]> granicus.if.org Git - postgresql/blobdiff - src/backend/optimizer/plan/planner.c
Update copyright for 2009.
[postgresql] / src / backend / optimizer / plan / planner.c
index 42545750d393a695952341c29236050056bb9612..841d85f7397da28f478290fdaae80de563a89c53 100644 (file)
  * planner.c
  *       The query optimizer external interface.
  *
- * Portions Copyright (c) 1996-2000, PostgreSQL, Inc
+ * Portions Copyright (c) 1996-2009, PostgreSQL Global Development Group
  * Portions Copyright (c) 1994, Regents of the University of California
  *
  *
  * IDENTIFICATION
- *       $Header: /cvsroot/pgsql/src/backend/optimizer/plan/planner.c,v 1.86 2000/07/27 23:15:57 tgl Exp $
+ *       $PostgreSQL: pgsql/src/backend/optimizer/plan/planner.c,v 1.250 2009/01/01 17:23:44 momjian Exp $
  *
  *-------------------------------------------------------------------------
  */
-#include <sys/types.h>
 
 #include "postgres.h"
 
-#include "access/heapam.h"
-#include "catalog/pg_type.h"
+#include <limits.h>
+
+#include "catalog/pg_operator.h"
 #include "executor/executor.h"
+#include "executor/nodeAgg.h"
+#include "miscadmin.h"
 #include "nodes/makefuncs.h"
 #include "optimizer/clauses.h"
+#include "optimizer/cost.h"
+#include "optimizer/pathnode.h"
 #include "optimizer/paths.h"
-#include "optimizer/plancat.h"
 #include "optimizer/planmain.h"
 #include "optimizer/planner.h"
 #include "optimizer/prep.h"
 #include "optimizer/subselect.h"
 #include "optimizer/tlist.h"
 #include "optimizer/var.h"
+#ifdef OPTIMIZER_DEBUG
+#include "nodes/print.h"
+#endif
 #include "parser/parse_expr.h"
-#include "parser/parse_type.h"
+#include "parser/parse_oper.h"
+#include "parser/parsetree.h"
 #include "utils/lsyscache.h"
+#include "utils/syscache.h"
+
+
+/* GUC parameter */
+double cursor_tuple_fraction = DEFAULT_CURSOR_TUPLE_FRACTION;
+
+/* Hook for plugins to get control in planner() */
+planner_hook_type planner_hook = NULL;
+
+
+/* Expression kind codes for preprocess_expression */
+#define EXPRKIND_QUAL          0
+#define EXPRKIND_TARGET                1
+#define EXPRKIND_RTFUNC                2
+#define EXPRKIND_VALUES                3
+#define EXPRKIND_LIMIT         4
+#define EXPRKIND_APPINFO       5
+
+
+static Node *preprocess_expression(PlannerInfo *root, Node *expr, int kind);
+static void preprocess_qual_conditions(PlannerInfo *root, Node *jtnode);
+static Plan *inheritance_planner(PlannerInfo *root);
+static Plan *grouping_planner(PlannerInfo *root, double tuple_fraction);
+static bool is_dummy_plan(Plan *plan);
+static double preprocess_limit(PlannerInfo *root,
+                                double tuple_fraction,
+                                int64 *offset_est, int64 *count_est);
+static void preprocess_groupclause(PlannerInfo *root);
+static bool choose_hashed_grouping(PlannerInfo *root,
+                                          double tuple_fraction, double limit_tuples,
+                                          Path *cheapest_path, Path *sorted_path,
+                                          double dNumGroups, AggClauseCounts *agg_counts);
+static bool choose_hashed_distinct(PlannerInfo *root,
+                                          Plan *input_plan, List *input_pathkeys,
+                                          double tuple_fraction, double limit_tuples,
+                                          double dNumDistinctRows);
+static List *make_subplanTargetList(PlannerInfo *root, List *tlist,
+                                          AttrNumber **groupColIdx, bool *need_tlist_eval);
+static void locate_grouping_columns(PlannerInfo *root,
+                                               List *tlist,
+                                               List *sub_tlist,
+                                               AttrNumber *groupColIdx);
+static List *postprocess_setop_tlist(List *new_tlist, List *orig_tlist);
+static List *select_active_windows(PlannerInfo *root, WindowFuncLists *wflists);
+static List *make_pathkeys_for_window(PlannerInfo *root, WindowClause *wc,
+                                                                         List *tlist, bool canonicalize);
+static void get_column_info_for_window(PlannerInfo *root, WindowClause *wc,
+                                                                          List *tlist,
+                                                                          int numSortCols, AttrNumber *sortColIdx,
+                                                                          int *partNumCols,
+                                                                          AttrNumber **partColIdx,
+                                                                          Oid **partOperators,
+                                                                          int *ordNumCols,
+                                                                          AttrNumber **ordColIdx,
+                                                                          Oid **ordOperators);
 
 
-static List *make_subplanTargetList(Query *parse, List *tlist,
-                                          AttrNumber **groupColIdx);
-static Plan *make_groupplan(List *group_tlist, bool tuplePerGroup,
-                          List *groupClause, AttrNumber *grpColIdx,
-                          bool is_presorted, Plan *subplan);
-static Plan *make_sortplan(List *tlist, Plan *plannode, List *sortcls);
-
 /*****************************************************************************
  *
  *        Query optimizer entry point
  *
+ * To support loadable plugins that monitor or modify planner behavior,
+ * we provide a hook variable that lets a plugin get control before and
+ * after the standard planning process.  The plugin would normally call
+ * standard_planner().
+ *
+ * Note to plugin authors: standard_planner() scribbles on its Query input,
+ * so you'd better copy that data structure if you want to plan more than once.
+ *
  *****************************************************************************/
-Plan *
-planner(Query *parse)
+PlannedStmt *
+planner(Query *parse, int cursorOptions, ParamListInfo boundParams)
 {
-       Plan       *result_plan;
-       Index           save_PlannerQueryLevel;
-       List       *save_PlannerInitPlan;
-       List       *save_PlannerParamVar;
-       int                     save_PlannerPlanId;
+       PlannedStmt *result;
 
-       /*
-        * The planner can be called recursively (an example is when
-        * eval_const_expressions tries to simplify an SQL function).
-        * So, global state variables must be saved and restored.
-        *
-        * (Perhaps these should be moved into the Query structure instead?)
-        */
-       save_PlannerQueryLevel = PlannerQueryLevel;
-       save_PlannerInitPlan = PlannerInitPlan;
-       save_PlannerParamVar = PlannerParamVar;
-       save_PlannerPlanId = PlannerPlanId;
+       if (planner_hook)
+               result = (*planner_hook) (parse, cursorOptions, boundParams);
+       else
+               result = standard_planner(parse, cursorOptions, boundParams);
+       return result;
+}
 
-       /* Initialize state for subselects */
-       PlannerQueryLevel = 1;
-       PlannerInitPlan = NULL;
-       PlannerParamVar = NULL;
-       PlannerPlanId = 0;
+PlannedStmt *
+standard_planner(Query *parse, int cursorOptions, ParamListInfo boundParams)
+{
+       PlannedStmt *result;
+       PlannerGlobal *glob;
+       double          tuple_fraction;
+       PlannerInfo *root;
+       Plan       *top_plan;
+       ListCell   *lp,
+                          *lr;
+
+       /* Cursor options may come from caller or from DECLARE CURSOR stmt */
+       if (parse->utilityStmt &&
+               IsA(parse->utilityStmt, DeclareCursorStmt))
+               cursorOptions |= ((DeclareCursorStmt *) parse->utilityStmt)->options;
 
-       /* this should go away sometime soon */
-       transformKeySetQuery(parse);
+       /*
+        * Set up global state for this planner invocation.  This data is needed
+        * across all levels of sub-Query that might exist in the given command,
+        * so we keep it in a separate struct that's linked to by each per-Query
+        * PlannerInfo.
+        */
+       glob = makeNode(PlannerGlobal);
+
+       glob->boundParams = boundParams;
+       glob->paramlist = NIL;
+       glob->subplans = NIL;
+       glob->subrtables = NIL;
+       glob->rewindPlanIDs = NULL;
+       glob->finalrtable = NIL;
+       glob->relationOids = NIL;
+       glob->invalItems = NIL;
+       glob->lastPHId = 0;
+       glob->transientPlan = false;
+
+       /* Determine what fraction of the plan is likely to be scanned */
+       if (cursorOptions & CURSOR_OPT_FAST_PLAN)
+       {
+               /*
+                * We have no real idea how many tuples the user will ultimately FETCH
+                * from a cursor, but it is often the case that he doesn't want 'em
+                * all, or would prefer a fast-start plan anyway so that he can
+                * process some of the tuples sooner.  Use a GUC parameter to decide
+                * what fraction to optimize for.
+                */
+               tuple_fraction = cursor_tuple_fraction;
 
-       /* primary planning entry point (may recurse for subplans) */
-       result_plan = subquery_planner(parse, -1.0 /* default case */ );
+               /*
+                * We document cursor_tuple_fraction as simply being a fraction,
+                * which means the edge cases 0 and 1 have to be treated specially
+                * here.  We convert 1 to 0 ("all the tuples") and 0 to a very small
+                * fraction.
+                */
+               if (tuple_fraction >= 1.0)
+                       tuple_fraction = 0.0;
+               else if (tuple_fraction <= 0.0)
+                       tuple_fraction = 1e-10;
+       }
+       else
+       {
+               /* Default assumption is we need all the tuples */
+               tuple_fraction = 0.0;
+       }
 
-       Assert(PlannerQueryLevel == 1);
+       /* primary planning entry point (may recurse for subqueries) */
+       top_plan = subquery_planner(glob, parse, NULL,
+                                                               false, tuple_fraction, &root);
 
-       /* if top-level query had subqueries, do housekeeping for them */
-       if (PlannerPlanId > 0)
+       /*
+        * If creating a plan for a scrollable cursor, make sure it can run
+        * backwards on demand.  Add a Material node at the top at need.
+        */
+       if (cursorOptions & CURSOR_OPT_SCROLL)
        {
-               (void) SS_finalize_plan(result_plan);
-               result_plan->initPlan = PlannerInitPlan;
+               if (!ExecSupportsBackwardScan(top_plan))
+                       top_plan = materialize_finished_plan(top_plan);
        }
 
-       /* executor wants to know total number of Params used overall */
-       result_plan->nParamExec = length(PlannerParamVar);
-
        /* final cleanup of the plan */
-       set_plan_references(result_plan);
+       Assert(glob->finalrtable == NIL);
+       top_plan = set_plan_references(glob, top_plan, root->parse->rtable);
+       /* ... and the subplans (both regular subplans and initplans) */
+       Assert(list_length(glob->subplans) == list_length(glob->subrtables));
+       forboth(lp, glob->subplans, lr, glob->subrtables)
+       {
+               Plan       *subplan = (Plan *) lfirst(lp);
+               List       *subrtable = (List *) lfirst(lr);
 
-       /* restore state for outer planner, if any */
-       PlannerQueryLevel = save_PlannerQueryLevel;
-       PlannerInitPlan = save_PlannerInitPlan;
-       PlannerParamVar = save_PlannerParamVar;
-       PlannerPlanId = save_PlannerPlanId;
+               lfirst(lp) = set_plan_references(glob, subplan, subrtable);
+       }
 
-       return result_plan;
+       /* build the PlannedStmt result */
+       result = makeNode(PlannedStmt);
+
+       result->commandType = parse->commandType;
+       result->canSetTag = parse->canSetTag;
+       result->transientPlan = glob->transientPlan;
+       result->planTree = top_plan;
+       result->rtable = glob->finalrtable;
+       result->resultRelations = root->resultRelations;
+       result->utilityStmt = parse->utilityStmt;
+       result->intoClause = parse->intoClause;
+       result->subplans = glob->subplans;
+       result->rewindPlanIDs = glob->rewindPlanIDs;
+       result->returningLists = root->returningLists;
+       result->rowMarks = parse->rowMarks;
+       result->relationOids = glob->relationOids;
+       result->invalItems = glob->invalItems;
+       result->nParamExec = list_length(glob->paramlist);
+
+       return result;
 }
 
 
@@ -109,599 +240,1970 @@ planner(Query *parse)
  *       Invokes the planner on a subquery.  We recurse to here for each
  *       sub-SELECT found in the query tree.
  *
+ * glob is the global state for the current planner run.
  * parse is the querytree produced by the parser & rewriter.
+ * parent_root is the immediate parent Query's info (NULL at the top level).
+ * hasRecursion is true if this is a recursive WITH query.
  * tuple_fraction is the fraction of tuples we expect will be retrieved.
- * tuple_fraction is interpreted as explained for union_planner, below.
+ * tuple_fraction is interpreted as explained for grouping_planner, below.
+ *
+ * If subroot isn't NULL, we pass back the query's final PlannerInfo struct;
+ * among other things this tells the output sort ordering of the plan.
  *
  * Basically, this routine does the stuff that should only be done once
- * per Query object.  It then calls union_planner, which may be called
- * recursively on the same Query node in order to handle UNIONs and/or
- * inheritance.  subquery_planner is called recursively from subselect.c
- * to handle sub-Query nodes found within the query's expressions.
+ * per Query object.  It then calls grouping_planner.  At one time,
+ * grouping_planner could be invoked recursively on the same Query object;
+ * that's not currently true, but we keep the separation between the two
+ * routines anyway, in case we need it again someday.
  *
- * prepunion.c uses an unholy combination of calling union_planner when
- * recursing on the primary Query node, or subquery_planner when recursing
- * on a UNION'd Query node that hasn't previously been seen by
- * subquery_planner.  That whole chunk of code needs rewritten from scratch.
+ * subquery_planner will be called recursively to handle sub-Query nodes
+ * found within the query's expressions and rangetable.
  *
  * Returns a query plan.
  *--------------------
  */
 Plan *
-subquery_planner(Query *parse, double tuple_fraction)
+subquery_planner(PlannerGlobal *glob, Query *parse,
+                                PlannerInfo *parent_root,
+                                bool hasRecursion, double tuple_fraction,
+                                PlannerInfo **subroot)
 {
+       int                     num_old_subplans = list_length(glob->subplans);
+       PlannerInfo *root;
+       Plan       *plan;
+       List       *newHaving;
+       bool            hasOuterJoins;
+       ListCell   *l;
+
+       /* Create a PlannerInfo data structure for this subquery */
+       root = makeNode(PlannerInfo);
+       root->parse = parse;
+       root->glob = glob;
+       root->query_level = parent_root ? parent_root->query_level + 1 : 1;
+       root->parent_root = parent_root;
+       root->planner_cxt = CurrentMemoryContext;
+       root->init_plans = NIL;
+       root->cte_plan_ids = NIL;
+       root->eq_classes = NIL;
+       root->append_rel_list = NIL;
+
+       root->hasRecursion = hasRecursion;
+       if (hasRecursion)
+               root->wt_param_id = SS_assign_worktable_param(root);
+       else
+               root->wt_param_id = -1;
+       root->non_recursive_plan = NULL;
+
+       /*
+        * If there is a WITH list, process each WITH query and build an
+        * initplan SubPlan structure for it.
+        */
+       if (parse->cteList)
+               SS_process_ctes(root);
+
+       /*
+        * Look for ANY and EXISTS SubLinks in WHERE and JOIN/ON clauses, and try
+        * to transform them into joins.  Note that this step does not descend
+        * into subqueries; if we pull up any subqueries below, their SubLinks are
+        * processed just before pulling them up.
+        */
+       if (parse->hasSubLinks)
+               pull_up_sublinks(root);
+
+       /*
+        * Scan the rangetable for set-returning functions, and inline them
+        * if possible (producing subqueries that might get pulled up next).
+        * Recursion issues here are handled in the same way as for SubLinks.
+        */
+       inline_set_returning_functions(root);
+
+       /*
+        * Check to see if any subqueries in the rangetable can be merged into
+        * this query.
+        */
+       parse->jointree = (FromExpr *)
+               pull_up_subqueries(root, (Node *) parse->jointree, false, false);
+
        /*
-        * A HAVING clause without aggregates is equivalent to a WHERE clause
-        * (except it can only refer to grouped fields).  If there are no aggs
-        * anywhere in the query, then we don't want to create an Agg plan
-        * node, so merge the HAVING condition into WHERE.      (We used to
-        * consider this an error condition, but it seems to be legal SQL.)
+        * Detect whether any rangetable entries are RTE_JOIN kind; if not, we can
+        * avoid the expense of doing flatten_join_alias_vars().  Also check for
+        * outer joins --- if none, we can skip reduce_outer_joins().
+        * This must be done after we have done pull_up_subqueries, of course.
         */
-       if (parse->havingQual != NULL && !parse->hasAggs)
+       root->hasJoinRTEs = false;
+       hasOuterJoins = false;
+       foreach(l, parse->rtable)
        {
-               if (parse->qual == NULL)
-                       parse->qual = parse->havingQual;
-               else
-                       parse->qual = (Node *) make_andclause(lappend(lcons(parse->qual,
-                                                                                                                               NIL),
-                                                                                                        parse->havingQual));
-               parse->havingQual = NULL;
+               RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
+
+               if (rte->rtekind == RTE_JOIN)
+               {
+                       root->hasJoinRTEs = true;
+                       if (IS_OUTER_JOIN(rte->jointype))
+                       {
+                               hasOuterJoins = true;
+                               /* Can quit scanning once we find an outer join */
+                               break;
+                       }
+               }
        }
 
        /*
-        * Simplify constant expressions in targetlist and quals.
-        *
-        * Note that at this point the qual has not yet been converted to
-        * implicit-AND form, so we can apply eval_const_expressions directly.
-        * Also note that we need to do this before SS_process_sublinks,
-        * because that routine inserts bogus "Const" nodes.
+        * Expand any rangetable entries that are inheritance sets into "append
+        * relations".  This can add entries to the rangetable, but they must be
+        * plain base relations not joins, so it's OK (and marginally more
+        * efficient) to do it after checking for join RTEs.  We must do it after
+        * pulling up subqueries, else we'd fail to handle inherited tables in
+        * subqueries.
+        */
+       expand_inherited_tables(root);
+
+       /*
+        * Set hasHavingQual to remember if HAVING clause is present.  Needed
+        * because preprocess_expression will reduce a constant-true condition to
+        * an empty qual list ... but "HAVING TRUE" is not a semantic no-op.
+        */
+       root->hasHavingQual = (parse->havingQual != NULL);
+
+       /* Clear this flag; might get set in distribute_qual_to_rels */
+       root->hasPseudoConstantQuals = false;
+
+       /*
+        * Do expression preprocessing on targetlist and quals.
         */
        parse->targetList = (List *)
-               eval_const_expressions((Node *) parse->targetList);
-       parse->qual = eval_const_expressions(parse->qual);
-       parse->havingQual = eval_const_expressions(parse->havingQual);
+               preprocess_expression(root, (Node *) parse->targetList,
+                                                         EXPRKIND_TARGET);
+
+       parse->returningList = (List *)
+               preprocess_expression(root, (Node *) parse->returningList,
+                                                         EXPRKIND_TARGET);
+
+       preprocess_qual_conditions(root, (Node *) parse->jointree);
+
+       parse->havingQual = preprocess_expression(root, parse->havingQual,
+                                                                                         EXPRKIND_QUAL);
+
+       parse->limitOffset = preprocess_expression(root, parse->limitOffset,
+                                                                                          EXPRKIND_LIMIT);
+       parse->limitCount = preprocess_expression(root, parse->limitCount,
+                                                                                         EXPRKIND_LIMIT);
+
+       root->append_rel_list = (List *)
+               preprocess_expression(root, (Node *) root->append_rel_list,
+                                                         EXPRKIND_APPINFO);
+
+       /* Also need to preprocess expressions for function and values RTEs */
+       foreach(l, parse->rtable)
+       {
+               RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
+
+               if (rte->rtekind == RTE_FUNCTION)
+                       rte->funcexpr = preprocess_expression(root, rte->funcexpr,
+                                                                                                 EXPRKIND_RTFUNC);
+               else if (rte->rtekind == RTE_VALUES)
+                       rte->values_lists = (List *)
+                               preprocess_expression(root, (Node *) rte->values_lists,
+                                                                         EXPRKIND_VALUES);
+       }
+
+       /*
+        * In some cases we may want to transfer a HAVING clause into WHERE. We
+        * cannot do so if the HAVING clause contains aggregates (obviously) or
+        * volatile functions (since a HAVING clause is supposed to be executed
+        * only once per group).  Also, it may be that the clause is so expensive
+        * to execute that we're better off doing it only once per group, despite
+        * the loss of selectivity.  This is hard to estimate short of doing the
+        * entire planning process twice, so we use a heuristic: clauses
+        * containing subplans are left in HAVING.      Otherwise, we move or copy the
+        * HAVING clause into WHERE, in hopes of eliminating tuples before
+        * aggregation instead of after.
+        *
+        * If the query has explicit grouping then we can simply move such a
+        * clause into WHERE; any group that fails the clause will not be in the
+        * output because none of its tuples will reach the grouping or
+        * aggregation stage.  Otherwise we must have a degenerate (variable-free)
+        * HAVING clause, which we put in WHERE so that query_planner() can use it
+        * in a gating Result node, but also keep in HAVING to ensure that we
+        * don't emit a bogus aggregated row. (This could be done better, but it
+        * seems not worth optimizing.)
+        *
+        * Note that both havingQual and parse->jointree->quals are in
+        * implicitly-ANDed-list form at this point, even though they are declared
+        * as Node *.
+        */
+       newHaving = NIL;
+       foreach(l, (List *) parse->havingQual)
+       {
+               Node       *havingclause = (Node *) lfirst(l);
+
+               if (contain_agg_clause(havingclause) ||
+                       contain_volatile_functions(havingclause) ||
+                       contain_subplans(havingclause))
+               {
+                       /* keep it in HAVING */
+                       newHaving = lappend(newHaving, havingclause);
+               }
+               else if (parse->groupClause)
+               {
+                       /* move it to WHERE */
+                       parse->jointree->quals = (Node *)
+                               lappend((List *) parse->jointree->quals, havingclause);
+               }
+               else
+               {
+                       /* put a copy in WHERE, keep it in HAVING */
+                       parse->jointree->quals = (Node *)
+                               lappend((List *) parse->jointree->quals,
+                                               copyObject(havingclause));
+                       newHaving = lappend(newHaving, havingclause);
+               }
+       }
+       parse->havingQual = (Node *) newHaving;
+
+       /*
+        * If we have any outer joins, try to reduce them to plain inner joins.
+        * This step is most easily done after we've done expression
+        * preprocessing.
+        */
+       if (hasOuterJoins)
+               reduce_outer_joins(root);
+
+       /*
+        * Do the main planning.  If we have an inherited target relation, that
+        * needs special processing, else go straight to grouping_planner.
+        */
+       if (parse->resultRelation &&
+               rt_fetch(parse->resultRelation, parse->rtable)->inh)
+               plan = inheritance_planner(root);
+       else
+               plan = grouping_planner(root, tuple_fraction);
+
+       /*
+        * If any subplans were generated, or if we're inside a subplan, build
+        * initPlan list and extParam/allParam sets for plan nodes, and attach the
+        * initPlans to the top plan node.
+        */
+       if (list_length(glob->subplans) != num_old_subplans ||
+               root->query_level > 1)
+               SS_finalize_plan(root, plan, true);
+
+       /* Return internal info if caller wants it */
+       if (subroot)
+               *subroot = root;
+
+       return plan;
+}
+
+/*
+ * preprocess_expression
+ *             Do subquery_planner's preprocessing work for an expression,
+ *             which can be a targetlist, a WHERE clause (including JOIN/ON
+ *             conditions), or a HAVING clause.
+ */
+static Node *
+preprocess_expression(PlannerInfo *root, Node *expr, int kind)
+{
+       /*
+        * Fall out quickly if expression is empty.  This occurs often enough to
+        * be worth checking.  Note that null->null is the correct conversion for
+        * implicit-AND result format, too.
+        */
+       if (expr == NULL)
+               return NULL;
 
        /*
-        * Canonicalize the qual, and convert it to implicit-AND format.
+        * If the query has any join RTEs, replace join alias variables with
+        * base-relation variables. We must do this before sublink processing,
+        * else sublinks expanded out from join aliases wouldn't get processed. We
+        * can skip it in VALUES lists, however, since they can't contain any Vars
+        * at all.
+        */
+       if (root->hasJoinRTEs && kind != EXPRKIND_VALUES)
+               expr = flatten_join_alias_vars(root, expr);
+
+       /*
+        * Simplify constant expressions.
+        *
+        * Note: one essential effect here is to insert the current actual values
+        * of any default arguments for functions.  To ensure that happens, we
+        * *must* process all expressions here.  Previous PG versions sometimes
+        * skipped const-simplification if it didn't seem worth the trouble, but
+        * we can't do that anymore.
         *
-        * XXX Is there any value in re-applying eval_const_expressions after
-        * canonicalize_qual?
+        * Note: this also flattens nested AND and OR expressions into N-argument
+        * form.  All processing of a qual expression after this point must be
+        * careful to maintain AND/OR flatness --- that is, do not generate a tree
+        * with AND directly under AND, nor OR directly under OR.
         */
-       parse->qual = (Node *) canonicalize_qual((Expr *) parse->qual, true);
+       expr = eval_const_expressions(root, expr);
+
+       /*
+        * If it's a qual or havingQual, canonicalize it.
+        */
+       if (kind == EXPRKIND_QUAL)
+       {
+               expr = (Node *) canonicalize_qual((Expr *) expr);
+
 #ifdef OPTIMIZER_DEBUG
-       printf("After canonicalize_qual()\n");
-       pprint(parse->qual);
+               printf("After canonicalize_qual()\n");
+               pprint(expr);
 #endif
+       }
+
+       /* Expand SubLinks to SubPlans */
+       if (root->parse->hasSubLinks)
+               expr = SS_process_sublinks(root, expr, (kind == EXPRKIND_QUAL));
 
        /*
-        * Ditto for the havingQual
+        * XXX do not insert anything here unless you have grokked the comments in
+        * SS_replace_correlation_vars ...
         */
-       parse->havingQual = (Node *) canonicalize_qual((Expr *) parse->havingQual,
-                                                                                                  true);
 
-       /* Expand SubLinks to SubPlans */
-       if (parse->hasSubLinks)
+       /* Replace uplevel vars with Param nodes (this IS possible in VALUES) */
+       if (root->query_level > 1)
+               expr = SS_replace_correlation_vars(root, expr);
+
+       /*
+        * If it's a qual or havingQual, convert it to implicit-AND format. (We
+        * don't want to do this before eval_const_expressions, since the latter
+        * would be unable to simplify a top-level AND correctly. Also,
+        * SS_process_sublinks expects explicit-AND format.)
+        */
+       if (kind == EXPRKIND_QUAL)
+               expr = (Node *) make_ands_implicit((Expr *) expr);
+
+       return expr;
+}
+
+/*
+ * preprocess_qual_conditions
+ *             Recursively scan the query's jointree and do subquery_planner's
+ *             preprocessing work on each qual condition found therein.
+ */
+static void
+preprocess_qual_conditions(PlannerInfo *root, Node *jtnode)
+{
+       if (jtnode == NULL)
+               return;
+       if (IsA(jtnode, RangeTblRef))
        {
-               parse->targetList = (List *)
-                       SS_process_sublinks((Node *) parse->targetList);
-               parse->qual = SS_process_sublinks(parse->qual);
-               parse->havingQual = SS_process_sublinks(parse->havingQual);
+               /* nothing to do here */
+       }
+       else if (IsA(jtnode, FromExpr))
+       {
+               FromExpr   *f = (FromExpr *) jtnode;
+               ListCell   *l;
 
-               if (parse->groupClause != NIL)
-               {
+               foreach(l, f->fromlist)
+                       preprocess_qual_conditions(root, lfirst(l));
 
-                       /*
-                        * Check for ungrouped variables passed to subplans. Note we
-                        * do NOT do this for subplans in WHERE; it's legal there
-                        * because WHERE is evaluated pre-GROUP.
-                        *
-                        * An interesting fine point: if we reassigned a HAVING qual into
-                        * WHERE above, then we will accept references to ungrouped
-                        * vars from subplans in the HAVING qual.  This is not
-                        * entirely consistent, but it doesn't seem particularly
-                        * harmful...
-                        */
-                       check_subplans_for_ungrouped_vars((Node *) parse->targetList,
-                                                                                         parse);
-                       check_subplans_for_ungrouped_vars(parse->havingQual, parse);
-               }
+               f->quals = preprocess_expression(root, f->quals, EXPRKIND_QUAL);
+       }
+       else if (IsA(jtnode, JoinExpr))
+       {
+               JoinExpr   *j = (JoinExpr *) jtnode;
+
+               preprocess_qual_conditions(root, j->larg);
+               preprocess_qual_conditions(root, j->rarg);
+
+               j->quals = preprocess_expression(root, j->quals, EXPRKIND_QUAL);
        }
+       else
+               elog(ERROR, "unrecognized node type: %d",
+                        (int) nodeTag(jtnode));
+}
 
-       /* Replace uplevel vars with Param nodes */
-       if (PlannerQueryLevel > 1)
+/*
+ * inheritance_planner
+ *       Generate a plan in the case where the result relation is an
+ *       inheritance set.
+ *
+ * We have to handle this case differently from cases where a source relation
+ * is an inheritance set. Source inheritance is expanded at the bottom of the
+ * plan tree (see allpaths.c), but target inheritance has to be expanded at
+ * the top.  The reason is that for UPDATE, each target relation needs a
+ * different targetlist matching its own column set.  Also, for both UPDATE
+ * and DELETE, the executor needs the Append plan node at the top, else it
+ * can't keep track of which table is the current target table.  Fortunately,
+ * the UPDATE/DELETE target can never be the nullable side of an outer join,
+ * so it's OK to generate the plan this way.
+ *
+ * Returns a query plan.
+ */
+static Plan *
+inheritance_planner(PlannerInfo *root)
+{
+       Query      *parse = root->parse;
+       int                     parentRTindex = parse->resultRelation;
+       List       *subplans = NIL;
+       List       *resultRelations = NIL;
+       List       *returningLists = NIL;
+       List       *rtable = NIL;
+       List       *tlist = NIL;
+       PlannerInfo subroot;
+       ListCell   *l;
+
+       foreach(l, root->append_rel_list)
        {
-               parse->targetList = (List *)
-                       SS_replace_correlation_vars((Node *) parse->targetList);
-               parse->qual = SS_replace_correlation_vars(parse->qual);
-               parse->havingQual = SS_replace_correlation_vars(parse->havingQual);
+               AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(l);
+               Plan       *subplan;
+
+               /* append_rel_list contains all append rels; ignore others */
+               if (appinfo->parent_relid != parentRTindex)
+                       continue;
+
+               /*
+                * Generate modified query with this rel as target.
+                */
+               memcpy(&subroot, root, sizeof(PlannerInfo));
+               subroot.parse = (Query *)
+                       adjust_appendrel_attrs((Node *) parse,
+                                                                  appinfo);
+               subroot.returningLists = NIL;
+               subroot.init_plans = NIL;
+               /* We needn't modify the child's append_rel_list */
+               /* There shouldn't be any OJ info to translate, as yet */
+               Assert(subroot.join_info_list == NIL);
+               /* and we haven't created PlaceHolderInfos, either */
+               Assert(subroot.placeholder_list == NIL);
+
+               /* Generate plan */
+               subplan = grouping_planner(&subroot, 0.0 /* retrieve all tuples */ );
+
+               /*
+                * If this child rel was excluded by constraint exclusion, exclude it
+                * from the plan.
+                */
+               if (is_dummy_plan(subplan))
+                       continue;
+
+               /* Save rtable and tlist from first rel for use below */
+               if (subplans == NIL)
+               {
+                       rtable = subroot.parse->rtable;
+                       tlist = subplan->targetlist;
+               }
+
+               subplans = lappend(subplans, subplan);
+
+               /* Make sure any initplans from this rel get into the outer list */
+               root->init_plans = list_concat(root->init_plans, subroot.init_plans);
+
+               /* Build target-relations list for the executor */
+               resultRelations = lappend_int(resultRelations, appinfo->child_relid);
+
+               /* Build list of per-relation RETURNING targetlists */
+               if (parse->returningList)
+               {
+                       Assert(list_length(subroot.returningLists) == 1);
+                       returningLists = list_concat(returningLists,
+                                                                                subroot.returningLists);
+               }
        }
 
-       /* Do the main planning (potentially recursive) */
+       root->resultRelations = resultRelations;
+       root->returningLists = returningLists;
 
-       return union_planner(parse, tuple_fraction);
+       /* Mark result as unordered (probably unnecessary) */
+       root->query_pathkeys = NIL;
+
+       /*
+        * If we managed to exclude every child rel, return a dummy plan
+        */
+       if (subplans == NIL)
+       {
+               root->resultRelations = list_make1_int(parentRTindex);
+               /* although dummy, it must have a valid tlist for executor */
+               tlist = preprocess_targetlist(root, parse->targetList);
+               return (Plan *) make_result(root,
+                                                                       tlist,
+                                                                       (Node *) list_make1(makeBoolConst(false,
+                                                                                                                                         false)),
+                                                                       NULL);
+       }
 
        /*
-        * XXX should any more of union_planner's activity be moved here?
+        * Planning might have modified the rangetable, due to changes of the
+        * Query structures inside subquery RTEs.  We have to ensure that this
+        * gets propagated back to the master copy.  But can't do this until we
+        * are done planning, because all the calls to grouping_planner need
+        * virgin sub-Queries to work from.  (We are effectively assuming that
+        * sub-Queries will get planned identically each time, or at least that
+        * the impacts on their rangetables will be the same each time.)
         *
-        * That would take careful study of the interactions with prepunion.c,
-        * but I suspect it would pay off in simplicity and avoidance of
-        * wasted cycles.
+        * XXX should clean this up someday
         */
-}
+       parse->rtable = rtable;
 
+       /* Suppress Append if there's only one surviving child rel */
+       if (list_length(subplans) == 1)
+               return (Plan *) linitial(subplans);
+
+       return (Plan *) make_append(subplans, true, tlist);
+}
 
 /*--------------------
- * union_planner
- *       Invokes the planner on union-type queries (both regular UNIONs and
- *       appends produced by inheritance), recursing if necessary to get them
- *       all, then processes normal plans.
+ * grouping_planner
+ *       Perform planning steps related to grouping, aggregation, etc.
+ *       This primarily means adding top-level processing to the basic
+ *       query plan produced by query_planner.
  *
- * parse is the querytree produced by the parser & rewriter.
  * tuple_fraction is the fraction of tuples we expect will be retrieved
  *
  * tuple_fraction is interpreted as follows:
- *       < 0: determine fraction by inspection of query (normal case)
- *       0: expect all tuples to be retrieved
+ *       0: expect all tuples to be retrieved (normal case)
  *       0 < tuple_fraction < 1: expect the given fraction of tuples available
  *             from the plan to be retrieved
  *       tuple_fraction >= 1: tuple_fraction is the absolute number of tuples
  *             expected to be retrieved (ie, a LIMIT specification)
- * The normal case is to pass -1, but some callers pass values >= 0 to
- * override this routine's determination of the appropriate fraction.
  *
- * Returns a query plan.
+ * Returns a query plan.  Also, root->query_pathkeys is returned as the
+ * actual output ordering of the plan (in pathkey format).
  *--------------------
  */
-Plan *
-union_planner(Query *parse,
-                         double tuple_fraction)
+static Plan *
+grouping_planner(PlannerInfo *root, double tuple_fraction)
 {
+       Query      *parse = root->parse;
        List       *tlist = parse->targetList;
-       List       *rangetable = parse->rtable;
-       Plan       *result_plan = (Plan *) NULL;
-       AttrNumber *groupColIdx = NULL;
-       List       *current_pathkeys = NIL;
-       List       *group_pathkeys;
-       List       *sort_pathkeys;
-       Index           rt_index;
-       List       *inheritors;
-
-       if (parse->unionClause)
-       {
-               result_plan = plan_union_queries(parse);
-               /* XXX do we need to do this? bjm 12/19/97 */
-               tlist = preprocess_targetlist(tlist,
-                                                                         parse->commandType,
-                                                                         parse->resultRelation,
-                                                                         parse->rtable);
+       int64           offset_est = 0;
+       int64           count_est = 0;
+       double          limit_tuples = -1.0;
+       Plan       *result_plan;
+       List       *current_pathkeys;
+       double          dNumGroups = 0;
 
-               /*
-                * We leave current_pathkeys NIL indicating we do not know sort
-                * order.  This is correct for the appended-together subplan
-                * results, even if the subplans themselves produced sorted results.
-                */
+       /* Tweak caller-supplied tuple_fraction if have LIMIT/OFFSET */
+       if (parse->limitCount || parse->limitOffset)
+       {
+               tuple_fraction = preprocess_limit(root, tuple_fraction,
+                                                                                 &offset_est, &count_est);
 
                /*
-                * Calculate pathkeys that represent grouping/ordering
-                * requirements
+                * If we have a known LIMIT, and don't have an unknown OFFSET, we can
+                * estimate the effects of using a bounded sort.
                 */
-               group_pathkeys = make_pathkeys_for_sortclauses(parse->groupClause,
-                                                                                                          tlist);
-               sort_pathkeys = make_pathkeys_for_sortclauses(parse->sortClause,
-                                                                                                         tlist);
+               if (count_est > 0 && offset_est >= 0)
+                       limit_tuples = (double) count_est + (double) offset_est;
        }
-       else if (find_inheritable_rt_entry(rangetable,
-                                                                          &rt_index, &inheritors))
+
+       if (parse->setOperations)
        {
-               List       *sub_tlist;
+               List       *set_sortclauses;
+
+               /*
+                * If there's a top-level ORDER BY, assume we have to fetch all the
+                * tuples.      This might be too simplistic given all the hackery below
+                * to possibly avoid the sort; but the odds of accurate estimates
+                * here are pretty low anyway.
+                */
+               if (parse->sortClause)
+                       tuple_fraction = 0.0;
 
                /*
-                * Generate appropriate target list for subplan; may be different
-                * from tlist if grouping or aggregation is needed.
+                * Construct the plan for set operations.  The result will not need
+                * any work except perhaps a top-level sort and/or LIMIT.  Note that
+                * any special work for recursive unions is the responsibility of
+                * plan_set_operations.
                 */
-               sub_tlist = make_subplanTargetList(parse, tlist, &groupColIdx);
+               result_plan = plan_set_operations(root, tuple_fraction,
+                                                                                 &set_sortclauses);
 
                /*
-                * Recursively plan the subqueries needed for inheritance
+                * Calculate pathkeys representing the sort order (if any) of the set
+                * operation's result.  We have to do this before overwriting the sort
+                * key information...
                 */
-               result_plan = plan_inherit_queries(parse, sub_tlist,
-                                                                                  rt_index, inheritors);
+               current_pathkeys = make_pathkeys_for_sortclauses(root,
+                                                                                                                set_sortclauses,
+                                                                                                        result_plan->targetlist,
+                                                                                                                true);
 
                /*
-                * Fix up outer target list.  NOTE: unlike the case for
-                * non-inherited query, we pass the unfixed tlist to subplans,
-                * which do their own fixing.  But we still want to fix the outer
-                * target list afterwards. I *think* this is correct --- doing the
-                * fix before recursing is definitely wrong, because
-                * preprocess_targetlist() will do the wrong thing if invoked
-                * twice on the same list. Maybe that is a bug? tgl 6/6/99
+                * We should not need to call preprocess_targetlist, since we must be
+                * in a SELECT query node.      Instead, use the targetlist returned by
+                * plan_set_operations (since this tells whether it returned any
+                * resjunk columns!), and transfer any sort key information from the
+                * original tlist.
                 */
-               tlist = preprocess_targetlist(tlist,
-                                                                         parse->commandType,
-                                                                         parse->resultRelation,
-                                                                         parse->rtable);
+               Assert(parse->commandType == CMD_SELECT);
 
-               if (parse->rowMark != NULL)
-                       elog(ERROR, "SELECT FOR UPDATE is not supported for inherit queries");
+               tlist = postprocess_setop_tlist(copyObject(result_plan->targetlist),
+                                                                               tlist);
 
                /*
-                * We leave current_pathkeys NIL indicating we do not know sort
-                * order of the Append-ed results.
+                * Can't handle FOR UPDATE/SHARE here (parser should have checked
+                * already, but let's make sure).
                 */
+               if (parse->rowMarks)
+                       ereport(ERROR,
+                                       (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
+                                        errmsg("SELECT FOR UPDATE/SHARE is not allowed with UNION/INTERSECT/EXCEPT")));
 
                /*
-                * Calculate pathkeys that represent grouping/ordering
-                * requirements
+                * Calculate pathkeys that represent result ordering requirements
                 */
-               group_pathkeys = make_pathkeys_for_sortclauses(parse->groupClause,
-                                                                                                          tlist);
-               sort_pathkeys = make_pathkeys_for_sortclauses(parse->sortClause,
-                                                                                                         tlist);
+               Assert(parse->distinctClause == NIL);
+               root->sort_pathkeys = make_pathkeys_for_sortclauses(root,
+                                                                                                                       parse->sortClause,
+                                                                                                                       tlist,
+                                                                                                                       true);
        }
        else
        {
+               /* No set operations, do regular planning */
                List       *sub_tlist;
+               AttrNumber *groupColIdx = NULL;
+               bool            need_tlist_eval = true;
+               QualCost        tlist_cost;
+               Path       *cheapest_path;
+               Path       *sorted_path;
+               Path       *best_path;
+               long            numGroups = 0;
+               AggClauseCounts agg_counts;
+               int                     numGroupCols;
+               bool            use_hashed_grouping = false;
+               WindowFuncLists *wflists = NULL;
+               List       *activeWindows = NIL;
+
+               MemSet(&agg_counts, 0, sizeof(AggClauseCounts));
+
+               /* A recursive query should always have setOperations */
+               Assert(!root->hasRecursion);
+
+               /* Preprocess GROUP BY clause, if any */
+               if (parse->groupClause)
+                       preprocess_groupclause(root);
+               numGroupCols = list_length(parse->groupClause);
 
-               /* Preprocess targetlist in case we are inside an INSERT/UPDATE. */
-               tlist = preprocess_targetlist(tlist,
-                                                                         parse->commandType,
-                                                                         parse->resultRelation,
-                                                                         parse->rtable);
+               /* Preprocess targetlist */
+               tlist = preprocess_targetlist(root, tlist);
 
                /*
-                * Add row-mark targets for UPDATE (should this be done in
-                * preprocess_targetlist?)
+                * Locate any window functions in the tlist.  (We don't need to look
+                * anywhere else, since expressions used in ORDER BY will be in there
+                * too.)  Note that they could all have been eliminated by constant
+                * folding, in which case we don't need to do any more work.
                 */
-               if (parse->rowMark != NULL)
+               if (parse->hasWindowFuncs)
                {
-                       List       *l;
+                       wflists = find_window_functions((Node *) tlist,
+                                                                                       list_length(parse->windowClause));
+                       if (wflists->numWindowFuncs > 0)
+                               activeWindows = select_active_windows(root, wflists);
+                       else
+                               parse->hasWindowFuncs = false;
+               }
 
-                       foreach(l, parse->rowMark)
-                       {
-                               RowMark    *rowmark = (RowMark *) lfirst(l);
-                               TargetEntry *ctid;
-                               Resdom     *resdom;
-                               Var                *var;
-                               char       *resname;
+               /*
+                * Generate appropriate target list for subplan; may be different from
+                * tlist if grouping or aggregation is needed.
+                */
+               sub_tlist = make_subplanTargetList(root, tlist,
+                                                                                  &groupColIdx, &need_tlist_eval);
+
+               /*
+                * Calculate pathkeys that represent grouping/ordering requirements.
+                * Stash them in PlannerInfo so that query_planner can canonicalize
+                * them after EquivalenceClasses have been formed.  The sortClause
+                * is certainly sort-able, but GROUP BY and DISTINCT might not be,
+                * in which case we just leave their pathkeys empty.
+                */
+               if (parse->groupClause &&
+                       grouping_is_sortable(parse->groupClause))
+                       root->group_pathkeys =
+                               make_pathkeys_for_sortclauses(root,
+                                                                                         parse->groupClause,
+                                                                                         tlist,
+                                                                                         false);
+               else
+                       root->group_pathkeys = NIL;
 
-                               if (!(rowmark->info & ROW_MARK_FOR_UPDATE))
-                                       continue;
+               /* We consider only the first (bottom) window in pathkeys logic */
+               if (activeWindows != NIL)
+               {
+                       WindowClause *wc = (WindowClause *) linitial(activeWindows);
 
-                               resname = (char *) palloc(32);
-                               sprintf(resname, "ctid%u", rowmark->rti);
-                               resdom = makeResdom(length(tlist) + 1,
-                                                                       TIDOID,
-                                                                       -1,
-                                                                       resname,
-                                                                       0,
-                                                                       0,
-                                                                       true);
+                       root->window_pathkeys = make_pathkeys_for_window(root,
+                                                                                                                        wc,
+                                                                                                                        tlist,
+                                                                                                                        false);
+               }
+               else
+                       root->window_pathkeys = NIL;
+
+               if (parse->distinctClause &&
+                       grouping_is_sortable(parse->distinctClause))
+                       root->distinct_pathkeys =
+                               make_pathkeys_for_sortclauses(root,
+                                                                                         parse->distinctClause,
+                                                                                         tlist,
+                                                                                         false);
+               else
+                       root->distinct_pathkeys = NIL;
 
-                               var = makeVar(rowmark->rti, -1, TIDOID, -1, 0);
+               root->sort_pathkeys =
+                       make_pathkeys_for_sortclauses(root,
+                                                                                 parse->sortClause,
+                                                                                 tlist,
+                                                                                 false);
 
-                               ctid = makeTargetEntry(resdom, (Node *) var);
-                               tlist = lappend(tlist, ctid);
-                       }
+               /*
+                * Will need actual number of aggregates for estimating costs.
+                *
+                * Note: we do not attempt to detect duplicate aggregates here; a
+                * somewhat-overestimated count is okay for our present purposes.
+                *
+                * Note: think not that we can turn off hasAggs if we find no aggs. It
+                * is possible for constant-expression simplification to remove all
+                * explicit references to aggs, but we still have to follow the
+                * aggregate semantics (eg, producing only one output row).
+                */
+               if (parse->hasAggs)
+               {
+                       count_agg_clauses((Node *) tlist, &agg_counts);
+                       count_agg_clauses(parse->havingQual, &agg_counts);
                }
 
                /*
-                * Generate appropriate target list for subplan; may be different
-                * from tlist if grouping or aggregation is needed.
+                * Figure out whether we want a sorted result from query_planner.
+                *
+                * If we have a sortable GROUP BY clause, then we want a result sorted
+                * properly for grouping.  Otherwise, if we have window functions to
+                * evaluate, we try to sort for the first window.  Otherwise, if
+                * there's a sortable DISTINCT clause that's more rigorous than the
+                * ORDER BY clause, we try to produce output that's sufficiently well
+                * sorted for the DISTINCT.  Otherwise, if there is an ORDER BY
+                * clause, we want to sort by the ORDER BY clause.
+                *
+                * Note: if we have both ORDER BY and GROUP BY, and ORDER BY is a
+                * superset of GROUP BY, it would be tempting to request sort by ORDER
+                * BY --- but that might just leave us failing to exploit an available
+                * sort order at all.  Needs more thought.  The choice for DISTINCT
+                * versus ORDER BY is much easier, since we know that the parser
+                * ensured that one is a superset of the other.
                 */
-               sub_tlist = make_subplanTargetList(parse, tlist, &groupColIdx);
+               if (root->group_pathkeys)
+                       root->query_pathkeys = root->group_pathkeys;
+               else if (root->window_pathkeys)
+                       root->query_pathkeys = root->window_pathkeys;
+               else if (list_length(root->distinct_pathkeys) >
+                                list_length(root->sort_pathkeys))
+                       root->query_pathkeys = root->distinct_pathkeys;
+               else if (root->sort_pathkeys)
+                       root->query_pathkeys = root->sort_pathkeys;
+               else
+                       root->query_pathkeys = NIL;
 
                /*
-                * Calculate pathkeys that represent grouping/ordering
-                * requirements
+                * Generate the best unsorted and presorted paths for this Query (but
+                * note there may not be any presorted path).  query_planner will also
+                * estimate the number of groups in the query, and canonicalize all
+                * the pathkeys.
                 */
-               group_pathkeys = make_pathkeys_for_sortclauses(parse->groupClause,
-                                                                                                          tlist);
-               sort_pathkeys = make_pathkeys_for_sortclauses(parse->sortClause,
-                                                                                                         tlist);
+               query_planner(root, sub_tlist, tuple_fraction, limit_tuples,
+                                         &cheapest_path, &sorted_path, &dNumGroups);
 
                /*
-                * Figure out whether we need a sorted result from query_planner.
-                *
-                * If we have a GROUP BY clause, then we want a result sorted
-                * properly for grouping.  Otherwise, if there is an ORDER BY
-                * clause, we want to sort by the ORDER BY clause.      (Note: if we
-                * have both, and ORDER BY is a superset of GROUP BY, it would be
-                * tempting to request sort by ORDER BY --- but that might just
-                * leave us failing to exploit an available sort order at all.
-                * Needs more thought...)
+                * If grouping, decide whether to use sorted or hashed grouping.
                 */
                if (parse->groupClause)
-                       parse->query_pathkeys = group_pathkeys;
-               else if (parse->sortClause)
-                       parse->query_pathkeys = sort_pathkeys;
+               {
+                       bool    can_hash;
+                       bool    can_sort;
+
+                       /*
+                        * Executor doesn't support hashed aggregation with DISTINCT
+                        * aggregates.  (Doing so would imply storing *all* the input
+                        * values in the hash table, which seems like a certain loser.)
+                        */
+                       can_hash = (agg_counts.numDistinctAggs == 0 &&
+                                               grouping_is_hashable(parse->groupClause));
+                       can_sort = grouping_is_sortable(parse->groupClause);
+                       if (can_hash && can_sort)
+                       {
+                               /* we have a meaningful choice to make ... */
+                               use_hashed_grouping =
+                                       choose_hashed_grouping(root,
+                                                                                  tuple_fraction, limit_tuples,
+                                                                                  cheapest_path, sorted_path,
+                                                                                  dNumGroups, &agg_counts);
+                       }
+                       else if (can_hash)
+                               use_hashed_grouping = true;
+                       else if (can_sort)
+                               use_hashed_grouping = false;
+                       else
+                               ereport(ERROR,
+                                               (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
+                                                errmsg("could not implement GROUP BY"),
+                                                errdetail("Some of the datatypes only support hashing, while others only support sorting.")));
+
+                       /* Also convert # groups to long int --- but 'ware overflow! */
+                       numGroups = (long) Min(dNumGroups, (double) LONG_MAX);
+               }
+
+               /*
+                * Select the best path.  If we are doing hashed grouping, we will
+                * always read all the input tuples, so use the cheapest-total path.
+                * Otherwise, trust query_planner's decision about which to use.
+                */
+               if (use_hashed_grouping || !sorted_path)
+                       best_path = cheapest_path;
                else
-                       parse->query_pathkeys = NIL;
+                       best_path = sorted_path;
 
                /*
-                * Figure out whether we expect to retrieve all the tuples that
-                * the plan can generate, or to stop early due to a LIMIT or other
-                * factors.  If the caller passed a value >= 0, believe that
-                * value, else do our own examination of the query context.
+                * Check to see if it's possible to optimize MIN/MAX aggregates. If
+                * so, we will forget all the work we did so far to choose a "regular"
+                * path ... but we had to do it anyway to be able to tell which way is
+                * cheaper.
                 */
-               if (tuple_fraction < 0.0)
+               result_plan = optimize_minmax_aggregates(root,
+                                                                                                tlist,
+                                                                                                best_path);
+               if (result_plan != NULL)
                {
-                       /* Initial assumption is we need all the tuples */
-                       tuple_fraction = 0.0;
+                       /*
+                        * optimize_minmax_aggregates generated the full plan, with the
+                        * right tlist, and it has no sort order.
+                        */
+                       current_pathkeys = NIL;
+               }
+               else
+               {
+                       /*
+                        * Normal case --- create a plan according to query_planner's
+                        * results.
+                        */
+                       bool    need_sort_for_grouping = false;
+
+                       result_plan = create_plan(root, best_path);
+                       current_pathkeys = best_path->pathkeys;
+
+                       /* Detect if we'll need an explicit sort for grouping */
+                       if (parse->groupClause && !use_hashed_grouping &&
+                               !pathkeys_contained_in(root->group_pathkeys, current_pathkeys))
+                       {
+                               need_sort_for_grouping = true;
+                               /*
+                                * Always override query_planner's tlist, so that we don't
+                                * sort useless data from a "physical" tlist.
+                                */
+                               need_tlist_eval = true;
+                       }
 
                        /*
-                        * Check for a LIMIT clause.
+                        * create_plan() returns a plan with just a "flat" tlist of
+                        * required Vars.  Usually we need to insert the sub_tlist as the
+                        * tlist of the top plan node.  However, we can skip that if we
+                        * determined that whatever query_planner chose to return will be
+                        * good enough.
                         */
-                       if (parse->limitCount != NULL)
+                       if (need_tlist_eval)
                        {
-                               if (IsA(parse->limitCount, Const))
+                               /*
+                                * If the top-level plan node is one that cannot do expression
+                                * evaluation, we must insert a Result node to project the
+                                * desired tlist.
+                                */
+                               if (!is_projection_capable_plan(result_plan))
                                {
-                                       Const      *limitc = (Const *) parse->limitCount;
-                                       int                     count = (int) (limitc->constvalue);
-
-                                       /*
-                                        * The constant can legally be either 0 ("ALL") or a
-                                        * positive integer.  If it is not ALL, we also need
-                                        * to consider the OFFSET part of LIMIT.
-                                        */
-                                       if (count > 0)
-                                       {
-                                               tuple_fraction = (double) count;
-                                               if (parse->limitOffset != NULL)
-                                               {
-                                                       if (IsA(parse->limitOffset, Const))
-                                                       {
-                                                               int                     offset;
-
-                                                               limitc = (Const *) parse->limitOffset;
-                                                               offset = (int) (limitc->constvalue);
-                                                               if (offset > 0)
-                                                                       tuple_fraction += (double) offset;
-                                                       }
-                                                       else
-                                                       {
-                                                               /* It's a PARAM ... punt ... */
-                                                               tuple_fraction = 0.10;
-                                                       }
-                                               }
-                                       }
+                                       result_plan = (Plan *) make_result(root,
+                                                                                                          sub_tlist,
+                                                                                                          NULL,
+                                                                                                          result_plan);
                                }
                                else
                                {
-
                                        /*
-                                        * COUNT is a PARAM ... don't know exactly what the
-                                        * limit will be, but for lack of a better idea assume
-                                        * 10% of the plan's result is wanted.
+                                        * Otherwise, just replace the subplan's flat tlist with
+                                        * the desired tlist.
                                         */
-                                       tuple_fraction = 0.10;
+                                       result_plan->targetlist = sub_tlist;
                                }
+
+                               /*
+                                * Also, account for the cost of evaluation of the sub_tlist.
+                                *
+                                * Up to now, we have only been dealing with "flat" tlists,
+                                * containing just Vars.  So their evaluation cost is zero
+                                * according to the model used by cost_qual_eval() (or if you
+                                * prefer, the cost is factored into cpu_tuple_cost).  Thus we
+                                * can avoid accounting for tlist cost throughout
+                                * query_planner() and subroutines.  But now we've inserted a
+                                * tlist that might contain actual operators, sub-selects, etc
+                                * --- so we'd better account for its cost.
+                                *
+                                * Below this point, any tlist eval cost for added-on nodes
+                                * should be accounted for as we create those nodes.
+                                * Presently, of the node types we can add on, only Agg,
+                                * WindowAgg, and Group project new tlists (the rest just copy
+                                * their input tuples) --- so make_agg(), make_windowagg() and
+                                * make_group() are responsible for computing the added cost.
+                                */
+                               cost_qual_eval(&tlist_cost, sub_tlist, root);
+                               result_plan->startup_cost += tlist_cost.startup;
+                               result_plan->total_cost += tlist_cost.startup +
+                                       tlist_cost.per_tuple * result_plan->plan_rows;
+                       }
+                       else
+                       {
+                               /*
+                                * Since we're using query_planner's tlist and not the one
+                                * make_subplanTargetList calculated, we have to refigure any
+                                * grouping-column indexes make_subplanTargetList computed.
+                                */
+                               locate_grouping_columns(root, tlist, result_plan->targetlist,
+                                                                               groupColIdx);
                        }
 
                        /*
-                        * Check for a retrieve-into-portal, ie DECLARE CURSOR.
+                        * Insert AGG or GROUP node if needed, plus an explicit sort step
+                        * if necessary.
                         *
-                        * We have no real idea how many tuples the user will ultimately
-                        * FETCH from a cursor, but it seems a good bet that he
-                        * doesn't want 'em all.  Optimize for 10% retrieval (you
-                        * gotta better number?)
+                        * HAVING clause, if any, becomes qual of the Agg or Group node.
                         */
-                       if (parse->isPortal)
-                               tuple_fraction = 0.10;
-               }
-
-               /*
-                * Adjust tuple_fraction if we see that we are going to apply
-                * grouping/aggregation/etc.  This is not overridable by the
-                * caller, since it reflects plan actions that this routine will
-                * certainly take, not assumptions about context.
-                */
-               if (parse->groupClause)
-               {
+                       if (use_hashed_grouping)
+                       {
+                               /* Hashed aggregate plan --- no sort needed */
+                               result_plan = (Plan *) make_agg(root,
+                                                                                               tlist,
+                                                                                               (List *) parse->havingQual,
+                                                                                               AGG_HASHED,
+                                                                                               numGroupCols,
+                                                                                               groupColIdx,
+                                                                       extract_grouping_ops(parse->groupClause),
+                                                                                               numGroups,
+                                                                                               agg_counts.numAggs,
+                                                                                               result_plan);
+                               /* Hashed aggregation produces randomly-ordered results */
+                               current_pathkeys = NIL;
+                       }
+                       else if (parse->hasAggs)
+                       {
+                               /* Plain aggregate plan --- sort if needed */
+                               AggStrategy aggstrategy;
 
-                       /*
-                        * In GROUP BY mode, we have the little problem that we don't
-                        * really know how many input tuples will be needed to make a
-                        * group, so we can't translate an output LIMIT count into an
-                        * input count.  For lack of a better idea, assume 25% of the
-                        * input data will be processed if there is any output limit.
-                        * However, if the caller gave us a fraction rather than an
-                        * absolute count, we can keep using that fraction (which
-                        * amounts to assuming that all the groups are about the same
-                        * size).
-                        */
-                       if (tuple_fraction >= 1.0)
-                               tuple_fraction = 0.25;
+                               if (parse->groupClause)
+                               {
+                                       if (need_sort_for_grouping)
+                                       {
+                                               result_plan = (Plan *)
+                                                       make_sort_from_groupcols(root,
+                                                                                                        parse->groupClause,
+                                                                                                        groupColIdx,
+                                                                                                        result_plan);
+                                               current_pathkeys = root->group_pathkeys;
+                                       }
+                                       aggstrategy = AGG_SORTED;
 
-                       /*
-                        * If both GROUP BY and ORDER BY are specified, we will need
-                        * two levels of sort --- and, therefore, certainly need to
-                        * read all the input tuples --- unless ORDER BY is a subset
-                        * of GROUP BY.  (Although we are comparing non-canonicalized
-                        * pathkeys here, it should be OK since they will both contain
-                        * only single-element sublists at this point.  See
-                        * pathkeys.c.)
-                        */
-                       if (parse->groupClause && parse->sortClause &&
-                               !pathkeys_contained_in(sort_pathkeys, group_pathkeys))
-                               tuple_fraction = 0.0;
-               }
-               else if (parse->hasAggs)
+                                       /*
+                                        * The AGG node will not change the sort ordering of its
+                                        * groups, so current_pathkeys describes the result too.
+                                        */
+                               }
+                               else
+                               {
+                                       aggstrategy = AGG_PLAIN;
+                                       /* Result will be only one row anyway; no sort order */
+                                       current_pathkeys = NIL;
+                               }
+
+                               result_plan = (Plan *) make_agg(root,
+                                                                                               tlist,
+                                                                                               (List *) parse->havingQual,
+                                                                                               aggstrategy,
+                                                                                               numGroupCols,
+                                                                                               groupColIdx,
+                                                                       extract_grouping_ops(parse->groupClause),
+                                                                                               numGroups,
+                                                                                               agg_counts.numAggs,
+                                                                                               result_plan);
+                       }
+                       else if (parse->groupClause)
+                       {
+                               /*
+                                * GROUP BY without aggregation, so insert a group node (plus
+                                * the appropriate sort node, if necessary).
+                                *
+                                * Add an explicit sort if we couldn't make the path come out
+                                * the way the GROUP node needs it.
+                                */
+                               if (need_sort_for_grouping)
+                               {
+                                       result_plan = (Plan *)
+                                               make_sort_from_groupcols(root,
+                                                                                                parse->groupClause,
+                                                                                                groupColIdx,
+                                                                                                result_plan);
+                                       current_pathkeys = root->group_pathkeys;
+                               }
+
+                               result_plan = (Plan *) make_group(root,
+                                                                                                 tlist,
+                                                                                                 (List *) parse->havingQual,
+                                                                                                 numGroupCols,
+                                                                                                 groupColIdx,
+                                                                       extract_grouping_ops(parse->groupClause),
+                                                                                                 dNumGroups,
+                                                                                                 result_plan);
+                               /* The Group node won't change sort ordering */
+                       }
+                       else if (root->hasHavingQual)
+                       {
+                               /*
+                                * No aggregates, and no GROUP BY, but we have a HAVING qual.
+                                * This is a degenerate case in which we are supposed to emit
+                                * either 0 or 1 row depending on whether HAVING succeeds.
+                                * Furthermore, there cannot be any variables in either HAVING
+                                * or the targetlist, so we actually do not need the FROM
+                                * table at all!  We can just throw away the plan-so-far and
+                                * generate a Result node.      This is a sufficiently unusual
+                                * corner case that it's not worth contorting the structure of
+                                * this routine to avoid having to generate the plan in the
+                                * first place.
+                                */
+                               result_plan = (Plan *) make_result(root,
+                                                                                                  tlist,
+                                                                                                  parse->havingQual,
+                                                                                                  NULL);
+                       }
+               }                                               /* end of non-minmax-aggregate case */
+
+               /*
+                * Since each window function could require a different sort order,
+                * we stack up a WindowAgg node for each window, with sort steps
+                * between them as needed.
+                */
+               if (activeWindows)
                {
+                       List       *window_tlist;
+                       ListCell   *l;
 
                        /*
-                        * Ungrouped aggregate will certainly want all the input
-                        * tuples.
+                        * If the top-level plan node is one that cannot do expression
+                        * evaluation, we must insert a Result node to project the
+                        * desired tlist.  (In some cases this might not really be
+                        * required, but it's not worth trying to avoid it.)  Note that
+                        * on second and subsequent passes through the following loop,
+                        * the top-level node will be a WindowAgg which we know can
+                        * project; so we only need to check once.
                         */
-                       tuple_fraction = 0.0;
-               }
-               else if (parse->distinctClause)
-               {
+                       if (!is_projection_capable_plan(result_plan))
+                       {
+                               result_plan = (Plan *) make_result(root,
+                                                                                                  NIL,
+                                                                                                  NULL,
+                                                                                                  result_plan);
+                       }
 
                        /*
-                        * SELECT DISTINCT, like GROUP, will absorb an unpredictable
-                        * number of input tuples per output tuple.  Handle the same
-                        * way.
+                        * The "base" targetlist for all steps of the windowing process
+                        * is a flat tlist of all Vars and Aggs needed in the result.
+                        * (In some cases we wouldn't need to propagate all of these
+                        * all the way to the top, since they might only be needed as
+                        * inputs to WindowFuncs.  It's probably not worth trying to
+                        * optimize that though.)  As we climb up the stack, we add
+                        * outputs for the WindowFuncs computed at each level.  Also,
+                        * each input tlist has to present all the columns needed to
+                        * sort the data for the next WindowAgg step.  That's handled
+                        * internally by make_sort_from_pathkeys, but we need the
+                        * copyObject steps here to ensure that each plan node has
+                        * a separately modifiable tlist.
                         */
-                       if (tuple_fraction >= 1.0)
-                               tuple_fraction = 0.25;
+                       window_tlist = flatten_tlist(tlist);
+                       if (parse->hasAggs)
+                               window_tlist = add_to_flat_tlist(window_tlist,
+                                                                                       pull_agg_clause((Node *) tlist));
+                       result_plan->targetlist = (List *) copyObject(window_tlist);
+
+                       foreach(l, activeWindows)
+                       {
+                               WindowClause *wc = (WindowClause *) lfirst(l);
+                               List       *window_pathkeys;
+                               int                     partNumCols;
+                               AttrNumber *partColIdx;
+                               Oid                *partOperators;
+                               int                     ordNumCols;
+                               AttrNumber *ordColIdx;
+                               Oid                *ordOperators;
+
+                               window_pathkeys = make_pathkeys_for_window(root,
+                                                                                                                  wc,
+                                                                                                                  tlist,
+                                                                                                                  true);
+
+                               /*
+                                * This is a bit tricky: we build a sort node even if we don't
+                                * really have to sort.  Even when no explicit sort is needed,
+                                * we need to have suitable resjunk items added to the input
+                                * plan's tlist for any partitioning or ordering columns that
+                                * aren't plain Vars.  Furthermore, this way we can use
+                                * existing infrastructure to identify which input columns are
+                                * the interesting ones.
+                                */
+                               if (window_pathkeys)
+                               {
+                                       Sort       *sort_plan;
+
+                                       sort_plan = make_sort_from_pathkeys(root,
+                                                                                                               result_plan,
+                                                                                                               window_pathkeys,
+                                                                                                               -1.0);
+                                       if (!pathkeys_contained_in(window_pathkeys,
+                                                                                          current_pathkeys))
+                                       {
+                                               /* we do indeed need to sort */
+                                               result_plan = (Plan *) sort_plan;
+                                               current_pathkeys = window_pathkeys;
+                                       }
+                                       /* In either case, extract the per-column information */
+                                       get_column_info_for_window(root, wc, tlist,
+                                                                                          sort_plan->numCols,
+                                                                                          sort_plan->sortColIdx,
+                                                                                          &partNumCols,
+                                                                                          &partColIdx,
+                                                                                          &partOperators,
+                                                                                          &ordNumCols,
+                                                                                          &ordColIdx,
+                                                                                          &ordOperators);
+                               }
+                               else
+                               {
+                                       /* empty window specification, nothing to sort */
+                                       partNumCols = 0;
+                                       partColIdx = NULL;
+                                       partOperators = NULL;
+                                       ordNumCols = 0;
+                                       ordColIdx = NULL;
+                                       ordOperators = NULL;
+                               }
+
+                               if (lnext(l))
+                               {
+                                       /* Add the current WindowFuncs to the running tlist */
+                                       window_tlist = add_to_flat_tlist(window_tlist,
+                                                                                       wflists->windowFuncs[wc->winref]);
+                               }
+                               else
+                               {
+                                       /* Install the original tlist in the topmost WindowAgg */
+                                       window_tlist = tlist;
+                               }
+
+                               /* ... and make the WindowAgg plan node */
+                               result_plan = (Plan *)
+                                       make_windowagg(root,
+                                                                  (List *) copyObject(window_tlist),
+                                                                  list_length(wflists->windowFuncs[wc->winref]),
+                                                                  wc->winref,
+                                                                  partNumCols,
+                                                                  partColIdx,
+                                                                  partOperators,
+                                                                  ordNumCols,
+                                                                  ordColIdx,
+                                                                  ordOperators,
+                                                                  wc->frameOptions,
+                                                                  result_plan);
+                       }
                }
+       }                                                       /* end of if (setOperations) */
 
-               /* Generate the (sub) plan */
-               result_plan = query_planner(parse,
-                                                                       sub_tlist,
-                                                                       (List *) parse->qual,
-                                                                       tuple_fraction);
+       /*
+        * If there is a DISTINCT clause, add the necessary node(s).
+        */
+       if (parse->distinctClause)
+       {
+               double  dNumDistinctRows;
+               long    numDistinctRows;
+               bool    use_hashed_distinct;
+               bool    can_sort;
+               bool    can_hash;
 
                /*
-                * query_planner returns actual sort order (which is not
-                * necessarily what we requested) in query_pathkeys.
+                * If there was grouping or aggregation, use the current number of
+                * rows as the estimated number of DISTINCT rows (ie, assume the
+                * result was already mostly unique).  If not, use the number of
+                * distinct-groups calculated by query_planner.
                 */
-               current_pathkeys = parse->query_pathkeys;
+               if (parse->groupClause || root->hasHavingQual || parse->hasAggs)
+                       dNumDistinctRows = result_plan->plan_rows;
+               else
+                       dNumDistinctRows = dNumGroups;
+
+               /* Also convert to long int --- but 'ware overflow! */
+               numDistinctRows = (long) Min(dNumDistinctRows, (double) LONG_MAX);
+
+               /*
+                * If we have a sortable DISTINCT ON clause, we always use sorting.
+                * This enforces the expected behavior of DISTINCT ON.
+                */
+               can_sort = grouping_is_sortable(parse->distinctClause);
+               if (can_sort && parse->hasDistinctOn)
+                       use_hashed_distinct = false;
+               else
+               {
+                       can_hash = grouping_is_hashable(parse->distinctClause);
+                       if (can_hash && can_sort)
+                       {
+                               /* we have a meaningful choice to make ... */
+                               use_hashed_distinct =
+                                       choose_hashed_distinct(root,
+                                                                                  result_plan, current_pathkeys,
+                                                                                  tuple_fraction, limit_tuples,
+                                                                                  dNumDistinctRows);
+                       }
+                       else if (can_hash)
+                               use_hashed_distinct = true;
+                       else if (can_sort)
+                               use_hashed_distinct = false;
+                       else
+                       {
+                               ereport(ERROR,
+                                               (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
+                                                errmsg("could not implement DISTINCT"),
+                                                errdetail("Some of the datatypes only support hashing, while others only support sorting.")));
+                               use_hashed_distinct = false; /* keep compiler quiet */
+                       }
+               }
+
+               if (use_hashed_distinct)
+               {
+                       /* Hashed aggregate plan --- no sort needed */
+                       result_plan = (Plan *) make_agg(root,
+                                                                                       result_plan->targetlist,
+                                                                                       NIL,
+                                                                                       AGG_HASHED,
+                                                                                       list_length(parse->distinctClause),
+                                                                                       extract_grouping_cols(parse->distinctClause,
+                                                                                                                                 result_plan->targetlist),
+                                                                                       extract_grouping_ops(parse->distinctClause),
+                                                                                       numDistinctRows,
+                                                                                       0,
+                                                                                       result_plan);
+                       /* Hashed aggregation produces randomly-ordered results */
+                       current_pathkeys = NIL;
+               }
+               else
+               {
+                       /*
+                        * Use a Unique node to implement DISTINCT.  Add an explicit sort
+                        * if we couldn't make the path come out the way the Unique node
+                        * needs it.  If we do have to sort, always sort by the more
+                        * rigorous of DISTINCT and ORDER BY, to avoid a second sort
+                        * below.  However, for regular DISTINCT, don't sort now if we
+                        * don't have to --- sorting afterwards will likely be cheaper,
+                        * and also has the possibility of optimizing via LIMIT.  But
+                        * for DISTINCT ON, we *must* force the final sort now, else
+                        * it won't have the desired behavior.
+                        */
+                       List   *needed_pathkeys;
+
+                       if (parse->hasDistinctOn &&
+                               list_length(root->distinct_pathkeys) <
+                               list_length(root->sort_pathkeys))
+                               needed_pathkeys = root->sort_pathkeys;
+                       else
+                               needed_pathkeys = root->distinct_pathkeys;
+
+                       if (!pathkeys_contained_in(needed_pathkeys, current_pathkeys))
+                       {
+                               if (list_length(root->distinct_pathkeys) >=
+                                       list_length(root->sort_pathkeys))
+                                       current_pathkeys = root->distinct_pathkeys;
+                               else
+                               {
+                                       current_pathkeys = root->sort_pathkeys;
+                                       /* Assert checks that parser didn't mess up... */
+                                       Assert(pathkeys_contained_in(root->distinct_pathkeys,
+                                                                                                current_pathkeys));
+                               }
+
+                               result_plan = (Plan *) make_sort_from_pathkeys(root,
+                                                                                                                          result_plan,
+                                                                                                                          current_pathkeys,
+                                                                                                                          -1.0);
+                       }
+
+                       result_plan = (Plan *) make_unique(result_plan,
+                                                                                          parse->distinctClause);
+                       result_plan->plan_rows = dNumDistinctRows;
+                       /* The Unique node won't change sort ordering */
+               }
+       }
+
+       /*
+        * If ORDER BY was given and we were not able to make the plan come out in
+        * the right order, add an explicit sort step.
+        */
+       if (parse->sortClause)
+       {
+               if (!pathkeys_contained_in(root->sort_pathkeys, current_pathkeys))
+               {
+                       result_plan = (Plan *) make_sort_from_pathkeys(root,
+                                                                                                                  result_plan,
+                                                                                                                  root->sort_pathkeys,
+                                                                                                                  limit_tuples);
+                       current_pathkeys = root->sort_pathkeys;
+               }
+       }
+
+       /*
+        * Finally, if there is a LIMIT/OFFSET clause, add the LIMIT node.
+        */
+       if (parse->limitCount || parse->limitOffset)
+       {
+               result_plan = (Plan *) make_limit(result_plan,
+                                                                                 parse->limitOffset,
+                                                                                 parse->limitCount,
+                                                                                 offset_est,
+                                                                                 count_est);
+       }
+
+       /*
+        * Deal with the RETURNING clause if any.  It's convenient to pass the
+        * returningList through setrefs.c now rather than at top level (if we
+        * waited, handling inherited UPDATE/DELETE would be much harder).
+        */
+       if (parse->returningList)
+       {
+               List       *rlist;
+
+               Assert(parse->resultRelation);
+               rlist = set_returning_clause_references(root->glob,
+                                                                                               parse->returningList,
+                                                                                               result_plan,
+                                                                                               parse->resultRelation);
+               root->returningLists = list_make1(rlist);
        }
+       else
+               root->returningLists = NIL;
 
-       /* query_planner returns NULL if it thinks plan is bogus */
-       if (!result_plan)
-               elog(ERROR, "union_planner: failed to create plan");
+       /* Compute result-relations list if needed */
+       if (parse->resultRelation)
+               root->resultRelations = list_make1_int(parse->resultRelation);
+       else
+               root->resultRelations = NIL;
 
        /*
-        * We couldn't canonicalize group_pathkeys and sort_pathkeys before
-        * running query_planner(), so do it now.
+        * Return the actual output ordering in query_pathkeys for possible use by
+        * an outer query level.
         */
-       group_pathkeys = canonicalize_pathkeys(parse, group_pathkeys);
-       sort_pathkeys = canonicalize_pathkeys(parse, sort_pathkeys);
+       root->query_pathkeys = current_pathkeys;
+
+       return result_plan;
+}
+
+/*
+ * Detect whether a plan node is a "dummy" plan created when a relation
+ * is deemed not to need scanning due to constraint exclusion.
+ *
+ * Currently, such dummy plans are Result nodes with constant FALSE
+ * filter quals.
+ */
+static bool
+is_dummy_plan(Plan *plan)
+{
+       if (IsA(plan, Result))
+       {
+               List       *rcqual = (List *) ((Result *) plan)->resconstantqual;
+
+               if (list_length(rcqual) == 1)
+               {
+                       Const      *constqual = (Const *) linitial(rcqual);
+
+                       if (constqual && IsA(constqual, Const))
+                       {
+                               if (!constqual->constisnull &&
+                                       !DatumGetBool(constqual->constvalue))
+                                       return true;
+                       }
+               }
+       }
+       return false;
+}
+
+/*
+ * preprocess_limit - do pre-estimation for LIMIT and/or OFFSET clauses
+ *
+ * We try to estimate the values of the LIMIT/OFFSET clauses, and pass the
+ * results back in *count_est and *offset_est. These variables are set to
+ * 0 if the corresponding clause is not present, and -1 if it's present
+ * but we couldn't estimate the value for it.  (The "0" convention is OK
+ * for OFFSET but a little bit bogus for LIMIT: effectively we estimate
+ * LIMIT 0 as though it were LIMIT 1.  But this is in line with the planner's
+ * usual practice of never estimating less than one row.)  These values will
+ * be passed to make_limit, which see if you change this code.
+ *
+ * The return value is the suitably adjusted tuple_fraction to use for
+ * planning the query. This adjustment is not overridable, since it reflects
+ * plan actions that grouping_planner() will certainly take, not assumptions
+ * about context.
+ */
+static double
+preprocess_limit(PlannerInfo *root, double tuple_fraction,
+                                int64 *offset_est, int64 *count_est)
+{
+       Query      *parse = root->parse;
+       Node       *est;
+       double          limit_fraction;
+
+       /* Should not be called unless LIMIT or OFFSET */
+       Assert(parse->limitCount || parse->limitOffset);
 
        /*
-        * If we have a GROUP BY clause, insert a group node (plus the
-        * appropriate sort node, if necessary).
+        * Try to obtain the clause values.  We use estimate_expression_value
+        * primarily because it can sometimes do something useful with Params.
         */
-       if (parse->groupClause)
+       if (parse->limitCount)
        {
-               bool            tuplePerGroup;
-               List       *group_tlist;
-               bool            is_sorted;
+               est = estimate_expression_value(root, parse->limitCount);
+               if (est && IsA(est, Const))
+               {
+                       if (((Const *) est)->constisnull)
+                       {
+                               /* NULL indicates LIMIT ALL, ie, no limit */
+                               *count_est = 0; /* treat as not present */
+                       }
+                       else
+                       {
+                               *count_est = DatumGetInt64(((Const *) est)->constvalue);
+                               if (*count_est <= 0)
+                                       *count_est = 1;         /* force to at least 1 */
+                       }
+               }
+               else
+                       *count_est = -1;        /* can't estimate */
+       }
+       else
+               *count_est = 0;                 /* not present */
 
+       if (parse->limitOffset)
+       {
+               est = estimate_expression_value(root, parse->limitOffset);
+               if (est && IsA(est, Const))
+               {
+                       if (((Const *) est)->constisnull)
+                       {
+                               /* Treat NULL as no offset; the executor will too */
+                               *offset_est = 0;        /* treat as not present */
+                       }
+                       else
+                       {
+                               *offset_est = DatumGetInt64(((Const *) est)->constvalue);
+                               if (*offset_est < 0)
+                                       *offset_est = 0;        /* less than 0 is same as 0 */
+                       }
+               }
+               else
+                       *offset_est = -1;       /* can't estimate */
+       }
+       else
+               *offset_est = 0;                /* not present */
+
+       if (*count_est != 0)
+       {
                /*
-                * Decide whether how many tuples per group the Group node needs
-                * to return. (Needs only one tuple per group if no aggregate is
-                * present. Otherwise, need every tuple from the group to do the
-                * aggregation.)  Note tuplePerGroup is named backwards :-(
+                * A LIMIT clause limits the absolute number of tuples returned.
+                * However, if it's not a constant LIMIT then we have to guess; for
+                * lack of a better idea, assume 10% of the plan's result is wanted.
                 */
-               tuplePerGroup = parse->hasAggs;
+               if (*count_est < 0 || *offset_est < 0)
+               {
+                       /* LIMIT or OFFSET is an expression ... punt ... */
+                       limit_fraction = 0.10;
+               }
+               else
+               {
+                       /* LIMIT (plus OFFSET, if any) is max number of tuples needed */
+                       limit_fraction = (double) *count_est + (double) *offset_est;
+               }
 
                /*
-                * If there are aggregates then the Group node should just return
-                * the same set of vars as the subplan did (but we can exclude any
-                * GROUP BY expressions).  If there are no aggregates then the
-                * Group node had better compute the final tlist.
+                * If we have absolute limits from both caller and LIMIT, use the
+                * smaller value; likewise if they are both fractional.  If one is
+                * fractional and the other absolute, we can't easily determine which
+                * is smaller, but we use the heuristic that the absolute will usually
+                * be smaller.
                 */
-               if (parse->hasAggs)
-                       group_tlist = flatten_tlist(result_plan->targetlist);
+               if (tuple_fraction >= 1.0)
+               {
+                       if (limit_fraction >= 1.0)
+                       {
+                               /* both absolute */
+                               tuple_fraction = Min(tuple_fraction, limit_fraction);
+                       }
+                       else
+                       {
+                               /* caller absolute, limit fractional; use caller's value */
+                       }
+               }
+               else if (tuple_fraction > 0.0)
+               {
+                       if (limit_fraction >= 1.0)
+                       {
+                               /* caller fractional, limit absolute; use limit */
+                               tuple_fraction = limit_fraction;
+                       }
+                       else
+                       {
+                               /* both fractional */
+                               tuple_fraction = Min(tuple_fraction, limit_fraction);
+                       }
+               }
                else
-                       group_tlist = tlist;
+               {
+                       /* no info from caller, just use limit */
+                       tuple_fraction = limit_fraction;
+               }
+       }
+       else if (*offset_est != 0 && tuple_fraction > 0.0)
+       {
+               /*
+                * We have an OFFSET but no LIMIT.      This acts entirely differently
+                * from the LIMIT case: here, we need to increase rather than decrease
+                * the caller's tuple_fraction, because the OFFSET acts to cause more
+                * tuples to be fetched instead of fewer.  This only matters if we got
+                * a tuple_fraction > 0, however.
+                *
+                * As above, use 10% if OFFSET is present but unestimatable.
+                */
+               if (*offset_est < 0)
+                       limit_fraction = 0.10;
+               else
+                       limit_fraction = (double) *offset_est;
 
                /*
-                * Figure out whether the path result is already ordered the way
-                * we need it --- if so, no need for an explicit sort step.
+                * If we have absolute counts from both caller and OFFSET, add them
+                * together; likewise if they are both fractional.      If one is
+                * fractional and the other absolute, we want to take the larger, and
+                * we heuristically assume that's the fractional one.
                 */
-               if (pathkeys_contained_in(group_pathkeys, current_pathkeys))
+               if (tuple_fraction >= 1.0)
                {
-                       is_sorted = true;       /* no sort needed now */
-                       /* current_pathkeys remains unchanged */
+                       if (limit_fraction >= 1.0)
+                       {
+                               /* both absolute, so add them together */
+                               tuple_fraction += limit_fraction;
+                       }
+                       else
+                       {
+                               /* caller absolute, limit fractional; use limit */
+                               tuple_fraction = limit_fraction;
+                       }
                }
                else
                {
+                       if (limit_fraction >= 1.0)
+                       {
+                               /* caller fractional, limit absolute; use caller's value */
+                       }
+                       else
+                       {
+                               /* both fractional, so add them together */
+                               tuple_fraction += limit_fraction;
+                               if (tuple_fraction >= 1.0)
+                                       tuple_fraction = 0.0;           /* assume fetch all */
+                       }
+               }
+       }
 
-                       /*
-                        * We will need to do an explicit sort by the GROUP BY clause.
-                        * make_groupplan will do the work, but set current_pathkeys
-                        * to indicate the resulting order.
-                        */
-                       is_sorted = false;
-                       current_pathkeys = group_pathkeys;
+       return tuple_fraction;
+}
+
+
+/*
+ * preprocess_groupclause - do preparatory work on GROUP BY clause
+ *
+ * The idea here is to adjust the ordering of the GROUP BY elements
+ * (which in itself is semantically insignificant) to match ORDER BY,
+ * thereby allowing a single sort operation to both implement the ORDER BY
+ * requirement and set up for a Unique step that implements GROUP BY.
+ *
+ * In principle it might be interesting to consider other orderings of the
+ * GROUP BY elements, which could match the sort ordering of other
+ * possible plans (eg an indexscan) and thereby reduce cost.  We don't
+ * bother with that, though.  Hashed grouping will frequently win anyway.
+ *
+ * Note: we need no comparable processing of the distinctClause because
+ * the parser already enforced that that matches ORDER BY.
+ */
+static void
+preprocess_groupclause(PlannerInfo *root)
+{
+       Query      *parse = root->parse;
+       List       *new_groupclause;
+       bool            partial_match;
+       ListCell   *sl;
+       ListCell   *gl;
+
+       /* If no ORDER BY, nothing useful to do here */
+       if (parse->sortClause == NIL)
+               return;
+
+       /*
+        * Scan the ORDER BY clause and construct a list of matching GROUP BY
+        * items, but only as far as we can make a matching prefix.
+        *
+        * This code assumes that the sortClause contains no duplicate items.
+        */
+       new_groupclause = NIL;
+       foreach(sl, parse->sortClause)
+       {
+               SortGroupClause *sc = (SortGroupClause *) lfirst(sl);
+
+               foreach(gl, parse->groupClause)
+               {
+                       SortGroupClause *gc = (SortGroupClause *) lfirst(gl);
+
+                       if (equal(gc, sc))
+                       {
+                               new_groupclause = lappend(new_groupclause, gc);
+                               break;
+                       }
                }
+               if (gl == NULL)
+                       break;                          /* no match, so stop scanning */
+       }
 
-               result_plan = make_groupplan(group_tlist,
-                                                                        tuplePerGroup,
-                                                                        parse->groupClause,
-                                                                        groupColIdx,
-                                                                        is_sorted,
-                                                                        result_plan);
+       /* Did we match all of the ORDER BY list, or just some of it? */
+       partial_match = (sl != NULL);
+
+       /* If no match at all, no point in reordering GROUP BY */
+       if (new_groupclause == NIL)
+               return;
+
+       /*
+        * Add any remaining GROUP BY items to the new list, but only if we
+        * were able to make a complete match.  In other words, we only
+        * rearrange the GROUP BY list if the result is that one list is a
+        * prefix of the other --- otherwise there's no possibility of a
+        * common sort.  Also, give up if there are any non-sortable GROUP BY
+        * items, since then there's no hope anyway.
+        */
+       foreach(gl, parse->groupClause)
+       {
+               SortGroupClause *gc = (SortGroupClause *) lfirst(gl);
+
+               if (list_member_ptr(new_groupclause, gc))
+                       continue;                       /* it matched an ORDER BY item */
+               if (partial_match)
+                       return;                         /* give up, no common sort possible */
+               if (!OidIsValid(gc->sortop))
+                       return;                         /* give up, GROUP BY can't be sorted */
+               new_groupclause = lappend(new_groupclause, gc);
        }
 
+       /* Success --- install the rearranged GROUP BY list */
+       Assert(list_length(parse->groupClause) == list_length(new_groupclause));
+       parse->groupClause = new_groupclause;
+}
+
+/*
+ * choose_hashed_grouping - should we use hashed grouping?
+ *
+ * Note: this is only applied when both alternatives are actually feasible.
+ */
+static bool
+choose_hashed_grouping(PlannerInfo *root,
+                                          double tuple_fraction, double limit_tuples,
+                                          Path *cheapest_path, Path *sorted_path,
+                                          double dNumGroups, AggClauseCounts *agg_counts)
+{
+       int                     numGroupCols = list_length(root->parse->groupClause);
+       double          cheapest_path_rows;
+       int                     cheapest_path_width;
+       Size            hashentrysize;
+       List       *target_pathkeys;
+       List       *current_pathkeys;
+       Path            hashed_p;
+       Path            sorted_p;
+
+       /* Prefer sorting when enable_hashagg is off */
+       if (!enable_hashagg)
+               return false;
+
        /*
-        * If aggregate is present, insert the Agg node
+        * Don't do it if it doesn't look like the hashtable will fit into
+        * work_mem.
         *
-        * HAVING clause, if any, becomes qual of the Agg node
+        * Beware here of the possibility that cheapest_path->parent is NULL. This
+        * could happen if user does something silly like SELECT 'foo' GROUP BY 1;
         */
-       if (parse->hasAggs)
+       if (cheapest_path->parent)
+       {
+               cheapest_path_rows = cheapest_path->parent->rows;
+               cheapest_path_width = cheapest_path->parent->width;
+       }
+       else
        {
-               result_plan = (Plan *) make_agg(tlist,
-                                                                               (List *) parse->havingQual,
-                                                                               result_plan);
-               /* Note: Agg does not affect any existing sort order of the tuples */
+               cheapest_path_rows = 1; /* assume non-set result */
+               cheapest_path_width = 100;              /* arbitrary */
        }
 
+       /* Estimate per-hash-entry space at tuple width... */
+       hashentrysize = MAXALIGN(cheapest_path_width) + MAXALIGN(sizeof(MinimalTupleData));
+       /* plus space for pass-by-ref transition values... */
+       hashentrysize += agg_counts->transitionSpace;
+       /* plus the per-hash-entry overhead */
+       hashentrysize += hash_agg_entry_size(agg_counts->numAggs);
+
+       if (hashentrysize * dNumGroups > work_mem * 1024L)
+               return false;
+
        /*
-        * If we were not able to make the plan come out in the right order,
-        * add an explicit sort step.
+        * When we have both GROUP BY and DISTINCT, use the more-rigorous of
+        * DISTINCT and ORDER BY as the assumed required output sort order.
+        * This is an oversimplification because the DISTINCT might get
+        * implemented via hashing, but it's not clear that the case is common
+        * enough (or that our estimates are good enough) to justify trying to
+        * solve it exactly.
         */
-       if (parse->sortClause)
+       if (list_length(root->distinct_pathkeys) >
+               list_length(root->sort_pathkeys))
+               target_pathkeys = root->distinct_pathkeys;
+       else
+               target_pathkeys = root->sort_pathkeys;
+
+       /*
+        * See if the estimated cost is no more than doing it the other way. While
+        * avoiding the need for sorted input is usually a win, the fact that the
+        * output won't be sorted may be a loss; so we need to do an actual cost
+        * comparison.
+        *
+        * We need to consider cheapest_path + hashagg [+ final sort] versus
+        * either cheapest_path [+ sort] + group or agg [+ final sort] or
+        * presorted_path + group or agg [+ final sort] where brackets indicate a
+        * step that may not be needed. We assume query_planner() will have
+        * returned a presorted path only if it's a winner compared to
+        * cheapest_path for this purpose.
+        *
+        * These path variables are dummies that just hold cost fields; we don't
+        * make actual Paths for these steps.
+        */
+       cost_agg(&hashed_p, root, AGG_HASHED, agg_counts->numAggs,
+                        numGroupCols, dNumGroups,
+                        cheapest_path->startup_cost, cheapest_path->total_cost,
+                        cheapest_path_rows);
+       /* Result of hashed agg is always unsorted */
+       if (target_pathkeys)
+               cost_sort(&hashed_p, root, target_pathkeys, hashed_p.total_cost,
+                                 dNumGroups, cheapest_path_width, limit_tuples);
+
+       if (sorted_path)
+       {
+               sorted_p.startup_cost = sorted_path->startup_cost;
+               sorted_p.total_cost = sorted_path->total_cost;
+               current_pathkeys = sorted_path->pathkeys;
+       }
+       else
        {
-               if (!pathkeys_contained_in(sort_pathkeys, current_pathkeys))
-                       result_plan = make_sortplan(tlist, result_plan,
-                                                                               parse->sortClause);
+               sorted_p.startup_cost = cheapest_path->startup_cost;
+               sorted_p.total_cost = cheapest_path->total_cost;
+               current_pathkeys = cheapest_path->pathkeys;
        }
+       if (!pathkeys_contained_in(root->group_pathkeys, current_pathkeys))
+       {
+               cost_sort(&sorted_p, root, root->group_pathkeys, sorted_p.total_cost,
+                                 cheapest_path_rows, cheapest_path_width, -1.0);
+               current_pathkeys = root->group_pathkeys;
+       }
+
+       if (root->parse->hasAggs)
+               cost_agg(&sorted_p, root, AGG_SORTED, agg_counts->numAggs,
+                                numGroupCols, dNumGroups,
+                                sorted_p.startup_cost, sorted_p.total_cost,
+                                cheapest_path_rows);
+       else
+               cost_group(&sorted_p, root, numGroupCols, dNumGroups,
+                                  sorted_p.startup_cost, sorted_p.total_cost,
+                                  cheapest_path_rows);
+       /* The Agg or Group node will preserve ordering */
+       if (target_pathkeys &&
+               !pathkeys_contained_in(target_pathkeys, current_pathkeys))
+               cost_sort(&sorted_p, root, target_pathkeys, sorted_p.total_cost,
+                                 dNumGroups, cheapest_path_width, limit_tuples);
 
        /*
-        * Finally, if there is a DISTINCT clause, add the UNIQUE node.
+        * Now make the decision using the top-level tuple fraction.  First we
+        * have to convert an absolute count (LIMIT) into fractional form.
         */
-       if (parse->distinctClause)
+       if (tuple_fraction >= 1.0)
+               tuple_fraction /= dNumGroups;
+
+       if (compare_fractional_path_costs(&hashed_p, &sorted_p,
+                                                                         tuple_fraction) < 0)
        {
-               result_plan = (Plan *) make_unique(tlist, result_plan,
-                                                                                  parse->distinctClause);
+               /* Hashed is cheaper, so use it */
+               return true;
        }
+       return false;
+}
 
-       return result_plan;
+/*
+ * choose_hashed_distinct - should we use hashing for DISTINCT?
+ *
+ * This is fairly similar to choose_hashed_grouping, but there are enough
+ * differences that it doesn't seem worth trying to unify the two functions.
+ *
+ * But note that making the two choices independently is a bit bogus in
+ * itself.  If the two could be combined into a single choice operation
+ * it'd probably be better, but that seems far too unwieldy to be practical,
+ * especially considering that the combination of GROUP BY and DISTINCT
+ * isn't very common in real queries.  By separating them, we are giving
+ * extra preference to using a sorting implementation when a common sort key
+ * is available ... and that's not necessarily wrong anyway.
+ *
+ * Note: this is only applied when both alternatives are actually feasible.
+ */
+static bool
+choose_hashed_distinct(PlannerInfo *root,
+                                          Plan *input_plan, List *input_pathkeys,
+                                          double tuple_fraction, double limit_tuples,
+                                          double dNumDistinctRows)
+{
+       int                     numDistinctCols = list_length(root->parse->distinctClause);
+       Size            hashentrysize;
+       List       *current_pathkeys;
+       List       *needed_pathkeys;
+       Path            hashed_p;
+       Path            sorted_p;
+
+       /* Prefer sorting when enable_hashagg is off */
+       if (!enable_hashagg)
+               return false;
+
+       /*
+        * Don't do it if it doesn't look like the hashtable will fit into
+        * work_mem.
+        */
+       hashentrysize = MAXALIGN(input_plan->plan_width) + MAXALIGN(sizeof(MinimalTupleData));
+
+       if (hashentrysize * dNumDistinctRows > work_mem * 1024L)
+               return false;
+
+       /*
+        * See if the estimated cost is no more than doing it the other way. While
+        * avoiding the need for sorted input is usually a win, the fact that the
+        * output won't be sorted may be a loss; so we need to do an actual cost
+        * comparison.
+        *
+        * We need to consider input_plan + hashagg [+ final sort] versus
+        * input_plan [+ sort] + group [+ final sort] where brackets indicate
+        * a step that may not be needed.
+        *
+        * These path variables are dummies that just hold cost fields; we don't
+        * make actual Paths for these steps.
+        */
+       cost_agg(&hashed_p, root, AGG_HASHED, 0,
+                        numDistinctCols, dNumDistinctRows,
+                        input_plan->startup_cost, input_plan->total_cost,
+                        input_plan->plan_rows);
+       /*
+        * Result of hashed agg is always unsorted, so if ORDER BY is present
+        * we need to charge for the final sort.
+        */
+       if (root->parse->sortClause)
+               cost_sort(&hashed_p, root, root->sort_pathkeys, hashed_p.total_cost,
+                                 dNumDistinctRows, input_plan->plan_width, limit_tuples);
+
+       /*
+        * Now for the GROUP case.  See comments in grouping_planner about the
+        * sorting choices here --- this code should match that code.
+        */
+       sorted_p.startup_cost = input_plan->startup_cost;
+       sorted_p.total_cost = input_plan->total_cost;
+       current_pathkeys = input_pathkeys;
+       if (root->parse->hasDistinctOn &&
+               list_length(root->distinct_pathkeys) <
+               list_length(root->sort_pathkeys))
+               needed_pathkeys = root->sort_pathkeys;
+       else
+               needed_pathkeys = root->distinct_pathkeys;
+       if (!pathkeys_contained_in(needed_pathkeys, current_pathkeys))
+       {
+               if (list_length(root->distinct_pathkeys) >=
+                       list_length(root->sort_pathkeys))
+                       current_pathkeys = root->distinct_pathkeys;
+               else
+                       current_pathkeys = root->sort_pathkeys;
+               cost_sort(&sorted_p, root, current_pathkeys, sorted_p.total_cost,
+                                 input_plan->plan_rows, input_plan->plan_width, -1.0);
+       }
+       cost_group(&sorted_p, root, numDistinctCols, dNumDistinctRows,
+                          sorted_p.startup_cost, sorted_p.total_cost,
+                          input_plan->plan_rows);
+       if (root->parse->sortClause &&
+               !pathkeys_contained_in(root->sort_pathkeys, current_pathkeys))
+               cost_sort(&sorted_p, root, root->sort_pathkeys, sorted_p.total_cost,
+                                 dNumDistinctRows, input_plan->plan_width, limit_tuples);
+
+       /*
+        * Now make the decision using the top-level tuple fraction.  First we
+        * have to convert an absolute count (LIMIT) into fractional form.
+        */
+       if (tuple_fraction >= 1.0)
+               tuple_fraction /= dNumDistinctRows;
+
+       if (compare_fractional_path_costs(&hashed_p, &sorted_p,
+                                                                         tuple_fraction) < 0)
+       {
+               /* Hashed is cheaper, so use it */
+               return true;
+       }
+       return false;
 }
 
 /*---------------
  * make_subplanTargetList
  *       Generate appropriate target list when grouping is required.
  *
- * When union_planner inserts Aggregate and/or Group plan nodes above
- * the result of query_planner, we typically want to pass a different
+ * When grouping_planner inserts Aggregate, Group, or Result plan nodes
+ * above the result of query_planner, we typically want to pass a different
  * target list to query_planner than the outer plan nodes should have.
  * This routine generates the correct target list for the subplan.
  *
  * The initial target list passed from the parser already contains entries
  * for all ORDER BY and GROUP BY expressions, but it will not have entries
  * for variables used only in HAVING clauses; so we need to add those
- * variables to the subplan target list.  Also, if we are doing either
- * grouping or aggregation, we flatten all expressions except GROUP BY items
- * into their component variables; the other expressions will be computed by
- * the inserted nodes rather than by the subplan.  For example,
- * given a query like
+ * variables to the subplan target list.  Also, we flatten all expressions
+ * except GROUP BY items into their component variables; the other expressions
+ * will be computed by the inserted nodes rather than by the subplan.
+ * For example, given a query like
  *             SELECT a+b,SUM(c+d) FROM table GROUP BY a+b;
  * we want to pass this targetlist to the subplan:
  *             a,b,c,d,a+b
  * where the a+b target will be used by the Sort/Group steps, and the
  * other targets will be used for computing the final results. (In the
  * above example we could theoretically suppress the a and b targets and
- * use only a+b, but it's not really worth the trouble.)
+ * pass down only c,d,a+b, but it's not really worth the trouble to
+ * eliminate simple var references from the subplan.  We will avoid doing
+ * the extra computation to recompute a+b at the outer level; see
+ * fix_upper_expr() in setrefs.c.)
+ *
+ * If we are grouping or aggregating, *and* there are no non-Var grouping
+ * expressions, then the returned tlist is effectively dummy; we do not
+ * need to force it to be evaluated, because all the Vars it contains
+ * should be present in the output of query_planner anyway.
  *
- * 'parse' is the query being processed.
  * 'tlist' is the query's target list.
  * 'groupColIdx' receives an array of column numbers for the GROUP BY
- * expressions (if there are any) in the subplan's target list.
+ *                     expressions (if there are any) in the subplan's target list.
+ * 'need_tlist_eval' is set true if we really need to evaluate the
+ *                     result tlist.
  *
  * The result is the targetlist to be passed to the subplan.
  *---------------
  */
 static List *
-make_subplanTargetList(Query *parse,
+make_subplanTargetList(PlannerInfo *root,
                                           List *tlist,
-                                          AttrNumber **groupColIdx)
+                                          AttrNumber **groupColIdx,
+                                          bool *need_tlist_eval)
 {
+       Query      *parse = root->parse;
        List       *sub_tlist;
        List       *extravars;
        int                     numCols;
@@ -709,67 +2211,72 @@ make_subplanTargetList(Query *parse,
        *groupColIdx = NULL;
 
        /*
-        * If we're not grouping or aggregating, nothing to do here;
+        * If we're not grouping or aggregating, there's nothing to do here;
         * query_planner should receive the unmodified target list.
         */
-       if (!parse->hasAggs && !parse->groupClause && !parse->havingQual)
+       if (!parse->hasAggs && !parse->groupClause && !root->hasHavingQual &&
+               !parse->hasWindowFuncs)
+       {
+               *need_tlist_eval = true;
                return tlist;
+       }
 
        /*
         * Otherwise, start with a "flattened" tlist (having just the vars
-        * mentioned in the targetlist and HAVING qual --- but not upper-
-        * level Vars; they will be replaced by Params later on).
+        * mentioned in the targetlist and HAVING qual --- but not upper-level
+        * Vars; they will be replaced by Params later on).  Note this includes
+        * vars used in resjunk items, so we are covering the needs of ORDER BY
+        * and window specifications.
         */
        sub_tlist = flatten_tlist(tlist);
-       extravars = pull_var_clause(parse->havingQual, false);
+       extravars = pull_var_clause(parse->havingQual, true);
        sub_tlist = add_to_flat_tlist(sub_tlist, extravars);
-       freeList(extravars);
+       list_free(extravars);
+       *need_tlist_eval = false;       /* only eval if not flat tlist */
 
        /*
         * If grouping, create sub_tlist entries for all GROUP BY expressions
-        * (GROUP BY items that are simple Vars should be in the list
-        * already), and make an array showing where the group columns are in
-        * the sub_tlist.
+        * (GROUP BY items that are simple Vars should be in the list already),
+        * and make an array showing where the group columns are in the sub_tlist.
         */
-       numCols = length(parse->groupClause);
+       numCols = list_length(parse->groupClause);
        if (numCols > 0)
        {
                int                     keyno = 0;
                AttrNumber *grpColIdx;
-               List       *gl;
+               ListCell   *gl;
 
                grpColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols);
                *groupColIdx = grpColIdx;
 
                foreach(gl, parse->groupClause)
                {
-                       GroupClause *grpcl = (GroupClause *) lfirst(gl);
+                       SortGroupClause *grpcl = (SortGroupClause *) lfirst(gl);
                        Node       *groupexpr = get_sortgroupclause_expr(grpcl, tlist);
-                       TargetEntry *te = NULL;
-                       List       *sl;
-
-                       /* Find or make a matching sub_tlist entry */
-                       foreach(sl, sub_tlist)
-                       {
-                               te = (TargetEntry *) lfirst(sl);
-                               if (equal(groupexpr, te->expr))
-                                       break;
-                       }
-                       if (!sl)
-                       {
-                               te = makeTargetEntry(makeResdom(length(sub_tlist) + 1,
-                                                                                               exprType(groupexpr),
-                                                                                               exprTypmod(groupexpr),
-                                                                                               NULL,
-                                                                                               (Index) 0,
-                                                                                               (Oid) 0,
-                                                                                               false),
-                                                                        groupexpr);
+                       TargetEntry *te;
+
+                       /*
+                        * Find or make a matching sub_tlist entry.  If the groupexpr
+                        * isn't a Var, no point in searching.  (Note that the parser
+                        * won't make multiple groupClause entries for the same TLE.)
+                        */
+                       if (groupexpr && IsA(groupexpr, Var))
+                               te = tlist_member(groupexpr, sub_tlist);
+                       else
+                               te = NULL;
+
+                       if (!te)
+                       {
+                               te = makeTargetEntry((Expr *) groupexpr,
+                                                                        list_length(sub_tlist) + 1,
+                                                                        NULL,
+                                                                        false);
                                sub_tlist = lappend(sub_tlist, te);
+                               *need_tlist_eval = true;                /* it's not flat anymore */
                        }
 
                        /* and save its resno */
-                       grpColIdx[keyno++] = te->resdom->resno;
+                       grpColIdx[keyno++] = te->resno;
                }
        }
 
@@ -777,230 +2284,295 @@ make_subplanTargetList(Query *parse,
 }
 
 /*
- * make_groupplan
- *             Add a Group node for GROUP BY processing.
- *             If we couldn't make the subplan produce presorted output for grouping,
- *             first add an explicit Sort node.
+ * locate_grouping_columns
+ *             Locate grouping columns in the tlist chosen by query_planner.
+ *
+ * This is only needed if we don't use the sub_tlist chosen by
+ * make_subplanTargetList.     We have to forget the column indexes found
+ * by that routine and re-locate the grouping exprs in the real sub_tlist.
  */
-static Plan *
-make_groupplan(List *group_tlist,
-                          bool tuplePerGroup,
-                          List *groupClause,
-                          AttrNumber *grpColIdx,
-                          bool is_presorted,
-                          Plan *subplan)
+static void
+locate_grouping_columns(PlannerInfo *root,
+                                               List *tlist,
+                                               List *sub_tlist,
+                                               AttrNumber *groupColIdx)
 {
-       int                     numCols = length(groupClause);
+       int                     keyno = 0;
+       ListCell   *gl;
 
-       if (!is_presorted)
+       /*
+        * No work unless grouping.
+        */
+       if (!root->parse->groupClause)
        {
+               Assert(groupColIdx == NULL);
+               return;
+       }
+       Assert(groupColIdx != NULL);
 
-               /*
-                * The Sort node always just takes a copy of the subplan's tlist
-                * plus ordering information.  (This might seem inefficient if the
-                * subplan contains complex GROUP BY expressions, but in fact Sort
-                * does not evaluate its targetlist --- it only outputs the same
-                * tuples in a new order.  So the expressions we might be copying
-                * are just dummies with no extra execution cost.)
-                */
-               List       *sort_tlist = new_unsorted_tlist(subplan->targetlist);
-               int                     keyno = 0;
-               List       *gl;
-
-               foreach(gl, groupClause)
-               {
-                       GroupClause *grpcl = (GroupClause *) lfirst(gl);
-                       TargetEntry *te = nth(grpColIdx[keyno] - 1, sort_tlist);
-                       Resdom     *resdom = te->resdom;
-
-                       /*
-                        * Check for the possibility of duplicate group-by clauses ---
-                        * the parser should have removed 'em, but the Sort executor
-                        * will get terribly confused if any get through!
-                        */
-                       if (resdom->reskey == 0)
-                       {
-                               /* OK, insert the ordering info needed by the executor. */
-                               resdom->reskey = ++keyno;
-                               resdom->reskeyop = get_opcode(grpcl->sortop);
-                       }
-               }
-
-               Assert(keyno > 0);
+       foreach(gl, root->parse->groupClause)
+       {
+               SortGroupClause *grpcl = (SortGroupClause *) lfirst(gl);
+               Node       *groupexpr = get_sortgroupclause_expr(grpcl, tlist);
+               TargetEntry *te = tlist_member(groupexpr, sub_tlist);
 
-               subplan = (Plan *) make_sort(sort_tlist, subplan, keyno);
+               if (!te)
+                       elog(ERROR, "failed to locate grouping columns");
+               groupColIdx[keyno++] = te->resno;
        }
-
-       return (Plan *) make_group(group_tlist, tuplePerGroup, numCols,
-                                                          grpColIdx, subplan);
 }
 
 /*
- * make_sortplan
- *       Add a Sort node to implement an explicit ORDER BY clause.
+ * postprocess_setop_tlist
+ *       Fix up targetlist returned by plan_set_operations().
+ *
+ * We need to transpose sort key info from the orig_tlist into new_tlist.
+ * NOTE: this would not be good enough if we supported resjunk sort keys
+ * for results of set operations --- then, we'd need to project a whole
+ * new tlist to evaluate the resjunk columns.  For now, just ereport if we
+ * find any resjunk columns in orig_tlist.
  */
-static Plan *
-make_sortplan(List *tlist, Plan *plannode, List *sortcls)
+static List *
+postprocess_setop_tlist(List *new_tlist, List *orig_tlist)
 {
-       List       *sort_tlist;
-       List       *i;
-       int                     keyno = 0;
-
-       /*
-        * First make a copy of the tlist so that we don't corrupt the
-        * original.
-        */
-       sort_tlist = new_unsorted_tlist(tlist);
+       ListCell   *l;
+       ListCell   *orig_tlist_item = list_head(orig_tlist);
 
-       foreach(i, sortcls)
+       foreach(l, new_tlist)
        {
-               SortClause *sortcl = (SortClause *) lfirst(i);
-               TargetEntry *tle = get_sortgroupclause_tle(sortcl, sort_tlist);
-               Resdom     *resdom = tle->resdom;
-
-               /*
-                * Check for the possibility of duplicate order-by clauses --- the
-                * parser should have removed 'em, but the executor will get
-                * terribly confused if any get through!
-                */
-               if (resdom->reskey == 0)
-               {
-                       /* OK, insert the ordering info needed by the executor. */
-                       resdom->reskey = ++keyno;
-                       resdom->reskeyop = get_opcode(sortcl->sortop);
-               }
+               TargetEntry *new_tle = (TargetEntry *) lfirst(l);
+               TargetEntry *orig_tle;
+
+               /* ignore resjunk columns in setop result */
+               if (new_tle->resjunk)
+                       continue;
+
+               Assert(orig_tlist_item != NULL);
+               orig_tle = (TargetEntry *) lfirst(orig_tlist_item);
+               orig_tlist_item = lnext(orig_tlist_item);
+               if (orig_tle->resjunk)  /* should not happen */
+                       elog(ERROR, "resjunk output columns are not implemented");
+               Assert(new_tle->resno == orig_tle->resno);
+               new_tle->ressortgroupref = orig_tle->ressortgroupref;
        }
-
-       Assert(keyno > 0);
-
-       return (Plan *) make_sort(sort_tlist, plannode, keyno);
+       if (orig_tlist_item != NULL)
+               elog(ERROR, "resjunk output columns are not implemented");
+       return new_tlist;
 }
 
 /*
- * pg_checkretval() -- check return value of a list of sql parse
- *                                             trees.
- *
- * The return value of a sql function is the value returned by
- * the final query in the function.  We do some ad-hoc define-time
- * type checking here to be sure that the user is returning the
- * type he claims.
- *
- * XXX Why is this function in this module?
+ * select_active_windows
+ *             Create a list of the "active" window clauses (ie, those referenced
+ *             by non-deleted WindowFuncs) in the order they are to be executed.
  */
-void
-pg_checkretval(Oid rettype, List *queryTreeList)
+static List *
+select_active_windows(PlannerInfo *root, WindowFuncLists *wflists)
 {
-       Query      *parse;
-       List       *tlist;
-       List       *rt;
-       int                     cmd;
-       Type            typ;
-       Resdom     *resnode;
-       Relation        reln;
-       Oid                     relid;
-       int                     relnatts;
-       int                     i;
-
-       /* find the final query */
-       parse = (Query *) nth(length(queryTreeList) - 1, queryTreeList);
+       List       *result;
+       List       *actives;
+       ListCell   *lc;
 
-       /*
-        * test 1:      if the last query is a utility invocation, then there had
-        * better not be a return value declared.
-        */
-       if (parse->commandType == CMD_UTILITY)
+       /* First, make a list of the active windows */
+       actives = NIL;
+       foreach(lc, root->parse->windowClause)
        {
-               if (rettype == InvalidOid)
-                       return;
-               else
-                       elog(ERROR, "return type mismatch in function decl: final query is a catalog utility");
-       }
+               WindowClause *wc = (WindowClause *) lfirst(lc);
 
-       /* okay, it's an ordinary query */
-       tlist = parse->targetList;
-       rt = parse->rtable;
-       cmd = parse->commandType;
+               /* It's only active if wflists shows some related WindowFuncs */
+               Assert(wc->winref <= wflists->maxWinRef);
+               if (wflists->windowFuncs[wc->winref] != NIL)
+                       actives = lappend(actives, wc);
+       }
 
        /*
-        * test 2:      if the function is declared to return no value, then the
-        * final query had better not be a retrieve.
+        * Now, ensure that windows with identical partitioning/ordering clauses
+        * are adjacent in the list.  This is required by the SQL standard, which
+        * says that only one sort is to be used for such windows, even if they
+        * are otherwise distinct (eg, different names or framing clauses).
+        *
+        * There is room to be much smarter here, for example detecting whether
+        * one window's sort keys are a prefix of another's (so that sorting
+        * for the latter would do for the former), or putting windows first
+        * that match a sort order available for the underlying query.  For the
+        * moment we are content with meeting the spec.
         */
-       if (rettype == InvalidOid)
+       result = NIL;
+       while (actives != NIL)
        {
-               if (cmd == CMD_SELECT)
-                       elog(ERROR,
-                                "function declared with no return type, but final query is a retrieve");
-               else
-                       return;
-       }
+               WindowClause *wc = (WindowClause *) linitial(actives);
+               ListCell   *prev;
+               ListCell   *next;
 
-       /* by here, the function is declared to return some type */
-       if ((typ = typeidType(rettype)) == NULL)
-               elog(ERROR, "can't find return type %u for function\n", rettype);
+               /* Move wc from actives to result */
+               actives = list_delete_first(actives);
+               result = lappend(result, wc);
 
-       /*
-        * test 3:      if the function is declared to return a value, then the
-        * final query had better be a retrieve.
-        */
-       if (cmd != CMD_SELECT)
-               elog(ERROR, "function declared to return type %s, but final query is not a retrieve", typeTypeName(typ));
+               /* Now move any matching windows from actives to result */
+               prev = NULL;
+               for (lc = list_head(actives); lc; lc = next)
+               {
+                       WindowClause *wc2 = (WindowClause *) lfirst(lc);
 
-       /*
-        * test 4:      for base type returns, the target list should have exactly
-        * one entry, and its type should agree with what the user declared.
-        */
+                       next = lnext(lc);
+                       /* framing options are NOT to be compared here! */
+                       if (equal(wc->partitionClause, wc2->partitionClause) &&
+                               equal(wc->orderClause, wc2->orderClause))
+                       {
+                               actives = list_delete_cell(actives, lc, prev);
+                               result = lappend(result, wc2);
+                       }
+                       else
+                               prev = lc;
+               }
+       }
 
-       if (typeTypeRelid(typ) == InvalidOid)
-       {
-               if (ExecTargetListLength(tlist) > 1)
-                       elog(ERROR, "function declared to return %s returns multiple values in final retrieve", typeTypeName(typ));
+       return result;
+}
 
-               resnode = (Resdom *) ((TargetEntry *) lfirst(tlist))->resdom;
-               if (resnode->restype != rettype)
-                       elog(ERROR, "return type mismatch in function: declared to return %s, returns %s", typeTypeName(typ), typeidTypeName(resnode->restype));
+/*
+ * make_pathkeys_for_window
+ *             Create a pathkeys list describing the required input ordering
+ *             for the given WindowClause.
+ *
+ * The required ordering is first the PARTITION keys, then the ORDER keys.
+ * In the future we might try to implement windowing using hashing, in which
+ * case the ordering could be relaxed, but for now we always sort.
+ */
+static List *
+make_pathkeys_for_window(PlannerInfo *root, WindowClause *wc,
+                                                List *tlist, bool canonicalize)
+{
+       List       *window_pathkeys;
+       List       *window_sortclauses;
+
+       /* Throw error if can't sort */
+       if (!grouping_is_sortable(wc->partitionClause))
+               ereport(ERROR,
+                               (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
+                                errmsg("could not implement window PARTITION BY"),
+                                errdetail("Window partitioning columns must be of sortable datatypes.")));
+       if (!grouping_is_sortable(wc->orderClause))
+               ereport(ERROR,
+                               (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
+                                errmsg("could not implement window ORDER BY"),
+                                errdetail("Window ordering columns must be of sortable datatypes.")));
+
+       /* Okay, make the combined pathkeys */
+       window_sortclauses = list_concat(list_copy(wc->partitionClause),
+                                                                        list_copy(wc->orderClause));
+       window_pathkeys = make_pathkeys_for_sortclauses(root,
+                                                                                                       window_sortclauses,
+                                                                                                       tlist,
+                                                                                                       canonicalize);
+       list_free(window_sortclauses);
+       return window_pathkeys;
+}
 
-               /* by here, base return types match */
-               return;
-       }
+/*----------
+ * get_column_info_for_window
+ *             Get the partitioning/ordering column numbers and equality operators
+ *             for a WindowAgg node.
+ *
+ * This depends on the behavior of make_pathkeys_for_window()!
+ *
+ * We are given the target WindowClause and an array of the input column
+ * numbers associated with the resulting pathkeys.  In the easy case, there
+ * are the same number of pathkey columns as partitioning + ordering columns
+ * and we just have to copy some data around.  However, it's possible that
+ * some of the original partitioning + ordering columns were eliminated as
+ * redundant during the transformation to pathkeys.  (This can happen even
+ * though the parser gets rid of obvious duplicates.  A typical scenario is a
+ * window specification "PARTITION BY x ORDER BY y" coupled with a clause
+ * "WHERE x = y" that causes the two sort columns to be recognized as
+ * redundant.)  In that unusual case, we have to work a lot harder to
+ * determine which keys are significant.
+ *
+ * The method used here is a bit brute-force: add the sort columns to a list
+ * one at a time and note when the resulting pathkey list gets longer.  But
+ * it's a sufficiently uncommon case that a faster way doesn't seem worth
+ * the amount of code refactoring that'd be needed.
+ *----------
+ */
+static void
+get_column_info_for_window(PlannerInfo *root, WindowClause *wc, List *tlist,
+                                                  int numSortCols, AttrNumber *sortColIdx,
+                                                  int *partNumCols,
+                                                  AttrNumber **partColIdx,
+                                                  Oid **partOperators,
+                                                  int *ordNumCols,
+                                                  AttrNumber **ordColIdx,
+                                                  Oid **ordOperators)
+{
+       int                     numPart = list_length(wc->partitionClause);
+       int                     numOrder = list_length(wc->orderClause);
 
-       /*
-        * If the target list is of length 1, and the type of the varnode in
-        * the target list is the same as the declared return type, this is
-        * okay.  This can happen, for example, where the body of the function
-        * is 'retrieve (x = func2())', where func2 has the same return type
-        * as the function that's calling it.
-        */
-       if (ExecTargetListLength(tlist) == 1)
+       if (numSortCols == numPart + numOrder)
        {
-               resnode = (Resdom *) ((TargetEntry *) lfirst(tlist))->resdom;
-               if (resnode->restype == rettype)
-                       return;
+               /* easy case */
+               *partNumCols = numPart;
+               *partColIdx = sortColIdx;
+               *partOperators = extract_grouping_ops(wc->partitionClause);
+               *ordNumCols = numOrder;
+               *ordColIdx = sortColIdx + numPart;
+               *ordOperators = extract_grouping_ops(wc->orderClause);
        }
-
-       /*
-        * By here, the procedure returns a (set of) tuples.  This part of the
-        * typechecking is a hack.      We look up the relation that is the
-        * declared return type, and be sure that attributes 1 .. n in the
-        * target list match the declared types.
-        */
-       reln = heap_open(typeTypeRelid(typ), AccessShareLock);
-       relid = reln->rd_id;
-       relnatts = reln->rd_rel->relnatts;
-
-       if (ExecTargetListLength(tlist) != relnatts)
-               elog(ERROR, "function declared to return type %s does not retrieve (%s.*)", typeTypeName(typ), typeTypeName(typ));
-
-       /* expect attributes 1 .. n in order */
-       for (i = 1; i <= relnatts; i++)
+       else
        {
-               TargetEntry *tle = lfirst(tlist);
-               Node       *thenode = tle->expr;
-               Oid                     tletype = exprType(thenode);
-
-               if (tletype != reln->rd_att->attrs[i - 1]->atttypid)
-                       elog(ERROR, "function declared to return type %s does not retrieve (%s.all)", typeTypeName(typ), typeTypeName(typ));
-               tlist = lnext(tlist);
+               List       *sortclauses;
+               List       *pathkeys;
+               int                     scidx;
+               ListCell   *lc;
+
+               /* first, allocate what's certainly enough space for the arrays */
+               *partNumCols = 0;
+               *partColIdx = (AttrNumber *) palloc(numPart * sizeof(AttrNumber));
+               *partOperators = (Oid *) palloc(numPart * sizeof(Oid));
+               *ordNumCols = 0;
+               *ordColIdx = (AttrNumber *) palloc(numOrder * sizeof(AttrNumber));
+               *ordOperators = (Oid *) palloc(numOrder * sizeof(Oid));
+               sortclauses = NIL;
+               pathkeys = NIL;
+               scidx = 0;
+               foreach(lc, wc->partitionClause)
+               {
+                       SortGroupClause *sgc = (SortGroupClause *) lfirst(lc);
+                       List       *new_pathkeys;
+
+                       sortclauses = lappend(sortclauses, sgc);
+                       new_pathkeys = make_pathkeys_for_sortclauses(root,
+                                                                                                                sortclauses,
+                                                                                                                tlist,
+                                                                                                                true);
+                       if (list_length(new_pathkeys) > list_length(pathkeys))
+                       {
+                               /* this sort clause is actually significant */
+                               *partColIdx[*partNumCols] = sortColIdx[scidx++];
+                               *partOperators[*partNumCols] = sgc->eqop;
+                               (*partNumCols)++;
+                               pathkeys = new_pathkeys;
+                       }
+               }
+               foreach(lc, wc->orderClause)
+               {
+                       SortGroupClause *sgc = (SortGroupClause *) lfirst(lc);
+                       List       *new_pathkeys;
+
+                       sortclauses = lappend(sortclauses, sgc);
+                       new_pathkeys = make_pathkeys_for_sortclauses(root,
+                                                                                                                sortclauses,
+                                                                                                                tlist,
+                                                                                                                true);
+                       if (list_length(new_pathkeys) > list_length(pathkeys))
+                       {
+                               /* this sort clause is actually significant */
+                               *ordColIdx[*ordNumCols] = sortColIdx[scidx++];
+                               *ordOperators[*ordNumCols] = sgc->eqop;
+                               (*ordNumCols)++;
+                               pathkeys = new_pathkeys;
+                       }
+               }
+               /* complain if we didn't eat exactly the right number of sort cols */
+               if (scidx != numSortCols)
+                       elog(ERROR, "failed to deconstruct sort operators into partitioning/ordering operators");
        }
-
-       heap_close(reln, AccessShareLock);
 }