]> granicus.if.org Git - postgresql/blobdiff - src/backend/optimizer/plan/planner.c
Update copyright for 2009.
[postgresql] / src / backend / optimizer / plan / planner.c
index 00ba58ec8bca8233ecc17e51496167f8153fb19d..841d85f7397da28f478290fdaae80de563a89c53 100644 (file)
@@ -3,12 +3,12 @@
  * planner.c
  *       The query optimizer external interface.
  *
- * Portions Copyright (c) 1996-2003, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1996-2009, PostgreSQL Global Development Group
  * Portions Copyright (c) 1994, Regents of the University of California
  *
  *
  * IDENTIFICATION
- *       $PostgreSQL: pgsql/src/backend/optimizer/plan/planner.c,v 1.165 2004/01/18 00:50:02 tgl Exp $
+ *       $PostgreSQL: pgsql/src/backend/optimizer/plan/planner.c,v 1.250 2009/01/01 17:23:44 momjian Exp $
  *
  *-------------------------------------------------------------------------
  */
 #include <limits.h>
 
 #include "catalog/pg_operator.h"
-#include "catalog/pg_type.h"
 #include "executor/executor.h"
+#include "executor/nodeAgg.h"
 #include "miscadmin.h"
 #include "nodes/makefuncs.h"
-#ifdef OPTIMIZER_DEBUG
-#include "nodes/print.h"
-#endif
 #include "optimizer/clauses.h"
 #include "optimizer/cost.h"
 #include "optimizer/pathnode.h"
 #include "optimizer/subselect.h"
 #include "optimizer/tlist.h"
 #include "optimizer/var.h"
-#include "parser/analyze.h"
-#include "parser/parsetree.h"
+#ifdef OPTIMIZER_DEBUG
+#include "nodes/print.h"
+#endif
 #include "parser/parse_expr.h"
 #include "parser/parse_oper.h"
-#include "utils/selfuncs.h"
+#include "parser/parsetree.h"
+#include "utils/lsyscache.h"
 #include "utils/syscache.h"
 
 
+/* GUC parameter */
+double cursor_tuple_fraction = DEFAULT_CURSOR_TUPLE_FRACTION;
+
+/* Hook for plugins to get control in planner() */
+planner_hook_type planner_hook = NULL;
+
+
 /* Expression kind codes for preprocess_expression */
-#define EXPRKIND_QUAL  0
-#define EXPRKIND_TARGET 1
-#define EXPRKIND_RTFUNC 2
-#define EXPRKIND_LIMIT 3
-#define EXPRKIND_ININFO 4
-
-
-static Node *preprocess_expression(Query *parse, Node *expr, int kind);
-static void preprocess_qual_conditions(Query *parse, Node *jtnode);
-static Plan *inheritance_planner(Query *parse, List *inheritlist);
-static Plan *grouping_planner(Query *parse, double tuple_fraction);
-static bool hash_safe_grouping(Query *parse);
-static List *make_subplanTargetList(Query *parse, List *tlist,
+#define EXPRKIND_QUAL          0
+#define EXPRKIND_TARGET                1
+#define EXPRKIND_RTFUNC                2
+#define EXPRKIND_VALUES                3
+#define EXPRKIND_LIMIT         4
+#define EXPRKIND_APPINFO       5
+
+
+static Node *preprocess_expression(PlannerInfo *root, Node *expr, int kind);
+static void preprocess_qual_conditions(PlannerInfo *root, Node *jtnode);
+static Plan *inheritance_planner(PlannerInfo *root);
+static Plan *grouping_planner(PlannerInfo *root, double tuple_fraction);
+static bool is_dummy_plan(Plan *plan);
+static double preprocess_limit(PlannerInfo *root,
+                                double tuple_fraction,
+                                int64 *offset_est, int64 *count_est);
+static void preprocess_groupclause(PlannerInfo *root);
+static bool choose_hashed_grouping(PlannerInfo *root,
+                                          double tuple_fraction, double limit_tuples,
+                                          Path *cheapest_path, Path *sorted_path,
+                                          double dNumGroups, AggClauseCounts *agg_counts);
+static bool choose_hashed_distinct(PlannerInfo *root,
+                                          Plan *input_plan, List *input_pathkeys,
+                                          double tuple_fraction, double limit_tuples,
+                                          double dNumDistinctRows);
+static List *make_subplanTargetList(PlannerInfo *root, List *tlist,
                                           AttrNumber **groupColIdx, bool *need_tlist_eval);
-static void locate_grouping_columns(Query *parse,
+static void locate_grouping_columns(PlannerInfo *root,
                                                List *tlist,
                                                List *sub_tlist,
                                                AttrNumber *groupColIdx);
 static List *postprocess_setop_tlist(List *new_tlist, List *orig_tlist);
+static List *select_active_windows(PlannerInfo *root, WindowFuncLists *wflists);
+static List *make_pathkeys_for_window(PlannerInfo *root, WindowClause *wc,
+                                                                         List *tlist, bool canonicalize);
+static void get_column_info_for_window(PlannerInfo *root, WindowClause *wc,
+                                                                          List *tlist,
+                                                                          int numSortCols, AttrNumber *sortColIdx,
+                                                                          int *partNumCols,
+                                                                          AttrNumber **partColIdx,
+                                                                          Oid **partOperators,
+                                                                          int *ordNumCols,
+                                                                          AttrNumber **ordColIdx,
+                                                                          Oid **ordOperators);
 
 
 /*****************************************************************************
  *
  *        Query optimizer entry point
  *
+ * To support loadable plugins that monitor or modify planner behavior,
+ * we provide a hook variable that lets a plugin get control before and
+ * after the standard planning process.  The plugin would normally call
+ * standard_planner().
+ *
+ * Note to plugin authors: standard_planner() scribbles on its Query input,
+ * so you'd better copy that data structure if you want to plan more than once.
+ *
  *****************************************************************************/
-Plan *
-planner(Query *parse, bool isCursor, int cursorOptions)
+PlannedStmt *
+planner(Query *parse, int cursorOptions, ParamListInfo boundParams)
+{
+       PlannedStmt *result;
+
+       if (planner_hook)
+               result = (*planner_hook) (parse, cursorOptions, boundParams);
+       else
+               result = standard_planner(parse, cursorOptions, boundParams);
+       return result;
+}
+
+PlannedStmt *
+standard_planner(Query *parse, int cursorOptions, ParamListInfo boundParams)
 {
+       PlannedStmt *result;
+       PlannerGlobal *glob;
        double          tuple_fraction;
-       Plan       *result_plan;
-       Index           save_PlannerQueryLevel;
-       List       *save_PlannerParamList;
+       PlannerInfo *root;
+       Plan       *top_plan;
+       ListCell   *lp,
+                          *lr;
+
+       /* Cursor options may come from caller or from DECLARE CURSOR stmt */
+       if (parse->utilityStmt &&
+               IsA(parse->utilityStmt, DeclareCursorStmt))
+               cursorOptions |= ((DeclareCursorStmt *) parse->utilityStmt)->options;
 
        /*
-        * The planner can be called recursively (an example is when
-        * eval_const_expressions tries to pre-evaluate an SQL function). So,
-        * these global state variables must be saved and restored.
-        *
-        * These vars cannot be moved into the Query structure since their whole
-        * purpose is communication across multiple sub-Queries.
-        *
-        * Note we do NOT save and restore PlannerPlanId: it exists to assign
-        * unique IDs to SubPlan nodes, and we want those IDs to be unique for
-        * the life of a backend.  Also, PlannerInitPlan is saved/restored in
-        * subquery_planner, not here.
+        * Set up global state for this planner invocation.  This data is needed
+        * across all levels of sub-Query that might exist in the given command,
+        * so we keep it in a separate struct that's linked to by each per-Query
+        * PlannerInfo.
         */
-       save_PlannerQueryLevel = PlannerQueryLevel;
-       save_PlannerParamList = PlannerParamList;
-
-       /* Initialize state for handling outer-level references and params */
-       PlannerQueryLevel = 0;          /* will be 1 in top-level subquery_planner */
-       PlannerParamList = NIL;
+       glob = makeNode(PlannerGlobal);
+
+       glob->boundParams = boundParams;
+       glob->paramlist = NIL;
+       glob->subplans = NIL;
+       glob->subrtables = NIL;
+       glob->rewindPlanIDs = NULL;
+       glob->finalrtable = NIL;
+       glob->relationOids = NIL;
+       glob->invalItems = NIL;
+       glob->lastPHId = 0;
+       glob->transientPlan = false;
 
        /* Determine what fraction of the plan is likely to be scanned */
-       if (isCursor)
+       if (cursorOptions & CURSOR_OPT_FAST_PLAN)
        {
                /*
-                * We have no real idea how many tuples the user will ultimately
-                * FETCH from a cursor, but it seems a good bet that he doesn't
-                * want 'em all.  Optimize for 10% retrieval (you gotta better
-                * number?      Should this be a SETtable parameter?)
+                * We have no real idea how many tuples the user will ultimately FETCH
+                * from a cursor, but it is often the case that he doesn't want 'em
+                * all, or would prefer a fast-start plan anyway so that he can
+                * process some of the tuples sooner.  Use a GUC parameter to decide
+                * what fraction to optimize for.
                 */
-               tuple_fraction = 0.10;
+               tuple_fraction = cursor_tuple_fraction;
+
+               /*
+                * We document cursor_tuple_fraction as simply being a fraction,
+                * which means the edge cases 0 and 1 have to be treated specially
+                * here.  We convert 1 to 0 ("all the tuples") and 0 to a very small
+                * fraction.
+                */
+               if (tuple_fraction >= 1.0)
+                       tuple_fraction = 0.0;
+               else if (tuple_fraction <= 0.0)
+                       tuple_fraction = 1e-10;
        }
        else
        {
@@ -116,31 +186,52 @@ planner(Query *parse, bool isCursor, int cursorOptions)
        }
 
        /* primary planning entry point (may recurse for subqueries) */
-       result_plan = subquery_planner(parse, tuple_fraction);
-
-       Assert(PlannerQueryLevel == 0);
+       top_plan = subquery_planner(glob, parse, NULL,
+                                                               false, tuple_fraction, &root);
 
        /*
         * If creating a plan for a scrollable cursor, make sure it can run
         * backwards on demand.  Add a Material node at the top at need.
         */
-       if (isCursor && (cursorOptions & CURSOR_OPT_SCROLL))
+       if (cursorOptions & CURSOR_OPT_SCROLL)
        {
-               if (!ExecSupportsBackwardScan(result_plan))
-                       result_plan = materialize_finished_plan(result_plan);
+               if (!ExecSupportsBackwardScan(top_plan))
+                       top_plan = materialize_finished_plan(top_plan);
        }
 
-       /* executor wants to know total number of Params used overall */
-       result_plan->nParamExec = length(PlannerParamList);
-
        /* final cleanup of the plan */
-       set_plan_references(result_plan, parse->rtable);
+       Assert(glob->finalrtable == NIL);
+       top_plan = set_plan_references(glob, top_plan, root->parse->rtable);
+       /* ... and the subplans (both regular subplans and initplans) */
+       Assert(list_length(glob->subplans) == list_length(glob->subrtables));
+       forboth(lp, glob->subplans, lr, glob->subrtables)
+       {
+               Plan       *subplan = (Plan *) lfirst(lp);
+               List       *subrtable = (List *) lfirst(lr);
 
-       /* restore state for outer planner, if any */
-       PlannerQueryLevel = save_PlannerQueryLevel;
-       PlannerParamList = save_PlannerParamList;
+               lfirst(lp) = set_plan_references(glob, subplan, subrtable);
+       }
 
-       return result_plan;
+       /* build the PlannedStmt result */
+       result = makeNode(PlannedStmt);
+
+       result->commandType = parse->commandType;
+       result->canSetTag = parse->canSetTag;
+       result->transientPlan = glob->transientPlan;
+       result->planTree = top_plan;
+       result->rtable = glob->finalrtable;
+       result->resultRelations = root->resultRelations;
+       result->utilityStmt = parse->utilityStmt;
+       result->intoClause = parse->intoClause;
+       result->subplans = glob->subplans;
+       result->rewindPlanIDs = glob->rewindPlanIDs;
+       result->returningLists = root->returningLists;
+       result->rowMarks = parse->rowMarks;
+       result->relationOids = glob->relationOids;
+       result->invalItems = glob->invalItems;
+       result->nParamExec = list_length(glob->paramlist);
+
+       return result;
 }
 
 
@@ -149,10 +240,16 @@ planner(Query *parse, bool isCursor, int cursorOptions)
  *       Invokes the planner on a subquery.  We recurse to here for each
  *       sub-SELECT found in the query tree.
  *
+ * glob is the global state for the current planner run.
  * parse is the querytree produced by the parser & rewriter.
+ * parent_root is the immediate parent Query's info (NULL at the top level).
+ * hasRecursion is true if this is a recursive WITH query.
  * tuple_fraction is the fraction of tuples we expect will be retrieved.
  * tuple_fraction is interpreted as explained for grouping_planner, below.
  *
+ * If subroot isn't NULL, we pass back the query's final PlannerInfo struct;
+ * among other things this tells the output sort ordering of the plan.
+ *
  * Basically, this routine does the stuff that should only be done once
  * per Query object.  It then calls grouping_planner.  At one time,
  * grouping_planner could be invoked recursively on the same Query object;
@@ -166,53 +263,82 @@ planner(Query *parse, bool isCursor, int cursorOptions)
  *--------------------
  */
 Plan *
-subquery_planner(Query *parse, double tuple_fraction)
+subquery_planner(PlannerGlobal *glob, Query *parse,
+                                PlannerInfo *parent_root,
+                                bool hasRecursion, double tuple_fraction,
+                                PlannerInfo **subroot)
 {
-       List       *saved_initplan = PlannerInitPlan;
-       int                     saved_planid = PlannerPlanId;
-       bool            hasOuterJoins;
+       int                     num_old_subplans = list_length(glob->subplans);
+       PlannerInfo *root;
        Plan       *plan;
        List       *newHaving;
-       List       *lst;
+       bool            hasOuterJoins;
+       ListCell   *l;
+
+       /* Create a PlannerInfo data structure for this subquery */
+       root = makeNode(PlannerInfo);
+       root->parse = parse;
+       root->glob = glob;
+       root->query_level = parent_root ? parent_root->query_level + 1 : 1;
+       root->parent_root = parent_root;
+       root->planner_cxt = CurrentMemoryContext;
+       root->init_plans = NIL;
+       root->cte_plan_ids = NIL;
+       root->eq_classes = NIL;
+       root->append_rel_list = NIL;
+
+       root->hasRecursion = hasRecursion;
+       if (hasRecursion)
+               root->wt_param_id = SS_assign_worktable_param(root);
+       else
+               root->wt_param_id = -1;
+       root->non_recursive_plan = NULL;
 
-       /* Set up for a new level of subquery */
-       PlannerQueryLevel++;
-       PlannerInitPlan = NIL;
+       /*
+        * If there is a WITH list, process each WITH query and build an
+        * initplan SubPlan structure for it.
+        */
+       if (parse->cteList)
+               SS_process_ctes(root);
 
        /*
-        * Look for IN clauses at the top level of WHERE, and transform them
-        * into joins.  Note that this step only handles IN clauses originally
-        * at top level of WHERE; if we pull up any subqueries in the next
-        * step, their INs are processed just before pulling them up.
+        * Look for ANY and EXISTS SubLinks in WHERE and JOIN/ON clauses, and try
+        * to transform them into joins.  Note that this step does not descend
+        * into subqueries; if we pull up any subqueries below, their SubLinks are
+        * processed just before pulling them up.
         */
-       parse->in_info_list = NIL;
        if (parse->hasSubLinks)
-               parse->jointree->quals = pull_up_IN_clauses(parse,
-                                                                                                parse->jointree->quals);
+               pull_up_sublinks(root);
+
+       /*
+        * Scan the rangetable for set-returning functions, and inline them
+        * if possible (producing subqueries that might get pulled up next).
+        * Recursion issues here are handled in the same way as for SubLinks.
+        */
+       inline_set_returning_functions(root);
 
        /*
         * Check to see if any subqueries in the rangetable can be merged into
         * this query.
         */
        parse->jointree = (FromExpr *)
-               pull_up_subqueries(parse, (Node *) parse->jointree, false);
+               pull_up_subqueries(root, (Node *) parse->jointree, false, false);
 
        /*
-        * Detect whether any rangetable entries are RTE_JOIN kind; if not, we
-        * can avoid the expense of doing flatten_join_alias_vars().  Also
-        * check for outer joins --- if none, we can skip
-        * reduce_outer_joins(). This must be done after we have done
-        * pull_up_subqueries, of course.
+        * Detect whether any rangetable entries are RTE_JOIN kind; if not, we can
+        * avoid the expense of doing flatten_join_alias_vars().  Also check for
+        * outer joins --- if none, we can skip reduce_outer_joins().
+        * This must be done after we have done pull_up_subqueries, of course.
         */
-       parse->hasJoinRTEs = false;
+       root->hasJoinRTEs = false;
        hasOuterJoins = false;
-       foreach(lst, parse->rtable)
+       foreach(l, parse->rtable)
        {
-               RangeTblEntry *rte = (RangeTblEntry *) lfirst(lst);
+               RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
 
                if (rte->rtekind == RTE_JOIN)
                {
-                       parse->hasJoinRTEs = true;
+                       root->hasJoinRTEs = true;
                        if (IS_OUTER_JOIN(rte->jointype))
                        {
                                hasOuterJoins = true;
@@ -222,138 +348,149 @@ subquery_planner(Query *parse, double tuple_fraction)
                }
        }
 
+       /*
+        * Expand any rangetable entries that are inheritance sets into "append
+        * relations".  This can add entries to the rangetable, but they must be
+        * plain base relations not joins, so it's OK (and marginally more
+        * efficient) to do it after checking for join RTEs.  We must do it after
+        * pulling up subqueries, else we'd fail to handle inherited tables in
+        * subqueries.
+        */
+       expand_inherited_tables(root);
+
+       /*
+        * Set hasHavingQual to remember if HAVING clause is present.  Needed
+        * because preprocess_expression will reduce a constant-true condition to
+        * an empty qual list ... but "HAVING TRUE" is not a semantic no-op.
+        */
+       root->hasHavingQual = (parse->havingQual != NULL);
+
+       /* Clear this flag; might get set in distribute_qual_to_rels */
+       root->hasPseudoConstantQuals = false;
+
        /*
         * Do expression preprocessing on targetlist and quals.
         */
        parse->targetList = (List *)
-               preprocess_expression(parse, (Node *) parse->targetList,
+               preprocess_expression(root, (Node *) parse->targetList,
                                                          EXPRKIND_TARGET);
 
-       preprocess_qual_conditions(parse, (Node *) parse->jointree);
+       parse->returningList = (List *)
+               preprocess_expression(root, (Node *) parse->returningList,
+                                                         EXPRKIND_TARGET);
+
+       preprocess_qual_conditions(root, (Node *) parse->jointree);
 
-       parse->havingQual = preprocess_expression(parse, parse->havingQual,
+       parse->havingQual = preprocess_expression(root, parse->havingQual,
                                                                                          EXPRKIND_QUAL);
 
-       parse->limitOffset = preprocess_expression(parse, parse->limitOffset,
+       parse->limitOffset = preprocess_expression(root, parse->limitOffset,
                                                                                           EXPRKIND_LIMIT);
-       parse->limitCount = preprocess_expression(parse, parse->limitCount,
+       parse->limitCount = preprocess_expression(root, parse->limitCount,
                                                                                          EXPRKIND_LIMIT);
 
-       parse->in_info_list = (List *)
-               preprocess_expression(parse, (Node *) parse->in_info_list,
-                                                         EXPRKIND_ININFO);
+       root->append_rel_list = (List *)
+               preprocess_expression(root, (Node *) root->append_rel_list,
+                                                         EXPRKIND_APPINFO);
 
-       /* Also need to preprocess expressions for function RTEs */
-       foreach(lst, parse->rtable)
+       /* Also need to preprocess expressions for function and values RTEs */
+       foreach(l, parse->rtable)
        {
-               RangeTblEntry *rte = (RangeTblEntry *) lfirst(lst);
+               RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
 
                if (rte->rtekind == RTE_FUNCTION)
-                       rte->funcexpr = preprocess_expression(parse, rte->funcexpr,
+                       rte->funcexpr = preprocess_expression(root, rte->funcexpr,
                                                                                                  EXPRKIND_RTFUNC);
+               else if (rte->rtekind == RTE_VALUES)
+                       rte->values_lists = (List *)
+                               preprocess_expression(root, (Node *) rte->values_lists,
+                                                                         EXPRKIND_VALUES);
        }
 
        /*
-        * A HAVING clause without aggregates is equivalent to a WHERE clause
-        * (except it can only refer to grouped fields).  Transfer any
-        * agg-free clauses of the HAVING qual into WHERE.      This may seem like
-        * wasting cycles to cater to stupidly-written queries, but there are
-        * other reasons for doing it.  Firstly, if the query contains no aggs
-        * at all, then we aren't going to generate an Agg plan node, and so
-        * there'll be no place to execute HAVING conditions; without this
-        * transfer, we'd lose the HAVING condition entirely, which is wrong.
-        * Secondly, when we push down a qual condition into a sub-query, it's
-        * easiest to push the qual into HAVING always, in case it contains
-        * aggs, and then let this code sort it out.
+        * In some cases we may want to transfer a HAVING clause into WHERE. We
+        * cannot do so if the HAVING clause contains aggregates (obviously) or
+        * volatile functions (since a HAVING clause is supposed to be executed
+        * only once per group).  Also, it may be that the clause is so expensive
+        * to execute that we're better off doing it only once per group, despite
+        * the loss of selectivity.  This is hard to estimate short of doing the
+        * entire planning process twice, so we use a heuristic: clauses
+        * containing subplans are left in HAVING.      Otherwise, we move or copy the
+        * HAVING clause into WHERE, in hopes of eliminating tuples before
+        * aggregation instead of after.
+        *
+        * If the query has explicit grouping then we can simply move such a
+        * clause into WHERE; any group that fails the clause will not be in the
+        * output because none of its tuples will reach the grouping or
+        * aggregation stage.  Otherwise we must have a degenerate (variable-free)
+        * HAVING clause, which we put in WHERE so that query_planner() can use it
+        * in a gating Result node, but also keep in HAVING to ensure that we
+        * don't emit a bogus aggregated row. (This could be done better, but it
+        * seems not worth optimizing.)
         *
         * Note that both havingQual and parse->jointree->quals are in
-        * implicitly-ANDed-list form at this point, even though they are
-        * declared as Node *.
+        * implicitly-ANDed-list form at this point, even though they are declared
+        * as Node *.
         */
        newHaving = NIL;
-       foreach(lst, (List *) parse->havingQual)
+       foreach(l, (List *) parse->havingQual)
        {
-               Node       *havingclause = (Node *) lfirst(lst);
+               Node       *havingclause = (Node *) lfirst(l);
 
-               if (contain_agg_clause(havingclause))
+               if (contain_agg_clause(havingclause) ||
+                       contain_volatile_functions(havingclause) ||
+                       contain_subplans(havingclause))
+               {
+                       /* keep it in HAVING */
                        newHaving = lappend(newHaving, havingclause);
-               else
+               }
+               else if (parse->groupClause)
+               {
+                       /* move it to WHERE */
                        parse->jointree->quals = (Node *)
                                lappend((List *) parse->jointree->quals, havingclause);
+               }
+               else
+               {
+                       /* put a copy in WHERE, keep it in HAVING */
+                       parse->jointree->quals = (Node *)
+                               lappend((List *) parse->jointree->quals,
+                                               copyObject(havingclause));
+                       newHaving = lappend(newHaving, havingclause);
+               }
        }
        parse->havingQual = (Node *) newHaving;
 
        /*
-        * If we have any outer joins, try to reduce them to plain inner
-        * joins. This step is most easily done after we've done expression
+        * If we have any outer joins, try to reduce them to plain inner joins.
+        * This step is most easily done after we've done expression
         * preprocessing.
         */
        if (hasOuterJoins)
-               reduce_outer_joins(parse);
-
-       /*
-        * See if we can simplify the jointree; opportunities for this may
-        * come from having pulled up subqueries, or from flattening explicit
-        * JOIN syntax.  We must do this after flattening JOIN alias
-        * variables, since eliminating explicit JOIN nodes from the jointree
-        * will cause get_relids_for_join() to fail.  But it should happen
-        * after reduce_outer_joins, anyway.
-        */
-       parse->jointree = (FromExpr *)
-               simplify_jointree(parse, (Node *) parse->jointree);
+               reduce_outer_joins(root);
 
        /*
-        * Do the main planning.  If we have an inherited target relation,
-        * that needs special processing, else go straight to
-        * grouping_planner.
+        * Do the main planning.  If we have an inherited target relation, that
+        * needs special processing, else go straight to grouping_planner.
         */
        if (parse->resultRelation &&
-               (lst = expand_inherited_rtentry(parse, parse->resultRelation,
-                                                                               false)) != NIL)
-               plan = inheritance_planner(parse, lst);
+               rt_fetch(parse->resultRelation, parse->rtable)->inh)
+               plan = inheritance_planner(root);
        else
-               plan = grouping_planner(parse, tuple_fraction);
+               plan = grouping_planner(root, tuple_fraction);
 
        /*
         * If any subplans were generated, or if we're inside a subplan, build
-        * initPlan list and extParam/allParam sets for plan nodes.
+        * initPlan list and extParam/allParam sets for plan nodes, and attach the
+        * initPlans to the top plan node.
         */
-       if (PlannerPlanId != saved_planid || PlannerQueryLevel > 1)
-       {
-               Cost            initplan_cost = 0;
-
-               /* Prepare extParam/allParam sets for all nodes in tree */
-               SS_finalize_plan(plan, parse->rtable);
-
-               /*
-                * SS_finalize_plan doesn't handle initPlans, so we have to
-                * manually attach them to the topmost plan node, and add their
-                * extParams to the topmost node's, too.
-                *
-                * We also add the total_cost of each initPlan to the startup cost of
-                * the top node.  This is a conservative overestimate, since in
-                * fact each initPlan might be executed later than plan startup,
-                * or even not at all.
-                */
-               plan->initPlan = PlannerInitPlan;
-
-               foreach(lst, plan->initPlan)
-               {
-                       SubPlan    *initplan = (SubPlan *) lfirst(lst);
-
-                       plan->extParam = bms_add_members(plan->extParam,
-                                                                                        initplan->plan->extParam);
-                       initplan_cost += initplan->plan->total_cost;
-               }
-
-               plan->startup_cost += initplan_cost;
-               plan->total_cost += initplan_cost;
-       }
+       if (list_length(glob->subplans) != num_old_subplans ||
+               root->query_level > 1)
+               SS_finalize_plan(root, plan, true);
 
-       /* Return to outer subquery context */
-       PlannerQueryLevel--;
-       PlannerInitPlan = saved_initplan;
-       /* we do NOT restore PlannerPlanId; that's not an oversight! */
+       /* Return internal info if caller wants it */
+       if (subroot)
+               *subroot = root;
 
        return plan;
 }
@@ -365,25 +502,44 @@ subquery_planner(Query *parse, double tuple_fraction)
  *             conditions), or a HAVING clause.
  */
 static Node *
-preprocess_expression(Query *parse, Node *expr, int kind)
+preprocess_expression(PlannerInfo *root, Node *expr, int kind)
 {
+       /*
+        * Fall out quickly if expression is empty.  This occurs often enough to
+        * be worth checking.  Note that null->null is the correct conversion for
+        * implicit-AND result format, too.
+        */
+       if (expr == NULL)
+               return NULL;
+
        /*
         * If the query has any join RTEs, replace join alias variables with
         * base-relation variables. We must do this before sublink processing,
-        * else sublinks expanded out from join aliases wouldn't get
-        * processed.
+        * else sublinks expanded out from join aliases wouldn't get processed. We
+        * can skip it in VALUES lists, however, since they can't contain any Vars
+        * at all.
         */
-       if (parse->hasJoinRTEs)
-               expr = flatten_join_alias_vars(parse, expr);
+       if (root->hasJoinRTEs && kind != EXPRKIND_VALUES)
+               expr = flatten_join_alias_vars(root, expr);
 
        /*
-        * If it's a qual or havingQual, canonicalize it.  It seems most useful
-        * to do this before applying eval_const_expressions, since the latter
-        * can optimize flattened AND/ORs better than unflattened ones.
+        * Simplify constant expressions.
+        *
+        * Note: one essential effect here is to insert the current actual values
+        * of any default arguments for functions.  To ensure that happens, we
+        * *must* process all expressions here.  Previous PG versions sometimes
+        * skipped const-simplification if it didn't seem worth the trouble, but
+        * we can't do that anymore.
         *
-        * Note: all processing of a qual expression after this point must be
-        * careful to maintain AND/OR flatness --- that is, do not generate a
-        * tree with AND directly under AND, nor OR directly under OR.
+        * Note: this also flattens nested AND and OR expressions into N-argument
+        * form.  All processing of a qual expression after this point must be
+        * careful to maintain AND/OR flatness --- that is, do not generate a tree
+        * with AND directly under AND, nor OR directly under OR.
+        */
+       expr = eval_const_expressions(root, expr);
+
+       /*
+        * If it's a qual or havingQual, canonicalize it.
         */
        if (kind == EXPRKIND_QUAL)
        {
@@ -395,28 +551,23 @@ preprocess_expression(Query *parse, Node *expr, int kind)
 #endif
        }
 
-       /*
-        * Simplify constant expressions.
-        */
-       expr = eval_const_expressions(expr);
-
        /* Expand SubLinks to SubPlans */
-       if (parse->hasSubLinks)
-               expr = SS_process_sublinks(expr, (kind == EXPRKIND_QUAL));
+       if (root->parse->hasSubLinks)
+               expr = SS_process_sublinks(root, expr, (kind == EXPRKIND_QUAL));
 
        /*
-        * XXX do not insert anything here unless you have grokked the
-        * comments in SS_replace_correlation_vars ...
+        * XXX do not insert anything here unless you have grokked the comments in
+        * SS_replace_correlation_vars ...
         */
 
-       /* Replace uplevel vars with Param nodes */
-       if (PlannerQueryLevel > 1)
-               expr = SS_replace_correlation_vars(expr);
+       /* Replace uplevel vars with Param nodes (this IS possible in VALUES) */
+       if (root->query_level > 1)
+               expr = SS_replace_correlation_vars(root, expr);
 
        /*
-        * If it's a qual or havingQual, convert it to implicit-AND format.
-        * (We don't want to do this before eval_const_expressions, since the
-        * latter would be unable to simplify a top-level AND correctly.  Also,
+        * If it's a qual or havingQual, convert it to implicit-AND format. (We
+        * don't want to do this before eval_const_expressions, since the latter
+        * would be unable to simplify a top-level AND correctly. Also,
         * SS_process_sublinks expects explicit-AND format.)
         */
        if (kind == EXPRKIND_QUAL)
@@ -431,7 +582,7 @@ preprocess_expression(Query *parse, Node *expr, int kind)
  *             preprocessing work on each qual condition found therein.
  */
 static void
-preprocess_qual_conditions(Query *parse, Node *jtnode)
+preprocess_qual_conditions(PlannerInfo *root, Node *jtnode)
 {
        if (jtnode == NULL)
                return;
@@ -442,102 +593,152 @@ preprocess_qual_conditions(Query *parse, Node *jtnode)
        else if (IsA(jtnode, FromExpr))
        {
                FromExpr   *f = (FromExpr *) jtnode;
-               List       *l;
+               ListCell   *l;
 
                foreach(l, f->fromlist)
-                       preprocess_qual_conditions(parse, lfirst(l));
+                       preprocess_qual_conditions(root, lfirst(l));
 
-               f->quals = preprocess_expression(parse, f->quals, EXPRKIND_QUAL);
+               f->quals = preprocess_expression(root, f->quals, EXPRKIND_QUAL);
        }
        else if (IsA(jtnode, JoinExpr))
        {
                JoinExpr   *j = (JoinExpr *) jtnode;
 
-               preprocess_qual_conditions(parse, j->larg);
-               preprocess_qual_conditions(parse, j->rarg);
+               preprocess_qual_conditions(root, j->larg);
+               preprocess_qual_conditions(root, j->rarg);
 
-               j->quals = preprocess_expression(parse, j->quals, EXPRKIND_QUAL);
+               j->quals = preprocess_expression(root, j->quals, EXPRKIND_QUAL);
        }
        else
                elog(ERROR, "unrecognized node type: %d",
                         (int) nodeTag(jtnode));
 }
 
-/*--------------------
+/*
  * inheritance_planner
  *       Generate a plan in the case where the result relation is an
  *       inheritance set.
  *
- * We have to handle this case differently from cases where a source
- * relation is an inheritance set.     Source inheritance is expanded at
- * the bottom of the plan tree (see allpaths.c), but target inheritance
- * has to be expanded at the top.  The reason is that for UPDATE, each
- * target relation needs a different targetlist matching its own column
- * set.  (This is not so critical for DELETE, but for simplicity we treat
- * inherited DELETE the same way.)     Fortunately, the UPDATE/DELETE target
- * can never be the nullable side of an outer join, so it's OK to generate
- * the plan this way.
- *
- * parse is the querytree produced by the parser & rewriter.
- * inheritlist is an integer list of RT indexes for the result relation set.
+ * We have to handle this case differently from cases where a source relation
+ * is an inheritance set. Source inheritance is expanded at the bottom of the
+ * plan tree (see allpaths.c), but target inheritance has to be expanded at
+ * the top.  The reason is that for UPDATE, each target relation needs a
+ * different targetlist matching its own column set.  Also, for both UPDATE
+ * and DELETE, the executor needs the Append plan node at the top, else it
+ * can't keep track of which table is the current target table.  Fortunately,
+ * the UPDATE/DELETE target can never be the nullable side of an outer join,
+ * so it's OK to generate the plan this way.
  *
  * Returns a query plan.
- *--------------------
  */
 static Plan *
-inheritance_planner(Query *parse, List *inheritlist)
+inheritance_planner(PlannerInfo *root)
 {
+       Query      *parse = root->parse;
        int                     parentRTindex = parse->resultRelation;
-       Oid                     parentOID = getrelid(parentRTindex, parse->rtable);
-       int                     mainrtlength = length(parse->rtable);
        List       *subplans = NIL;
+       List       *resultRelations = NIL;
+       List       *returningLists = NIL;
+       List       *rtable = NIL;
        List       *tlist = NIL;
-       List       *l;
+       PlannerInfo subroot;
+       ListCell   *l;
 
-       foreach(l, inheritlist)
+       foreach(l, root->append_rel_list)
        {
-               int                     childRTindex = lfirsti(l);
-               Oid                     childOID = getrelid(childRTindex, parse->rtable);
-               int                     subrtlength;
-               Query      *subquery;
+               AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(l);
                Plan       *subplan;
 
-               /* Generate modified query with this rel as target */
-               subquery = (Query *) adjust_inherited_attrs((Node *) parse,
-                                                                                               parentRTindex, parentOID,
-                                                                                                childRTindex, childOID);
+               /* append_rel_list contains all append rels; ignore others */
+               if (appinfo->parent_relid != parentRTindex)
+                       continue;
+
+               /*
+                * Generate modified query with this rel as target.
+                */
+               memcpy(&subroot, root, sizeof(PlannerInfo));
+               subroot.parse = (Query *)
+                       adjust_appendrel_attrs((Node *) parse,
+                                                                  appinfo);
+               subroot.returningLists = NIL;
+               subroot.init_plans = NIL;
+               /* We needn't modify the child's append_rel_list */
+               /* There shouldn't be any OJ info to translate, as yet */
+               Assert(subroot.join_info_list == NIL);
+               /* and we haven't created PlaceHolderInfos, either */
+               Assert(subroot.placeholder_list == NIL);
+
                /* Generate plan */
-               subplan = grouping_planner(subquery, 0.0 /* retrieve all tuples */ );
-               subplans = lappend(subplans, subplan);
+               subplan = grouping_planner(&subroot, 0.0 /* retrieve all tuples */ );
 
                /*
-                * It's possible that additional RTEs got added to the rangetable
-                * due to expansion of inherited source tables (see allpaths.c).
-                * If so, we must copy 'em back to the main parse tree's rtable.
-                *
-                * XXX my goodness this is ugly.  Really need to think about ways to
-                * rein in planner's habit of scribbling on its input.
+                * If this child rel was excluded by constraint exclusion, exclude it
+                * from the plan.
                 */
-               subrtlength = length(subquery->rtable);
-               if (subrtlength > mainrtlength)
+               if (is_dummy_plan(subplan))
+                       continue;
+
+               /* Save rtable and tlist from first rel for use below */
+               if (subplans == NIL)
                {
-                       List       *subrt = subquery->rtable;
+                       rtable = subroot.parse->rtable;
+                       tlist = subplan->targetlist;
+               }
+
+               subplans = lappend(subplans, subplan);
 
-                       while (mainrtlength-- > 0)      /* wish we had nthcdr() */
-                               subrt = lnext(subrt);
-                       parse->rtable = nconc(parse->rtable, subrt);
-                       mainrtlength = subrtlength;
+               /* Make sure any initplans from this rel get into the outer list */
+               root->init_plans = list_concat(root->init_plans, subroot.init_plans);
+
+               /* Build target-relations list for the executor */
+               resultRelations = lappend_int(resultRelations, appinfo->child_relid);
+
+               /* Build list of per-relation RETURNING targetlists */
+               if (parse->returningList)
+               {
+                       Assert(list_length(subroot.returningLists) == 1);
+                       returningLists = list_concat(returningLists,
+                                                                                subroot.returningLists);
                }
-               /* Save preprocessed tlist from first rel for use in Append */
-               if (tlist == NIL)
-                       tlist = subplan->targetlist;
        }
 
-       /* Save the target-relations list for the executor, too */
-       parse->resultRelations = inheritlist;
+       root->resultRelations = resultRelations;
+       root->returningLists = returningLists;
 
        /* Mark result as unordered (probably unnecessary) */
-       parse->query_pathkeys = NIL;
+       root->query_pathkeys = NIL;
+
+       /*
+        * If we managed to exclude every child rel, return a dummy plan
+        */
+       if (subplans == NIL)
+       {
+               root->resultRelations = list_make1_int(parentRTindex);
+               /* although dummy, it must have a valid tlist for executor */
+               tlist = preprocess_targetlist(root, parse->targetList);
+               return (Plan *) make_result(root,
+                                                                       tlist,
+                                                                       (Node *) list_make1(makeBoolConst(false,
+                                                                                                                                         false)),
+                                                                       NULL);
+       }
+
+       /*
+        * Planning might have modified the rangetable, due to changes of the
+        * Query structures inside subquery RTEs.  We have to ensure that this
+        * gets propagated back to the master copy.  But can't do this until we
+        * are done planning, because all the calls to grouping_planner need
+        * virgin sub-Queries to work from.  (We are effectively assuming that
+        * sub-Queries will get planned identically each time, or at least that
+        * the impacts on their rangetables will be the same each time.)
+        *
+        * XXX should clean this up someday
+        */
+       parse->rtable = rtable;
+
+       /* Suppress Append if there's only one surviving child rel */
+       if (list_length(subplans) == 1)
+               return (Plan *) linitial(subplans);
 
        return (Plan *) make_append(subplans, true, tlist);
 }
@@ -548,7 +749,6 @@ inheritance_planner(Query *parse, List *inheritlist)
  *       This primarily means adding top-level processing to the basic
  *       query plan produced by query_planner.
  *
- * parse is the querytree produced by the parser & rewriter.
  * tuple_fraction is the fraction of tuples we expect will be retrieved
  *
  * tuple_fraction is interpreted as follows:
@@ -558,808 +758,1420 @@ inheritance_planner(Query *parse, List *inheritlist)
  *       tuple_fraction >= 1: tuple_fraction is the absolute number of tuples
  *             expected to be retrieved (ie, a LIMIT specification)
  *
- * Returns a query plan.  Also, parse->query_pathkeys is returned as the
+ * Returns a query plan.  Also, root->query_pathkeys is returned as the
  * actual output ordering of the plan (in pathkey format).
  *--------------------
  */
 static Plan *
-grouping_planner(Query *parse, double tuple_fraction)
+grouping_planner(PlannerInfo *root, double tuple_fraction)
 {
+       Query      *parse = root->parse;
        List       *tlist = parse->targetList;
+       int64           offset_est = 0;
+       int64           count_est = 0;
+       double          limit_tuples = -1.0;
        Plan       *result_plan;
        List       *current_pathkeys;
-       List       *sort_pathkeys;
+       double          dNumGroups = 0;
+
+       /* Tweak caller-supplied tuple_fraction if have LIMIT/OFFSET */
+       if (parse->limitCount || parse->limitOffset)
+       {
+               tuple_fraction = preprocess_limit(root, tuple_fraction,
+                                                                                 &offset_est, &count_est);
+
+               /*
+                * If we have a known LIMIT, and don't have an unknown OFFSET, we can
+                * estimate the effects of using a bounded sort.
+                */
+               if (count_est > 0 && offset_est >= 0)
+                       limit_tuples = (double) count_est + (double) offset_est;
+       }
 
        if (parse->setOperations)
        {
+               List       *set_sortclauses;
+
+               /*
+                * If there's a top-level ORDER BY, assume we have to fetch all the
+                * tuples.      This might be too simplistic given all the hackery below
+                * to possibly avoid the sort; but the odds of accurate estimates
+                * here are pretty low anyway.
+                */
+               if (parse->sortClause)
+                       tuple_fraction = 0.0;
+
+               /*
+                * Construct the plan for set operations.  The result will not need
+                * any work except perhaps a top-level sort and/or LIMIT.  Note that
+                * any special work for recursive unions is the responsibility of
+                * plan_set_operations.
+                */
+               result_plan = plan_set_operations(root, tuple_fraction,
+                                                                                 &set_sortclauses);
+
                /*
-                * Construct the plan for set operations.  The result will not
-                * need any work except perhaps a top-level sort and/or LIMIT.
+                * Calculate pathkeys representing the sort order (if any) of the set
+                * operation's result.  We have to do this before overwriting the sort
+                * key information...
                 */
-               result_plan = plan_set_operations(parse);
+               current_pathkeys = make_pathkeys_for_sortclauses(root,
+                                                                                                                set_sortclauses,
+                                                                                                        result_plan->targetlist,
+                                                                                                                true);
 
                /*
-                * We should not need to call preprocess_targetlist, since we must
-                * be in a SELECT query node.  Instead, use the targetlist
-                * returned by plan_set_operations (since this tells whether it
-                * returned any resjunk columns!), and transfer any sort key
-                * information from the original tlist.
+                * We should not need to call preprocess_targetlist, since we must be
+                * in a SELECT query node.      Instead, use the targetlist returned by
+                * plan_set_operations (since this tells whether it returned any
+                * resjunk columns!), and transfer any sort key information from the
+                * original tlist.
                 */
                Assert(parse->commandType == CMD_SELECT);
 
-               tlist = postprocess_setop_tlist(result_plan->targetlist, tlist);
+               tlist = postprocess_setop_tlist(copyObject(result_plan->targetlist),
+                                                                               tlist);
 
                /*
-                * Can't handle FOR UPDATE here (parser should have checked
+                * Can't handle FOR UPDATE/SHARE here (parser should have checked
                 * already, but let's make sure).
                 */
                if (parse->rowMarks)
                        ereport(ERROR,
                                        (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
-                                        errmsg("SELECT FOR UPDATE is not allowed with UNION/INTERSECT/EXCEPT")));
+                                        errmsg("SELECT FOR UPDATE/SHARE is not allowed with UNION/INTERSECT/EXCEPT")));
 
                /*
-                * We set current_pathkeys NIL indicating we do not know sort
-                * order.  This is correct when the top set operation is UNION
-                * ALL, since the appended-together results are unsorted even if
-                * the subplans were sorted.  For other set operations we could be
-                * smarter --- room for future improvement!
+                * Calculate pathkeys that represent result ordering requirements
                 */
-               current_pathkeys = NIL;
-
-               /*
-                * Calculate pathkeys that represent ordering requirements
-                */
-               sort_pathkeys = make_pathkeys_for_sortclauses(parse->sortClause,
-                                                                                                         tlist);
-               sort_pathkeys = canonicalize_pathkeys(parse, sort_pathkeys);
+               Assert(parse->distinctClause == NIL);
+               root->sort_pathkeys = make_pathkeys_for_sortclauses(root,
+                                                                                                                       parse->sortClause,
+                                                                                                                       tlist,
+                                                                                                                       true);
        }
        else
        {
                /* No set operations, do regular planning */
                List       *sub_tlist;
-               List       *group_pathkeys;
                AttrNumber *groupColIdx = NULL;
                bool            need_tlist_eval = true;
                QualCost        tlist_cost;
-               double          sub_tuple_fraction;
                Path       *cheapest_path;
                Path       *sorted_path;
-               double          dNumGroups = 0;
+               Path       *best_path;
                long            numGroups = 0;
-               int                     numAggs = 0;
-               int                     numGroupCols = length(parse->groupClause);
+               AggClauseCounts agg_counts;
+               int                     numGroupCols;
                bool            use_hashed_grouping = false;
+               WindowFuncLists *wflists = NULL;
+               List       *activeWindows = NIL;
 
-               /* Preprocess targetlist in case we are inside an INSERT/UPDATE. */
-               tlist = preprocess_targetlist(tlist,
-                                                                         parse->commandType,
-                                                                         parse->resultRelation,
-                                                                         parse->rtable);
+               MemSet(&agg_counts, 0, sizeof(AggClauseCounts));
 
-               /*
-                * Add TID targets for rels selected FOR UPDATE (should this be
-                * done in preprocess_targetlist?).  The executor uses the TID to
-                * know which rows to lock, much as for UPDATE or DELETE.
-                */
-               if (parse->rowMarks)
-               {
-                       List       *l;
+               /* A recursive query should always have setOperations */
+               Assert(!root->hasRecursion);
 
-                       /*
-                        * We've got trouble if the FOR UPDATE appears inside
-                        * grouping, since grouping renders a reference to individual
-                        * tuple CTIDs invalid.  This is also checked at parse time,
-                        * but that's insufficient because of rule substitution, query
-                        * pullup, etc.
-                        */
-                       CheckSelectForUpdate(parse);
+               /* Preprocess GROUP BY clause, if any */
+               if (parse->groupClause)
+                       preprocess_groupclause(root);
+               numGroupCols = list_length(parse->groupClause);
 
-                       /*
-                        * Currently the executor only supports FOR UPDATE at top
-                        * level
-                        */
-                       if (PlannerQueryLevel > 1)
-                               ereport(ERROR,
-                                               (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
-                                                errmsg("SELECT FOR UPDATE is not allowed in subqueries")));
+               /* Preprocess targetlist */
+               tlist = preprocess_targetlist(root, tlist);
 
-                       foreach(l, parse->rowMarks)
-                       {
-                               Index           rti = lfirsti(l);
-                               char       *resname;
-                               Resdom     *resdom;
-                               Var                *var;
-                               TargetEntry *ctid;
-
-                               resname = (char *) palloc(32);
-                               snprintf(resname, 32, "ctid%u", rti);
-                               resdom = makeResdom(length(tlist) + 1,
-                                                                       TIDOID,
-                                                                       -1,
-                                                                       resname,
-                                                                       true);
-
-                               var = makeVar(rti,
-                                                         SelfItemPointerAttributeNumber,
-                                                         TIDOID,
-                                                         -1,
-                                                         0);
-
-                               ctid = makeTargetEntry(resdom, (Expr *) var);
-                               tlist = lappend(tlist, ctid);
-                       }
+               /*
+                * Locate any window functions in the tlist.  (We don't need to look
+                * anywhere else, since expressions used in ORDER BY will be in there
+                * too.)  Note that they could all have been eliminated by constant
+                * folding, in which case we don't need to do any more work.
+                */
+               if (parse->hasWindowFuncs)
+               {
+                       wflists = find_window_functions((Node *) tlist,
+                                                                                       list_length(parse->windowClause));
+                       if (wflists->numWindowFuncs > 0)
+                               activeWindows = select_active_windows(root, wflists);
+                       else
+                               parse->hasWindowFuncs = false;
                }
 
                /*
-                * Generate appropriate target list for subplan; may be different
-                * from tlist if grouping or aggregation is needed.
+                * Generate appropriate target list for subplan; may be different from
+                * tlist if grouping or aggregation is needed.
                 */
-               sub_tlist = make_subplanTargetList(parse, tlist,
-                                                                                &groupColIdx, &need_tlist_eval);
+               sub_tlist = make_subplanTargetList(root, tlist,
+                                                                                  &groupColIdx, &need_tlist_eval);
 
                /*
-                * Calculate pathkeys that represent grouping/ordering
-                * requirements
+                * Calculate pathkeys that represent grouping/ordering requirements.
+                * Stash them in PlannerInfo so that query_planner can canonicalize
+                * them after EquivalenceClasses have been formed.  The sortClause
+                * is certainly sort-able, but GROUP BY and DISTINCT might not be,
+                * in which case we just leave their pathkeys empty.
                 */
-               group_pathkeys = make_pathkeys_for_sortclauses(parse->groupClause,
-                                                                                                          tlist);
-               sort_pathkeys = make_pathkeys_for_sortclauses(parse->sortClause,
-                                                                                                         tlist);
+               if (parse->groupClause &&
+                       grouping_is_sortable(parse->groupClause))
+                       root->group_pathkeys =
+                               make_pathkeys_for_sortclauses(root,
+                                                                                         parse->groupClause,
+                                                                                         tlist,
+                                                                                         false);
+               else
+                       root->group_pathkeys = NIL;
+
+               /* We consider only the first (bottom) window in pathkeys logic */
+               if (activeWindows != NIL)
+               {
+                       WindowClause *wc = (WindowClause *) linitial(activeWindows);
+
+                       root->window_pathkeys = make_pathkeys_for_window(root,
+                                                                                                                        wc,
+                                                                                                                        tlist,
+                                                                                                                        false);
+               }
+               else
+                       root->window_pathkeys = NIL;
+
+               if (parse->distinctClause &&
+                       grouping_is_sortable(parse->distinctClause))
+                       root->distinct_pathkeys =
+                               make_pathkeys_for_sortclauses(root,
+                                                                                         parse->distinctClause,
+                                                                                         tlist,
+                                                                                         false);
+               else
+                       root->distinct_pathkeys = NIL;
+
+               root->sort_pathkeys =
+                       make_pathkeys_for_sortclauses(root,
+                                                                                 parse->sortClause,
+                                                                                 tlist,
+                                                                                 false);
 
                /*
                 * Will need actual number of aggregates for estimating costs.
-                * Also, it's possible that optimization has eliminated all
-                * aggregates, and we may as well check for that here.
                 *
                 * Note: we do not attempt to detect duplicate aggregates here; a
                 * somewhat-overestimated count is okay for our present purposes.
+                *
+                * Note: think not that we can turn off hasAggs if we find no aggs. It
+                * is possible for constant-expression simplification to remove all
+                * explicit references to aggs, but we still have to follow the
+                * aggregate semantics (eg, producing only one output row).
                 */
                if (parse->hasAggs)
                {
-                       numAggs = count_agg_clause((Node *) tlist) +
-                               count_agg_clause(parse->havingQual);
-                       if (numAggs == 0)
-                               parse->hasAggs = false;
+                       count_agg_clauses((Node *) tlist, &agg_counts);
+                       count_agg_clauses(parse->havingQual, &agg_counts);
                }
 
                /*
-                * Figure out whether we need a sorted result from query_planner.
+                * Figure out whether we want a sorted result from query_planner.
+                *
+                * If we have a sortable GROUP BY clause, then we want a result sorted
+                * properly for grouping.  Otherwise, if we have window functions to
+                * evaluate, we try to sort for the first window.  Otherwise, if
+                * there's a sortable DISTINCT clause that's more rigorous than the
+                * ORDER BY clause, we try to produce output that's sufficiently well
+                * sorted for the DISTINCT.  Otherwise, if there is an ORDER BY
+                * clause, we want to sort by the ORDER BY clause.
                 *
-                * If we have a GROUP BY clause, then we want a result sorted
-                * properly for grouping.  Otherwise, if there is an ORDER BY
-                * clause, we want to sort by the ORDER BY clause.      (Note: if we
-                * have both, and ORDER BY is a superset of GROUP BY, it would be
-                * tempting to request sort by ORDER BY --- but that might just
-                * leave us failing to exploit an available sort order at all.
-                * Needs more thought...)
+                * Note: if we have both ORDER BY and GROUP BY, and ORDER BY is a
+                * superset of GROUP BY, it would be tempting to request sort by ORDER
+                * BY --- but that might just leave us failing to exploit an available
+                * sort order at all.  Needs more thought.  The choice for DISTINCT
+                * versus ORDER BY is much easier, since we know that the parser
+                * ensured that one is a superset of the other.
                 */
-               if (parse->groupClause)
-                       parse->query_pathkeys = group_pathkeys;
-               else if (parse->sortClause)
-                       parse->query_pathkeys = sort_pathkeys;
+               if (root->group_pathkeys)
+                       root->query_pathkeys = root->group_pathkeys;
+               else if (root->window_pathkeys)
+                       root->query_pathkeys = root->window_pathkeys;
+               else if (list_length(root->distinct_pathkeys) >
+                                list_length(root->sort_pathkeys))
+                       root->query_pathkeys = root->distinct_pathkeys;
+               else if (root->sort_pathkeys)
+                       root->query_pathkeys = root->sort_pathkeys;
                else
-                       parse->query_pathkeys = NIL;
+                       root->query_pathkeys = NIL;
+
+               /*
+                * Generate the best unsorted and presorted paths for this Query (but
+                * note there may not be any presorted path).  query_planner will also
+                * estimate the number of groups in the query, and canonicalize all
+                * the pathkeys.
+                */
+               query_planner(root, sub_tlist, tuple_fraction, limit_tuples,
+                                         &cheapest_path, &sorted_path, &dNumGroups);
 
                /*
-                * Adjust tuple_fraction if we see that we are going to apply
-                * limiting/grouping/aggregation/etc.  This is not overridable by
-                * the caller, since it reflects plan actions that this routine
-                * will certainly take, not assumptions about context.
+                * If grouping, decide whether to use sorted or hashed grouping.
                 */
-               if (parse->limitCount != NULL)
+               if (parse->groupClause)
                {
+                       bool    can_hash;
+                       bool    can_sort;
+
                        /*
-                        * A LIMIT clause limits the absolute number of tuples
-                        * returned. However, if it's not a constant LIMIT then we
-                        * have to punt; for lack of a better idea, assume 10% of the
-                        * plan's result is wanted.
+                        * Executor doesn't support hashed aggregation with DISTINCT
+                        * aggregates.  (Doing so would imply storing *all* the input
+                        * values in the hash table, which seems like a certain loser.)
                         */
-                       double          limit_fraction = 0.0;
-
-                       if (IsA(parse->limitCount, Const))
+                       can_hash = (agg_counts.numDistinctAggs == 0 &&
+                                               grouping_is_hashable(parse->groupClause));
+                       can_sort = grouping_is_sortable(parse->groupClause);
+                       if (can_hash && can_sort)
                        {
-                               Const      *limitc = (Const *) parse->limitCount;
-                               int32           count = DatumGetInt32(limitc->constvalue);
-
-                               /*
-                                * A NULL-constant LIMIT represents "LIMIT ALL", which we
-                                * treat the same as no limit (ie, expect to retrieve all
-                                * the tuples).
-                                */
-                               if (!limitc->constisnull && count > 0)
-                               {
-                                       limit_fraction = (double) count;
-                                       /* We must also consider the OFFSET, if present */
-                                       if (parse->limitOffset != NULL)
-                                       {
-                                               if (IsA(parse->limitOffset, Const))
-                                               {
-                                                       int32           offset;
-
-                                                       limitc = (Const *) parse->limitOffset;
-                                                       offset = DatumGetInt32(limitc->constvalue);
-                                                       if (!limitc->constisnull && offset > 0)
-                                                               limit_fraction += (double) offset;
-                                               }
-                                               else
-                                               {
-                                                       /* OFFSET is an expression ... punt ... */
-                                                       limit_fraction = 0.10;
-                                               }
-                                       }
-                               }
+                               /* we have a meaningful choice to make ... */
+                               use_hashed_grouping =
+                                       choose_hashed_grouping(root,
+                                                                                  tuple_fraction, limit_tuples,
+                                                                                  cheapest_path, sorted_path,
+                                                                                  dNumGroups, &agg_counts);
                        }
+                       else if (can_hash)
+                               use_hashed_grouping = true;
+                       else if (can_sort)
+                               use_hashed_grouping = false;
                        else
-                       {
-                               /* LIMIT is an expression ... punt ... */
-                               limit_fraction = 0.10;
-                       }
+                               ereport(ERROR,
+                                               (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
+                                                errmsg("could not implement GROUP BY"),
+                                                errdetail("Some of the datatypes only support hashing, while others only support sorting.")));
 
-                       if (limit_fraction > 0.0)
-                       {
-                               /*
-                                * If we have absolute limits from both caller and LIMIT,
-                                * use the smaller value; if one is fractional and the
-                                * other absolute, treat the fraction as a fraction of the
-                                * absolute value; else we can multiply the two fractions
-                                * together.
-                                */
-                               if (tuple_fraction >= 1.0)
-                               {
-                                       if (limit_fraction >= 1.0)
-                                       {
-                                               /* both absolute */
-                                               tuple_fraction = Min(tuple_fraction, limit_fraction);
-                                       }
-                                       else
-                                       {
-                                               /* caller absolute, limit fractional */
-                                               tuple_fraction *= limit_fraction;
-                                               if (tuple_fraction < 1.0)
-                                                       tuple_fraction = 1.0;
-                                       }
-                               }
-                               else if (tuple_fraction > 0.0)
-                               {
-                                       if (limit_fraction >= 1.0)
-                                       {
-                                               /* caller fractional, limit absolute */
-                                               tuple_fraction *= limit_fraction;
-                                               if (tuple_fraction < 1.0)
-                                                       tuple_fraction = 1.0;
-                                       }
-                                       else
-                                       {
-                                               /* both fractional */
-                                               tuple_fraction *= limit_fraction;
-                                       }
-                               }
-                               else
-                               {
-                                       /* no info from caller, just use limit */
-                                       tuple_fraction = limit_fraction;
-                               }
-                       }
+                       /* Also convert # groups to long int --- but 'ware overflow! */
+                       numGroups = (long) Min(dNumGroups, (double) LONG_MAX);
                }
 
                /*
-                * With grouping or aggregation, the tuple fraction to pass to
-                * query_planner() may be different from what it is at top level.
+                * Select the best path.  If we are doing hashed grouping, we will
+                * always read all the input tuples, so use the cheapest-total path.
+                * Otherwise, trust query_planner's decision about which to use.
                 */
-               sub_tuple_fraction = tuple_fraction;
-
-               if (parse->groupClause)
-               {
-                       /*
-                        * In GROUP BY mode, we have the little problem that we don't
-                        * really know how many input tuples will be needed to make a
-                        * group, so we can't translate an output LIMIT count into an
-                        * input count.  For lack of a better idea, assume 25% of the
-                        * input data will be processed if there is any output limit.
-                        * However, if the caller gave us a fraction rather than an
-                        * absolute count, we can keep using that fraction (which
-                        * amounts to assuming that all the groups are about the same
-                        * size).
-                        */
-                       if (sub_tuple_fraction >= 1.0)
-                               sub_tuple_fraction = 0.25;
+               if (use_hashed_grouping || !sorted_path)
+                       best_path = cheapest_path;
+               else
+                       best_path = sorted_path;
 
-                       /*
-                        * If both GROUP BY and ORDER BY are specified, we will need
-                        * two levels of sort --- and, therefore, certainly need to
-                        * read all the input tuples --- unless ORDER BY is a subset
-                        * of GROUP BY.  (We have not yet canonicalized the pathkeys,
-                        * so must use the slower noncanonical comparison method.)
-                        */
-                       if (parse->groupClause && parse->sortClause &&
-                               !noncanonical_pathkeys_contained_in(sort_pathkeys,
-                                                                                                       group_pathkeys))
-                               sub_tuple_fraction = 0.0;
-               }
-               else if (parse->hasAggs)
+               /*
+                * Check to see if it's possible to optimize MIN/MAX aggregates. If
+                * so, we will forget all the work we did so far to choose a "regular"
+                * path ... but we had to do it anyway to be able to tell which way is
+                * cheaper.
+                */
+               result_plan = optimize_minmax_aggregates(root,
+                                                                                                tlist,
+                                                                                                best_path);
+               if (result_plan != NULL)
                {
                        /*
-                        * Ungrouped aggregate will certainly want all the input
-                        * tuples.
+                        * optimize_minmax_aggregates generated the full plan, with the
+                        * right tlist, and it has no sort order.
                         */
-                       sub_tuple_fraction = 0.0;
+                       current_pathkeys = NIL;
                }
-               else if (parse->distinctClause)
+               else
                {
                        /*
-                        * SELECT DISTINCT, like GROUP, will absorb an unpredictable
-                        * number of input tuples per output tuple.  Handle the same
-                        * way.
+                        * Normal case --- create a plan according to query_planner's
+                        * results.
                         */
-                       if (sub_tuple_fraction >= 1.0)
-                               sub_tuple_fraction = 0.25;
-               }
-
-               /*
-                * Generate the best unsorted and presorted paths for this Query
-                * (but note there may not be any presorted path).
-                */
-               query_planner(parse, sub_tlist, sub_tuple_fraction,
-                                         &cheapest_path, &sorted_path);
+                       bool    need_sort_for_grouping = false;
 
-               /*
-                * We couldn't canonicalize group_pathkeys and sort_pathkeys
-                * before running query_planner(), so do it now.
-                */
-               group_pathkeys = canonicalize_pathkeys(parse, group_pathkeys);
-               sort_pathkeys = canonicalize_pathkeys(parse, sort_pathkeys);
+                       result_plan = create_plan(root, best_path);
+                       current_pathkeys = best_path->pathkeys;
 
-               /*
-                * Consider whether we might want to use hashed grouping.
-                */
-               if (parse->groupClause)
-               {
-                       List       *groupExprs;
-                       double          cheapest_path_rows;
-                       int                     cheapest_path_width;
+                       /* Detect if we'll need an explicit sort for grouping */
+                       if (parse->groupClause && !use_hashed_grouping &&
+                               !pathkeys_contained_in(root->group_pathkeys, current_pathkeys))
+                       {
+                               need_sort_for_grouping = true;
+                               /*
+                                * Always override query_planner's tlist, so that we don't
+                                * sort useless data from a "physical" tlist.
+                                */
+                               need_tlist_eval = true;
+                       }
 
                        /*
-                        * Beware in this section of the possibility that
-                        * cheapest_path->parent is NULL.  This could happen if user
-                        * does something silly like SELECT 'foo' GROUP BY 1;
+                        * create_plan() returns a plan with just a "flat" tlist of
+                        * required Vars.  Usually we need to insert the sub_tlist as the
+                        * tlist of the top plan node.  However, we can skip that if we
+                        * determined that whatever query_planner chose to return will be
+                        * good enough.
                         */
-                       if (cheapest_path->parent)
+                       if (need_tlist_eval)
                        {
-                               cheapest_path_rows = cheapest_path->parent->rows;
-                               cheapest_path_width = cheapest_path->parent->width;
+                               /*
+                                * If the top-level plan node is one that cannot do expression
+                                * evaluation, we must insert a Result node to project the
+                                * desired tlist.
+                                */
+                               if (!is_projection_capable_plan(result_plan))
+                               {
+                                       result_plan = (Plan *) make_result(root,
+                                                                                                          sub_tlist,
+                                                                                                          NULL,
+                                                                                                          result_plan);
+                               }
+                               else
+                               {
+                                       /*
+                                        * Otherwise, just replace the subplan's flat tlist with
+                                        * the desired tlist.
+                                        */
+                                       result_plan->targetlist = sub_tlist;
+                               }
+
+                               /*
+                                * Also, account for the cost of evaluation of the sub_tlist.
+                                *
+                                * Up to now, we have only been dealing with "flat" tlists,
+                                * containing just Vars.  So their evaluation cost is zero
+                                * according to the model used by cost_qual_eval() (or if you
+                                * prefer, the cost is factored into cpu_tuple_cost).  Thus we
+                                * can avoid accounting for tlist cost throughout
+                                * query_planner() and subroutines.  But now we've inserted a
+                                * tlist that might contain actual operators, sub-selects, etc
+                                * --- so we'd better account for its cost.
+                                *
+                                * Below this point, any tlist eval cost for added-on nodes
+                                * should be accounted for as we create those nodes.
+                                * Presently, of the node types we can add on, only Agg,
+                                * WindowAgg, and Group project new tlists (the rest just copy
+                                * their input tuples) --- so make_agg(), make_windowagg() and
+                                * make_group() are responsible for computing the added cost.
+                                */
+                               cost_qual_eval(&tlist_cost, sub_tlist, root);
+                               result_plan->startup_cost += tlist_cost.startup;
+                               result_plan->total_cost += tlist_cost.startup +
+                                       tlist_cost.per_tuple * result_plan->plan_rows;
                        }
                        else
                        {
-                               cheapest_path_rows = 1; /* assume non-set result */
-                               cheapest_path_width = 100;              /* arbitrary */
+                               /*
+                                * Since we're using query_planner's tlist and not the one
+                                * make_subplanTargetList calculated, we have to refigure any
+                                * grouping-column indexes make_subplanTargetList computed.
+                                */
+                               locate_grouping_columns(root, tlist, result_plan->targetlist,
+                                                                               groupColIdx);
                        }
 
                        /*
-                        * Always estimate the number of groups.  We can't do this
-                        * until after running query_planner(), either.
-                        */
-                       groupExprs = get_sortgrouplist_exprs(parse->groupClause,
-                                                                                                parse->targetList);
-                       dNumGroups = estimate_num_groups(parse,
-                                                                                        groupExprs,
-                                                                                        cheapest_path_rows);
-                       /* Also want it as a long int --- but 'ware overflow! */
-                       numGroups = (long) Min(dNumGroups, (double) LONG_MAX);
-
-                       /*
-                        * Check can't-do-it conditions, including whether the
-                        * grouping operators are hashjoinable.
+                        * Insert AGG or GROUP node if needed, plus an explicit sort step
+                        * if necessary.
                         *
-                        * Executor doesn't support hashed aggregation with DISTINCT
-                        * aggregates.  (Doing so would imply storing *all* the input
-                        * values in the hash table, which seems like a certain
-                        * loser.)
+                        * HAVING clause, if any, becomes qual of the Agg or Group node.
                         */
-                       if (!enable_hashagg || !hash_safe_grouping(parse))
-                               use_hashed_grouping = false;
-                       else if (parse->hasAggs &&
-                                        (contain_distinct_agg_clause((Node *) tlist) ||
-                                         contain_distinct_agg_clause(parse->havingQual)))
-                               use_hashed_grouping = false;
-                       else
+                       if (use_hashed_grouping)
                        {
-                               /*
-                                * Use hashed grouping if (a) we think we can fit the
-                                * hashtable into SortMem, *and* (b) the estimated cost is
-                                * no more than doing it the other way.  While avoiding
-                                * the need for sorted input is usually a win, the fact
-                                * that the output won't be sorted may be a loss; so we
-                                * need to do an actual cost comparison.
-                                *
-                                * In most cases we have no good way to estimate the size of
-                                * the transition value needed by an aggregate;
-                                * arbitrarily assume it is 100 bytes.  Also set the
-                                * overhead per hashtable entry at 64 bytes.
-                                */
-                               int                     hashentrysize = cheapest_path_width + 64 + numAggs * 100;
+                               /* Hashed aggregate plan --- no sort needed */
+                               result_plan = (Plan *) make_agg(root,
+                                                                                               tlist,
+                                                                                               (List *) parse->havingQual,
+                                                                                               AGG_HASHED,
+                                                                                               numGroupCols,
+                                                                                               groupColIdx,
+                                                                       extract_grouping_ops(parse->groupClause),
+                                                                                               numGroups,
+                                                                                               agg_counts.numAggs,
+                                                                                               result_plan);
+                               /* Hashed aggregation produces randomly-ordered results */
+                               current_pathkeys = NIL;
+                       }
+                       else if (parse->hasAggs)
+                       {
+                               /* Plain aggregate plan --- sort if needed */
+                               AggStrategy aggstrategy;
 
-                               if (hashentrysize * dNumGroups <= SortMem * 1024L)
+                               if (parse->groupClause)
                                {
-                                       /*
-                                        * Okay, do the cost comparison.  We need to consider
-                                        * cheapest_path + hashagg [+ final sort] versus
-                                        * either cheapest_path [+ sort] + group or agg [+
-                                        * final sort] or presorted_path + group or agg [+
-                                        * final sort] where brackets indicate a step that may
-                                        * not be needed. We assume query_planner() will have
-                                        * returned a presorted path only if it's a winner
-                                        * compared to cheapest_path for this purpose.
-                                        *
-                                        * These path variables are dummies that just hold cost
-                                        * fields; we don't make actual Paths for these steps.
-                                        */
-                                       Path            hashed_p;
-                                       Path            sorted_p;
-
-                                       cost_agg(&hashed_p, parse,
-                                                        AGG_HASHED, numAggs,
-                                                        numGroupCols, dNumGroups,
-                                                        cheapest_path->startup_cost,
-                                                        cheapest_path->total_cost,
-                                                        cheapest_path_rows);
-                                       /* Result of hashed agg is always unsorted */
-                                       if (sort_pathkeys)
-                                               cost_sort(&hashed_p, parse, sort_pathkeys,
-                                                                 hashed_p.total_cost,
-                                                                 dNumGroups,
-                                                                 cheapest_path_width);
-
-                                       if (sorted_path)
+                                       if (need_sort_for_grouping)
                                        {
-                                               sorted_p.startup_cost = sorted_path->startup_cost;
-                                               sorted_p.total_cost = sorted_path->total_cost;
-                                               current_pathkeys = sorted_path->pathkeys;
-                                       }
-                                       else
-                                       {
-                                               sorted_p.startup_cost = cheapest_path->startup_cost;
-                                               sorted_p.total_cost = cheapest_path->total_cost;
-                                               current_pathkeys = cheapest_path->pathkeys;
-                                       }
-                                       if (!pathkeys_contained_in(group_pathkeys,
-                                                                                          current_pathkeys))
-                                       {
-                                               cost_sort(&sorted_p, parse, group_pathkeys,
-                                                                 sorted_p.total_cost,
-                                                                 cheapest_path_rows,
-                                                                 cheapest_path_width);
-                                               current_pathkeys = group_pathkeys;
-                                       }
-                                       if (parse->hasAggs)
-                                               cost_agg(&sorted_p, parse,
-                                                                AGG_SORTED, numAggs,
-                                                                numGroupCols, dNumGroups,
-                                                                sorted_p.startup_cost,
-                                                                sorted_p.total_cost,
-                                                                cheapest_path_rows);
-                                       else
-                                               cost_group(&sorted_p, parse,
-                                                                  numGroupCols, dNumGroups,
-                                                                  sorted_p.startup_cost,
-                                                                  sorted_p.total_cost,
-                                                                  cheapest_path_rows);
-                                       /* The Agg or Group node will preserve ordering */
-                                       if (sort_pathkeys &&
-                                               !pathkeys_contained_in(sort_pathkeys,
-                                                                                          current_pathkeys))
-                                       {
-                                               cost_sort(&sorted_p, parse, sort_pathkeys,
-                                                                 sorted_p.total_cost,
-                                                                 dNumGroups,
-                                                                 cheapest_path_width);
+                                               result_plan = (Plan *)
+                                                       make_sort_from_groupcols(root,
+                                                                                                        parse->groupClause,
+                                                                                                        groupColIdx,
+                                                                                                        result_plan);
+                                               current_pathkeys = root->group_pathkeys;
                                        }
+                                       aggstrategy = AGG_SORTED;
 
                                        /*
-                                        * Now make the decision using the top-level tuple
-                                        * fraction.  First we have to convert an absolute
-                                        * count (LIMIT) into fractional form.
+                                        * The AGG node will not change the sort ordering of its
+                                        * groups, so current_pathkeys describes the result too.
                                         */
-                                       if (tuple_fraction >= 1.0)
-                                               tuple_fraction /= dNumGroups;
+                               }
+                               else
+                               {
+                                       aggstrategy = AGG_PLAIN;
+                                       /* Result will be only one row anyway; no sort order */
+                                       current_pathkeys = NIL;
+                               }
 
-                                       if (compare_fractional_path_costs(&hashed_p, &sorted_p,
-                                                                                                         tuple_fraction) < 0)
-                                       {
-                                               /* Hashed is cheaper, so use it */
-                                               use_hashed_grouping = true;
-                                       }
+                               result_plan = (Plan *) make_agg(root,
+                                                                                               tlist,
+                                                                                               (List *) parse->havingQual,
+                                                                                               aggstrategy,
+                                                                                               numGroupCols,
+                                                                                               groupColIdx,
+                                                                       extract_grouping_ops(parse->groupClause),
+                                                                                               numGroups,
+                                                                                               agg_counts.numAggs,
+                                                                                               result_plan);
+                       }
+                       else if (parse->groupClause)
+                       {
+                               /*
+                                * GROUP BY without aggregation, so insert a group node (plus
+                                * the appropriate sort node, if necessary).
+                                *
+                                * Add an explicit sort if we couldn't make the path come out
+                                * the way the GROUP node needs it.
+                                */
+                               if (need_sort_for_grouping)
+                               {
+                                       result_plan = (Plan *)
+                                               make_sort_from_groupcols(root,
+                                                                                                parse->groupClause,
+                                                                                                groupColIdx,
+                                                                                                result_plan);
+                                       current_pathkeys = root->group_pathkeys;
                                }
+
+                               result_plan = (Plan *) make_group(root,
+                                                                                                 tlist,
+                                                                                                 (List *) parse->havingQual,
+                                                                                                 numGroupCols,
+                                                                                                 groupColIdx,
+                                                                       extract_grouping_ops(parse->groupClause),
+                                                                                                 dNumGroups,
+                                                                                                 result_plan);
+                               /* The Group node won't change sort ordering */
                        }
-               }
+                       else if (root->hasHavingQual)
+                       {
+                               /*
+                                * No aggregates, and no GROUP BY, but we have a HAVING qual.
+                                * This is a degenerate case in which we are supposed to emit
+                                * either 0 or 1 row depending on whether HAVING succeeds.
+                                * Furthermore, there cannot be any variables in either HAVING
+                                * or the targetlist, so we actually do not need the FROM
+                                * table at all!  We can just throw away the plan-so-far and
+                                * generate a Result node.      This is a sufficiently unusual
+                                * corner case that it's not worth contorting the structure of
+                                * this routine to avoid having to generate the plan in the
+                                * first place.
+                                */
+                               result_plan = (Plan *) make_result(root,
+                                                                                                  tlist,
+                                                                                                  parse->havingQual,
+                                                                                                  NULL);
+                       }
+               }                                               /* end of non-minmax-aggregate case */
 
                /*
-                * Select the best path and create a plan to execute it.
-                *
-                * If we are doing hashed grouping, we will always read all the input
-                * tuples, so use the cheapest-total path.      Otherwise, trust
-                * query_planner's decision about which to use.
+                * Since each window function could require a different sort order,
+                * we stack up a WindowAgg node for each window, with sort steps
+                * between them as needed.
                 */
-               if (sorted_path && !use_hashed_grouping)
+               if (activeWindows)
                {
-                       result_plan = create_plan(parse, sorted_path);
-                       current_pathkeys = sorted_path->pathkeys;
-               }
-               else
-               {
-                       result_plan = create_plan(parse, cheapest_path);
-                       current_pathkeys = cheapest_path->pathkeys;
-               }
+                       List       *window_tlist;
+                       ListCell   *l;
 
-               /*
-                * create_plan() returns a plan with just a "flat" tlist of
-                * required Vars.  Usually we need to insert the sub_tlist as the
-                * tlist of the top plan node.  However, we can skip that if we
-                * determined that whatever query_planner chose to return will be
-                * good enough.
-                */
-               if (need_tlist_eval)
-               {
                        /*
                         * If the top-level plan node is one that cannot do expression
                         * evaluation, we must insert a Result node to project the
-                        * desired tlist.
+                        * desired tlist.  (In some cases this might not really be
+                        * required, but it's not worth trying to avoid it.)  Note that
+                        * on second and subsequent passes through the following loop,
+                        * the top-level node will be a WindowAgg which we know can
+                        * project; so we only need to check once.
                         */
                        if (!is_projection_capable_plan(result_plan))
                        {
-                               result_plan = (Plan *) make_result(sub_tlist, NULL,
+                               result_plan = (Plan *) make_result(root,
+                                                                                                  NIL,
+                                                                                                  NULL,
                                                                                                   result_plan);
                        }
-                       else
+
+                       /*
+                        * The "base" targetlist for all steps of the windowing process
+                        * is a flat tlist of all Vars and Aggs needed in the result.
+                        * (In some cases we wouldn't need to propagate all of these
+                        * all the way to the top, since they might only be needed as
+                        * inputs to WindowFuncs.  It's probably not worth trying to
+                        * optimize that though.)  As we climb up the stack, we add
+                        * outputs for the WindowFuncs computed at each level.  Also,
+                        * each input tlist has to present all the columns needed to
+                        * sort the data for the next WindowAgg step.  That's handled
+                        * internally by make_sort_from_pathkeys, but we need the
+                        * copyObject steps here to ensure that each plan node has
+                        * a separately modifiable tlist.
+                        */
+                       window_tlist = flatten_tlist(tlist);
+                       if (parse->hasAggs)
+                               window_tlist = add_to_flat_tlist(window_tlist,
+                                                                                       pull_agg_clause((Node *) tlist));
+                       result_plan->targetlist = (List *) copyObject(window_tlist);
+
+                       foreach(l, activeWindows)
                        {
+                               WindowClause *wc = (WindowClause *) lfirst(l);
+                               List       *window_pathkeys;
+                               int                     partNumCols;
+                               AttrNumber *partColIdx;
+                               Oid                *partOperators;
+                               int                     ordNumCols;
+                               AttrNumber *ordColIdx;
+                               Oid                *ordOperators;
+
+                               window_pathkeys = make_pathkeys_for_window(root,
+                                                                                                                  wc,
+                                                                                                                  tlist,
+                                                                                                                  true);
+
                                /*
-                                * Otherwise, just replace the subplan's flat tlist with
-                                * the desired tlist.
+                                * This is a bit tricky: we build a sort node even if we don't
+                                * really have to sort.  Even when no explicit sort is needed,
+                                * we need to have suitable resjunk items added to the input
+                                * plan's tlist for any partitioning or ordering columns that
+                                * aren't plain Vars.  Furthermore, this way we can use
+                                * existing infrastructure to identify which input columns are
+                                * the interesting ones.
                                 */
-                               result_plan->targetlist = sub_tlist;
-                       }
+                               if (window_pathkeys)
+                               {
+                                       Sort       *sort_plan;
 
-                       /*
-                        * Also, account for the cost of evaluation of the sub_tlist.
-                        *
-                        * Up to now, we have only been dealing with "flat" tlists,
-                        * containing just Vars.  So their evaluation cost is zero
-                        * according to the model used by cost_qual_eval() (or if you
-                        * prefer, the cost is factored into cpu_tuple_cost).  Thus we
-                        * can avoid accounting for tlist cost throughout
-                        * query_planner() and subroutines.  But now we've inserted a
-                        * tlist that might contain actual operators, sub-selects, etc
-                        * --- so we'd better account for its cost.
-                        *
-                        * Below this point, any tlist eval cost for added-on nodes
-                        * should be accounted for as we create those nodes.
-                        * Presently, of the node types we can add on, only Agg and
-                        * Group project new tlists (the rest just copy their input
-                        * tuples) --- so make_agg() and make_group() are responsible
-                        * for computing the added cost.
-                        */
-                       cost_qual_eval(&tlist_cost, sub_tlist);
-                       result_plan->startup_cost += tlist_cost.startup;
-                       result_plan->total_cost += tlist_cost.startup +
-                               tlist_cost.per_tuple * result_plan->plan_rows;
+                                       sort_plan = make_sort_from_pathkeys(root,
+                                                                                                               result_plan,
+                                                                                                               window_pathkeys,
+                                                                                                               -1.0);
+                                       if (!pathkeys_contained_in(window_pathkeys,
+                                                                                          current_pathkeys))
+                                       {
+                                               /* we do indeed need to sort */
+                                               result_plan = (Plan *) sort_plan;
+                                               current_pathkeys = window_pathkeys;
+                                       }
+                                       /* In either case, extract the per-column information */
+                                       get_column_info_for_window(root, wc, tlist,
+                                                                                          sort_plan->numCols,
+                                                                                          sort_plan->sortColIdx,
+                                                                                          &partNumCols,
+                                                                                          &partColIdx,
+                                                                                          &partOperators,
+                                                                                          &ordNumCols,
+                                                                                          &ordColIdx,
+                                                                                          &ordOperators);
+                               }
+                               else
+                               {
+                                       /* empty window specification, nothing to sort */
+                                       partNumCols = 0;
+                                       partColIdx = NULL;
+                                       partOperators = NULL;
+                                       ordNumCols = 0;
+                                       ordColIdx = NULL;
+                                       ordOperators = NULL;
+                               }
+
+                               if (lnext(l))
+                               {
+                                       /* Add the current WindowFuncs to the running tlist */
+                                       window_tlist = add_to_flat_tlist(window_tlist,
+                                                                                       wflists->windowFuncs[wc->winref]);
+                               }
+                               else
+                               {
+                                       /* Install the original tlist in the topmost WindowAgg */
+                                       window_tlist = tlist;
+                               }
+
+                               /* ... and make the WindowAgg plan node */
+                               result_plan = (Plan *)
+                                       make_windowagg(root,
+                                                                  (List *) copyObject(window_tlist),
+                                                                  list_length(wflists->windowFuncs[wc->winref]),
+                                                                  wc->winref,
+                                                                  partNumCols,
+                                                                  partColIdx,
+                                                                  partOperators,
+                                                                  ordNumCols,
+                                                                  ordColIdx,
+                                                                  ordOperators,
+                                                                  wc->frameOptions,
+                                                                  result_plan);
+                       }
                }
+       }                                                       /* end of if (setOperations) */
+
+       /*
+        * If there is a DISTINCT clause, add the necessary node(s).
+        */
+       if (parse->distinctClause)
+       {
+               double  dNumDistinctRows;
+               long    numDistinctRows;
+               bool    use_hashed_distinct;
+               bool    can_sort;
+               bool    can_hash;
+
+               /*
+                * If there was grouping or aggregation, use the current number of
+                * rows as the estimated number of DISTINCT rows (ie, assume the
+                * result was already mostly unique).  If not, use the number of
+                * distinct-groups calculated by query_planner.
+                */
+               if (parse->groupClause || root->hasHavingQual || parse->hasAggs)
+                       dNumDistinctRows = result_plan->plan_rows;
                else
-               {
-                       /*
-                        * Since we're using query_planner's tlist and not the one
-                        * make_subplanTargetList calculated, we have to refigure any
-                        * grouping-column indexes make_subplanTargetList computed.
-                        */
-                       locate_grouping_columns(parse, tlist, result_plan->targetlist,
-                                                                       groupColIdx);
-               }
+                       dNumDistinctRows = dNumGroups;
+
+               /* Also convert to long int --- but 'ware overflow! */
+               numDistinctRows = (long) Min(dNumDistinctRows, (double) LONG_MAX);
 
                /*
-                * Insert AGG or GROUP node if needed, plus an explicit sort step
-                * if necessary.
-                *
-                * HAVING clause, if any, becomes qual of the Agg node
+                * If we have a sortable DISTINCT ON clause, we always use sorting.
+                * This enforces the expected behavior of DISTINCT ON.
                 */
-               if (use_hashed_grouping)
+               can_sort = grouping_is_sortable(parse->distinctClause);
+               if (can_sort && parse->hasDistinctOn)
+                       use_hashed_distinct = false;
+               else
+               {
+                       can_hash = grouping_is_hashable(parse->distinctClause);
+                       if (can_hash && can_sort)
+                       {
+                               /* we have a meaningful choice to make ... */
+                               use_hashed_distinct =
+                                       choose_hashed_distinct(root,
+                                                                                  result_plan, current_pathkeys,
+                                                                                  tuple_fraction, limit_tuples,
+                                                                                  dNumDistinctRows);
+                       }
+                       else if (can_hash)
+                               use_hashed_distinct = true;
+                       else if (can_sort)
+                               use_hashed_distinct = false;
+                       else
+                       {
+                               ereport(ERROR,
+                                               (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
+                                                errmsg("could not implement DISTINCT"),
+                                                errdetail("Some of the datatypes only support hashing, while others only support sorting.")));
+                               use_hashed_distinct = false; /* keep compiler quiet */
+                       }
+               }
+
+               if (use_hashed_distinct)
                {
                        /* Hashed aggregate plan --- no sort needed */
-                       result_plan = (Plan *) make_agg(parse,
-                                                                                       tlist,
-                                                                                       (List *) parse->havingQual,
+                       result_plan = (Plan *) make_agg(root,
+                                                                                       result_plan->targetlist,
+                                                                                       NIL,
                                                                                        AGG_HASHED,
-                                                                                       numGroupCols,
-                                                                                       groupColIdx,
-                                                                                       numGroups,
-                                                                                       numAggs,
+                                                                                       list_length(parse->distinctClause),
+                                                                                       extract_grouping_cols(parse->distinctClause,
+                                                                                                                                 result_plan->targetlist),
+                                                                                       extract_grouping_ops(parse->distinctClause),
+                                                                                       numDistinctRows,
+                                                                                       0,
                                                                                        result_plan);
                        /* Hashed aggregation produces randomly-ordered results */
                        current_pathkeys = NIL;
                }
-               else if (parse->hasAggs)
+               else
                {
-                       /* Plain aggregate plan --- sort if needed */
-                       AggStrategy aggstrategy;
+                       /*
+                        * Use a Unique node to implement DISTINCT.  Add an explicit sort
+                        * if we couldn't make the path come out the way the Unique node
+                        * needs it.  If we do have to sort, always sort by the more
+                        * rigorous of DISTINCT and ORDER BY, to avoid a second sort
+                        * below.  However, for regular DISTINCT, don't sort now if we
+                        * don't have to --- sorting afterwards will likely be cheaper,
+                        * and also has the possibility of optimizing via LIMIT.  But
+                        * for DISTINCT ON, we *must* force the final sort now, else
+                        * it won't have the desired behavior.
+                        */
+                       List   *needed_pathkeys;
 
-                       if (parse->groupClause)
+                       if (parse->hasDistinctOn &&
+                               list_length(root->distinct_pathkeys) <
+                               list_length(root->sort_pathkeys))
+                               needed_pathkeys = root->sort_pathkeys;
+                       else
+                               needed_pathkeys = root->distinct_pathkeys;
+
+                       if (!pathkeys_contained_in(needed_pathkeys, current_pathkeys))
                        {
-                               if (!pathkeys_contained_in(group_pathkeys, current_pathkeys))
+                               if (list_length(root->distinct_pathkeys) >=
+                                       list_length(root->sort_pathkeys))
+                                       current_pathkeys = root->distinct_pathkeys;
+                               else
                                {
-                                       result_plan = (Plan *)
-                                               make_sort_from_groupcols(parse,
-                                                                                                parse->groupClause,
-                                                                                                groupColIdx,
-                                                                                                result_plan);
-                                       current_pathkeys = group_pathkeys;
+                                       current_pathkeys = root->sort_pathkeys;
+                                       /* Assert checks that parser didn't mess up... */
+                                       Assert(pathkeys_contained_in(root->distinct_pathkeys,
+                                                                                                current_pathkeys));
                                }
-                               aggstrategy = AGG_SORTED;
 
-                               /*
-                                * The AGG node will not change the sort ordering of its
-                                * groups, so current_pathkeys describes the result too.
-                                */
+                               result_plan = (Plan *) make_sort_from_pathkeys(root,
+                                                                                                                          result_plan,
+                                                                                                                          current_pathkeys,
+                                                                                                                          -1.0);
+                       }
+
+                       result_plan = (Plan *) make_unique(result_plan,
+                                                                                          parse->distinctClause);
+                       result_plan->plan_rows = dNumDistinctRows;
+                       /* The Unique node won't change sort ordering */
+               }
+       }
+
+       /*
+        * If ORDER BY was given and we were not able to make the plan come out in
+        * the right order, add an explicit sort step.
+        */
+       if (parse->sortClause)
+       {
+               if (!pathkeys_contained_in(root->sort_pathkeys, current_pathkeys))
+               {
+                       result_plan = (Plan *) make_sort_from_pathkeys(root,
+                                                                                                                  result_plan,
+                                                                                                                  root->sort_pathkeys,
+                                                                                                                  limit_tuples);
+                       current_pathkeys = root->sort_pathkeys;
+               }
+       }
+
+       /*
+        * Finally, if there is a LIMIT/OFFSET clause, add the LIMIT node.
+        */
+       if (parse->limitCount || parse->limitOffset)
+       {
+               result_plan = (Plan *) make_limit(result_plan,
+                                                                                 parse->limitOffset,
+                                                                                 parse->limitCount,
+                                                                                 offset_est,
+                                                                                 count_est);
+       }
+
+       /*
+        * Deal with the RETURNING clause if any.  It's convenient to pass the
+        * returningList through setrefs.c now rather than at top level (if we
+        * waited, handling inherited UPDATE/DELETE would be much harder).
+        */
+       if (parse->returningList)
+       {
+               List       *rlist;
+
+               Assert(parse->resultRelation);
+               rlist = set_returning_clause_references(root->glob,
+                                                                                               parse->returningList,
+                                                                                               result_plan,
+                                                                                               parse->resultRelation);
+               root->returningLists = list_make1(rlist);
+       }
+       else
+               root->returningLists = NIL;
+
+       /* Compute result-relations list if needed */
+       if (parse->resultRelation)
+               root->resultRelations = list_make1_int(parse->resultRelation);
+       else
+               root->resultRelations = NIL;
+
+       /*
+        * Return the actual output ordering in query_pathkeys for possible use by
+        * an outer query level.
+        */
+       root->query_pathkeys = current_pathkeys;
+
+       return result_plan;
+}
+
+/*
+ * Detect whether a plan node is a "dummy" plan created when a relation
+ * is deemed not to need scanning due to constraint exclusion.
+ *
+ * Currently, such dummy plans are Result nodes with constant FALSE
+ * filter quals.
+ */
+static bool
+is_dummy_plan(Plan *plan)
+{
+       if (IsA(plan, Result))
+       {
+               List       *rcqual = (List *) ((Result *) plan)->resconstantqual;
+
+               if (list_length(rcqual) == 1)
+               {
+                       Const      *constqual = (Const *) linitial(rcqual);
+
+                       if (constqual && IsA(constqual, Const))
+                       {
+                               if (!constqual->constisnull &&
+                                       !DatumGetBool(constqual->constvalue))
+                                       return true;
+                       }
+               }
+       }
+       return false;
+}
+
+/*
+ * preprocess_limit - do pre-estimation for LIMIT and/or OFFSET clauses
+ *
+ * We try to estimate the values of the LIMIT/OFFSET clauses, and pass the
+ * results back in *count_est and *offset_est. These variables are set to
+ * 0 if the corresponding clause is not present, and -1 if it's present
+ * but we couldn't estimate the value for it.  (The "0" convention is OK
+ * for OFFSET but a little bit bogus for LIMIT: effectively we estimate
+ * LIMIT 0 as though it were LIMIT 1.  But this is in line with the planner's
+ * usual practice of never estimating less than one row.)  These values will
+ * be passed to make_limit, which see if you change this code.
+ *
+ * The return value is the suitably adjusted tuple_fraction to use for
+ * planning the query. This adjustment is not overridable, since it reflects
+ * plan actions that grouping_planner() will certainly take, not assumptions
+ * about context.
+ */
+static double
+preprocess_limit(PlannerInfo *root, double tuple_fraction,
+                                int64 *offset_est, int64 *count_est)
+{
+       Query      *parse = root->parse;
+       Node       *est;
+       double          limit_fraction;
+
+       /* Should not be called unless LIMIT or OFFSET */
+       Assert(parse->limitCount || parse->limitOffset);
+
+       /*
+        * Try to obtain the clause values.  We use estimate_expression_value
+        * primarily because it can sometimes do something useful with Params.
+        */
+       if (parse->limitCount)
+       {
+               est = estimate_expression_value(root, parse->limitCount);
+               if (est && IsA(est, Const))
+               {
+                       if (((Const *) est)->constisnull)
+                       {
+                               /* NULL indicates LIMIT ALL, ie, no limit */
+                               *count_est = 0; /* treat as not present */
                        }
                        else
                        {
-                               aggstrategy = AGG_PLAIN;
-                               /* Result will be only one row anyway; no sort order */
-                               current_pathkeys = NIL;
+                               *count_est = DatumGetInt64(((Const *) est)->constvalue);
+                               if (*count_est <= 0)
+                                       *count_est = 1;         /* force to at least 1 */
+                       }
+               }
+               else
+                       *count_est = -1;        /* can't estimate */
+       }
+       else
+               *count_est = 0;                 /* not present */
+
+       if (parse->limitOffset)
+       {
+               est = estimate_expression_value(root, parse->limitOffset);
+               if (est && IsA(est, Const))
+               {
+                       if (((Const *) est)->constisnull)
+                       {
+                               /* Treat NULL as no offset; the executor will too */
+                               *offset_est = 0;        /* treat as not present */
                        }
+                       else
+                       {
+                               *offset_est = DatumGetInt64(((Const *) est)->constvalue);
+                               if (*offset_est < 0)
+                                       *offset_est = 0;        /* less than 0 is same as 0 */
+                       }
+               }
+               else
+                       *offset_est = -1;       /* can't estimate */
+       }
+       else
+               *offset_est = 0;                /* not present */
 
-                       result_plan = (Plan *) make_agg(parse,
-                                                                                       tlist,
-                                                                                       (List *) parse->havingQual,
-                                                                                       aggstrategy,
-                                                                                       numGroupCols,
-                                                                                       groupColIdx,
-                                                                                       numGroups,
-                                                                                       numAggs,
-                                                                                       result_plan);
+       if (*count_est != 0)
+       {
+               /*
+                * A LIMIT clause limits the absolute number of tuples returned.
+                * However, if it's not a constant LIMIT then we have to guess; for
+                * lack of a better idea, assume 10% of the plan's result is wanted.
+                */
+               if (*count_est < 0 || *offset_est < 0)
+               {
+                       /* LIMIT or OFFSET is an expression ... punt ... */
+                       limit_fraction = 0.10;
                }
                else
                {
-                       /*
-                        * If there are no Aggs, we shouldn't have any HAVING qual
-                        * anymore
-                        */
-                       Assert(parse->havingQual == NULL);
+                       /* LIMIT (plus OFFSET, if any) is max number of tuples needed */
+                       limit_fraction = (double) *count_est + (double) *offset_est;
+               }
 
-                       /*
-                        * If we have a GROUP BY clause, insert a group node (plus the
-                        * appropriate sort node, if necessary).
-                        */
-                       if (parse->groupClause)
+               /*
+                * If we have absolute limits from both caller and LIMIT, use the
+                * smaller value; likewise if they are both fractional.  If one is
+                * fractional and the other absolute, we can't easily determine which
+                * is smaller, but we use the heuristic that the absolute will usually
+                * be smaller.
+                */
+               if (tuple_fraction >= 1.0)
+               {
+                       if (limit_fraction >= 1.0)
                        {
-                               /*
-                                * Add an explicit sort if we couldn't make the path come
-                                * out the way the GROUP node needs it.
-                                */
-                               if (!pathkeys_contained_in(group_pathkeys, current_pathkeys))
-                               {
-                                       result_plan = (Plan *)
-                                               make_sort_from_groupcols(parse,
-                                                                                                parse->groupClause,
-                                                                                                groupColIdx,
-                                                                                                result_plan);
-                                       current_pathkeys = group_pathkeys;
-                               }
+                               /* both absolute */
+                               tuple_fraction = Min(tuple_fraction, limit_fraction);
+                       }
+                       else
+                       {
+                               /* caller absolute, limit fractional; use caller's value */
+                       }
+               }
+               else if (tuple_fraction > 0.0)
+               {
+                       if (limit_fraction >= 1.0)
+                       {
+                               /* caller fractional, limit absolute; use limit */
+                               tuple_fraction = limit_fraction;
+                       }
+                       else
+                       {
+                               /* both fractional */
+                               tuple_fraction = Min(tuple_fraction, limit_fraction);
+                       }
+               }
+               else
+               {
+                       /* no info from caller, just use limit */
+                       tuple_fraction = limit_fraction;
+               }
+       }
+       else if (*offset_est != 0 && tuple_fraction > 0.0)
+       {
+               /*
+                * We have an OFFSET but no LIMIT.      This acts entirely differently
+                * from the LIMIT case: here, we need to increase rather than decrease
+                * the caller's tuple_fraction, because the OFFSET acts to cause more
+                * tuples to be fetched instead of fewer.  This only matters if we got
+                * a tuple_fraction > 0, however.
+                *
+                * As above, use 10% if OFFSET is present but unestimatable.
+                */
+               if (*offset_est < 0)
+                       limit_fraction = 0.10;
+               else
+                       limit_fraction = (double) *offset_est;
 
-                               result_plan = (Plan *) make_group(parse,
-                                                                                                 tlist,
-                                                                                                 numGroupCols,
-                                                                                                 groupColIdx,
-                                                                                                 dNumGroups,
-                                                                                                 result_plan);
-                               /* The Group node won't change sort ordering */
+               /*
+                * If we have absolute counts from both caller and OFFSET, add them
+                * together; likewise if they are both fractional.      If one is
+                * fractional and the other absolute, we want to take the larger, and
+                * we heuristically assume that's the fractional one.
+                */
+               if (tuple_fraction >= 1.0)
+               {
+                       if (limit_fraction >= 1.0)
+                       {
+                               /* both absolute, so add them together */
+                               tuple_fraction += limit_fraction;
+                       }
+                       else
+                       {
+                               /* caller absolute, limit fractional; use limit */
+                               tuple_fraction = limit_fraction;
                        }
                }
-       }                                                       /* end of if (setOperations) */
+               else
+               {
+                       if (limit_fraction >= 1.0)
+                       {
+                               /* caller fractional, limit absolute; use caller's value */
+                       }
+                       else
+                       {
+                               /* both fractional, so add them together */
+                               tuple_fraction += limit_fraction;
+                               if (tuple_fraction >= 1.0)
+                                       tuple_fraction = 0.0;           /* assume fetch all */
+                       }
+               }
+       }
+
+       return tuple_fraction;
+}
+
+
+/*
+ * preprocess_groupclause - do preparatory work on GROUP BY clause
+ *
+ * The idea here is to adjust the ordering of the GROUP BY elements
+ * (which in itself is semantically insignificant) to match ORDER BY,
+ * thereby allowing a single sort operation to both implement the ORDER BY
+ * requirement and set up for a Unique step that implements GROUP BY.
+ *
+ * In principle it might be interesting to consider other orderings of the
+ * GROUP BY elements, which could match the sort ordering of other
+ * possible plans (eg an indexscan) and thereby reduce cost.  We don't
+ * bother with that, though.  Hashed grouping will frequently win anyway.
+ *
+ * Note: we need no comparable processing of the distinctClause because
+ * the parser already enforced that that matches ORDER BY.
+ */
+static void
+preprocess_groupclause(PlannerInfo *root)
+{
+       Query      *parse = root->parse;
+       List       *new_groupclause;
+       bool            partial_match;
+       ListCell   *sl;
+       ListCell   *gl;
+
+       /* If no ORDER BY, nothing useful to do here */
+       if (parse->sortClause == NIL)
+               return;
 
        /*
-        * If we were not able to make the plan come out in the right order,
-        * add an explicit sort step.
+        * Scan the ORDER BY clause and construct a list of matching GROUP BY
+        * items, but only as far as we can make a matching prefix.
+        *
+        * This code assumes that the sortClause contains no duplicate items.
         */
-       if (parse->sortClause)
+       new_groupclause = NIL;
+       foreach(sl, parse->sortClause)
        {
-               if (!pathkeys_contained_in(sort_pathkeys, current_pathkeys))
+               SortGroupClause *sc = (SortGroupClause *) lfirst(sl);
+
+               foreach(gl, parse->groupClause)
                {
-                       result_plan = (Plan *)
-                               make_sort_from_sortclauses(parse,
-                                                                                  parse->sortClause,
-                                                                                  result_plan);
-                       current_pathkeys = sort_pathkeys;
+                       SortGroupClause *gc = (SortGroupClause *) lfirst(gl);
+
+                       if (equal(gc, sc))
+                       {
+                               new_groupclause = lappend(new_groupclause, gc);
+                               break;
+                       }
                }
+               if (gl == NULL)
+                       break;                          /* no match, so stop scanning */
        }
 
+       /* Did we match all of the ORDER BY list, or just some of it? */
+       partial_match = (sl != NULL);
+
+       /* If no match at all, no point in reordering GROUP BY */
+       if (new_groupclause == NIL)
+               return;
+
        /*
-        * If there is a DISTINCT clause, add the UNIQUE node.
+        * Add any remaining GROUP BY items to the new list, but only if we
+        * were able to make a complete match.  In other words, we only
+        * rearrange the GROUP BY list if the result is that one list is a
+        * prefix of the other --- otherwise there's no possibility of a
+        * common sort.  Also, give up if there are any non-sortable GROUP BY
+        * items, since then there's no hope anyway.
         */
-       if (parse->distinctClause)
+       foreach(gl, parse->groupClause)
        {
-               result_plan = (Plan *) make_unique(result_plan, parse->distinctClause);
+               SortGroupClause *gc = (SortGroupClause *) lfirst(gl);
+
+               if (list_member_ptr(new_groupclause, gc))
+                       continue;                       /* it matched an ORDER BY item */
+               if (partial_match)
+                       return;                         /* give up, no common sort possible */
+               if (!OidIsValid(gc->sortop))
+                       return;                         /* give up, GROUP BY can't be sorted */
+               new_groupclause = lappend(new_groupclause, gc);
+       }
 
-               /*
-                * If there was grouping or aggregation, leave plan_rows as-is
-                * (ie, assume the result was already mostly unique).  If not,
-                * it's reasonable to assume the UNIQUE filter has effects
-                * comparable to GROUP BY.
-                */
-               if (!parse->groupClause && !parse->hasAggs)
-               {
-                       List       *distinctExprs;
+       /* Success --- install the rearranged GROUP BY list */
+       Assert(list_length(parse->groupClause) == list_length(new_groupclause));
+       parse->groupClause = new_groupclause;
+}
 
-                       distinctExprs = get_sortgrouplist_exprs(parse->distinctClause,
-                                                                                                       parse->targetList);
-                       result_plan->plan_rows = estimate_num_groups(parse,
-                                                                                                                distinctExprs,
-                                                                                                result_plan->plan_rows);
-               }
+/*
+ * choose_hashed_grouping - should we use hashed grouping?
+ *
+ * Note: this is only applied when both alternatives are actually feasible.
+ */
+static bool
+choose_hashed_grouping(PlannerInfo *root,
+                                          double tuple_fraction, double limit_tuples,
+                                          Path *cheapest_path, Path *sorted_path,
+                                          double dNumGroups, AggClauseCounts *agg_counts)
+{
+       int                     numGroupCols = list_length(root->parse->groupClause);
+       double          cheapest_path_rows;
+       int                     cheapest_path_width;
+       Size            hashentrysize;
+       List       *target_pathkeys;
+       List       *current_pathkeys;
+       Path            hashed_p;
+       Path            sorted_p;
+
+       /* Prefer sorting when enable_hashagg is off */
+       if (!enable_hashagg)
+               return false;
+
+       /*
+        * Don't do it if it doesn't look like the hashtable will fit into
+        * work_mem.
+        *
+        * Beware here of the possibility that cheapest_path->parent is NULL. This
+        * could happen if user does something silly like SELECT 'foo' GROUP BY 1;
+        */
+       if (cheapest_path->parent)
+       {
+               cheapest_path_rows = cheapest_path->parent->rows;
+               cheapest_path_width = cheapest_path->parent->width;
        }
+       else
+       {
+               cheapest_path_rows = 1; /* assume non-set result */
+               cheapest_path_width = 100;              /* arbitrary */
+       }
+
+       /* Estimate per-hash-entry space at tuple width... */
+       hashentrysize = MAXALIGN(cheapest_path_width) + MAXALIGN(sizeof(MinimalTupleData));
+       /* plus space for pass-by-ref transition values... */
+       hashentrysize += agg_counts->transitionSpace;
+       /* plus the per-hash-entry overhead */
+       hashentrysize += hash_agg_entry_size(agg_counts->numAggs);
+
+       if (hashentrysize * dNumGroups > work_mem * 1024L)
+               return false;
 
        /*
-        * Finally, if there is a LIMIT/OFFSET clause, add the LIMIT node.
+        * When we have both GROUP BY and DISTINCT, use the more-rigorous of
+        * DISTINCT and ORDER BY as the assumed required output sort order.
+        * This is an oversimplification because the DISTINCT might get
+        * implemented via hashing, but it's not clear that the case is common
+        * enough (or that our estimates are good enough) to justify trying to
+        * solve it exactly.
         */
-       if (parse->limitOffset || parse->limitCount)
+       if (list_length(root->distinct_pathkeys) >
+               list_length(root->sort_pathkeys))
+               target_pathkeys = root->distinct_pathkeys;
+       else
+               target_pathkeys = root->sort_pathkeys;
+
+       /*
+        * See if the estimated cost is no more than doing it the other way. While
+        * avoiding the need for sorted input is usually a win, the fact that the
+        * output won't be sorted may be a loss; so we need to do an actual cost
+        * comparison.
+        *
+        * We need to consider cheapest_path + hashagg [+ final sort] versus
+        * either cheapest_path [+ sort] + group or agg [+ final sort] or
+        * presorted_path + group or agg [+ final sort] where brackets indicate a
+        * step that may not be needed. We assume query_planner() will have
+        * returned a presorted path only if it's a winner compared to
+        * cheapest_path for this purpose.
+        *
+        * These path variables are dummies that just hold cost fields; we don't
+        * make actual Paths for these steps.
+        */
+       cost_agg(&hashed_p, root, AGG_HASHED, agg_counts->numAggs,
+                        numGroupCols, dNumGroups,
+                        cheapest_path->startup_cost, cheapest_path->total_cost,
+                        cheapest_path_rows);
+       /* Result of hashed agg is always unsorted */
+       if (target_pathkeys)
+               cost_sort(&hashed_p, root, target_pathkeys, hashed_p.total_cost,
+                                 dNumGroups, cheapest_path_width, limit_tuples);
+
+       if (sorted_path)
        {
-               result_plan = (Plan *) make_limit(result_plan,
-                                                                                 parse->limitOffset,
-                                                                                 parse->limitCount);
+               sorted_p.startup_cost = sorted_path->startup_cost;
+               sorted_p.total_cost = sorted_path->total_cost;
+               current_pathkeys = sorted_path->pathkeys;
+       }
+       else
+       {
+               sorted_p.startup_cost = cheapest_path->startup_cost;
+               sorted_p.total_cost = cheapest_path->total_cost;
+               current_pathkeys = cheapest_path->pathkeys;
        }
+       if (!pathkeys_contained_in(root->group_pathkeys, current_pathkeys))
+       {
+               cost_sort(&sorted_p, root, root->group_pathkeys, sorted_p.total_cost,
+                                 cheapest_path_rows, cheapest_path_width, -1.0);
+               current_pathkeys = root->group_pathkeys;
+       }
+
+       if (root->parse->hasAggs)
+               cost_agg(&sorted_p, root, AGG_SORTED, agg_counts->numAggs,
+                                numGroupCols, dNumGroups,
+                                sorted_p.startup_cost, sorted_p.total_cost,
+                                cheapest_path_rows);
+       else
+               cost_group(&sorted_p, root, numGroupCols, dNumGroups,
+                                  sorted_p.startup_cost, sorted_p.total_cost,
+                                  cheapest_path_rows);
+       /* The Agg or Group node will preserve ordering */
+       if (target_pathkeys &&
+               !pathkeys_contained_in(target_pathkeys, current_pathkeys))
+               cost_sort(&sorted_p, root, target_pathkeys, sorted_p.total_cost,
+                                 dNumGroups, cheapest_path_width, limit_tuples);
 
        /*
-        * Return the actual output ordering in query_pathkeys for possible
-        * use by an outer query level.
+        * Now make the decision using the top-level tuple fraction.  First we
+        * have to convert an absolute count (LIMIT) into fractional form.
         */
-       parse->query_pathkeys = current_pathkeys;
+       if (tuple_fraction >= 1.0)
+               tuple_fraction /= dNumGroups;
 
-       return result_plan;
+       if (compare_fractional_path_costs(&hashed_p, &sorted_p,
+                                                                         tuple_fraction) < 0)
+       {
+               /* Hashed is cheaper, so use it */
+               return true;
+       }
+       return false;
 }
 
 /*
- * hash_safe_grouping - are grouping operators hashable?
+ * choose_hashed_distinct - should we use hashing for DISTINCT?
  *
- * We assume hashed aggregation will work if the datatype's equality operator
- * is marked hashjoinable.
+ * This is fairly similar to choose_hashed_grouping, but there are enough
+ * differences that it doesn't seem worth trying to unify the two functions.
+ *
+ * But note that making the two choices independently is a bit bogus in
+ * itself.  If the two could be combined into a single choice operation
+ * it'd probably be better, but that seems far too unwieldy to be practical,
+ * especially considering that the combination of GROUP BY and DISTINCT
+ * isn't very common in real queries.  By separating them, we are giving
+ * extra preference to using a sorting implementation when a common sort key
+ * is available ... and that's not necessarily wrong anyway.
+ *
+ * Note: this is only applied when both alternatives are actually feasible.
  */
 static bool
-hash_safe_grouping(Query *parse)
+choose_hashed_distinct(PlannerInfo *root,
+                                          Plan *input_plan, List *input_pathkeys,
+                                          double tuple_fraction, double limit_tuples,
+                                          double dNumDistinctRows)
 {
-       List       *gl;
+       int                     numDistinctCols = list_length(root->parse->distinctClause);
+       Size            hashentrysize;
+       List       *current_pathkeys;
+       List       *needed_pathkeys;
+       Path            hashed_p;
+       Path            sorted_p;
 
-       foreach(gl, parse->groupClause)
+       /* Prefer sorting when enable_hashagg is off */
+       if (!enable_hashagg)
+               return false;
+
+       /*
+        * Don't do it if it doesn't look like the hashtable will fit into
+        * work_mem.
+        */
+       hashentrysize = MAXALIGN(input_plan->plan_width) + MAXALIGN(sizeof(MinimalTupleData));
+
+       if (hashentrysize * dNumDistinctRows > work_mem * 1024L)
+               return false;
+
+       /*
+        * See if the estimated cost is no more than doing it the other way. While
+        * avoiding the need for sorted input is usually a win, the fact that the
+        * output won't be sorted may be a loss; so we need to do an actual cost
+        * comparison.
+        *
+        * We need to consider input_plan + hashagg [+ final sort] versus
+        * input_plan [+ sort] + group [+ final sort] where brackets indicate
+        * a step that may not be needed.
+        *
+        * These path variables are dummies that just hold cost fields; we don't
+        * make actual Paths for these steps.
+        */
+       cost_agg(&hashed_p, root, AGG_HASHED, 0,
+                        numDistinctCols, dNumDistinctRows,
+                        input_plan->startup_cost, input_plan->total_cost,
+                        input_plan->plan_rows);
+       /*
+        * Result of hashed agg is always unsorted, so if ORDER BY is present
+        * we need to charge for the final sort.
+        */
+       if (root->parse->sortClause)
+               cost_sort(&hashed_p, root, root->sort_pathkeys, hashed_p.total_cost,
+                                 dNumDistinctRows, input_plan->plan_width, limit_tuples);
+
+       /*
+        * Now for the GROUP case.  See comments in grouping_planner about the
+        * sorting choices here --- this code should match that code.
+        */
+       sorted_p.startup_cost = input_plan->startup_cost;
+       sorted_p.total_cost = input_plan->total_cost;
+       current_pathkeys = input_pathkeys;
+       if (root->parse->hasDistinctOn &&
+               list_length(root->distinct_pathkeys) <
+               list_length(root->sort_pathkeys))
+               needed_pathkeys = root->sort_pathkeys;
+       else
+               needed_pathkeys = root->distinct_pathkeys;
+       if (!pathkeys_contained_in(needed_pathkeys, current_pathkeys))
+       {
+               if (list_length(root->distinct_pathkeys) >=
+                       list_length(root->sort_pathkeys))
+                       current_pathkeys = root->distinct_pathkeys;
+               else
+                       current_pathkeys = root->sort_pathkeys;
+               cost_sort(&sorted_p, root, current_pathkeys, sorted_p.total_cost,
+                                 input_plan->plan_rows, input_plan->plan_width, -1.0);
+       }
+       cost_group(&sorted_p, root, numDistinctCols, dNumDistinctRows,
+                          sorted_p.startup_cost, sorted_p.total_cost,
+                          input_plan->plan_rows);
+       if (root->parse->sortClause &&
+               !pathkeys_contained_in(root->sort_pathkeys, current_pathkeys))
+               cost_sort(&sorted_p, root, root->sort_pathkeys, sorted_p.total_cost,
+                                 dNumDistinctRows, input_plan->plan_width, limit_tuples);
+
+       /*
+        * Now make the decision using the top-level tuple fraction.  First we
+        * have to convert an absolute count (LIMIT) into fractional form.
+        */
+       if (tuple_fraction >= 1.0)
+               tuple_fraction /= dNumDistinctRows;
+
+       if (compare_fractional_path_costs(&hashed_p, &sorted_p,
+                                                                         tuple_fraction) < 0)
        {
-               GroupClause *grpcl = (GroupClause *) lfirst(gl);
-               TargetEntry *tle = get_sortgroupclause_tle(grpcl, parse->targetList);
-               Operator        optup;
-               bool            oprcanhash;
-
-               optup = equality_oper(tle->resdom->restype, true);
-               if (!optup)
-                       return false;
-               oprcanhash = ((Form_pg_operator) GETSTRUCT(optup))->oprcanhash;
-               ReleaseSysCache(optup);
-               if (!oprcanhash)
-                       return false;
+               /* Hashed is cheaper, so use it */
+               return true;
        }
-       return true;
+       return false;
 }
 
 /*---------------
  * make_subplanTargetList
  *       Generate appropriate target list when grouping is required.
  *
- * When grouping_planner inserts Aggregate or Group plan nodes above
- * the result of query_planner, we typically want to pass a different
+ * When grouping_planner inserts Aggregate, Group, or Result plan nodes
+ * above the result of query_planner, we typically want to pass a different
  * target list to query_planner than the outer plan nodes should have.
  * This routine generates the correct target list for the subplan.
  *
  * The initial target list passed from the parser already contains entries
  * for all ORDER BY and GROUP BY expressions, but it will not have entries
  * for variables used only in HAVING clauses; so we need to add those
- * variables to the subplan target list.  Also, if we are doing either
- * grouping or aggregation, we flatten all expressions except GROUP BY items
- * into their component variables; the other expressions will be computed by
- * the inserted nodes rather than by the subplan.  For example,
- * given a query like
+ * variables to the subplan target list.  Also, we flatten all expressions
+ * except GROUP BY items into their component variables; the other expressions
+ * will be computed by the inserted nodes rather than by the subplan.
+ * For example, given a query like
  *             SELECT a+b,SUM(c+d) FROM table GROUP BY a+b;
  * we want to pass this targetlist to the subplan:
  *             a,b,c,d,a+b
@@ -1369,14 +2181,13 @@ hash_safe_grouping(Query *parse)
  * pass down only c,d,a+b, but it's not really worth the trouble to
  * eliminate simple var references from the subplan.  We will avoid doing
  * the extra computation to recompute a+b at the outer level; see
- * replace_vars_with_subplan_refs() in setrefs.c.)
+ * fix_upper_expr() in setrefs.c.)
  *
  * If we are grouping or aggregating, *and* there are no non-Var grouping
  * expressions, then the returned tlist is effectively dummy; we do not
  * need to force it to be evaluated, because all the Vars it contains
  * should be present in the output of query_planner anyway.
  *
- * 'parse' is the query being processed.
  * 'tlist' is the query's target list.
  * 'groupColIdx' receives an array of column numbers for the GROUP BY
  *                     expressions (if there are any) in the subplan's target list.
@@ -1387,11 +2198,12 @@ hash_safe_grouping(Query *parse)
  *---------------
  */
 static List *
-make_subplanTargetList(Query *parse,
+make_subplanTargetList(PlannerInfo *root,
                                           List *tlist,
                                           AttrNumber **groupColIdx,
                                           bool *need_tlist_eval)
 {
+       Query      *parse = root->parse;
        List       *sub_tlist;
        List       *extravars;
        int                     numCols;
@@ -1399,10 +2211,11 @@ make_subplanTargetList(Query *parse,
        *groupColIdx = NULL;
 
        /*
-        * If we're not grouping or aggregating, nothing to do here;
+        * If we're not grouping or aggregating, there's nothing to do here;
         * query_planner should receive the unmodified target list.
         */
-       if (!parse->hasAggs && !parse->groupClause)
+       if (!parse->hasAggs && !parse->groupClause && !root->hasHavingQual &&
+               !parse->hasWindowFuncs)
        {
                *need_tlist_eval = true;
                return tlist;
@@ -1410,59 +2223,60 @@ make_subplanTargetList(Query *parse,
 
        /*
         * Otherwise, start with a "flattened" tlist (having just the vars
-        * mentioned in the targetlist and HAVING qual --- but not upper-
-        * level Vars; they will be replaced by Params later on).
+        * mentioned in the targetlist and HAVING qual --- but not upper-level
+        * Vars; they will be replaced by Params later on).  Note this includes
+        * vars used in resjunk items, so we are covering the needs of ORDER BY
+        * and window specifications.
         */
        sub_tlist = flatten_tlist(tlist);
-       extravars = pull_var_clause(parse->havingQual, false);
+       extravars = pull_var_clause(parse->havingQual, true);
        sub_tlist = add_to_flat_tlist(sub_tlist, extravars);
-       freeList(extravars);
+       list_free(extravars);
        *need_tlist_eval = false;       /* only eval if not flat tlist */
 
        /*
         * If grouping, create sub_tlist entries for all GROUP BY expressions
-        * (GROUP BY items that are simple Vars should be in the list
-        * already), and make an array showing where the group columns are in
-        * the sub_tlist.
+        * (GROUP BY items that are simple Vars should be in the list already),
+        * and make an array showing where the group columns are in the sub_tlist.
         */
-       numCols = length(parse->groupClause);
+       numCols = list_length(parse->groupClause);
        if (numCols > 0)
        {
                int                     keyno = 0;
                AttrNumber *grpColIdx;
-               List       *gl;
+               ListCell   *gl;
 
                grpColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols);
                *groupColIdx = grpColIdx;
 
                foreach(gl, parse->groupClause)
                {
-                       GroupClause *grpcl = (GroupClause *) lfirst(gl);
+                       SortGroupClause *grpcl = (SortGroupClause *) lfirst(gl);
                        Node       *groupexpr = get_sortgroupclause_expr(grpcl, tlist);
-                       TargetEntry *te = NULL;
-                       List       *sl;
+                       TargetEntry *te;
 
-                       /* Find or make a matching sub_tlist entry */
-                       foreach(sl, sub_tlist)
-                       {
-                               te = (TargetEntry *) lfirst(sl);
-                               if (equal(groupexpr, te->expr))
-                                       break;
-                       }
-                       if (!sl)
+                       /*
+                        * Find or make a matching sub_tlist entry.  If the groupexpr
+                        * isn't a Var, no point in searching.  (Note that the parser
+                        * won't make multiple groupClause entries for the same TLE.)
+                        */
+                       if (groupexpr && IsA(groupexpr, Var))
+                               te = tlist_member(groupexpr, sub_tlist);
+                       else
+                               te = NULL;
+
+                       if (!te)
                        {
-                               te = makeTargetEntry(makeResdom(length(sub_tlist) + 1,
-                                                                                               exprType(groupexpr),
-                                                                                               exprTypmod(groupexpr),
-                                                                                               NULL,
-                                                                                               false),
-                                                                        (Expr *) groupexpr);
+                               te = makeTargetEntry((Expr *) groupexpr,
+                                                                        list_length(sub_tlist) + 1,
+                                                                        NULL,
+                                                                        false);
                                sub_tlist = lappend(sub_tlist, te);
                                *need_tlist_eval = true;                /* it's not flat anymore */
                        }
 
                        /* and save its resno */
-                       grpColIdx[keyno++] = te->resdom->resno;
+                       grpColIdx[keyno++] = te->resno;
                }
        }
 
@@ -1475,44 +2289,36 @@ make_subplanTargetList(Query *parse,
  *
  * This is only needed if we don't use the sub_tlist chosen by
  * make_subplanTargetList.     We have to forget the column indexes found
- * by that routine and re-locate the grouping vars in the real sub_tlist.
+ * by that routine and re-locate the grouping exprs in the real sub_tlist.
  */
 static void
-locate_grouping_columns(Query *parse,
+locate_grouping_columns(PlannerInfo *root,
                                                List *tlist,
                                                List *sub_tlist,
                                                AttrNumber *groupColIdx)
 {
        int                     keyno = 0;
-       List       *gl;
+       ListCell   *gl;
 
        /*
         * No work unless grouping.
         */
-       if (!parse->groupClause)
+       if (!root->parse->groupClause)
        {
                Assert(groupColIdx == NULL);
                return;
        }
        Assert(groupColIdx != NULL);
 
-       foreach(gl, parse->groupClause)
+       foreach(gl, root->parse->groupClause)
        {
-               GroupClause *grpcl = (GroupClause *) lfirst(gl);
+               SortGroupClause *grpcl = (SortGroupClause *) lfirst(gl);
                Node       *groupexpr = get_sortgroupclause_expr(grpcl, tlist);
-               TargetEntry *te = NULL;
-               List       *sl;
+               TargetEntry *te = tlist_member(groupexpr, sub_tlist);
 
-               foreach(sl, sub_tlist)
-               {
-                       te = (TargetEntry *) lfirst(sl);
-                       if (equal(groupexpr, te->expr))
-                               break;
-               }
-               if (!sl)
+               if (!te)
                        elog(ERROR, "failed to locate grouping columns");
-
-               groupColIdx[keyno++] = te->resdom->resno;
+               groupColIdx[keyno++] = te->resno;
        }
 }
 
@@ -1529,7 +2335,8 @@ locate_grouping_columns(Query *parse,
 static List *
 postprocess_setop_tlist(List *new_tlist, List *orig_tlist)
 {
-       List       *l;
+       ListCell   *l;
+       ListCell   *orig_tlist_item = list_head(orig_tlist);
 
        foreach(l, new_tlist)
        {
@@ -1537,19 +2344,235 @@ postprocess_setop_tlist(List *new_tlist, List *orig_tlist)
                TargetEntry *orig_tle;
 
                /* ignore resjunk columns in setop result */
-               if (new_tle->resdom->resjunk)
+               if (new_tle->resjunk)
                        continue;
 
-               Assert(orig_tlist != NIL);
-               orig_tle = (TargetEntry *) lfirst(orig_tlist);
-               orig_tlist = lnext(orig_tlist);
-               if (orig_tle->resdom->resjunk)  /* should not happen */
+               Assert(orig_tlist_item != NULL);
+               orig_tle = (TargetEntry *) lfirst(orig_tlist_item);
+               orig_tlist_item = lnext(orig_tlist_item);
+               if (orig_tle->resjunk)  /* should not happen */
                        elog(ERROR, "resjunk output columns are not implemented");
-               Assert(new_tle->resdom->resno == orig_tle->resdom->resno);
-               Assert(new_tle->resdom->restype == orig_tle->resdom->restype);
-               new_tle->resdom->ressortgroupref = orig_tle->resdom->ressortgroupref;
+               Assert(new_tle->resno == orig_tle->resno);
+               new_tle->ressortgroupref = orig_tle->ressortgroupref;
        }
-       if (orig_tlist != NIL)
+       if (orig_tlist_item != NULL)
                elog(ERROR, "resjunk output columns are not implemented");
        return new_tlist;
 }
+
+/*
+ * select_active_windows
+ *             Create a list of the "active" window clauses (ie, those referenced
+ *             by non-deleted WindowFuncs) in the order they are to be executed.
+ */
+static List *
+select_active_windows(PlannerInfo *root, WindowFuncLists *wflists)
+{
+       List       *result;
+       List       *actives;
+       ListCell   *lc;
+
+       /* First, make a list of the active windows */
+       actives = NIL;
+       foreach(lc, root->parse->windowClause)
+       {
+               WindowClause *wc = (WindowClause *) lfirst(lc);
+
+               /* It's only active if wflists shows some related WindowFuncs */
+               Assert(wc->winref <= wflists->maxWinRef);
+               if (wflists->windowFuncs[wc->winref] != NIL)
+                       actives = lappend(actives, wc);
+       }
+
+       /*
+        * Now, ensure that windows with identical partitioning/ordering clauses
+        * are adjacent in the list.  This is required by the SQL standard, which
+        * says that only one sort is to be used for such windows, even if they
+        * are otherwise distinct (eg, different names or framing clauses).
+        *
+        * There is room to be much smarter here, for example detecting whether
+        * one window's sort keys are a prefix of another's (so that sorting
+        * for the latter would do for the former), or putting windows first
+        * that match a sort order available for the underlying query.  For the
+        * moment we are content with meeting the spec.
+        */
+       result = NIL;
+       while (actives != NIL)
+       {
+               WindowClause *wc = (WindowClause *) linitial(actives);
+               ListCell   *prev;
+               ListCell   *next;
+
+               /* Move wc from actives to result */
+               actives = list_delete_first(actives);
+               result = lappend(result, wc);
+
+               /* Now move any matching windows from actives to result */
+               prev = NULL;
+               for (lc = list_head(actives); lc; lc = next)
+               {
+                       WindowClause *wc2 = (WindowClause *) lfirst(lc);
+
+                       next = lnext(lc);
+                       /* framing options are NOT to be compared here! */
+                       if (equal(wc->partitionClause, wc2->partitionClause) &&
+                               equal(wc->orderClause, wc2->orderClause))
+                       {
+                               actives = list_delete_cell(actives, lc, prev);
+                               result = lappend(result, wc2);
+                       }
+                       else
+                               prev = lc;
+               }
+       }
+
+       return result;
+}
+
+/*
+ * make_pathkeys_for_window
+ *             Create a pathkeys list describing the required input ordering
+ *             for the given WindowClause.
+ *
+ * The required ordering is first the PARTITION keys, then the ORDER keys.
+ * In the future we might try to implement windowing using hashing, in which
+ * case the ordering could be relaxed, but for now we always sort.
+ */
+static List *
+make_pathkeys_for_window(PlannerInfo *root, WindowClause *wc,
+                                                List *tlist, bool canonicalize)
+{
+       List       *window_pathkeys;
+       List       *window_sortclauses;
+
+       /* Throw error if can't sort */
+       if (!grouping_is_sortable(wc->partitionClause))
+               ereport(ERROR,
+                               (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
+                                errmsg("could not implement window PARTITION BY"),
+                                errdetail("Window partitioning columns must be of sortable datatypes.")));
+       if (!grouping_is_sortable(wc->orderClause))
+               ereport(ERROR,
+                               (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
+                                errmsg("could not implement window ORDER BY"),
+                                errdetail("Window ordering columns must be of sortable datatypes.")));
+
+       /* Okay, make the combined pathkeys */
+       window_sortclauses = list_concat(list_copy(wc->partitionClause),
+                                                                        list_copy(wc->orderClause));
+       window_pathkeys = make_pathkeys_for_sortclauses(root,
+                                                                                                       window_sortclauses,
+                                                                                                       tlist,
+                                                                                                       canonicalize);
+       list_free(window_sortclauses);
+       return window_pathkeys;
+}
+
+/*----------
+ * get_column_info_for_window
+ *             Get the partitioning/ordering column numbers and equality operators
+ *             for a WindowAgg node.
+ *
+ * This depends on the behavior of make_pathkeys_for_window()!
+ *
+ * We are given the target WindowClause and an array of the input column
+ * numbers associated with the resulting pathkeys.  In the easy case, there
+ * are the same number of pathkey columns as partitioning + ordering columns
+ * and we just have to copy some data around.  However, it's possible that
+ * some of the original partitioning + ordering columns were eliminated as
+ * redundant during the transformation to pathkeys.  (This can happen even
+ * though the parser gets rid of obvious duplicates.  A typical scenario is a
+ * window specification "PARTITION BY x ORDER BY y" coupled with a clause
+ * "WHERE x = y" that causes the two sort columns to be recognized as
+ * redundant.)  In that unusual case, we have to work a lot harder to
+ * determine which keys are significant.
+ *
+ * The method used here is a bit brute-force: add the sort columns to a list
+ * one at a time and note when the resulting pathkey list gets longer.  But
+ * it's a sufficiently uncommon case that a faster way doesn't seem worth
+ * the amount of code refactoring that'd be needed.
+ *----------
+ */
+static void
+get_column_info_for_window(PlannerInfo *root, WindowClause *wc, List *tlist,
+                                                  int numSortCols, AttrNumber *sortColIdx,
+                                                  int *partNumCols,
+                                                  AttrNumber **partColIdx,
+                                                  Oid **partOperators,
+                                                  int *ordNumCols,
+                                                  AttrNumber **ordColIdx,
+                                                  Oid **ordOperators)
+{
+       int                     numPart = list_length(wc->partitionClause);
+       int                     numOrder = list_length(wc->orderClause);
+
+       if (numSortCols == numPart + numOrder)
+       {
+               /* easy case */
+               *partNumCols = numPart;
+               *partColIdx = sortColIdx;
+               *partOperators = extract_grouping_ops(wc->partitionClause);
+               *ordNumCols = numOrder;
+               *ordColIdx = sortColIdx + numPart;
+               *ordOperators = extract_grouping_ops(wc->orderClause);
+       }
+       else
+       {
+               List       *sortclauses;
+               List       *pathkeys;
+               int                     scidx;
+               ListCell   *lc;
+
+               /* first, allocate what's certainly enough space for the arrays */
+               *partNumCols = 0;
+               *partColIdx = (AttrNumber *) palloc(numPart * sizeof(AttrNumber));
+               *partOperators = (Oid *) palloc(numPart * sizeof(Oid));
+               *ordNumCols = 0;
+               *ordColIdx = (AttrNumber *) palloc(numOrder * sizeof(AttrNumber));
+               *ordOperators = (Oid *) palloc(numOrder * sizeof(Oid));
+               sortclauses = NIL;
+               pathkeys = NIL;
+               scidx = 0;
+               foreach(lc, wc->partitionClause)
+               {
+                       SortGroupClause *sgc = (SortGroupClause *) lfirst(lc);
+                       List       *new_pathkeys;
+
+                       sortclauses = lappend(sortclauses, sgc);
+                       new_pathkeys = make_pathkeys_for_sortclauses(root,
+                                                                                                                sortclauses,
+                                                                                                                tlist,
+                                                                                                                true);
+                       if (list_length(new_pathkeys) > list_length(pathkeys))
+                       {
+                               /* this sort clause is actually significant */
+                               *partColIdx[*partNumCols] = sortColIdx[scidx++];
+                               *partOperators[*partNumCols] = sgc->eqop;
+                               (*partNumCols)++;
+                               pathkeys = new_pathkeys;
+                       }
+               }
+               foreach(lc, wc->orderClause)
+               {
+                       SortGroupClause *sgc = (SortGroupClause *) lfirst(lc);
+                       List       *new_pathkeys;
+
+                       sortclauses = lappend(sortclauses, sgc);
+                       new_pathkeys = make_pathkeys_for_sortclauses(root,
+                                                                                                                sortclauses,
+                                                                                                                tlist,
+                                                                                                                true);
+                       if (list_length(new_pathkeys) > list_length(pathkeys))
+                       {
+                               /* this sort clause is actually significant */
+                               *ordColIdx[*ordNumCols] = sortColIdx[scidx++];
+                               *ordOperators[*ordNumCols] = sgc->eqop;
+                               (*ordNumCols)++;
+                               pathkeys = new_pathkeys;
+                       }
+               }
+               /* complain if we didn't eat exactly the right number of sort cols */
+               if (scidx != numSortCols)
+                       elog(ERROR, "failed to deconstruct sort operators into partitioning/ordering operators");
+       }
+}