]> granicus.if.org Git - postgresql/blobdiff - src/backend/optimizer/plan/planner.c
Get rid of long-since-vestigial Iter node type, in favor of adding a
[postgresql] / src / backend / optimizer / plan / planner.c
index 4fe55a7b72d8c9a202684c1aa46292f273c90ab4..500297f2155fd87dc238b8078b93d499603e9265 100644 (file)
@@ -1,57 +1,64 @@
 /*-------------------------------------------------------------------------
  *
- * planner.c--
+ * planner.c
  *       The query optimizer external interface.
  *
- * Copyright (c) 1994, Regents of the University of California
+ * Portions Copyright (c) 1996-2001, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1994, Regents of the University of California
  *
  *
  * IDENTIFICATION
- *       $Header: /cvsroot/pgsql/src/backend/optimizer/plan/planner.c,v 1.30 1998/08/29 04:09:25 momjian Exp $
+ *       $Header: /cvsroot/pgsql/src/backend/optimizer/plan/planner.c,v 1.117 2002/05/12 23:43:03 tgl Exp $
  *
  *-------------------------------------------------------------------------
  */
-#include <sys/types.h>
-#include <string.h>
 
 #include "postgres.h"
 
-#include "nodes/pg_list.h"
-#include "nodes/plannodes.h"
-#include "nodes/parsenodes.h"
-#include "nodes/relation.h"
-#include "parser/parse_expr.h"
-
-#include "utils/elog.h"
-#include "utils/lsyscache.h"
-#include "access/heapam.h"
-
-#include "optimizer/internal.h"
+#include "catalog/pg_type.h"
+#include "nodes/makefuncs.h"
+#ifdef OPTIMIZER_DEBUG
+#include "nodes/print.h"
+#endif
+#include "optimizer/clauses.h"
+#include "optimizer/paths.h"
+#include "optimizer/planmain.h"
 #include "optimizer/planner.h"
-#include "optimizer/plancat.h"
 #include "optimizer/prep.h"
-#include "optimizer/planmain.h"
 #include "optimizer/subselect.h"
-#include "optimizer/paths.h"
-#include "optimizer/cost.h"
-
-/* DATA STRUCTURE CREATION/MANIPULATION ROUTINES */
-#include "nodes/relation.h"
-#include "optimizer/clauseinfo.h"
-#include "optimizer/joininfo.h"
-#include "optimizer/keys.h"
-#include "optimizer/ordering.h"
-#include "optimizer/pathnode.h"
-#include "optimizer/clauses.h"
 #include "optimizer/tlist.h"
 #include "optimizer/var.h"
+#include "parser/analyze.h"
+#include "parser/parsetree.h"
+#include "parser/parse_expr.h"
+#include "rewrite/rewriteManip.h"
+#include "utils/lsyscache.h"
+
+
+/* Expression kind codes for preprocess_expression */
+#define EXPRKIND_TARGET 0
+#define EXPRKIND_WHERE 1
+#define EXPRKIND_HAVING 2
 
-#include "executor/executor.h"
 
-static Plan *make_sortplan(List *tlist, List *sortcls, Plan *plannode);
-extern Plan *
-make_groupPlan(List **tlist, bool tuplePerGroup,
-                          List *groupClause, Plan *subplan);
+static Node *pull_up_subqueries(Query *parse, Node *jtnode,
+                                                               bool below_outer_join);
+static bool is_simple_subquery(Query *subquery);
+static bool has_nullable_targetlist(Query *subquery);
+static void resolvenew_in_jointree(Node *jtnode, int varno, List *subtlist);
+static Node *preprocess_jointree(Query *parse, Node *jtnode);
+static Node *preprocess_expression(Query *parse, Node *expr, int kind);
+static void preprocess_qual_conditions(Query *parse, Node *jtnode);
+static Plan *inheritance_planner(Query *parse, List *inheritlist);
+static Plan *grouping_planner(Query *parse, double tuple_fraction);
+static List *make_subplanTargetList(Query *parse, List *tlist,
+                                          AttrNumber **groupColIdx);
+static Plan *make_groupplan(Query *parse,
+                          List *group_tlist, bool tuplePerGroup,
+                          List *groupClause, AttrNumber *grpColIdx,
+                          bool is_presorted, Plan *subplan);
+static List *postprocess_setop_tlist(List *new_tlist, List *orig_tlist);
+
 
 /*****************************************************************************
  *
@@ -62,474 +69,1489 @@ Plan *
 planner(Query *parse)
 {
        Plan       *result_plan;
+       Index           save_PlannerQueryLevel;
+       List       *save_PlannerParamVar;
 
-       PlannerQueryLevel = 1;
-       PlannerVarParam = NULL;
-       PlannerParamVar = NULL;
-       PlannerInitPlan = NULL;
-       PlannerPlanId = 0;
+       /*
+        * The planner can be called recursively (an example is when
+        * eval_const_expressions tries to pre-evaluate an SQL function). So,
+        * these global state variables must be saved and restored.
+        *
+        * These vars cannot be moved into the Query structure since their whole
+        * purpose is communication across multiple sub-Queries.
+        *
+        * Note we do NOT save and restore PlannerPlanId: it exists to assign
+        * unique IDs to SubPlan nodes, and we want those IDs to be unique for
+        * the life of a backend.  Also, PlannerInitPlan is saved/restored in
+        * subquery_planner, not here.
+        */
+       save_PlannerQueryLevel = PlannerQueryLevel;
+       save_PlannerParamVar = PlannerParamVar;
 
-       result_plan = union_planner(parse);
+       /* Initialize state for handling outer-level references and params */
+       PlannerQueryLevel = 0;          /* will be 1 in top-level subquery_planner */
+       PlannerParamVar = NIL;
 
-       Assert(PlannerQueryLevel == 1);
-       if (PlannerPlanId > 0)
-       {
-               result_plan->initPlan = PlannerInitPlan;
-               (void) SS_finalize_plan(result_plan);
-       }
+       /* primary planning entry point (may recurse for subqueries) */
+       result_plan = subquery_planner(parse, -1.0 /* default case */ );
+
+       Assert(PlannerQueryLevel == 0);
+
+       /* executor wants to know total number of Params used overall */
        result_plan->nParamExec = length(PlannerParamVar);
 
-       return (result_plan);
+       /* final cleanup of the plan */
+       set_plan_references(parse, result_plan);
+
+       /* restore state for outer planner, if any */
+       PlannerQueryLevel = save_PlannerQueryLevel;
+       PlannerParamVar = save_PlannerParamVar;
+
+       return result_plan;
 }
 
-/*
- * union_planner--
+
+/*--------------------
+ * subquery_planner
+ *       Invokes the planner on a subquery.  We recurse to here for each
+ *       sub-SELECT found in the query tree.
  *
- *       Invokes the planner on union queries if there are any left,
- *       recursing if necessary to get them all, then processes normal plans.
+ * parse is the querytree produced by the parser & rewriter.
+ * tuple_fraction is the fraction of tuples we expect will be retrieved.
+ * tuple_fraction is interpreted as explained for grouping_planner, below.
  *
- * Returns a query plan.
+ * Basically, this routine does the stuff that should only be done once
+ * per Query object.  It then calls grouping_planner.  At one time,
+ * grouping_planner could be invoked recursively on the same Query object;
+ * that's not currently true, but we keep the separation between the two
+ * routines anyway, in case we need it again someday.
+ *
+ * subquery_planner will be called recursively to handle sub-Query nodes
+ * found within the query's expressions and rangetable.
  *
+ * Returns a query plan.
+ *--------------------
  */
 Plan *
-union_planner(Query *parse)
+subquery_planner(Query *parse, double tuple_fraction)
 {
-       List       *tlist = parse->targetList;
+       List       *saved_initplan = PlannerInitPlan;
+       int                     saved_planid = PlannerPlanId;
+       Plan       *plan;
+       List       *newHaving;
+       List       *lst;
+
+       /* Set up for a new level of subquery */
+       PlannerQueryLevel++;
+       PlannerInitPlan = NIL;
+
+#ifdef ENABLE_KEY_SET_QUERY
+       /* this should go away sometime soon */
+       transformKeySetQuery(parse);
+#endif
+
+       /*
+        * Check to see if any subqueries in the rangetable can be merged into
+        * this query.
+        */
+       parse->jointree = (FromExpr *)
+               pull_up_subqueries(parse, (Node *) parse->jointree, false);
 
-       /* copy the original tlist, we will need the original one 
-        * for the AGG node later on */
-       List    *new_tlist = new_unsorted_tlist(tlist); 
-       
-       List       *rangetable = parse->rtable;
+       /*
+        * If so, we may have created opportunities to simplify the jointree.
+        */
+       parse->jointree = (FromExpr *)
+               preprocess_jointree(parse, (Node *) parse->jointree);
 
-       Plan       *result_plan = (Plan *) NULL;
+       /*
+        * Do expression preprocessing on targetlist and quals.
+        */
+       parse->targetList = (List *)
+               preprocess_expression(parse, (Node *) parse->targetList,
+                                                         EXPRKIND_TARGET);
 
-       Index           rt_index;
+       preprocess_qual_conditions(parse, (Node *) parse->jointree);
 
+       parse->havingQual = preprocess_expression(parse, parse->havingQual,
+                                                                                         EXPRKIND_HAVING);
 
-       if (parse->unionClause)
-       {
-         result_plan = (Plan *) plan_union_queries(parse);
-         /* XXX do we need to do this? bjm 12/19/97 */           
-         tlist = preprocess_targetlist(tlist,
-                                       parse->commandType,
-                                       parse->resultRelation,
-                                       parse->rtable);
-       }
-       else if ((rt_index =
-                         first_inherit_rt_entry(rangetable)) != -1)
+       /*
+        * Check for ungrouped variables passed to subplans in targetlist and
+        * HAVING clause (but not in WHERE or JOIN/ON clauses, since those are
+        * evaluated before grouping).  We can't do this any earlier because
+        * we must use the preprocessed targetlist for comparisons of grouped
+        * expressions.
+        */
+       if (parse->hasSubLinks &&
+               (parse->groupClause != NIL || parse->hasAggs))
+               check_subplans_for_ungrouped_vars(parse);
+
+       /*
+        * A HAVING clause without aggregates is equivalent to a WHERE clause
+        * (except it can only refer to grouped fields).  Transfer any
+        * agg-free clauses of the HAVING qual into WHERE.      This may seem like
+        * wasting cycles to cater to stupidly-written queries, but there are
+        * other reasons for doing it.  Firstly, if the query contains no aggs
+        * at all, then we aren't going to generate an Agg plan node, and so
+        * there'll be no place to execute HAVING conditions; without this
+        * transfer, we'd lose the HAVING condition entirely, which is wrong.
+        * Secondly, when we push down a qual condition into a sub-query, it's
+        * easiest to push the qual into HAVING always, in case it contains
+        * aggs, and then let this code sort it out.
+        *
+        * Note that both havingQual and parse->jointree->quals are in
+        * implicitly-ANDed-list form at this point, even though they are
+        * declared as Node *.  Also note that contain_agg_clause does not
+        * recurse into sub-selects, which is exactly what we need here.
+        */
+       newHaving = NIL;
+       foreach(lst, (List *) parse->havingQual)
        {
-               result_plan = (Plan *) plan_inherit_queries(parse, rt_index);
-               /* XXX do we need to do this? bjm 12/19/97 */
-               tlist = preprocess_targetlist(tlist,
-                                             parse->commandType,
-                                             parse->resultRelation,
-                                             parse->rtable);
+               Node       *havingclause = (Node *) lfirst(lst);
+
+               if (contain_agg_clause(havingclause))
+                       newHaving = lappend(newHaving, havingclause);
+               else
+                       parse->jointree->quals = (Node *)
+                               lappend((List *) parse->jointree->quals, havingclause);
        }
+       parse->havingQual = (Node *) newHaving;
+
+       /*
+        * Do the main planning.  If we have an inherited target relation,
+        * that needs special processing, else go straight to
+        * grouping_planner.
+        */
+       if (parse->resultRelation &&
+        (lst = expand_inherted_rtentry(parse, parse->resultRelation, false))
+               != NIL)
+               plan = inheritance_planner(parse, lst);
        else
+               plan = grouping_planner(parse, tuple_fraction);
+
+       /*
+        * If any subplans were generated, or if we're inside a subplan, build
+        * subPlan, extParam and locParam lists for plan nodes.
+        */
+       if (PlannerPlanId != saved_planid || PlannerQueryLevel > 1)
        {
-         List  **vpm = NULL;
-         
-         /* This is only necessary if aggregates are in use in queries like:
-          * SELECT sid 
-          * FROM part
-          * GROUP BY sid
-          * HAVING MIN(pid) > 1;  (pid is used but never selected for!!!)
-          * because the function 'query_planner' creates the plan for the lefttree
-          * of the 'GROUP' node and returns only those attributes contained in 'tlist'.
-          * The original 'tlist' contains only 'sid' here and that's why we have to
-          * to extend it to attributes which are not selected but are used in the 
-          * havingQual. */
-                 
-         /* 'check_having_qual_for_vars' takes the havingQual and the actual 'tlist'
-          * as arguments and recursively scans the havingQual for attributes 
-          * (VAR nodes) that are not contained in 'tlist' yet. If so, it creates
-          * a new entry and attaches it to the list 'new_tlist' (consisting of the 
-          * VAR node and the RESDOM node as usual with tlists :-)  ) */
-         if (parse->hasAggs)
-           {
-             if (parse->havingQual != NULL)
+               (void) SS_finalize_plan(plan);
+
+               /*
+                * At the moment, SS_finalize_plan doesn't handle initPlans and so
+                * we assign them to the topmost plan node.
+                */
+               plan->initPlan = PlannerInitPlan;
+               /* Must add the initPlans' extParams to the topmost node's, too */
+               foreach(lst, plan->initPlan)
                {
-                 new_tlist = check_having_qual_for_vars(parse->havingQual,new_tlist);
+                       SubPlan    *subplan = (SubPlan *) lfirst(lst);
+
+                       plan->extParam = set_unioni(plan->extParam,
+                                                                               subplan->plan->extParam);
                }
-           }
-         
-         new_tlist = preprocess_targetlist(new_tlist,
-                                           parse->commandType,
-                                           parse->resultRelation,
-                                           parse->rtable);
-         
-         /* Here starts the original (pre having) code */
-         tlist = preprocess_targetlist(tlist,
-                                       parse->commandType,
-                                       parse->resultRelation,
-                                       parse->rtable);
-         
-         if (parse->rtable != NULL)
-           {
-             vpm = (List **) palloc(length(parse->rtable) * sizeof(List *));
-             memset(vpm, 0, length(parse->rtable) * sizeof(List *));
-           }
-         PlannerVarParam = lcons(vpm, PlannerVarParam);
-         result_plan = query_planner(parse,
-                                     parse->commandType,
-                                     new_tlist,
-                                     (List *) parse->qual);
-         PlannerVarParam = lnext(PlannerVarParam);
-         if (vpm != NULL)
-           pfree(vpm);          
        }
-       
-       /*
-        * If we have a GROUP BY clause, insert a group node (with the
-        * appropriate sort node.)
-        */
-       if (parse->groupClause)
+
+       /* Return to outer subquery context */
+       PlannerQueryLevel--;
+       PlannerInitPlan = saved_initplan;
+       /* we do NOT restore PlannerPlanId; that's not an oversight! */
+
+       return plan;
+}
+
+/*
+ * pull_up_subqueries
+ *             Look for subqueries in the rangetable that can be pulled up into
+ *             the parent query.  If the subquery has no special features like
+ *             grouping/aggregation then we can merge it into the parent's jointree.
+ *
+ * below_outer_join is true if this jointree node is within the nullable
+ * side of an outer join.  This restricts what we can do.
+ *
+ * A tricky aspect of this code is that if we pull up a subquery we have
+ * to replace Vars that reference the subquery's outputs throughout the
+ * parent query, including quals attached to jointree nodes above the one
+ * we are currently processing!  We handle this by being careful not to
+ * change the jointree structure while recursing: no nodes other than
+ * subquery RangeTblRef entries will be replaced.  Also, we can't turn
+ * ResolveNew loose on the whole jointree, because it'll return a mutated
+ * copy of the tree; we have to invoke it just on the quals, instead.
+ */
+static Node *
+pull_up_subqueries(Query *parse, Node *jtnode, bool below_outer_join)
+{
+       if (jtnode == NULL)
+               return NULL;
+       if (IsA(jtnode, RangeTblRef))
        {
-               bool            tuplePerGroup;
+               int                     varno = ((RangeTblRef *) jtnode)->rtindex;
+               RangeTblEntry *rte = rt_fetch(varno, parse->rtable);
+               Query      *subquery = rte->subquery;
 
                /*
-                * decide whether how many tuples per group the Group node needs
-                * to return. (Needs only one tuple per group if no aggregate is
-                * present. Otherwise, need every tuple from the group to do the
-                * aggregation.)
+                * Is this a subquery RTE, and if so, is the subquery simple
+                * enough to pull up?  (If not, do nothing at this node.)
+                *
+                * If we are inside an outer join, only pull up subqueries whose
+                * targetlists are nullable --- otherwise substituting their tlist
+                * entries for upper Var references would do the wrong thing
+                * (the results wouldn't become NULL when they're supposed to).
+                * XXX This could be improved by generating pseudo-variables for
+                * such expressions; we'd have to figure out how to get the pseudo-
+                * variables evaluated at the right place in the modified plan tree.
+                * Fix it someday.
+                *
+                * Note: even if the subquery itself is simple enough, we can't pull
+                * it up if there is a reference to its whole tuple result.  Perhaps
+                * a pseudo-variable is the answer here too.
                 */
-               tuplePerGroup = parse->hasAggs;
+               if (rte->rtekind == RTE_SUBQUERY && is_simple_subquery(subquery) &&
+                       (!below_outer_join || has_nullable_targetlist(subquery)) &&
+                       !contain_whole_tuple_var((Node *) parse, varno, 0))
+               {
+                       int                     rtoffset;
+                       List       *subtlist;
+                       List       *rt;
+
+                       /*
+                        * First, recursively pull up the subquery's subqueries, so
+                        * that this routine's processing is complete for its jointree
+                        * and rangetable.      NB: if the same subquery is referenced
+                        * from multiple jointree items (which can't happen normally,
+                        * but might after rule rewriting), then we will invoke this
+                        * processing multiple times on that subquery.  OK because
+                        * nothing will happen after the first time.  We do have to be
+                        * careful to copy everything we pull up, however, or risk
+                        * having chunks of structure multiply linked.
+                        */
+                       subquery->jointree = (FromExpr *)
+                               pull_up_subqueries(subquery, (Node *) subquery->jointree,
+                                                                  below_outer_join);
+
+                       /*
+                        * Now make a modifiable copy of the subquery that we can
+                        * run OffsetVarNodes on.
+                        */
+                       subquery = copyObject(subquery);
+
+                       /*
+                        * Adjust varnos in subquery so that we can append its
+                        * rangetable to upper query's.
+                        */
+                       rtoffset = length(parse->rtable);
+                       OffsetVarNodes((Node *) subquery, rtoffset, 0);
+
+                       /*
+                        * Replace all of the top query's references to the subquery's
+                        * outputs with copies of the adjusted subtlist items, being
+                        * careful not to replace any of the jointree structure.
+                        * (This'd be a lot cleaner if we could use query_tree_mutator.)
+                        */
+                       subtlist = subquery->targetList;
+                       parse->targetList = (List *)
+                               ResolveNew((Node *) parse->targetList,
+                                                  varno, 0, subtlist, CMD_SELECT, 0);
+                       resolvenew_in_jointree((Node *) parse->jointree, varno, subtlist);
+                       Assert(parse->setOperations == NULL);
+                       parse->havingQual =
+                               ResolveNew(parse->havingQual,
+                                                  varno, 0, subtlist, CMD_SELECT, 0);
+
+                       foreach(rt, parse->rtable)
+                       {
+                               RangeTblEntry *rte = (RangeTblEntry *) lfirst(rt);
+
+                               if (rte->rtekind == RTE_JOIN)
+                                       rte->joinaliasvars = (List *)
+                                               ResolveNew((Node *) rte->joinaliasvars,
+                                                                  varno, 0, subtlist, CMD_SELECT, 0);
+                       }
+
+                       /*
+                        * Now append the adjusted rtable entries to upper query.
+                        * (We hold off until after fixing the upper rtable entries;
+                        * no point in running that code on the subquery ones too.)
+                        */
+                       parse->rtable = nconc(parse->rtable, subquery->rtable);
+
+                       /*
+                        * Pull up any FOR UPDATE markers, too.  (OffsetVarNodes
+                        * already adjusted the marker values, so just nconc the list.)
+                        */
+                       parse->rowMarks = nconc(parse->rowMarks, subquery->rowMarks);
+
+                       /*
+                        * Miscellaneous housekeeping.
+                        */
+                       parse->hasSubLinks |= subquery->hasSubLinks;
+                       /* subquery won't be pulled up if it hasAggs, so no work there */
+
+                       /*
+                        * Return the adjusted subquery jointree to replace the
+                        * RangeTblRef entry in my jointree.
+                        */
+                       return (Node *) subquery->jointree;
+               }
+       }
+       else if (IsA(jtnode, FromExpr))
+       {
+               FromExpr   *f = (FromExpr *) jtnode;
+               List       *l;
 
-               /* Use 'new_tlist' instead of 'tlist' */
-               result_plan =
-                       make_groupPlan(&new_tlist,
-                                                  tuplePerGroup,
-                                                  parse->groupClause,
-                                                  result_plan);
+               foreach(l, f->fromlist)
+                       lfirst(l) = pull_up_subqueries(parse, lfirst(l),
+                                                                                  below_outer_join);
        }
+       else if (IsA(jtnode, JoinExpr))
+       {
+               JoinExpr   *j = (JoinExpr *) jtnode;
 
+               /* Recurse, being careful to tell myself when inside outer join */
+               switch (j->jointype)
+               {
+                       case JOIN_INNER:
+                               j->larg = pull_up_subqueries(parse, j->larg,
+                                                                                        below_outer_join);
+                               j->rarg = pull_up_subqueries(parse, j->rarg,
+                                                                                        below_outer_join);
+                               break;
+                       case JOIN_LEFT:
+                               j->larg = pull_up_subqueries(parse, j->larg,
+                                                                                        below_outer_join);
+                               j->rarg = pull_up_subqueries(parse, j->rarg,
+                                                                                        true);
+                               break;
+                       case JOIN_FULL:
+                               j->larg = pull_up_subqueries(parse, j->larg,
+                                                                                        true);
+                               j->rarg = pull_up_subqueries(parse, j->rarg,
+                                                                                        true);
+                               break;
+                       case JOIN_RIGHT:
+                               j->larg = pull_up_subqueries(parse, j->larg,
+                                                                                        true);
+                               j->rarg = pull_up_subqueries(parse, j->rarg,
+                                                                                        below_outer_join);
+                               break;
+                       case JOIN_UNION:
+
+                               /*
+                                * This is where we fail if upper levels of planner
+                                * haven't rewritten UNION JOIN as an Append ...
+                                */
+                               elog(ERROR, "UNION JOIN is not implemented yet");
+                               break;
+                       default:
+                               elog(ERROR, "pull_up_subqueries: unexpected join type %d",
+                                        j->jointype);
+                               break;
+               }
+       }
+       else
+               elog(ERROR, "pull_up_subqueries: unexpected node type %d",
+                        nodeTag(jtnode));
+       return jtnode;
+}
+
+/*
+ * is_simple_subquery
+ *       Check a subquery in the range table to see if it's simple enough
+ *       to pull up into the parent query.
+ */
+static bool
+is_simple_subquery(Query *subquery)
+{
        /*
-        * If aggregate is present, insert the agg node
+        * Let's just make sure it's a valid subselect ...
         */
-       if (parse->hasAggs)
-       {
-               int old_length=0, new_length=0;
-               
-               /* Create the AGG node but use 'tlist' not 'new_tlist' as target list because we
-                * don't want the additional attributes (only used for the havingQual, see above)
-                * to show up in the result */
-               result_plan = (Plan *) make_agg(tlist, result_plan);
+       if (!IsA(subquery, Query) ||
+               subquery->commandType != CMD_SELECT ||
+               subquery->resultRelation != 0 ||
+               subquery->into != NULL ||
+               subquery->isPortal)
+               elog(ERROR, "is_simple_subquery: subquery is bogus");
+
+       /*
+        * Can't currently pull up a query with setops. Maybe after querytree
+        * redesign...
+        */
+       if (subquery->setOperations)
+               return false;
+
+       /*
+        * Can't pull up a subquery involving grouping, aggregation, sorting,
+        * or limiting.
+        */
+       if (subquery->hasAggs ||
+               subquery->groupClause ||
+               subquery->havingQual ||
+               subquery->sortClause ||
+               subquery->distinctClause ||
+               subquery->limitOffset ||
+               subquery->limitCount)
+               return false;
+
+       /*
+        * Don't pull up a subquery that has any set-returning functions in
+        * its targetlist.  Otherwise we might well wind up inserting
+        * set-returning functions into places where they mustn't go,
+        * such as quals of higher queries.
+        */
+       if (expression_returns_set((Node *) subquery->targetList))
+               return false;
 
-               /*
-                * set the varno/attno entries to the appropriate references to
-                * the result tuple of the subplans.
-                */
-               ((Agg *) result_plan)->aggs =
-                 set_agg_tlist_references((Agg *) result_plan); 
-
-
-               if(parse->havingQual!=NULL) 
-                 {
-                   List           *clause;
-                   List          **vpm = NULL;
-                   
-                   
-                   /* stuff copied from above to handle the use of attributes from outside
-                    * in subselects */
-
-                   if (parse->rtable != NULL)
-                     {
-                       vpm = (List **) palloc(length(parse->rtable) * sizeof(List *));
-                       memset(vpm, 0, length(parse->rtable) * sizeof(List *));
-                     }
-                   PlannerVarParam = lcons(vpm, PlannerVarParam);
-                   
-                   /* There is a subselect in the havingQual, so we have to process it
-                     * using the same function as for a subselect in 'where' */
-                   if (parse->hasSubLinks)
-                     {
-                       parse->havingQual = SS_process_sublinks((Node *) parse->havingQual);
-                     }
-                                   
-                   /* convert the havingQual to conjunctive normal form (cnf) */
-                   parse->havingQual = (Node * ) cnfify((Expr *)(Node *) parse->havingQual,true);
-                   
-                   /* Calculate the opfids from the opnos (=select the correct functions for
-                    * the used VAR datatypes) */
-                   parse->havingQual = (Node * ) fix_opids((List *) parse->havingQual);
-                   
-                   ((Agg *) result_plan)->plan.qual=(List *) parse->havingQual;
-
-                   /* Check every clause of the havingQual for aggregates used and append
-                    * them to result_plan->aggs */
-                   foreach(clause, ((Agg *) result_plan)->plan.qual)
-                     {
-                       /* Make sure there are aggregates in the havingQual 
-                        * if so, the list must be longer after check_having_qual_for_aggs */
-                       old_length=length(((Agg *) result_plan)->aggs);                 
-                       
-                       ((Agg *) result_plan)->aggs = nconc(((Agg *) result_plan)->aggs,
-                           check_having_qual_for_aggs((Node *) lfirst(clause),
-                                      ((Agg *) result_plan)->plan.lefttree->targetlist,
-                                      ((List *) parse->groupClause)));
-
-                       /* Have a look at the length of the returned list. If there is no
-                        * difference, no aggregates have been found and that means, that
-                        * the Qual belongs to the where clause */
-                       if (((new_length=length(((Agg *) result_plan)->aggs)) == old_length) ||
-                           (new_length == 0))
-                         {
-                           elog(ERROR,"This could have been done in a where clause!!");
-                           return (Plan *)NIL;
-                         }
-                     }
-                   PlannerVarParam = lnext(PlannerVarParam);
-                   if (vpm != NULL)
-                     pfree(vpm);               
-                 }
-       }                 
-               
        /*
-        * For now, before we hand back the plan, check to see if there is a
-        * user-specified sort that needs to be done.  Eventually, this will
-        * be moved into the guts of the planner s.t. user specified sorts
-        * will be considered as part of the planning process. Since we can
-        * only make use of user-specified sorts in special cases, we can do
-        * the optimization step later.
+        * Hack: don't try to pull up a subquery with an empty jointree.
+        * query_planner() will correctly generate a Result plan for a
+        * jointree that's totally empty, but I don't think the right things
+        * happen if an empty FromExpr appears lower down in a jointree. Not
+        * worth working hard on this, just to collapse SubqueryScan/Result
+        * into Result...
         */
+       if (subquery->jointree->fromlist == NIL)
+               return false;
+
+       return true;
+}
 
-       if (parse->uniqueFlag)
+/*
+ * has_nullable_targetlist
+ *       Check a subquery in the range table to see if all the non-junk
+ *       targetlist items are simple variables (and, hence, will correctly
+ *       go to NULL when examined above the point of an outer join).
+ *
+ * A possible future extension is to accept strict functions of simple
+ * variables, eg, "x + 1".
+ */
+static bool
+has_nullable_targetlist(Query *subquery)
+{
+       List       *l;
+
+       foreach(l, subquery->targetList)
        {
-               Plan       *sortplan = make_sortplan(tlist, parse->sortClause, result_plan);
+               TargetEntry *tle = (TargetEntry *) lfirst(l);
+
+               /* ignore resjunk columns */
+               if (tle->resdom->resjunk)
+                       continue;
 
-               return ((Plan *) make_unique(tlist, sortplan, parse->uniqueFlag));
+               /* Okay if tlist item is a simple Var */
+               if (tle->expr && IsA(tle->expr, Var))
+                       continue;
+
+               return false;
        }
-       else
+       return true;
+}
+
+/*
+ * Helper routine for pull_up_subqueries: do ResolveNew on every expression
+ * in the jointree, without changing the jointree structure itself.  Ugly,
+ * but there's no other way...
+ */
+static void
+resolvenew_in_jointree(Node *jtnode, int varno, List *subtlist)
+{
+       if (jtnode == NULL)
+               return;
+       if (IsA(jtnode, RangeTblRef))
        {
-               if (parse->sortClause)
-                       return (make_sortplan(tlist, parse->sortClause, result_plan));
-               else
-                       return ((Plan *) result_plan);
+               /* nothing to do here */
        }
+       else if (IsA(jtnode, FromExpr))
+       {
+               FromExpr   *f = (FromExpr *) jtnode;
+               List       *l;
+
+               foreach(l, f->fromlist)
+                       resolvenew_in_jointree(lfirst(l), varno, subtlist);
+               f->quals = ResolveNew(f->quals,
+                                                         varno, 0, subtlist, CMD_SELECT, 0);
+       }
+       else if (IsA(jtnode, JoinExpr))
+       {
+               JoinExpr   *j = (JoinExpr *) jtnode;
 
+               resolvenew_in_jointree(j->larg, varno, subtlist);
+               resolvenew_in_jointree(j->rarg, varno, subtlist);
+               j->quals = ResolveNew(j->quals,
+                                                         varno, 0, subtlist, CMD_SELECT, 0);
+
+               /*
+                * We don't bother to update the colvars list, since it won't be
+                * used again ...
+                */
+       }
+       else
+               elog(ERROR, "resolvenew_in_jointree: unexpected node type %d",
+                        nodeTag(jtnode));
 }
 
 /*
- * make_sortplan--
- *       Returns a sortplan which is basically a SORT node attached to the
- *       top of the plan returned from the planner.  It also adds the
- *        cost of sorting into the plan.
+ * preprocess_jointree
+ *             Attempt to simplify a query's jointree.
+ *
+ * If we succeed in pulling up a subquery then we might form a jointree
+ * in which a FromExpr is a direct child of another FromExpr.  In that
+ * case we can consider collapsing the two FromExprs into one. This is
+ * an optional conversion, since the planner will work correctly either
+ * way.  But we may find a better plan (at the cost of more planning time)
+ * if we merge the two nodes.
  *
- * sortkeys: ( resdom1 resdom2 resdom3 ...)
- * sortops:  (sortop1 sortop2 sortop3 ...)
+ * NOTE: don't try to do this in the same jointree scan that does subquery
+ * pullup!     Since we're changing the jointree structure here, that wouldn't
+ * work reliably --- see comments for pull_up_subqueries().
  */
-static Plan *
-make_sortplan(List *tlist, List *sortcls, Plan *plannode)
+static Node *
+preprocess_jointree(Query *parse, Node *jtnode)
+{
+       if (jtnode == NULL)
+               return NULL;
+       if (IsA(jtnode, RangeTblRef))
+       {
+               /* nothing to do here... */
+       }
+       else if (IsA(jtnode, FromExpr))
+       {
+               FromExpr   *f = (FromExpr *) jtnode;
+               List       *newlist = NIL;
+               List       *l;
+
+               foreach(l, f->fromlist)
+               {
+                       Node       *child = (Node *) lfirst(l);
+
+                       /* Recursively simplify the child... */
+                       child = preprocess_jointree(parse, child);
+                       /* Now, is it a FromExpr? */
+                       if (child && IsA(child, FromExpr))
+                       {
+                               /*
+                                * Yes, so do we want to merge it into parent?  Always do
+                                * so if child has just one element (since that doesn't
+                                * make the parent's list any longer).  Otherwise we have
+                                * to be careful about the increase in planning time
+                                * caused by combining the two join search spaces into
+                                * one.  Our heuristic is to merge if the merge will
+                                * produce a join list no longer than GEQO_RELS/2.
+                                * (Perhaps need an additional user parameter?)
+                                */
+                               FromExpr   *subf = (FromExpr *) child;
+                               int                     childlen = length(subf->fromlist);
+                               int                     myothers = length(newlist) + length(lnext(l));
+
+                               if (childlen <= 1 || (childlen + myothers) <= geqo_rels / 2)
+                               {
+                                       newlist = nconc(newlist, subf->fromlist);
+                                       f->quals = make_and_qual(f->quals, subf->quals);
+                               }
+                               else
+                                       newlist = lappend(newlist, child);
+                       }
+                       else
+                               newlist = lappend(newlist, child);
+               }
+               f->fromlist = newlist;
+       }
+       else if (IsA(jtnode, JoinExpr))
+       {
+               JoinExpr   *j = (JoinExpr *) jtnode;
+
+               /* Can't usefully change the JoinExpr, but recurse on children */
+               j->larg = preprocess_jointree(parse, j->larg);
+               j->rarg = preprocess_jointree(parse, j->rarg);
+       }
+       else
+               elog(ERROR, "preprocess_jointree: unexpected node type %d",
+                        nodeTag(jtnode));
+       return jtnode;
+}
+
+/*
+ * preprocess_expression
+ *             Do subquery_planner's preprocessing work for an expression,
+ *             which can be a targetlist, a WHERE clause (including JOIN/ON
+ *             conditions), or a HAVING clause.
+ */
+static Node *
+preprocess_expression(Query *parse, Node *expr, int kind)
 {
-       Plan       *sortplan = (Plan *) NULL;
-       List       *temp_tlist = NIL;
-       List       *i = NIL;
-       Resdom     *resnode = (Resdom *) NULL;
-       Resdom     *resdom = (Resdom *) NULL;
-       int                     keyno = 1;
+       bool            has_join_rtes;
+       List       *rt;
 
        /*
-        * First make a copy of the tlist so that we don't corrupt the the
-        * original .
+        * Simplify constant expressions.
+        *
+        * Note that at this point quals have not yet been converted to
+        * implicit-AND form, so we can apply eval_const_expressions directly.
+        * Also note that we need to do this before SS_process_sublinks,
+        * because that routine inserts bogus "Const" nodes.
         */
+       expr = eval_const_expressions(expr);
 
-       temp_tlist = new_unsorted_tlist(tlist);
-
-       foreach(i, sortcls)
+       /*
+        * If it's a qual or havingQual, canonicalize it, and convert it to
+        * implicit-AND format.
+        *
+        * XXX Is there any value in re-applying eval_const_expressions after
+        * canonicalize_qual?
+        */
+       if (kind != EXPRKIND_TARGET)
        {
-               SortClause *sortcl = (SortClause *) lfirst(i);
-
-               resnode = sortcl->resdom;
-               resdom = tlist_resdom(temp_tlist, resnode);
+               expr = (Node *) canonicalize_qual((Expr *) expr, true);
 
-               /*
-                * Order the resdom keys and replace the operator OID for each key
-                * with the regproc OID.
-                */
-               resdom->reskey = keyno;
-               resdom->reskeyop = get_opcode(sortcl->opoid);
-               keyno += 1;
+#ifdef OPTIMIZER_DEBUG
+               printf("After canonicalize_qual()\n");
+               pprint(expr);
+#endif
        }
 
-       sortplan = (Plan *) make_sort(temp_tlist,
-                                                                 _TEMP_RELATION_ID_,
-                                                                 (Plan *) plannode,
-                                                                 length(sortcls));
+       /* Expand SubLinks to SubPlans */
+       if (parse->hasSubLinks)
+               expr = SS_process_sublinks(expr);
+
+       /* Replace uplevel vars with Param nodes */
+       if (PlannerQueryLevel > 1)
+               expr = SS_replace_correlation_vars(expr);
 
        /*
-        * XXX Assuming that an internal sort has no. cost. This is wrong, but
-        * given that at this point, we don't know the no. of tuples returned,
-        * etc, we can't do better than to add a constant cost. This will be
-        * fixed once we move the sort further into the planner, but for now
-        * ... functionality....
+        * If the query has any join RTEs, try to replace join alias variables
+        * with base-relation variables, to allow quals to be pushed down.
+        * We must do this after sublink processing, since it does not recurse
+        * into sublinks.
+        *
+        * The flattening pass is expensive enough that it seems worthwhile to
+        * scan the rangetable to see if we can avoid it.
         */
+       has_join_rtes = false;
+       foreach(rt, parse->rtable)
+       {
+               RangeTblEntry *rte = lfirst(rt);
 
-       sortplan->cost = plannode->cost;
+               if (rte->rtekind == RTE_JOIN)
+               {
+                       has_join_rtes = true;
+                       break;
+               }
+       }
+       if (has_join_rtes)
+               expr = flatten_join_alias_vars(expr, parse, false);
 
-       return (sortplan);
+       return expr;
 }
 
 /*
- * pg_checkretval() -- check return value of a list of sql parse
- *                                             trees.
+ * preprocess_qual_conditions
+ *             Recursively scan the query's jointree and do subquery_planner's
+ *             preprocessing work on each qual condition found therein.
+ */
+static void
+preprocess_qual_conditions(Query *parse, Node *jtnode)
+{
+       if (jtnode == NULL)
+               return;
+       if (IsA(jtnode, RangeTblRef))
+       {
+               /* nothing to do here */
+       }
+       else if (IsA(jtnode, FromExpr))
+       {
+               FromExpr   *f = (FromExpr *) jtnode;
+               List       *l;
+
+               foreach(l, f->fromlist)
+                       preprocess_qual_conditions(parse, lfirst(l));
+
+               f->quals = preprocess_expression(parse, f->quals, EXPRKIND_WHERE);
+       }
+       else if (IsA(jtnode, JoinExpr))
+       {
+               JoinExpr   *j = (JoinExpr *) jtnode;
+
+               preprocess_qual_conditions(parse, j->larg);
+               preprocess_qual_conditions(parse, j->rarg);
+
+               j->quals = preprocess_expression(parse, j->quals, EXPRKIND_WHERE);
+       }
+       else
+               elog(ERROR, "preprocess_qual_conditions: unexpected node type %d",
+                        nodeTag(jtnode));
+}
+
+/*--------------------
+ * inheritance_planner
+ *       Generate a plan in the case where the result relation is an
+ *       inheritance set.
  *
- * The return value of a sql function is the value returned by
- * the final query in the function.  We do some ad-hoc define-time
- * type checking here to be sure that the user is returning the
- * type he claims.
+ * We have to handle this case differently from cases where a source
+ * relation is an inheritance set.     Source inheritance is expanded at
+ * the bottom of the plan tree (see allpaths.c), but target inheritance
+ * has to be expanded at the top.  The reason is that for UPDATE, each
+ * target relation needs a different targetlist matching its own column
+ * set.  (This is not so critical for DELETE, but for simplicity we treat
+ * inherited DELETE the same way.)     Fortunately, the UPDATE/DELETE target
+ * can never be the nullable side of an outer join, so it's OK to generate
+ * the plan this way.
+ *
+ * parse is the querytree produced by the parser & rewriter.
+ * inheritlist is an integer list of RT indexes for the result relation set.
+ *
+ * Returns a query plan.
+ *--------------------
  */
-void
-pg_checkretval(Oid rettype, QueryTreeList *queryTreeList)
+static Plan *
+inheritance_planner(Query *parse, List *inheritlist)
 {
-       Query      *parse;
-       List       *tlist;
-       List       *rt;
-       int                     cmd;
-       Type            typ;
-       Resdom     *resnode;
-       Relation        reln;
-       Oid                     relid;
-       Oid                     tletype;
-       int                     relnatts;
-       int                     i;
-
-       /* find the final query */
-       parse = queryTreeList->qtrees[queryTreeList->len - 1];
+       int                     parentRTindex = parse->resultRelation;
+       Oid                     parentOID = getrelid(parentRTindex, parse->rtable);
+       List       *subplans = NIL;
+       List       *tlist = NIL;
+       List       *l;
 
-       /*
-        * test 1:      if the last query is a utility invocation, then there had
-        * better not be a return value declared.
-        */
-       if (parse->commandType == CMD_UTILITY)
+       foreach(l, inheritlist)
+       {
+               int                     childRTindex = lfirsti(l);
+               Oid                     childOID = getrelid(childRTindex, parse->rtable);
+               Query      *subquery;
+               Plan       *subplan;
+
+               /* Generate modified query with this rel as target */
+               subquery = (Query *) adjust_inherited_attrs((Node *) parse,
+                                                                                               parentRTindex, parentOID,
+                                                                                                childRTindex, childOID);
+               /* Generate plan */
+               subplan = grouping_planner(subquery, 0.0 /* retrieve all tuples */ );
+               subplans = lappend(subplans, subplan);
+               /* Save preprocessed tlist from first rel for use in Append */
+               if (tlist == NIL)
+                       tlist = subplan->targetlist;
+       }
+
+       /* Save the target-relations list for the executor, too */
+       parse->resultRelations = inheritlist;
+
+       return (Plan *) make_append(subplans, true, tlist);
+}
+
+/*--------------------
+ * grouping_planner
+ *       Perform planning steps related to grouping, aggregation, etc.
+ *       This primarily means adding top-level processing to the basic
+ *       query plan produced by query_planner.
+ *
+ * parse is the querytree produced by the parser & rewriter.
+ * tuple_fraction is the fraction of tuples we expect will be retrieved
+ *
+ * tuple_fraction is interpreted as follows:
+ *       < 0: determine fraction by inspection of query (normal case)
+ *       0: expect all tuples to be retrieved
+ *       0 < tuple_fraction < 1: expect the given fraction of tuples available
+ *             from the plan to be retrieved
+ *       tuple_fraction >= 1: tuple_fraction is the absolute number of tuples
+ *             expected to be retrieved (ie, a LIMIT specification)
+ * The normal case is to pass -1, but some callers pass values >= 0 to
+ * override this routine's determination of the appropriate fraction.
+ *
+ * Returns a query plan.
+ *--------------------
+ */
+static Plan *
+grouping_planner(Query *parse, double tuple_fraction)
+{
+       List       *tlist = parse->targetList;
+       Plan       *result_plan;
+       List       *current_pathkeys;
+       List       *group_pathkeys;
+       List       *sort_pathkeys;
+       AttrNumber *groupColIdx = NULL;
+
+       if (parse->setOperations)
        {
-               if (rettype == InvalidOid)
-                       return;
+               /*
+                * Construct the plan for set operations.  The result will not
+                * need any work except perhaps a top-level sort and/or LIMIT.
+                */
+               result_plan = plan_set_operations(parse);
+
+               /*
+                * We should not need to call preprocess_targetlist, since we must
+                * be in a SELECT query node.  Instead, use the targetlist
+                * returned by plan_set_operations (since this tells whether it
+                * returned any resjunk columns!), and transfer any sort key
+                * information from the original tlist.
+                */
+               Assert(parse->commandType == CMD_SELECT);
+
+               tlist = postprocess_setop_tlist(result_plan->targetlist, tlist);
+
+               /*
+                * Can't handle FOR UPDATE here (parser should have checked
+                * already, but let's make sure).
+                */
+               if (parse->rowMarks)
+                       elog(ERROR, "SELECT FOR UPDATE is not allowed with UNION/INTERSECT/EXCEPT");
+
+               /*
+                * We set current_pathkeys NIL indicating we do not know sort
+                * order.  This is correct when the top set operation is UNION
+                * ALL, since the appended-together results are unsorted even if
+                * the subplans were sorted.  For other set operations we could be
+                * smarter --- room for future improvement!
+                */
+               current_pathkeys = NIL;
+
+               /*
+                * Calculate pathkeys that represent grouping/ordering
+                * requirements (grouping should always be null, but...)
+                */
+               group_pathkeys = make_pathkeys_for_sortclauses(parse->groupClause,
+                                                                                                          tlist);
+               sort_pathkeys = make_pathkeys_for_sortclauses(parse->sortClause,
+                                                                                                         tlist);
+       }
+       else
+       {
+               List       *sub_tlist;
+
+               /* Preprocess targetlist in case we are inside an INSERT/UPDATE. */
+               tlist = preprocess_targetlist(tlist,
+                                                                         parse->commandType,
+                                                                         parse->resultRelation,
+                                                                         parse->rtable);
+
+               /*
+                * Add TID targets for rels selected FOR UPDATE (should this be
+                * done in preprocess_targetlist?).  The executor uses the TID to
+                * know which rows to lock, much as for UPDATE or DELETE.
+                */
+               if (parse->rowMarks)
+               {
+                       List       *l;
+
+                       /*
+                        * We've got trouble if the FOR UPDATE appears inside
+                        * grouping, since grouping renders a reference to individual
+                        * tuple CTIDs invalid.  This is also checked at parse time,
+                        * but that's insufficient because of rule substitution, query
+                        * pullup, etc.
+                        */
+                       CheckSelectForUpdate(parse);
+
+                       /*
+                        * Currently the executor only supports FOR UPDATE at top
+                        * level
+                        */
+                       if (PlannerQueryLevel > 1)
+                               elog(ERROR, "SELECT FOR UPDATE is not allowed in subselects");
+
+                       foreach(l, parse->rowMarks)
+                       {
+                               Index           rti = lfirsti(l);
+                               char       *resname;
+                               Resdom     *resdom;
+                               Var                *var;
+                               TargetEntry *ctid;
+
+                               resname = (char *) palloc(32);
+                               sprintf(resname, "ctid%u", rti);
+                               resdom = makeResdom(length(tlist) + 1,
+                                                                       TIDOID,
+                                                                       -1,
+                                                                       resname,
+                                                                       true);
+
+                               var = makeVar(rti,
+                                                         SelfItemPointerAttributeNumber,
+                                                         TIDOID,
+                                                         -1,
+                                                         0);
+
+                               ctid = makeTargetEntry(resdom, (Node *) var);
+                               tlist = lappend(tlist, ctid);
+                       }
+               }
+
+               /*
+                * Generate appropriate target list for subplan; may be different
+                * from tlist if grouping or aggregation is needed.
+                */
+               sub_tlist = make_subplanTargetList(parse, tlist, &groupColIdx);
+
+               /*
+                * Calculate pathkeys that represent grouping/ordering
+                * requirements
+                */
+               group_pathkeys = make_pathkeys_for_sortclauses(parse->groupClause,
+                                                                                                          tlist);
+               sort_pathkeys = make_pathkeys_for_sortclauses(parse->sortClause,
+                                                                                                         tlist);
+
+               /*
+                * Figure out whether we need a sorted result from query_planner.
+                *
+                * If we have a GROUP BY clause, then we want a result sorted
+                * properly for grouping.  Otherwise, if there is an ORDER BY
+                * clause, we want to sort by the ORDER BY clause.      (Note: if we
+                * have both, and ORDER BY is a superset of GROUP BY, it would be
+                * tempting to request sort by ORDER BY --- but that might just
+                * leave us failing to exploit an available sort order at all.
+                * Needs more thought...)
+                */
+               if (parse->groupClause)
+                       parse->query_pathkeys = group_pathkeys;
+               else if (parse->sortClause)
+                       parse->query_pathkeys = sort_pathkeys;
                else
-                       elog(ERROR, "return type mismatch in function decl: final query is a catalog utility");
+                       parse->query_pathkeys = NIL;
+
+               /*
+                * Figure out whether we expect to retrieve all the tuples that
+                * the plan can generate, or to stop early due to outside factors
+                * such as a cursor.  If the caller passed a value >= 0, believe
+                * that value, else do our own examination of the query context.
+                */
+               if (tuple_fraction < 0.0)
+               {
+                       /* Initial assumption is we need all the tuples */
+                       tuple_fraction = 0.0;
+
+                       /*
+                        * Check for retrieve-into-portal, ie DECLARE CURSOR.
+                        *
+                        * We have no real idea how many tuples the user will ultimately
+                        * FETCH from a cursor, but it seems a good bet that he
+                        * doesn't want 'em all.  Optimize for 10% retrieval (you
+                        * gotta better number?  Should this be a SETtable parameter?)
+                        */
+                       if (parse->isPortal)
+                               tuple_fraction = 0.10;
+               }
+
+               /*
+                * Adjust tuple_fraction if we see that we are going to apply
+                * limiting/grouping/aggregation/etc.  This is not overridable by
+                * the caller, since it reflects plan actions that this routine
+                * will certainly take, not assumptions about context.
+                */
+               if (parse->limitCount != NULL)
+               {
+                       /*
+                        * A LIMIT clause limits the absolute number of tuples
+                        * returned. However, if it's not a constant LIMIT then we
+                        * have to punt; for lack of a better idea, assume 10% of the
+                        * plan's result is wanted.
+                        */
+                       double          limit_fraction = 0.0;
+
+                       if (IsA(parse->limitCount, Const))
+                       {
+                               Const      *limitc = (Const *) parse->limitCount;
+                               int32           count = DatumGetInt32(limitc->constvalue);
+
+                               /*
+                                * A NULL-constant LIMIT represents "LIMIT ALL", which we
+                                * treat the same as no limit (ie, expect to retrieve all
+                                * the tuples).
+                                */
+                               if (!limitc->constisnull && count > 0)
+                               {
+                                       limit_fraction = (double) count;
+                                       /* We must also consider the OFFSET, if present */
+                                       if (parse->limitOffset != NULL)
+                                       {
+                                               if (IsA(parse->limitOffset, Const))
+                                               {
+                                                       int32           offset;
+
+                                                       limitc = (Const *) parse->limitOffset;
+                                                       offset = DatumGetInt32(limitc->constvalue);
+                                                       if (!limitc->constisnull && offset > 0)
+                                                               limit_fraction += (double) offset;
+                                               }
+                                               else
+                                               {
+                                                       /* OFFSET is an expression ... punt ... */
+                                                       limit_fraction = 0.10;
+                                               }
+                                       }
+                               }
+                       }
+                       else
+                       {
+                               /* LIMIT is an expression ... punt ... */
+                               limit_fraction = 0.10;
+                       }
+
+                       if (limit_fraction > 0.0)
+                       {
+                               /*
+                                * If we have absolute limits from both caller and LIMIT,
+                                * use the smaller value; if one is fractional and the
+                                * other absolute, treat the fraction as a fraction of the
+                                * absolute value; else we can multiply the two fractions
+                                * together.
+                                */
+                               if (tuple_fraction >= 1.0)
+                               {
+                                       if (limit_fraction >= 1.0)
+                                       {
+                                               /* both absolute */
+                                               tuple_fraction = Min(tuple_fraction, limit_fraction);
+                                       }
+                                       else
+                                       {
+                                               /* caller absolute, limit fractional */
+                                               tuple_fraction *= limit_fraction;
+                                               if (tuple_fraction < 1.0)
+                                                       tuple_fraction = 1.0;
+                                       }
+                               }
+                               else if (tuple_fraction > 0.0)
+                               {
+                                       if (limit_fraction >= 1.0)
+                                       {
+                                               /* caller fractional, limit absolute */
+                                               tuple_fraction *= limit_fraction;
+                                               if (tuple_fraction < 1.0)
+                                                       tuple_fraction = 1.0;
+                                       }
+                                       else
+                                       {
+                                               /* both fractional */
+                                               tuple_fraction *= limit_fraction;
+                                       }
+                               }
+                               else
+                               {
+                                       /* no info from caller, just use limit */
+                                       tuple_fraction = limit_fraction;
+                               }
+                       }
+               }
+
+               if (parse->groupClause)
+               {
+                       /*
+                        * In GROUP BY mode, we have the little problem that we don't
+                        * really know how many input tuples will be needed to make a
+                        * group, so we can't translate an output LIMIT count into an
+                        * input count.  For lack of a better idea, assume 25% of the
+                        * input data will be processed if there is any output limit.
+                        * However, if the caller gave us a fraction rather than an
+                        * absolute count, we can keep using that fraction (which
+                        * amounts to assuming that all the groups are about the same
+                        * size).
+                        */
+                       if (tuple_fraction >= 1.0)
+                               tuple_fraction = 0.25;
+
+                       /*
+                        * If both GROUP BY and ORDER BY are specified, we will need
+                        * two levels of sort --- and, therefore, certainly need to
+                        * read all the input tuples --- unless ORDER BY is a subset
+                        * of GROUP BY.  (We have not yet canonicalized the pathkeys,
+                        * so must use the slower noncanonical comparison method.)
+                        */
+                       if (parse->groupClause && parse->sortClause &&
+                               !noncanonical_pathkeys_contained_in(sort_pathkeys,
+                                                                                                       group_pathkeys))
+                               tuple_fraction = 0.0;
+               }
+               else if (parse->hasAggs)
+               {
+                       /*
+                        * Ungrouped aggregate will certainly want all the input
+                        * tuples.
+                        */
+                       tuple_fraction = 0.0;
+               }
+               else if (parse->distinctClause)
+               {
+                       /*
+                        * SELECT DISTINCT, like GROUP, will absorb an unpredictable
+                        * number of input tuples per output tuple.  Handle the same
+                        * way.
+                        */
+                       if (tuple_fraction >= 1.0)
+                               tuple_fraction = 0.25;
+               }
+
+               /* Generate the basic plan for this Query */
+               result_plan = query_planner(parse,
+                                                                       sub_tlist,
+                                                                       tuple_fraction);
+
+               /*
+                * query_planner returns actual sort order (which is not
+                * necessarily what we requested) in query_pathkeys.
+                */
+               current_pathkeys = parse->query_pathkeys;
        }
 
-       /* okay, it's an ordinary query */
-       tlist = parse->targetList;
-       rt = parse->rtable;
-       cmd = parse->commandType;
+       /*
+        * We couldn't canonicalize group_pathkeys and sort_pathkeys before
+        * running query_planner(), so do it now.
+        */
+       group_pathkeys = canonicalize_pathkeys(parse, group_pathkeys);
+       sort_pathkeys = canonicalize_pathkeys(parse, sort_pathkeys);
 
        /*
-        * test 2:      if the function is declared to return no value, then the
-        * final query had better not be a retrieve.
+        * If we have a GROUP BY clause, insert a group node (plus the
+        * appropriate sort node, if necessary).
         */
-       if (rettype == InvalidOid)
+       if (parse->groupClause)
        {
-               if (cmd == CMD_SELECT)
-                       elog(ERROR,
-                                "function declared with no return type, but final query is a retrieve");
+               bool            tuplePerGroup;
+               List       *group_tlist;
+               bool            is_sorted;
+
+               /*
+                * Decide whether how many tuples per group the Group node needs
+                * to return. (Needs only one tuple per group if no aggregate is
+                * present. Otherwise, need every tuple from the group to do the
+                * aggregation.)  Note tuplePerGroup is named backwards :-(
+                */
+               tuplePerGroup = parse->hasAggs;
+
+               /*
+                * If there are aggregates then the Group node should just return
+                * the same set of vars as the subplan did.  If there are no aggs
+                * then the Group node had better compute the final tlist.
+                */
+               if (parse->hasAggs)
+                       group_tlist = new_unsorted_tlist(result_plan->targetlist);
                else
-                       return;
-       }
+                       group_tlist = tlist;
+
+               /*
+                * Figure out whether the path result is already ordered the way
+                * we need it --- if so, no need for an explicit sort step.
+                */
+               if (pathkeys_contained_in(group_pathkeys, current_pathkeys))
+               {
+                       is_sorted = true;       /* no sort needed now */
+                       /* current_pathkeys remains unchanged */
+               }
+               else
+               {
+                       /*
+                        * We will need to do an explicit sort by the GROUP BY clause.
+                        * make_groupplan will do the work, but set current_pathkeys
+                        * to indicate the resulting order.
+                        */
+                       is_sorted = false;
+                       current_pathkeys = group_pathkeys;
+               }
 
-       /* by here, the function is declared to return some type */
-       if ((typ = typeidType(rettype)) == NULL)
-               elog(ERROR, "can't find return type %d for function\n", rettype);
+               result_plan = make_groupplan(parse,
+                                                                        group_tlist,
+                                                                        tuplePerGroup,
+                                                                        parse->groupClause,
+                                                                        groupColIdx,
+                                                                        is_sorted,
+                                                                        result_plan);
+       }
 
        /*
-        * test 3:      if the function is declared to return a value, then the
-        * final query had better be a retrieve.
+        * If aggregate is present, insert the Agg node
+        *
+        * HAVING clause, if any, becomes qual of the Agg node
         */
-       if (cmd != CMD_SELECT)
-               elog(ERROR, "function declared to return type %s, but final query is not a retrieve", typeTypeName(typ));
+       if (parse->hasAggs)
+       {
+               result_plan = (Plan *) make_agg(tlist,
+                                                                               (List *) parse->havingQual,
+                                                                               result_plan);
+               /* Note: Agg does not affect any existing sort order of the tuples */
+       }
+       else
+       {
+               /* If there are no Aggs, we shouldn't have any HAVING qual anymore */
+               Assert(parse->havingQual == NULL);
+       }
 
        /*
-        * test 4:      for base type returns, the target list should have exactly
-        * one entry, and its type should agree with what the user declared.
+        * If we were not able to make the plan come out in the right order,
+        * add an explicit sort step.
         */
-
-       if (typeTypeRelid(typ) == InvalidOid)
+       if (parse->sortClause)
        {
-               if (ExecTargetListLength(tlist) > 1)
-                       elog(ERROR, "function declared to return %s returns multiple values in final retrieve", typeTypeName(typ));
-
-               resnode = (Resdom *) ((TargetEntry *) lfirst(tlist))->resdom;
-               if (resnode->restype != rettype)
-                       elog(ERROR, "return type mismatch in function: declared to return %s, returns %s", typeTypeName(typ), typeidTypeName(resnode->restype));
-
-               /* by here, base return types match */
-               return;
+               if (!pathkeys_contained_in(sort_pathkeys, current_pathkeys))
+                       result_plan = make_sortplan(parse, tlist, result_plan,
+                                                                               parse->sortClause);
        }
 
        /*
-        * If the target list is of length 1, and the type of the varnode in
-        * the target list is the same as the declared return type, this is
-        * okay.  This can happen, for example, where the body of the function
-        * is 'retrieve (x = func2())', where func2 has the same return type
-        * as the function that's calling it.
+        * If there is a DISTINCT clause, add the UNIQUE node.
         */
-       if (ExecTargetListLength(tlist) == 1)
+       if (parse->distinctClause)
        {
-               resnode = (Resdom *) ((TargetEntry *) lfirst(tlist))->resdom;
-               if (resnode->restype == rettype)
-                       return;
+               result_plan = (Plan *) make_unique(tlist, result_plan,
+                                                                                  parse->distinctClause);
        }
 
        /*
-        * By here, the procedure returns a (set of) tuples.  This part of the
-        * typechecking is a hack.      We look up the relation that is the
-        * declared return type, and be sure that attributes 1 .. n in the
-        * target list match the declared types.
+        * Finally, if there is a LIMIT/OFFSET clause, add the LIMIT node.
         */
-       reln = heap_open(typeTypeRelid(typ));
+       if (parse->limitOffset || parse->limitCount)
+       {
+               result_plan = (Plan *) make_limit(tlist, result_plan,
+                                                                                 parse->limitOffset,
+                                                                                 parse->limitCount);
+       }
+
+       return result_plan;
+}
+
+/*---------------
+ * make_subplanTargetList
+ *       Generate appropriate target list when grouping is required.
+ *
+ * When grouping_planner inserts Aggregate and/or Group plan nodes above
+ * the result of query_planner, we typically want to pass a different
+ * target list to query_planner than the outer plan nodes should have.
+ * This routine generates the correct target list for the subplan.
+ *
+ * The initial target list passed from the parser already contains entries
+ * for all ORDER BY and GROUP BY expressions, but it will not have entries
+ * for variables used only in HAVING clauses; so we need to add those
+ * variables to the subplan target list.  Also, if we are doing either
+ * grouping or aggregation, we flatten all expressions except GROUP BY items
+ * into their component variables; the other expressions will be computed by
+ * the inserted nodes rather than by the subplan.  For example,
+ * given a query like
+ *             SELECT a+b,SUM(c+d) FROM table GROUP BY a+b;
+ * we want to pass this targetlist to the subplan:
+ *             a,b,c,d,a+b
+ * where the a+b target will be used by the Sort/Group steps, and the
+ * other targets will be used for computing the final results. (In the
+ * above example we could theoretically suppress the a and b targets and
+ * pass down only c,d,a+b, but it's not really worth the trouble to
+ * eliminate simple var references from the subplan.  We will avoid doing
+ * the extra computation to recompute a+b at the outer level; see
+ * replace_vars_with_subplan_refs() in setrefs.c.)
+ *
+ * 'parse' is the query being processed.
+ * 'tlist' is the query's target list.
+ * 'groupColIdx' receives an array of column numbers for the GROUP BY
+ * expressions (if there are any) in the subplan's target list.
+ *
+ * The result is the targetlist to be passed to the subplan.
+ *---------------
+ */
+static List *
+make_subplanTargetList(Query *parse,
+                                          List *tlist,
+                                          AttrNumber **groupColIdx)
+{
+       List       *sub_tlist;
+       List       *extravars;
+       int                     numCols;
 
-       if (!RelationIsValid(reln))
-               elog(ERROR, "cannot open relation relid %d", typeTypeRelid(typ));
+       *groupColIdx = NULL;
 
-       relid = reln->rd_id;
-       relnatts = reln->rd_rel->relnatts;
+       /*
+        * If we're not grouping or aggregating, nothing to do here;
+        * query_planner should receive the unmodified target list.
+        */
+       if (!parse->hasAggs && !parse->groupClause && !parse->havingQual)
+               return tlist;
 
-       if (ExecTargetListLength(tlist) != relnatts)
-               elog(ERROR, "function declared to return type %s does not retrieve (%s.*)", typeTypeName(typ), typeTypeName(typ));
+       /*
+        * Otherwise, start with a "flattened" tlist (having just the vars
+        * mentioned in the targetlist and HAVING qual --- but not upper-
+        * level Vars; they will be replaced by Params later on).
+        */
+       sub_tlist = flatten_tlist(tlist);
+       extravars = pull_var_clause(parse->havingQual, false);
+       sub_tlist = add_to_flat_tlist(sub_tlist, extravars);
+       freeList(extravars);
 
-       /* expect attributes 1 .. n in order */
-       for (i = 1; i <= relnatts; i++)
+       /*
+        * If grouping, create sub_tlist entries for all GROUP BY expressions
+        * (GROUP BY items that are simple Vars should be in the list
+        * already), and make an array showing where the group columns are in
+        * the sub_tlist.
+        */
+       numCols = length(parse->groupClause);
+       if (numCols > 0)
        {
-               TargetEntry *tle = lfirst(tlist);
-               Node       *thenode = tle->expr;
-
-               tlist = lnext(tlist);
-               tletype = exprType(thenode);
-
-#if 0                                                  /* fix me */
-               /* this is tedious */
-               if (IsA(thenode, Var))
-                       tletype = (Oid) ((Var *) thenode)->vartype;
-               else if (IsA(thenode, Const))
-                       tletype = (Oid) ((Const *) thenode)->consttype;
-               else if (IsA(thenode, Param))
-                       tletype = (Oid) ((Param *) thenode)->paramtype;
-               else if (IsA(thenode, Expr))
-                       tletype = Expr;
-
-               else if (IsA(thenode, LispList))
+               int                     keyno = 0;
+               AttrNumber *grpColIdx;
+               List       *gl;
+
+               grpColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols);
+               *groupColIdx = grpColIdx;
+
+               foreach(gl, parse->groupClause)
                {
-                       thenode = lfirst(thenode);
-                       if (IsA(thenode, Oper))
-                               tletype = (Oid) get_opresulttype((Oper *) thenode);
-                       else if (IsA(thenode, Func))
-                               tletype = (Oid) get_functype((Func *) thenode);
-                       else
-                               elog(ERROR, "function declared to return type %s does not retrieve (%s.all)", typeTypeName(typ), typeTypeName(typ));
+                       GroupClause *grpcl = (GroupClause *) lfirst(gl);
+                       Node       *groupexpr = get_sortgroupclause_expr(grpcl, tlist);
+                       TargetEntry *te = NULL;
+                       List       *sl;
+
+                       /* Find or make a matching sub_tlist entry */
+                       foreach(sl, sub_tlist)
+                       {
+                               te = (TargetEntry *) lfirst(sl);
+                               if (equal(groupexpr, te->expr))
+                                       break;
+                       }
+                       if (!sl)
+                       {
+                               te = makeTargetEntry(makeResdom(length(sub_tlist) + 1,
+                                                                                               exprType(groupexpr),
+                                                                                               exprTypmod(groupexpr),
+                                                                                               NULL,
+                                                                                               false),
+                                                                        groupexpr);
+                               sub_tlist = lappend(sub_tlist, te);
+                       }
+
+                       /* and save its resno */
+                       grpColIdx[keyno++] = te->resdom->resno;
                }
-               else
-                       elog(ERROR, "function declared to return type %s does not retrieve (%s.all)", typeTypeName(typ), typeTypeName(typ));
-#endif
-               /* reach right in there, why don't you? */
-               if (tletype != reln->rd_att->attrs[i - 1]->atttypid)
-                       elog(ERROR, "function declared to return type %s does not retrieve (%s.all)", typeTypeName(typ), typeTypeName(typ));
        }
 
-       heap_close(reln);
+       return sub_tlist;
+}
+
+/*
+ * make_groupplan
+ *             Add a Group node for GROUP BY processing.
+ *             If we couldn't make the subplan produce presorted output for grouping,
+ *             first add an explicit Sort node.
+ */
+static Plan *
+make_groupplan(Query *parse,
+                          List *group_tlist,
+                          bool tuplePerGroup,
+                          List *groupClause,
+                          AttrNumber *grpColIdx,
+                          bool is_presorted,
+                          Plan *subplan)
+{
+       int                     numCols = length(groupClause);
+
+       if (!is_presorted)
+       {
+               /*
+                * The Sort node always just takes a copy of the subplan's tlist
+                * plus ordering information.  (This might seem inefficient if the
+                * subplan contains complex GROUP BY expressions, but in fact Sort
+                * does not evaluate its targetlist --- it only outputs the same
+                * tuples in a new order.  So the expressions we might be copying
+                * are just dummies with no extra execution cost.)
+                */
+               List       *sort_tlist = new_unsorted_tlist(subplan->targetlist);
+               int                     keyno = 0;
+               List       *gl;
+
+               foreach(gl, groupClause)
+               {
+                       GroupClause *grpcl = (GroupClause *) lfirst(gl);
+                       TargetEntry *te = nth(grpColIdx[keyno] - 1, sort_tlist);
+                       Resdom     *resdom = te->resdom;
+
+                       /*
+                        * Check for the possibility of duplicate group-by clauses ---
+                        * the parser should have removed 'em, but the Sort executor
+                        * will get terribly confused if any get through!
+                        */
+                       if (resdom->reskey == 0)
+                       {
+                               /* OK, insert the ordering info needed by the executor. */
+                               resdom->reskey = ++keyno;
+                               resdom->reskeyop = grpcl->sortop;
+                       }
+               }
+
+               Assert(keyno > 0);
+
+               subplan = (Plan *) make_sort(parse, sort_tlist, subplan, keyno);
+       }
 
-       /* success */
-       return;
+       return (Plan *) make_group(group_tlist, tuplePerGroup, numCols,
+                                                          grpColIdx, subplan);
 }
 
+/*
+ * make_sortplan
+ *       Add a Sort node to implement an explicit ORDER BY clause.
+ */
+Plan *
+make_sortplan(Query *parse, List *tlist, Plan *plannode, List *sortcls)
+{
+       List       *sort_tlist;
+       List       *i;
+       int                     keyno = 0;
+
+       /*
+        * First make a copy of the tlist so that we don't corrupt the
+        * original.
+        */
+       sort_tlist = new_unsorted_tlist(tlist);
+
+       foreach(i, sortcls)
+       {
+               SortClause *sortcl = (SortClause *) lfirst(i);
+               TargetEntry *tle = get_sortgroupclause_tle(sortcl, sort_tlist);
+               Resdom     *resdom = tle->resdom;
+
+               /*
+                * Check for the possibility of duplicate order-by clauses --- the
+                * parser should have removed 'em, but the executor will get
+                * terribly confused if any get through!
+                */
+               if (resdom->reskey == 0)
+               {
+                       /* OK, insert the ordering info needed by the executor. */
+                       resdom->reskey = ++keyno;
+                       resdom->reskeyop = sortcl->sortop;
+               }
+       }
+
+       Assert(keyno > 0);
 
+       return (Plan *) make_sort(parse, sort_tlist, plannode, keyno);
+}
 
+/*
+ * postprocess_setop_tlist
+ *       Fix up targetlist returned by plan_set_operations().
+ *
+ * We need to transpose sort key info from the orig_tlist into new_tlist.
+ * NOTE: this would not be good enough if we supported resjunk sort keys
+ * for results of set operations --- then, we'd need to project a whole
+ * new tlist to evaluate the resjunk columns.  For now, just elog if we
+ * find any resjunk columns in orig_tlist.
+ */
+static List *
+postprocess_setop_tlist(List *new_tlist, List *orig_tlist)
+{
+       List       *l;
+
+       foreach(l, new_tlist)
+       {
+               TargetEntry *new_tle = (TargetEntry *) lfirst(l);
+               TargetEntry *orig_tle;
+
+               /* ignore resjunk columns in setop result */
+               if (new_tle->resdom->resjunk)
+                       continue;
+
+               Assert(orig_tlist != NIL);
+               orig_tle = (TargetEntry *) lfirst(orig_tlist);
+               orig_tlist = lnext(orig_tlist);
+               if (orig_tle->resdom->resjunk)
+                       elog(ERROR, "postprocess_setop_tlist: resjunk output columns not implemented");
+               Assert(new_tle->resdom->resno == orig_tle->resdom->resno);
+               Assert(new_tle->resdom->restype == orig_tle->resdom->restype);
+               new_tle->resdom->ressortgroupref = orig_tle->resdom->ressortgroupref;
+       }
+       if (orig_tlist != NIL)
+               elog(ERROR, "postprocess_setop_tlist: resjunk output columns not implemented");
+       return new_tlist;
+}