);
        root->parse = parse;
+       root->glob = glob;
+       root->query_level = level;
+       root->planner_cxt = CurrentMemoryContext;
+       root->init_plans = NIL;
+       root->eq_classes = NIL;
+       root->in_info_list = NIL;
+       root->append_rel_list = NIL;
 
        /*
-        * Look for IN clauses at the top level of WHERE, and transform them
-        * into joins.  Note that this step only handles IN clauses originally
-        * at top level of WHERE; if we pull up any subqueries in the next
-        * step, their INs are processed just before pulling them up.
+        * Look for IN clauses at the top level of WHERE, and transform them into
+        * joins.  Note that this step only handles IN clauses originally at top
+        * level of WHERE; if we pull up any subqueries in the next step, their
+        * INs are processed just before pulling them up.
         */
-       root->in_info_list = NIL;
        if (parse->hasSubLinks)
                parse->jointree->quals = pull_up_IN_clauses(root,
                                                                                                        parse->jointree->quals);
@@ -222,17 +261,17 @@ subquery_planner(Query *parse, double tuple_fraction,
         * this query.
         */
        parse->jointree = (FromExpr *)
-               pull_up_subqueries(root, (Node *) parse->jointree, false);
+               pull_up_subqueries(root, (Node *) parse->jointree, false, false);
 
        /*
-        * Detect whether any rangetable entries are RTE_JOIN kind; if not, we
-        * can avoid the expense of doing flatten_join_alias_vars().  Also
-        * check for outer joins --- if none, we can skip reduce_outer_joins()
-        * and some other processing.  This must be done after we have done
+        * Detect whether any rangetable entries are RTE_JOIN kind; if not, we can
+        * avoid the expense of doing flatten_join_alias_vars().  Also check for
+        * outer joins --- if none, we can skip reduce_outer_joins() and some
+        * other processing.  This must be done after we have done
         * pull_up_subqueries, of course.
         *
         * Note: if reduce_outer_joins manages to eliminate all outer joins,
-        * root->hasOuterJoins is not reset currently.  This is OK since its
+        * root->hasOuterJoins is not reset currently.  This is OK since its
         * purpose is merely to suppress unnecessary processing in simple cases.
         */
        root->hasJoinRTEs = false;
@@ -253,13 +292,26 @@ subquery_planner(Query *parse, double tuple_fraction,
                }
        }
 
+       /*
+        * Expand any rangetable entries that are inheritance sets into "append
+        * relations".  This can add entries to the rangetable, but they must be
+        * plain base relations not joins, so it's OK (and marginally more
+        * efficient) to do it after checking for join RTEs.  We must do it after
+        * pulling up subqueries, else we'd fail to handle inherited tables in
+        * subqueries.
+        */
+       expand_inherited_tables(root);
+
        /*
         * Set hasHavingQual to remember if HAVING clause is present.  Needed
-        * because preprocess_expression will reduce a constant-true condition
-        * to an empty qual list ... but "HAVING TRUE" is not a semantic no-op.
+        * because preprocess_expression will reduce a constant-true condition to
+        * an empty qual list ... but "HAVING TRUE" is not a semantic no-op.
         */
        root->hasHavingQual = (parse->havingQual != NULL);
 
+       /* Clear this flag; might get set in distribute_qual_to_rels */
+       root->hasPseudoConstantQuals = false;
+
        /*
         * Do expression preprocessing on targetlist and quals.
         */
@@ -267,6 +319,10 @@ subquery_planner(Query *parse, double tuple_fraction,
                preprocess_expression(root, (Node *) parse->targetList,
                                                          EXPRKIND_TARGET);
 
+       parse->returningList = (List *)
+               preprocess_expression(root, (Node *) parse->returningList,
+                                                         EXPRKIND_TARGET);
+
        preprocess_qual_conditions(root, (Node *) parse->jointree);
 
        parse->havingQual = preprocess_expression(root, parse->havingQual,
@@ -280,8 +336,11 @@ subquery_planner(Query *parse, double tuple_fraction,
        root->in_info_list = (List *)
                preprocess_expression(root, (Node *) root->in_info_list,
                                                          EXPRKIND_ININFO);
+       root->append_rel_list = (List *)
+               preprocess_expression(root, (Node *) root->append_rel_list,
+                                                         EXPRKIND_APPINFO);
 
-       /* Also need to preprocess expressions for function RTEs */
+       /* Also need to preprocess expressions for function and values RTEs */
        foreach(l, parse->rtable)
        {
                RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
@@ -289,32 +348,36 @@ subquery_planner(Query *parse, double tuple_fraction,
                if (rte->rtekind == RTE_FUNCTION)
                        rte->funcexpr = preprocess_expression(root, rte->funcexpr,
                                                                                                  EXPRKIND_RTFUNC);
+               else if (rte->rtekind == RTE_VALUES)
+                       rte->values_lists = (List *)
+                               preprocess_expression(root, (Node *) rte->values_lists,
+                                                                         EXPRKIND_VALUES);
        }
 
        /*
-        * In some cases we may want to transfer a HAVING clause into WHERE.
-        * We cannot do so if the HAVING clause contains aggregates (obviously)
-        * or volatile functions (since a HAVING clause is supposed to be executed
+        * In some cases we may want to transfer a HAVING clause into WHERE. We
+        * cannot do so if the HAVING clause contains aggregates (obviously) or
+        * volatile functions (since a HAVING clause is supposed to be executed
         * only once per group).  Also, it may be that the clause is so expensive
         * to execute that we're better off doing it only once per group, despite
         * the loss of selectivity.  This is hard to estimate short of doing the
         * entire planning process twice, so we use a heuristic: clauses
-        * containing subplans are left in HAVING.  Otherwise, we move or copy
-        * the HAVING clause into WHERE, in hopes of eliminating tuples before
+        * containing subplans are left in HAVING.      Otherwise, we move or copy the
+        * HAVING clause into WHERE, in hopes of eliminating tuples before
         * aggregation instead of after.
         *
         * If the query has explicit grouping then we can simply move such a
-        * clause into WHERE; any group that fails the clause will not be
-        * in the output because none of its tuples will reach the grouping
-        * or aggregation stage.  Otherwise we must have a degenerate
-        * (variable-free) HAVING clause, which we put in WHERE so that
-        * query_planner() can use it in a gating Result node, but also keep
-        * in HAVING to ensure that we don't emit a bogus aggregated row.
-        * (This could be done better, but it seems not worth optimizing.)
+        * clause into WHERE; any group that fails the clause will not be in the
+        * output because none of its tuples will reach the grouping or
+        * aggregation stage.  Otherwise we must have a degenerate (variable-free)
+        * HAVING clause, which we put in WHERE so that query_planner() can use it
+        * in a gating Result node, but also keep in HAVING to ensure that we
+        * don't emit a bogus aggregated row. (This could be done better, but it
+        * seems not worth optimizing.)
         *
         * Note that both havingQual and parse->jointree->quals are in
-        * implicitly-ANDed-list form at this point, even though they are
-        * declared as Node *.
+        * implicitly-ANDed-list form at this point, even though they are declared
+        * as Node *.
         */
        newHaving = NIL;
        foreach(l, (List *) parse->havingQual)
@@ -346,51 +409,35 @@ subquery_planner(Query *parse, double tuple_fraction,
        parse->havingQual = (Node *) newHaving;
 
        /*
-        * If we have any outer joins, try to reduce them to plain inner
-        * joins. This step is most easily done after we've done expression
+        * If we have any outer joins, try to reduce them to plain inner joins.
+        * This step is most easily done after we've done expression
         * preprocessing.
         */
        if (root->hasOuterJoins)
                reduce_outer_joins(root);
 
        /*
-        * See if we can simplify the jointree; opportunities for this may
-        * come from having pulled up subqueries, or from flattening explicit
-        * JOIN syntax.  We must do this after flattening JOIN alias
-        * variables, since eliminating explicit JOIN nodes from the jointree
-        * will cause get_relids_for_join() to fail.  But it should happen
-        * after reduce_outer_joins, anyway.
-        */
-       parse->jointree = (FromExpr *)
-               simplify_jointree(root, (Node *) parse->jointree);
-
-       /*
-        * Do the main planning.  If we have an inherited target relation,
-        * that needs special processing, else go straight to
-        * grouping_planner.
+        * Do the main planning.  If we have an inherited target relation, that
+        * needs special processing, else go straight to grouping_planner.
         */
        if (parse->resultRelation &&
-               (lst = expand_inherited_rtentry(root, parse->resultRelation)) != NIL)
-               plan = inheritance_planner(root, lst);
+               rt_fetch(parse->resultRelation, parse->rtable)->inh)
+               plan = inheritance_planner(root);
        else
                plan = grouping_planner(root, tuple_fraction);
 
        /*
         * If any subplans were generated, or if we're inside a subplan, build
-        * initPlan list and extParam/allParam sets for plan nodes, and attach
-        * the initPlans to the top plan node.
+        * initPlan list and extParam/allParam sets for plan nodes, and attach the
+        * initPlans to the top plan node.
         */
-       if (PlannerPlanId != saved_planid || PlannerQueryLevel > 1)
-               SS_finalize_plan(plan, parse->rtable);
+       if (list_length(glob->subplans) != num_old_subplans ||
+               root->query_level > 1)
+               SS_finalize_plan(root, plan);
 
-       /* Return sort ordering info if caller wants it */
-       if (subquery_pathkeys)
-               *subquery_pathkeys = root->query_pathkeys;
-
-       /* Return to outer subquery context */
-       PlannerQueryLevel--;
-       PlannerInitPlan = saved_initplan;
-       /* we do NOT restore PlannerPlanId; that's not an oversight! */
+       /* Return internal info if caller wants it */
+       if (subroot)
+               *subroot = root;
 
        return plan;
 }
@@ -405,9 +452,9 @@ static Node *
 preprocess_expression(PlannerInfo *root, Node *expr, int kind)
 {
        /*
-        * Fall out quickly if expression is empty.  This occurs often enough
-        * to be worth checking.  Note that null->null is the correct conversion
-        * for implicit-AND result format, too.
+        * Fall out quickly if expression is empty.  This occurs often enough to
+        * be worth checking.  Note that null->null is the correct conversion for
+        * implicit-AND result format, too.
         */
        if (expr == NULL)
                return NULL;
@@ -415,10 +462,11 @@ preprocess_expression(PlannerInfo *root, Node *expr, int kind)
        /*
         * If the query has any join RTEs, replace join alias variables with
         * base-relation variables. We must do this before sublink processing,
-        * else sublinks expanded out from join aliases wouldn't get
-        * processed.
+        * else sublinks expanded out from join aliases wouldn't get processed. We
+        * can skip it in VALUES lists, however, since they can't contain any Vars
+        * at all.
         */
-       if (root->hasJoinRTEs)
+       if (root->hasJoinRTEs && kind != EXPRKIND_VALUES)
                expr = flatten_join_alias_vars(root, expr);
 
        /*
@@ -430,16 +478,20 @@ preprocess_expression(PlannerInfo *root, Node *expr, int kind)
         * with AND directly under AND, nor OR directly under OR.
         *
         * Because this is a relatively expensive process, we skip it when the
-        * query is trivial, such as "SELECT 2+2;" or "INSERT ... VALUES()".
-        * The expression will only be evaluated once anyway, so no point in
+        * query is trivial, such as "SELECT 2+2;" or "INSERT ... VALUES()". The
+        * expression will only be evaluated once anyway, so no point in
         * pre-simplifying; we can't execute it any faster than the executor can,
         * and we will waste cycles copying the tree.  Notice however that we
-        * still must do it for quals (to get AND/OR flatness); and if we are
-        * in a subquery we should not assume it will be done only once.
+        * still must do it for quals (to get AND/OR flatness); and if we are in a
+        * subquery we should not assume it will be done only once.
+        *
+        * For VALUES lists we never do this at all, again on the grounds that we
+        * should optimize for one-time evaluation.
         */
-       if (root->parse->jointree->fromlist != NIL ||
-               kind == EXPRKIND_QUAL ||
-               PlannerQueryLevel > 1)
+       if (kind != EXPRKIND_VALUES &&
+               (root->parse->jointree->fromlist != NIL ||
+                kind == EXPRKIND_QUAL ||
+                root->query_level > 1))
                expr = eval_const_expressions(expr);
 
        /*
@@ -457,21 +509,21 @@ preprocess_expression(PlannerInfo *root, Node *expr, int kind)
 
        /* Expand SubLinks to SubPlans */
        if (root->parse->hasSubLinks)
-               expr = SS_process_sublinks(expr, (kind == EXPRKIND_QUAL));
+               expr = SS_process_sublinks(root, expr, (kind == EXPRKIND_QUAL));
 
        /*
-        * XXX do not insert anything here unless you have grokked the
-        * comments in SS_replace_correlation_vars ...
+        * XXX do not insert anything here unless you have grokked the comments in
+        * SS_replace_correlation_vars ...
         */
 
-       /* Replace uplevel vars with Param nodes */
-       if (PlannerQueryLevel > 1)
-               expr = SS_replace_correlation_vars(expr);
+       /* Replace uplevel vars with Param nodes (this IS possible in VALUES) */
+       if (root->query_level > 1)
+               expr = SS_replace_correlation_vars(root, expr);
 
        /*
-        * If it's a qual or havingQual, convert it to implicit-AND format.
-        * (We don't want to do this before eval_const_expressions, since the
-        * latter would be unable to simplify a top-level AND correctly. Also,
+        * If it's a qual or havingQual, convert it to implicit-AND format. (We
+        * don't want to do this before eval_const_expressions, since the latter
+        * would be unable to simplify a top-level AND correctly. Also,
         * SS_process_sublinks expects explicit-AND format.)
         */
        if (kind == EXPRKIND_QUAL)
@@ -518,110 +570,133 @@ preprocess_qual_conditions(PlannerInfo *root, Node *jtnode)
                         (int) nodeTag(jtnode));
 }
 
-/*--------------------
+/*
  * inheritance_planner
  *       Generate a plan in the case where the result relation is an
  *       inheritance set.
  *
- * We have to handle this case differently from cases where a source
- * relation is an inheritance set.     Source inheritance is expanded at
- * the bottom of the plan tree (see allpaths.c), but target inheritance
- * has to be expanded at the top.  The reason is that for UPDATE, each
- * target relation needs a different targetlist matching its own column
- * set.  (This is not so critical for DELETE, but for simplicity we treat
- * inherited DELETE the same way.)     Fortunately, the UPDATE/DELETE target
- * can never be the nullable side of an outer join, so it's OK to generate
- * the plan this way.
- *
- * inheritlist is an integer list of RT indexes for the result relation set.
+ * We have to handle this case differently from cases where a source relation
+ * is an inheritance set. Source inheritance is expanded at the bottom of the
+ * plan tree (see allpaths.c), but target inheritance has to be expanded at
+ * the top.  The reason is that for UPDATE, each target relation needs a
+ * different targetlist matching its own column set.  Also, for both UPDATE
+ * and DELETE, the executor needs the Append plan node at the top, else it
+ * can't keep track of which table is the current target table.  Fortunately,
+ * the UPDATE/DELETE target can never be the nullable side of an outer join,
+ * so it's OK to generate the plan this way.
  *
  * Returns a query plan.
- *--------------------
  */
 static Plan *
-inheritance_planner(PlannerInfo *root, List *inheritlist)
+inheritance_planner(PlannerInfo *root)
 {
        Query      *parse = root->parse;
        int                     parentRTindex = parse->resultRelation;
-       Oid                     parentOID = getrelid(parentRTindex, parse->rtable);
-       int                     mainrtlength = list_length(parse->rtable);
        List       *subplans = NIL;
+       List       *resultRelations = NIL;
+       List       *returningLists = NIL;
+       List       *rtable = NIL;
        List       *tlist = NIL;
+       PlannerInfo subroot;
        ListCell   *l;
 
-       foreach(l, inheritlist)
+       foreach(l, root->append_rel_list)
        {
-               int                     childRTindex = lfirst_int(l);
-               Oid                     childOID = getrelid(childRTindex, parse->rtable);
-               PlannerInfo subroot;
+               AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(l);
                Plan       *subplan;
 
+               /* append_rel_list contains all append rels; ignore others */
+               if (appinfo->parent_relid != parentRTindex)
+                       continue;
+
                /*
-                * Generate modified query with this rel as target.  We have to
-                * be prepared to translate varnos in in_info_list as well as in
-                * the Query proper.
+                * Generate modified query with this rel as target.  We have to be
+                * prepared to translate varnos in in_info_list as well as in the
+                * Query proper.
                 */
                memcpy(&subroot, root, sizeof(PlannerInfo));
                subroot.parse = (Query *)
-                       adjust_inherited_attrs((Node *) parse,
-                                                                  parentRTindex, parentOID,
-                                                                  childRTindex, childOID);
+                       adjust_appendrel_attrs((Node *) parse,
+                                                                  appinfo);
                subroot.in_info_list = (List *)
-                       adjust_inherited_attrs((Node *) root->in_info_list,
-                                                                  parentRTindex, parentOID,
-                                                                  childRTindex, childOID);
+                       adjust_appendrel_attrs((Node *) root->in_info_list,
+                                                                  appinfo);
+               subroot.init_plans = NIL;
+               /* There shouldn't be any OJ info to translate, as yet */
+               Assert(subroot.oj_info_list == NIL);
 
                /* Generate plan */
                subplan = grouping_planner(&subroot, 0.0 /* retrieve all tuples */ );
 
-               subplans = lappend(subplans, subplan);
-
                /*
-                * XXX my goodness this next bit is ugly.  Really need to think about
-                * ways to rein in planner's habit of scribbling on its input.
-                *
-                * Planning of the subquery might have modified the rangetable,
-                * either by addition of RTEs due to expansion of inherited source
-                * tables, or by changes of the Query structures inside subquery
-                * RTEs.  We have to ensure that this gets propagated back to the
-                * master copy.  However, if we aren't done planning yet, we also
-                * need to ensure that subsequent calls to grouping_planner have
-                * virgin sub-Queries to work from.  So, if we are at the last
-                * list entry, just copy the subquery rangetable back to the master
-                * copy; if we are not, then extend the master copy by adding
-                * whatever the subquery added.  (We assume these added entries
-                * will go untouched by the future grouping_planner calls.  We are
-                * also effectively assuming that sub-Queries will get planned
-                * identically each time, or at least that the impacts on their
-                * rangetables will be the same each time.  Did I say this is ugly?)
+                * If this child rel was excluded by constraint exclusion, exclude it
+                * from the plan.
                 */
-               if (lnext(l) == NULL)
-                       parse->rtable = subroot.parse->rtable;
-               else
+               if (is_dummy_plan(subplan))
+                       continue;
+
+               /* Save rtable and tlist from first rel for use below */
+               if (subplans == NIL)
                {
-                       int             subrtlength = list_length(subroot.parse->rtable);
+                       rtable = subroot.parse->rtable;
+                       tlist = subplan->targetlist;
+               }
 
-                       if (subrtlength > mainrtlength)
-                       {
-                               List       *subrt;
+               subplans = lappend(subplans, subplan);
 
-                               subrt = list_copy_tail(subroot.parse->rtable, mainrtlength);
-                               parse->rtable = list_concat(parse->rtable, subrt);
-                               mainrtlength = subrtlength;
-                       }
-               }
+               /* Make sure any initplans from this rel get into the outer list */
+               root->init_plans = list_concat(root->init_plans, subroot.init_plans);
 
-               /* Save preprocessed tlist from first rel for use in Append */
-               if (tlist == NIL)
-                       tlist = subplan->targetlist;
+               /* Build target-relations list for the executor */
+               resultRelations = lappend_int(resultRelations, appinfo->child_relid);
+
+               /* Build list of per-relation RETURNING targetlists */
+               if (parse->returningList)
+               {
+                       Assert(list_length(subroot.returningLists) == 1);
+                       returningLists = list_concat(returningLists,
+                                                                                subroot.returningLists);
+               }
        }
 
-       /* Save the target-relations list for the executor, too */
-       parse->resultRelations = inheritlist;
+       root->resultRelations = resultRelations;
+       root->returningLists = returningLists;
 
        /* Mark result as unordered (probably unnecessary) */
        root->query_pathkeys = NIL;
 
+       /*
+        * If we managed to exclude every child rel, return a dummy plan
+        */
+       if (subplans == NIL)
+       {
+               root->resultRelations = list_make1_int(parentRTindex);
+               /* although dummy, it must have a valid tlist for executor */
+               tlist = preprocess_targetlist(root, parse->targetList);
+               return (Plan *) make_result(root,
+                                                                       tlist,
+                                                                       (Node *) list_make1(makeBoolConst(false,
+                                                                                                                                         false)),
+                                                                       NULL);
+       }
+
+       /*
+        * Planning might have modified the rangetable, due to changes of the
+        * Query structures inside subquery RTEs.  We have to ensure that this
+        * gets propagated back to the master copy.  But can't do this until we
+        * are done planning, because all the calls to grouping_planner need
+        * virgin sub-Queries to work from.  (We are effectively assuming that
+        * sub-Queries will get planned identically each time, or at least that
+        * the impacts on their rangetables will be the same each time.)
+        *
+        * XXX should clean this up someday
+        */
+       parse->rtable = rtable;
+
+       /* Suppress Append if there's only one surviving child rel */
+       if (list_length(subplans) == 1)
+               return (Plan *) linitial(subplans);
+
        return (Plan *) make_append(subplans, true, tlist);
 }
 
@@ -649,8 +724,9 @@ grouping_planner(PlannerInfo *root, double tuple_fraction)
 {
        Query      *parse = root->parse;
        List       *tlist = parse->targetList;
-       int                     offset_est;
-       int                     count_est;
+       int64           offset_est = 0;
+       int64           count_est = 0;
+       double          limit_tuples = -1.0;
        Plan       *result_plan;
        List       *current_pathkeys;
        List       *sort_pathkeys;
@@ -658,46 +734,54 @@ grouping_planner(PlannerInfo *root, double tuple_fraction)
 
        /* Tweak caller-supplied tuple_fraction if have LIMIT/OFFSET */
        if (parse->limitCount || parse->limitOffset)
+       {
                tuple_fraction = preprocess_limit(root, tuple_fraction,
                                                                                  &offset_est, &count_est);
+               /*
+                * If we have a known LIMIT, and don't have an unknown OFFSET,
+                * we can estimate the effects of using a bounded sort.
+                */
+               if (count_est > 0 && offset_est >= 0)
+                       limit_tuples = (double) count_est + (double) offset_est;
+       }
 
        if (parse->setOperations)
        {
                List       *set_sortclauses;
 
                /*
-                * If there's a top-level ORDER BY, assume we have to fetch all
-                * the tuples.  This might seem too simplistic given all the
-                * hackery below to possibly avoid the sort ... but a nonzero
-                * tuple_fraction is only of use to plan_set_operations() when
-                * the setop is UNION ALL, and the result of UNION ALL is always
-                * unsorted.
+                * If there's a top-level ORDER BY, assume we have to fetch all the
+                * tuples.      This might seem too simplistic given all the hackery below
+                * to possibly avoid the sort ... but a nonzero tuple_fraction is only
+                * of use to plan_set_operations() when the setop is UNION ALL, and
+                * the result of UNION ALL is always unsorted.
                 */
                if (parse->sortClause)
                        tuple_fraction = 0.0;
 
                /*
-                * Construct the plan for set operations.  The result will not
-                * need any work except perhaps a top-level sort and/or LIMIT.
+                * Construct the plan for set operations.  The result will not need
+                * any work except perhaps a top-level sort and/or LIMIT.
                 */
                result_plan = plan_set_operations(root, tuple_fraction,
                                                                                  &set_sortclauses);
 
                /*
-                * Calculate pathkeys representing the sort order (if any) of the
-                * set operation's result.  We have to do this before overwriting
-                * the sort key information...
+                * Calculate pathkeys representing the sort order (if any) of the set
+                * operation's result.  We have to do this before overwriting the sort
+                * key information...
                 */
-               current_pathkeys = make_pathkeys_for_sortclauses(set_sortclauses,
-                                                                                               result_plan->targetlist);
-               current_pathkeys = canonicalize_pathkeys(root, current_pathkeys);
+               current_pathkeys = make_pathkeys_for_sortclauses(root,
+                                                                                                                set_sortclauses,
+                                                                                                       result_plan->targetlist,
+                                                                                                                true);
 
                /*
-                * We should not need to call preprocess_targetlist, since we must
-                * be in a SELECT query node.  Instead, use the targetlist
-                * returned by plan_set_operations (since this tells whether it
-                * returned any resjunk columns!), and transfer any sort key
-                * information from the original tlist.
+                * We should not need to call preprocess_targetlist, since we must be
+                * in a SELECT query node.      Instead, use the targetlist returned by
+                * plan_set_operations (since this tells whether it returned any
+                * resjunk columns!), and transfer any sort key information from the
+                * original tlist.
                 */
                Assert(parse->commandType == CMD_SELECT);
 
@@ -715,9 +799,10 @@ grouping_planner(PlannerInfo *root, double tuple_fraction)
                /*
                 * Calculate pathkeys that represent result ordering requirements
                 */
-               sort_pathkeys = make_pathkeys_for_sortclauses(parse->sortClause,
-                                                                                                         tlist);
-               sort_pathkeys = canonicalize_pathkeys(root, sort_pathkeys);
+               sort_pathkeys = make_pathkeys_for_sortclauses(root,
+                                                                                                         parse->sortClause,
+                                                                                                         tlist,
+                                                                                                         true);
        }
        else
        {
@@ -725,6 +810,7 @@ grouping_planner(PlannerInfo *root, double tuple_fraction)
                List       *sub_tlist;
                List       *group_pathkeys;
                AttrNumber *groupColIdx = NULL;
+               Oid                *groupOperators = NULL;
                bool            need_tlist_eval = true;
                QualCost        tlist_cost;
                Path       *cheapest_path;
@@ -741,21 +827,27 @@ grouping_planner(PlannerInfo *root, double tuple_fraction)
                tlist = preprocess_targetlist(root, tlist);
 
                /*
-                * Generate appropriate target list for subplan; may be different
-                * from tlist if grouping or aggregation is needed.
+                * Generate appropriate target list for subplan; may be different from
+                * tlist if grouping or aggregation is needed.
                 */
                sub_tlist = make_subplanTargetList(root, tlist,
-                                                                                &groupColIdx, &need_tlist_eval);
+                                                                                  &groupColIdx, &need_tlist_eval);
 
                /*
                 * Calculate pathkeys that represent grouping/ordering requirements.
                 * Stash them in PlannerInfo so that query_planner can canonicalize
-                * them.
+                * them after EquivalenceClasses have been formed.
                 */
                root->group_pathkeys =
-                       make_pathkeys_for_sortclauses(parse->groupClause, tlist);
+                       make_pathkeys_for_sortclauses(root,
+                                                                                 parse->groupClause,
+                                                                                 tlist,
+                                                                                 false);
                root->sort_pathkeys =
-                       make_pathkeys_for_sortclauses(parse->sortClause, tlist);
+                       make_pathkeys_for_sortclauses(root,
+                                                                                 parse->sortClause,
+                                                                                 tlist,
+                                                                                 false);
 
                /*
                 * Will need actual number of aggregates for estimating costs.
@@ -763,10 +855,10 @@ grouping_planner(PlannerInfo *root, double tuple_fraction)
                 * Note: we do not attempt to detect duplicate aggregates here; a
                 * somewhat-overestimated count is okay for our present purposes.
                 *
-                * Note: think not that we can turn off hasAggs if we find no aggs.
-                * It is possible for constant-expression simplification to remove
-                * all explicit references to aggs, but we still have to follow
-                * the aggregate semantics (eg, producing only one output row).
+                * Note: think not that we can turn off hasAggs if we find no aggs. It
+                * is possible for constant-expression simplification to remove all
+                * explicit references to aggs, but we still have to follow the
+                * aggregate semantics (eg, producing only one output row).
                 */
                if (parse->hasAggs)
                {
@@ -777,13 +869,12 @@ grouping_planner(PlannerInfo *root, double tuple_fraction)
                /*
                 * Figure out whether we need a sorted result from query_planner.
                 *
-                * If we have a GROUP BY clause, then we want a result sorted
-                * properly for grouping.  Otherwise, if there is an ORDER BY
-                * clause, we want to sort by the ORDER BY clause.      (Note: if we
-                * have both, and ORDER BY is a superset of GROUP BY, it would be
-                * tempting to request sort by ORDER BY --- but that might just
-                * leave us failing to exploit an available sort order at all.
-                * Needs more thought...)
+                * If we have a GROUP BY clause, then we want a result sorted properly
+                * for grouping.  Otherwise, if there is an ORDER BY clause, we want
+                * to sort by the ORDER BY clause.      (Note: if we have both, and ORDER
+                * BY is a superset of GROUP BY, it would be tempting to request sort
+                * by ORDER BY --- but that might just leave us failing to exploit an
+                * available sort order at all. Needs more thought...)
                 */
                if (parse->groupClause)
                        root->query_pathkeys = root->group_pathkeys;
@@ -793,26 +884,29 @@ grouping_planner(PlannerInfo *root, double tuple_fraction)
                        root->query_pathkeys = NIL;
 
                /*
-                * Generate the best unsorted and presorted paths for this Query
-                * (but note there may not be any presorted path).  query_planner
-                * will also estimate the number of groups in the query, and
-                * canonicalize all the pathkeys.
+                * Generate the best unsorted and presorted paths for this Query (but
+                * note there may not be any presorted path).  query_planner will also
+                * estimate the number of groups in the query, and canonicalize all
+                * the pathkeys.
                 */
-               query_planner(root, sub_tlist, tuple_fraction,
+               query_planner(root, sub_tlist, tuple_fraction, limit_tuples,
                                          &cheapest_path, &sorted_path, &dNumGroups);
 
                group_pathkeys = root->group_pathkeys;
                sort_pathkeys = root->sort_pathkeys;
 
                /*
-                * If grouping, decide whether we want to use hashed grouping.
+                * If grouping, extract the grouping operators and decide whether we
+                * want to use hashed grouping.
                 */
                if (parse->groupClause)
                {
+                       groupOperators = extract_grouping_ops(parse->groupClause);
                        use_hashed_grouping =
-                               choose_hashed_grouping(root, tuple_fraction,
+                               choose_hashed_grouping(root, tuple_fraction, limit_tuples,
                                                                           cheapest_path, sorted_path,
-                                                                          dNumGroups, &agg_counts);
+                                                                          groupOperators, dNumGroups,
+                                                                          &agg_counts);
 
                        /* Also convert # groups to long int --- but 'ware overflow! */
                        numGroups = (long) Min(dNumGroups, (double) LONG_MAX);
@@ -820,8 +914,8 @@ grouping_planner(PlannerInfo *root, double tuple_fraction)
 
                /*
                 * Select the best path.  If we are doing hashed grouping, we will
-                * always read all the input tuples, so use the cheapest-total
-                * path. Otherwise, trust query_planner's decision about which to use.
+                * always read all the input tuples, so use the cheapest-total path.
+                * Otherwise, trust query_planner's decision about which to use.
                 */
                if (use_hashed_grouping || !sorted_path)
                        best_path = cheapest_path;
@@ -829,10 +923,10 @@ grouping_planner(PlannerInfo *root, double tuple_fraction)
                        best_path = sorted_path;
 
                /*
-                * Check to see if it's possible to optimize MIN/MAX aggregates.
-                * If so, we will forget all the work we did so far to choose a
-                * "regular" path ... but we had to do it anyway to be able to
-                * tell which way is cheaper.
+                * Check to see if it's possible to optimize MIN/MAX aggregates. If
+                * so, we will forget all the work we did so far to choose a "regular"
+                * path ... but we had to do it anyway to be able to tell which way is
+                * cheaper.
                 */
                result_plan = optimize_minmax_aggregates(root,
                                                                                                 tlist,
@@ -840,8 +934,8 @@ grouping_planner(PlannerInfo *root, double tuple_fraction)
                if (result_plan != NULL)
                {
                        /*
-                        * optimize_minmax_aggregates generated the full plan, with
-                        * the right tlist, and it has no sort order.
+                        * optimize_minmax_aggregates generated the full plan, with the
+                        * right tlist, and it has no sort order.
                         */
                        current_pathkeys = NIL;
                }
@@ -870,7 +964,9 @@ grouping_planner(PlannerInfo *root, double tuple_fraction)
                                 */
                                if (!is_projection_capable_plan(result_plan))
                                {
-                                       result_plan = (Plan *) make_result(sub_tlist, NULL,
+                                       result_plan = (Plan *) make_result(root,
+                                                                                                          sub_tlist,
+                                                                                                          NULL,
                                                                                                           result_plan);
                                }
                                else
@@ -901,7 +997,7 @@ grouping_planner(PlannerInfo *root, double tuple_fraction)
                                 * tuples) --- so make_agg() and make_group() are responsible
                                 * for computing the added cost.
                                 */
-                               cost_qual_eval(&tlist_cost, sub_tlist);
+                               cost_qual_eval(&tlist_cost, sub_tlist, root);
                                result_plan->startup_cost += tlist_cost.startup;
                                result_plan->total_cost += tlist_cost.startup +
                                        tlist_cost.per_tuple * result_plan->plan_rows;
@@ -932,6 +1028,7 @@ grouping_planner(PlannerInfo *root, double tuple_fraction)
                                                                                                AGG_HASHED,
                                                                                                numGroupCols,
                                                                                                groupColIdx,
+                                                                                               groupOperators,
                                                                                                numGroups,
                                                                                                agg_counts.numAggs,
                                                                                                result_plan);
@@ -975,6 +1072,7 @@ grouping_planner(PlannerInfo *root, double tuple_fraction)
                                                                                                aggstrategy,
                                                                                                numGroupCols,
                                                                                                groupColIdx,
+                                                                                               groupOperators,
                                                                                                numGroups,
                                                                                                agg_counts.numAggs,
                                                                                                result_plan);
@@ -985,8 +1083,8 @@ grouping_planner(PlannerInfo *root, double tuple_fraction)
                                 * GROUP BY without aggregation, so insert a group node (plus
                                 * the appropriate sort node, if necessary).
                                 *
-                                * Add an explicit sort if we couldn't make the path come
-                                * out the way the GROUP node needs it.
+                                * Add an explicit sort if we couldn't make the path come out
+                                * the way the GROUP node needs it.
                                 */
                                if (!pathkeys_contained_in(group_pathkeys, current_pathkeys))
                                {
@@ -1003,6 +1101,7 @@ grouping_planner(PlannerInfo *root, double tuple_fraction)
                                                                                                  (List *) parse->havingQual,
                                                                                                  numGroupCols,
                                                                                                  groupColIdx,
+                                                                                                 groupOperators,
                                                                                                  dNumGroups,
                                                                                                  result_plan);
                                /* The Group node won't change sort ordering */
@@ -1014,13 +1113,15 @@ grouping_planner(PlannerInfo *root, double tuple_fraction)
                                 * This is a degenerate case in which we are supposed to emit
                                 * either 0 or 1 row depending on whether HAVING succeeds.
                                 * Furthermore, there cannot be any variables in either HAVING
-                                * or the targetlist, so we actually do not need the FROM table
-                                * at all!  We can just throw away the plan-so-far and generate
-                                * a Result node.  This is a sufficiently unusual corner case
-                                * that it's not worth contorting the structure of this routine
-                                * to avoid having to generate the plan in the first place.
+                                * or the targetlist, so we actually do not need the FROM
+                                * table at all!  We can just throw away the plan-so-far and
+                                * generate a Result node.      This is a sufficiently unusual
+                                * corner case that it's not worth contorting the structure of
+                                * this routine to avoid having to generate the plan in the
+                                * first place.
                                 */
-                               result_plan = (Plan *) make_result(tlist,
+                               result_plan = (Plan *) make_result(root,
+                                                                                                  tlist,
                                                                                                   parse->havingQual,
                                                                                                   NULL);
                        }
@@ -1028,17 +1129,17 @@ grouping_planner(PlannerInfo *root, double tuple_fraction)
        }                                                       /* end of if (setOperations) */
 
        /*
-        * If we were not able to make the plan come out in the right order,
-        * add an explicit sort step.
+        * If we were not able to make the plan come out in the right order, add
+        * an explicit sort step.
         */
        if (parse->sortClause)
        {
                if (!pathkeys_contained_in(sort_pathkeys, current_pathkeys))
                {
-                       result_plan = (Plan *)
-                               make_sort_from_sortclauses(root,
-                                                                                  parse->sortClause,
-                                                                                  result_plan);
+                       result_plan = (Plan *) make_sort_from_pathkeys(root,
+                                                                                                                  result_plan,
+                                                                                                                  sort_pathkeys,
+                                                                                                                  limit_tuples);
                        current_pathkeys = sort_pathkeys;
                }
        }
@@ -1051,9 +1152,9 @@ grouping_planner(PlannerInfo *root, double tuple_fraction)
                result_plan = (Plan *) make_unique(result_plan, parse->distinctClause);
 
                /*
-                * If there was grouping or aggregation, leave plan_rows as-is
-                * (ie, assume the result was already mostly unique).  If not,
-                * use the number of distinct-groups calculated by query_planner.
+                * If there was grouping or aggregation, leave plan_rows as-is (ie,
+                * assume the result was already mostly unique).  If not, use the
+                * number of distinct-groups calculated by query_planner.
                 */
                if (!parse->groupClause && !root->hasHavingQual && !parse->hasAggs)
                        result_plan->plan_rows = dNumGroups;
@@ -1072,19 +1173,72 @@ grouping_planner(PlannerInfo *root, double tuple_fraction)
        }
 
        /*
-        * Return the actual output ordering in query_pathkeys for possible
-        * use by an outer query level.
+        * Deal with the RETURNING clause if any.  It's convenient to pass the
+        * returningList through setrefs.c now rather than at top level (if we
+        * waited, handling inherited UPDATE/DELETE would be much harder).
+        */
+       if (parse->returningList)
+       {
+               List       *rlist;
+
+               Assert(parse->resultRelation);
+               rlist = set_returning_clause_references(parse->returningList,
+                                                                                               result_plan,
+                                                                                               parse->resultRelation);
+               root->returningLists = list_make1(rlist);
+       }
+       else
+               root->returningLists = NIL;
+
+       /* Compute result-relations list if needed */
+       if (parse->resultRelation)
+               root->resultRelations = list_make1_int(parse->resultRelation);
+       else
+               root->resultRelations = NIL;
+
+       /*
+        * Return the actual output ordering in query_pathkeys for possible use by
+        * an outer query level.
         */
        root->query_pathkeys = current_pathkeys;
 
        return result_plan;
 }
 
+/*
+ * Detect whether a plan node is a "dummy" plan created when a relation
+ * is deemed not to need scanning due to constraint exclusion.
+ *
+ * Currently, such dummy plans are Result nodes with constant FALSE
+ * filter quals.
+ */
+static bool
+is_dummy_plan(Plan *plan)
+{
+       if (IsA(plan, Result))
+       {
+               List       *rcqual = (List *) ((Result *) plan)->resconstantqual;
+
+               if (list_length(rcqual) == 1)
+               {
+                       Const      *constqual = (Const *) linitial(rcqual);
+
+                       if (constqual && IsA(constqual, Const))
+                       {
+                               if (!constqual->constisnull &&
+                                       !DatumGetBool(constqual->constvalue))
+                                       return true;
+                       }
+               }
+       }
+       return false;
+}
+
 /*
  * preprocess_limit - do pre-estimation for LIMIT and/or OFFSET clauses
  *
  * We try to estimate the values of the LIMIT/OFFSET clauses, and pass the
- * results back in *count_est and *offset_est.  These variables are set to
+ * results back in *count_est and *offset_est. These variables are set to
  * 0 if the corresponding clause is not present, and -1 if it's present
  * but we couldn't estimate the value for it.  (The "0" convention is OK
  * for OFFSET but a little bit bogus for LIMIT: effectively we estimate
@@ -1093,13 +1247,13 @@ grouping_planner(PlannerInfo *root, double tuple_fraction)
  * be passed to make_limit, which see if you change this code.
  *
  * The return value is the suitably adjusted tuple_fraction to use for
- * planning the query.  This adjustment is not overridable, since it reflects
+ * planning the query. This adjustment is not overridable, since it reflects
  * plan actions that grouping_planner() will certainly take, not assumptions
  * about context.
  */
 static double
 preprocess_limit(PlannerInfo *root, double tuple_fraction,
-                                int *offset_est, int *count_est)
+                                int64 *offset_est, int64 *count_est)
 {
        Query      *parse = root->parse;
        Node       *est;
@@ -1114,17 +1268,17 @@ preprocess_limit(PlannerInfo *root, double tuple_fraction,
         */
        if (parse->limitCount)
        {
-               est = estimate_expression_value(parse->limitCount);
+               est = estimate_expression_value(root, parse->limitCount);
                if (est && IsA(est, Const))
                {
                        if (((Const *) est)->constisnull)
                        {
                                /* NULL indicates LIMIT ALL, ie, no limit */
-                               *count_est = 0;                 /* treat as not present */
+                               *count_est = 0; /* treat as not present */
                        }
                        else
                        {
-                               *count_est = DatumGetInt32(((Const *) est)->constvalue);
+                               *count_est = DatumGetInt64(((Const *) est)->constvalue);
                                if (*count_est <= 0)
                                        *count_est = 1;         /* force to at least 1 */
                        }
@@ -1137,17 +1291,17 @@ preprocess_limit(PlannerInfo *root, double tuple_fraction,
 
        if (parse->limitOffset)
        {
-               est = estimate_expression_value(parse->limitOffset);
+               est = estimate_expression_value(root, parse->limitOffset);
                if (est && IsA(est, Const))
                {
                        if (((Const *) est)->constisnull)
                        {
                                /* Treat NULL as no offset; the executor will too */
-                               *offset_est = 0;                /* treat as not present */
+                               *offset_est = 0;        /* treat as not present */
                        }
                        else
                        {
-                               *offset_est = DatumGetInt32(((Const *) est)->constvalue);
+                               *offset_est = DatumGetInt64(((Const *) est)->constvalue);
                                if (*offset_est < 0)
                                        *offset_est = 0;        /* less than 0 is same as 0 */
                        }
@@ -1217,11 +1371,11 @@ preprocess_limit(PlannerInfo *root, double tuple_fraction,
        else if (*offset_est != 0 && tuple_fraction > 0.0)
        {
                /*
-                * We have an OFFSET but no LIMIT.  This acts entirely differently
-                * from the LIMIT case: here, we need to increase rather than
-                * decrease the caller's tuple_fraction, because the OFFSET acts
-                * to cause more tuples to be fetched instead of fewer.  This only
-                * matters if we got a tuple_fraction > 0, however.
+                * We have an OFFSET but no LIMIT.      This acts entirely differently
+                * from the LIMIT case: here, we need to increase rather than decrease
+                * the caller's tuple_fraction, because the OFFSET acts to cause more
+                * tuples to be fetched instead of fewer.  This only matters if we got
+                * a tuple_fraction > 0, however.
                 *
                 * As above, use 10% if OFFSET is present but unestimatable.
                 */
@@ -1232,9 +1386,9 @@ preprocess_limit(PlannerInfo *root, double tuple_fraction,
 
                /*
                 * If we have absolute counts from both caller and OFFSET, add them
-                * together; likewise if they are both fractional.  If one is
-                * fractional and the other absolute, we want to take the larger,
-                * and we heuristically assume that's the fractional one.
+                * together; likewise if they are both fractional.      If one is
+                * fractional and the other absolute, we want to take the larger, and
+                * we heuristically assume that's the fractional one.
                 */
                if (tuple_fraction >= 1.0)
                {
@@ -1260,7 +1414,7 @@ preprocess_limit(PlannerInfo *root, double tuple_fraction,
                                /* both fractional, so add them together */
                                tuple_fraction += limit_fraction;
                                if (tuple_fraction >= 1.0)
-                                       tuple_fraction = 0.0; /* assume fetch all */
+                                       tuple_fraction = 0.0;           /* assume fetch all */
                        }
                }
        }
@@ -1268,13 +1422,43 @@ preprocess_limit(PlannerInfo *root, double tuple_fraction,
        return tuple_fraction;
 }
 
+/*
+ * extract_grouping_ops - make an array of the equality operator OIDs
+ *             for the GROUP BY clause
+ */
+static Oid *
+extract_grouping_ops(List *groupClause)
+{
+       int                     numCols = list_length(groupClause);
+       int                     colno = 0;
+       Oid                *groupOperators;
+       ListCell   *glitem;
+
+       groupOperators = (Oid *) palloc(sizeof(Oid) * numCols);
+
+       foreach(glitem, groupClause)
+       {
+               GroupClause *groupcl = (GroupClause *) lfirst(glitem);
+
+               groupOperators[colno] = get_equality_op_for_ordering_op(groupcl->sortop);
+               if (!OidIsValid(groupOperators[colno]))         /* shouldn't happen */
+                       elog(ERROR, "could not find equality operator for ordering operator %u",
+                                groupcl->sortop);
+               colno++;
+       }
+
+       return groupOperators;
+}
+
 /*
  * choose_hashed_grouping - should we use hashed grouping?
  */
 static bool
-choose_hashed_grouping(PlannerInfo *root, double tuple_fraction,
+choose_hashed_grouping(PlannerInfo *root,
+                                          double tuple_fraction, double limit_tuples,
                                           Path *cheapest_path, Path *sorted_path,
-                                          double dNumGroups, AggClauseCounts *agg_counts)
+                                          Oid *groupOperators, double dNumGroups,
+                                          AggClauseCounts *agg_counts)
 {
        int                     numGroupCols = list_length(root->parse->groupClause);
        double          cheapest_path_rows;
@@ -1283,10 +1467,13 @@ choose_hashed_grouping(PlannerInfo *root, double tuple_fraction,
        List       *current_pathkeys;
        Path            hashed_p;
        Path            sorted_p;
+       int                     i;
 
        /*
         * Check can't-do-it conditions, including whether the grouping operators
-        * are hashjoinable.
+        * are hashjoinable.  (We assume hashing is OK if they are marked
+        * oprcanhash.  If there isn't actually a supporting hash function,
+        * the executor will complain at runtime.)
         *
         * Executor doesn't support hashed aggregation with DISTINCT aggregates.
         * (Doing so would imply storing *all* the input values in the hash table,
@@ -1296,16 +1483,18 @@ choose_hashed_grouping(PlannerInfo *root, double tuple_fraction,
                return false;
        if (agg_counts->numDistinctAggs != 0)
                return false;
-       if (!hash_safe_grouping(root))
-               return false;
+       for (i = 0; i < numGroupCols; i++)
+       {
+               if (!op_hashjoinable(groupOperators[i]))
+                       return false;
+       }
 
        /*
         * Don't do it if it doesn't look like the hashtable will fit into
         * work_mem.
         *
-        * Beware here of the possibility that cheapest_path->parent is NULL.
-        * This could happen if user does something silly like
-        *              SELECT 'foo' GROUP BY 1;
+        * Beware here of the possibility that cheapest_path->parent is NULL. This
+        * could happen if user does something silly like SELECT 'foo' GROUP BY 1;
         */
        if (cheapest_path->parent)
        {
@@ -1314,12 +1503,12 @@ choose_hashed_grouping(PlannerInfo *root, double tuple_fraction,
        }
        else
        {
-               cheapest_path_rows = 1;                         /* assume non-set result */
-               cheapest_path_width = 100;                      /* arbitrary */
+               cheapest_path_rows = 1; /* assume non-set result */
+               cheapest_path_width = 100;              /* arbitrary */
        }
 
        /* Estimate per-hash-entry space at tuple width... */
-       hashentrysize = cheapest_path_width;
+       hashentrysize = MAXALIGN(cheapest_path_width) + MAXALIGN(sizeof(MinimalTupleData));
        /* plus space for pass-by-ref transition values... */
        hashentrysize += agg_counts->transitionSpace;
        /* plus the per-hash-entry overhead */
@@ -1329,20 +1518,17 @@ choose_hashed_grouping(PlannerInfo *root, double tuple_fraction,
                return false;
 
        /*
-        * See if the estimated cost is no more than doing it the other way.
-        * While avoiding the need for sorted input is usually a win, the fact
-        * that the output won't be sorted may be a loss; so we need to do an
-        * actual cost comparison.
+        * See if the estimated cost is no more than doing it the other way. While
+        * avoiding the need for sorted input is usually a win, the fact that the
+        * output won't be sorted may be a loss; so we need to do an actual cost
+        * comparison.
         *
-        * We need to consider
-        *              cheapest_path + hashagg [+ final sort]
-        * versus either
-        *              cheapest_path [+ sort] + group or agg [+ final sort]
-        * or
-        *              presorted_path + group or agg [+ final sort]
-        * where brackets indicate a step that may not be needed. We assume
-        * query_planner() will have returned a presorted path only if it's a
-        * winner compared to cheapest_path for this purpose.
+        * We need to consider cheapest_path + hashagg [+ final sort] versus
+        * either cheapest_path [+ sort] + group or agg [+ final sort] or
+        * presorted_path + group or agg [+ final sort] where brackets indicate a
+        * step that may not be needed. We assume query_planner() will have
+        * returned a presorted path only if it's a winner compared to
+        * cheapest_path for this purpose.
         *
         * These path variables are dummies that just hold cost fields; we don't
         * make actual Paths for these steps.
@@ -1354,7 +1540,7 @@ choose_hashed_grouping(PlannerInfo *root, double tuple_fraction,
        /* Result of hashed agg is always unsorted */
        if (root->sort_pathkeys)
                cost_sort(&hashed_p, root, root->sort_pathkeys, hashed_p.total_cost,
-                                 dNumGroups, cheapest_path_width);
+                                 dNumGroups, cheapest_path_width, limit_tuples);
 
        if (sorted_path)
        {
@@ -1371,7 +1557,7 @@ choose_hashed_grouping(PlannerInfo *root, double tuple_fraction,
        if (!pathkeys_contained_in(root->group_pathkeys, current_pathkeys))
        {
                cost_sort(&sorted_p, root, root->group_pathkeys, sorted_p.total_cost,
-                                 cheapest_path_rows, cheapest_path_width);
+                                 cheapest_path_rows, cheapest_path_width, -1.0);
                current_pathkeys = root->group_pathkeys;
        }
 
@@ -1388,7 +1574,7 @@ choose_hashed_grouping(PlannerInfo *root, double tuple_fraction,
        if (root->sort_pathkeys &&
                !pathkeys_contained_in(root->sort_pathkeys, current_pathkeys))
                cost_sort(&sorted_p, root, root->sort_pathkeys, sorted_p.total_cost,
-                                 dNumGroups, cheapest_path_width);
+                                 dNumGroups, cheapest_path_width, limit_tuples);
 
        /*
         * Now make the decision using the top-level tuple fraction.  First we
@@ -1406,36 +1592,6 @@ choose_hashed_grouping(PlannerInfo *root, double tuple_fraction,
        return false;
 }
 
-/*
- * hash_safe_grouping - are grouping operators hashable?
- *
- * We assume hashed aggregation will work if the datatype's equality operator
- * is marked hashjoinable.
- */
-static bool
-hash_safe_grouping(PlannerInfo *root)
-{
-       ListCell   *gl;
-
-       foreach(gl, root->parse->groupClause)
-       {
-               GroupClause *grpcl = (GroupClause *) lfirst(gl);
-               TargetEntry *tle = get_sortgroupclause_tle(grpcl,
-                                                                                                  root->parse->targetList);
-               Operator        optup;
-               bool            oprcanhash;
-
-               optup = equality_oper(exprType((Node *) tle->expr), true);
-               if (!optup)
-                       return false;
-               oprcanhash = ((Form_pg_operator) GETSTRUCT(optup))->oprcanhash;
-               ReleaseSysCache(optup);
-               if (!oprcanhash)
-                       return false;
-       }
-       return true;
-}
-
 /*---------------
  * make_subplanTargetList
  *       Generate appropriate target list when grouping is required.
@@ -1461,7 +1617,7 @@ hash_safe_grouping(PlannerInfo *root)
  * pass down only c,d,a+b, but it's not really worth the trouble to
  * eliminate simple var references from the subplan.  We will avoid doing
  * the extra computation to recompute a+b at the outer level; see
- * replace_vars_with_subplan_refs() in setrefs.c.)
+ * fix_upper_expr() in setrefs.c.)
  *
  * If we are grouping or aggregating, *and* there are no non-Var grouping
  * expressions, then the returned tlist is effectively dummy; we do not
@@ -1502,8 +1658,8 @@ make_subplanTargetList(PlannerInfo *root,
 
        /*
         * Otherwise, start with a "flattened" tlist (having just the vars
-        * mentioned in the targetlist and HAVING qual --- but not upper-
-        * level Vars; they will be replaced by Params later on).
+        * mentioned in the targetlist and HAVING qual --- but not upper- level
+        * Vars; they will be replaced by Params later on).
         */
        sub_tlist = flatten_tlist(tlist);
        extravars = pull_var_clause(parse->havingQual, false);
@@ -1513,9 +1669,8 @@ make_subplanTargetList(PlannerInfo *root,
 
        /*
         * If grouping, create sub_tlist entries for all GROUP BY expressions
-        * (GROUP BY items that are simple Vars should be in the list
-        * already), and make an array showing where the group columns are in
-        * the sub_tlist.
+        * (GROUP BY items that are simple Vars should be in the list already),
+        * and make an array showing where the group columns are in the sub_tlist.
         */
        numCols = list_length(parse->groupClause);
        if (numCols > 0)
@@ -1634,7 +1789,7 @@ postprocess_setop_tlist(List *new_tlist, List *orig_tlist)
                Assert(orig_tlist_item != NULL);
                orig_tle = (TargetEntry *) lfirst(orig_tlist_item);
                orig_tlist_item = lnext(orig_tlist_item);
-               if (orig_tle->resjunk)                  /* should not happen */
+               if (orig_tle->resjunk)  /* should not happen */
                        elog(ERROR, "resjunk output columns are not implemented");
                Assert(new_tle->resno == orig_tle->resno);
                new_tle->ressortgroupref = orig_tle->ressortgroupref;