]> granicus.if.org Git - postgresql/blobdiff - src/backend/optimizer/plan/planner.c
Teach planner about some cases where a restriction clause can be
[postgresql] / src / backend / optimizer / plan / planner.c
index e00f73c74b1c84f53485f01269a98a69fa023d58..334f8504dff2b0c4e4cb04e2c913b80b04190386 100644 (file)
@@ -3,12 +3,12 @@
  * planner.c
  *       The query optimizer external interface.
  *
- * Portions Copyright (c) 1996-2003, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1996-2005, PostgreSQL Global Development Group
  * Portions Copyright (c) 1994, Regents of the University of California
  *
  *
  * IDENTIFICATION
- *       $PostgreSQL: pgsql/src/backend/optimizer/plan/planner.c,v 1.166 2004/02/03 17:34:03 tgl Exp $
+ *       $PostgreSQL: pgsql/src/backend/optimizer/plan/planner.c,v 1.190 2005/07/02 23:00:41 tgl Exp $
  *
  *-------------------------------------------------------------------------
  */
@@ -20,6 +20,7 @@
 #include "catalog/pg_operator.h"
 #include "catalog/pg_type.h"
 #include "executor/executor.h"
+#include "executor/nodeAgg.h"
 #include "miscadmin.h"
 #include "nodes/makefuncs.h"
 #ifdef OPTIMIZER_DEBUG
@@ -35,7 +36,6 @@
 #include "optimizer/subselect.h"
 #include "optimizer/tlist.h"
 #include "optimizer/var.h"
-#include "parser/analyze.h"
 #include "parser/parsetree.h"
 #include "parser/parse_expr.h"
 #include "parser/parse_oper.h"
@@ -43,6 +43,9 @@
 #include "utils/syscache.h"
 
 
+ParamListInfo PlannerBoundParamList = NULL;            /* current boundParams */
+
+
 /* Expression kind codes for preprocess_expression */
 #define EXPRKIND_QUAL  0
 #define EXPRKIND_TARGET 1
 #define EXPRKIND_ININFO 4
 
 
-static Node *preprocess_expression(Query *parse, Node *expr, int kind);
-static void preprocess_qual_conditions(Query *parse, Node *jtnode);
-static Plan *inheritance_planner(Query *parse, List *inheritlist);
-static Plan *grouping_planner(Query *parse, double tuple_fraction);
-static bool hash_safe_grouping(Query *parse);
-static List *make_subplanTargetList(Query *parse, List *tlist,
+static Node *preprocess_expression(PlannerInfo *root, Node *expr, int kind);
+static void preprocess_qual_conditions(PlannerInfo *root, Node *jtnode);
+static Plan *inheritance_planner(PlannerInfo *root, List *inheritlist);
+static Plan *grouping_planner(PlannerInfo *root, double tuple_fraction);
+static double adjust_tuple_fraction_for_limit(PlannerInfo *root,
+                                                                                         double tuple_fraction);
+static bool choose_hashed_grouping(PlannerInfo *root, double tuple_fraction,
+                                          Path *cheapest_path, Path *sorted_path,
+                                          List *sort_pathkeys, List *group_pathkeys,
+                                          double dNumGroups, AggClauseCounts *agg_counts);
+static bool hash_safe_grouping(PlannerInfo *root);
+static List *make_subplanTargetList(PlannerInfo *root, List *tlist,
                                           AttrNumber **groupColIdx, bool *need_tlist_eval);
-static void locate_grouping_columns(Query *parse,
+static void locate_grouping_columns(PlannerInfo *root,
                                                List *tlist,
                                                List *sub_tlist,
                                                AttrNumber *groupColIdx);
@@ -71,20 +80,25 @@ static List *postprocess_setop_tlist(List *new_tlist, List *orig_tlist);
  *
  *****************************************************************************/
 Plan *
-planner(Query *parse, bool isCursor, int cursorOptions)
+planner(Query *parse, bool isCursor, int cursorOptions,
+               ParamListInfo boundParams)
 {
        double          tuple_fraction;
        Plan       *result_plan;
        Index           save_PlannerQueryLevel;
        List       *save_PlannerParamList;
+       ParamListInfo save_PlannerBoundParamList;
 
        /*
         * The planner can be called recursively (an example is when
         * eval_const_expressions tries to pre-evaluate an SQL function). So,
         * these global state variables must be saved and restored.
         *
-        * These vars cannot be moved into the Query structure since their whole
-        * purpose is communication across multiple sub-Queries.
+        * Query level and the param list cannot be moved into the per-query
+        * PlannerInfo structure since their whole purpose is communication
+        * across multiple sub-queries. Also, boundParams is explicitly info
+        * from outside the query, and so is likewise better handled as a global
+        * variable.
         *
         * Note we do NOT save and restore PlannerPlanId: it exists to assign
         * unique IDs to SubPlan nodes, and we want those IDs to be unique for
@@ -93,10 +107,12 @@ planner(Query *parse, bool isCursor, int cursorOptions)
         */
        save_PlannerQueryLevel = PlannerQueryLevel;
        save_PlannerParamList = PlannerParamList;
+       save_PlannerBoundParamList = PlannerBoundParamList;
 
        /* Initialize state for handling outer-level references and params */
        PlannerQueryLevel = 0;          /* will be 1 in top-level subquery_planner */
        PlannerParamList = NIL;
+       PlannerBoundParamList = boundParams;
 
        /* Determine what fraction of the plan is likely to be scanned */
        if (isCursor)
@@ -116,8 +132,9 @@ planner(Query *parse, bool isCursor, int cursorOptions)
        }
 
        /* primary planning entry point (may recurse for subqueries) */
-       result_plan = subquery_planner(parse, tuple_fraction);
+       result_plan = subquery_planner(parse, tuple_fraction, NULL);
 
+       /* check we popped out the right number of levels */
        Assert(PlannerQueryLevel == 0);
 
        /*
@@ -130,15 +147,16 @@ planner(Query *parse, bool isCursor, int cursorOptions)
                        result_plan = materialize_finished_plan(result_plan);
        }
 
-       /* executor wants to know total number of Params used overall */
-       result_plan->nParamExec = length(PlannerParamList);
-
        /* final cleanup of the plan */
-       set_plan_references(result_plan, parse->rtable);
+       result_plan = set_plan_references(result_plan, parse->rtable);
+
+       /* executor wants to know total number of Params used overall */
+       result_plan->nParamExec = list_length(PlannerParamList);
 
        /* restore state for outer planner, if any */
        PlannerQueryLevel = save_PlannerQueryLevel;
        PlannerParamList = save_PlannerParamList;
+       PlannerBoundParamList = save_PlannerBoundParamList;
 
        return result_plan;
 }
@@ -153,6 +171,9 @@ planner(Query *parse, bool isCursor, int cursorOptions)
  * tuple_fraction is the fraction of tuples we expect will be retrieved.
  * tuple_fraction is interpreted as explained for grouping_planner, below.
  *
+ * If subquery_pathkeys isn't NULL, it receives a list of pathkeys indicating
+ * the output sort ordering of the completed plan.
+ *
  * Basically, this routine does the stuff that should only be done once
  * per Query object.  It then calls grouping_planner.  At one time,
  * grouping_planner could be invoked recursively on the same Query object;
@@ -166,120 +187,161 @@ planner(Query *parse, bool isCursor, int cursorOptions)
  *--------------------
  */
 Plan *
-subquery_planner(Query *parse, double tuple_fraction)
+subquery_planner(Query *parse, double tuple_fraction,
+                                List **subquery_pathkeys)
 {
        List       *saved_initplan = PlannerInitPlan;
        int                     saved_planid = PlannerPlanId;
-       bool            hasOuterJoins;
+       PlannerInfo *root;
        Plan       *plan;
        List       *newHaving;
        List       *lst;
+       ListCell   *l;
 
        /* Set up for a new level of subquery */
        PlannerQueryLevel++;
        PlannerInitPlan = NIL;
 
+       /* Create a PlannerInfo data structure for this subquery */
+       root = makeNode(PlannerInfo);
+       root->parse = parse;
+
        /*
         * Look for IN clauses at the top level of WHERE, and transform them
         * into joins.  Note that this step only handles IN clauses originally
         * at top level of WHERE; if we pull up any subqueries in the next
         * step, their INs are processed just before pulling them up.
         */
-       parse->in_info_list = NIL;
+       root->in_info_list = NIL;
        if (parse->hasSubLinks)
-               parse->jointree->quals = pull_up_IN_clauses(parse,
-                                                                                                parse->jointree->quals);
+               parse->jointree->quals = pull_up_IN_clauses(root,
+                                                                                                       parse->jointree->quals);
 
        /*
         * Check to see if any subqueries in the rangetable can be merged into
         * this query.
         */
        parse->jointree = (FromExpr *)
-               pull_up_subqueries(parse, (Node *) parse->jointree, false);
+               pull_up_subqueries(root, (Node *) parse->jointree, false);
 
        /*
         * Detect whether any rangetable entries are RTE_JOIN kind; if not, we
         * can avoid the expense of doing flatten_join_alias_vars().  Also
-        * check for outer joins --- if none, we can skip
-        * reduce_outer_joins(). This must be done after we have done
+        * check for outer joins --- if none, we can skip reduce_outer_joins()
+        * and some other processing.  This must be done after we have done
         * pull_up_subqueries, of course.
+        *
+        * Note: if reduce_outer_joins manages to eliminate all outer joins,
+        * root->hasOuterJoins is not reset currently.  This is OK since its
+        * purpose is merely to suppress unnecessary processing in simple cases.
         */
-       parse->hasJoinRTEs = false;
-       hasOuterJoins = false;
-       foreach(lst, parse->rtable)
+       root->hasJoinRTEs = false;
+       root->hasOuterJoins = false;
+       foreach(l, parse->rtable)
        {
-               RangeTblEntry *rte = (RangeTblEntry *) lfirst(lst);
+               RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
 
                if (rte->rtekind == RTE_JOIN)
                {
-                       parse->hasJoinRTEs = true;
+                       root->hasJoinRTEs = true;
                        if (IS_OUTER_JOIN(rte->jointype))
                        {
-                               hasOuterJoins = true;
+                               root->hasOuterJoins = true;
                                /* Can quit scanning once we find an outer join */
                                break;
                        }
                }
        }
 
+       /*
+        * Set hasHavingQual to remember if HAVING clause is present.  Needed
+        * because preprocess_expression will reduce a constant-true condition
+        * to an empty qual list ... but "HAVING TRUE" is not a semantic no-op.
+        */
+       root->hasHavingQual = (parse->havingQual != NULL);
+
        /*
         * Do expression preprocessing on targetlist and quals.
         */
        parse->targetList = (List *)
-               preprocess_expression(parse, (Node *) parse->targetList,
+               preprocess_expression(root, (Node *) parse->targetList,
                                                          EXPRKIND_TARGET);
 
-       preprocess_qual_conditions(parse, (Node *) parse->jointree);
+       preprocess_qual_conditions(root, (Node *) parse->jointree);
 
-       parse->havingQual = preprocess_expression(parse, parse->havingQual,
+       parse->havingQual = preprocess_expression(root, parse->havingQual,
                                                                                          EXPRKIND_QUAL);
 
-       parse->limitOffset = preprocess_expression(parse, parse->limitOffset,
+       parse->limitOffset = preprocess_expression(root, parse->limitOffset,
                                                                                           EXPRKIND_LIMIT);
-       parse->limitCount = preprocess_expression(parse, parse->limitCount,
+       parse->limitCount = preprocess_expression(root, parse->limitCount,
                                                                                          EXPRKIND_LIMIT);
 
-       parse->in_info_list = (List *)
-               preprocess_expression(parse, (Node *) parse->in_info_list,
+       root->in_info_list = (List *)
+               preprocess_expression(root, (Node *) root->in_info_list,
                                                          EXPRKIND_ININFO);
 
        /* Also need to preprocess expressions for function RTEs */
-       foreach(lst, parse->rtable)
+       foreach(l, parse->rtable)
        {
-               RangeTblEntry *rte = (RangeTblEntry *) lfirst(lst);
+               RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
 
                if (rte->rtekind == RTE_FUNCTION)
-                       rte->funcexpr = preprocess_expression(parse, rte->funcexpr,
+                       rte->funcexpr = preprocess_expression(root, rte->funcexpr,
                                                                                                  EXPRKIND_RTFUNC);
        }
 
        /*
-        * A HAVING clause without aggregates is equivalent to a WHERE clause
-        * (except it can only refer to grouped fields).  Transfer any
-        * agg-free clauses of the HAVING qual into WHERE.      This may seem like
-        * wasting cycles to cater to stupidly-written queries, but there are
-        * other reasons for doing it.  Firstly, if the query contains no aggs
-        * at all, then we aren't going to generate an Agg plan node, and so
-        * there'll be no place to execute HAVING conditions; without this
-        * transfer, we'd lose the HAVING condition entirely, which is wrong.
-        * Secondly, when we push down a qual condition into a sub-query, it's
-        * easiest to push the qual into HAVING always, in case it contains
-        * aggs, and then let this code sort it out.
+        * In some cases we may want to transfer a HAVING clause into WHERE.
+        * We cannot do so if the HAVING clause contains aggregates (obviously)
+        * or volatile functions (since a HAVING clause is supposed to be executed
+        * only once per group).  Also, it may be that the clause is so expensive
+        * to execute that we're better off doing it only once per group, despite
+        * the loss of selectivity.  This is hard to estimate short of doing the
+        * entire planning process twice, so we use a heuristic: clauses
+        * containing subplans are left in HAVING.  Otherwise, we move or copy
+        * the HAVING clause into WHERE, in hopes of eliminating tuples before
+        * aggregation instead of after.
+        *
+        * If the query has explicit grouping then we can simply move such a
+        * clause into WHERE; any group that fails the clause will not be
+        * in the output because none of its tuples will reach the grouping
+        * or aggregation stage.  Otherwise we must have a degenerate
+        * (variable-free) HAVING clause, which we put in WHERE so that
+        * query_planner() can use it in a gating Result node, but also keep
+        * in HAVING to ensure that we don't emit a bogus aggregated row.
+        * (This could be done better, but it seems not worth optimizing.)
         *
         * Note that both havingQual and parse->jointree->quals are in
         * implicitly-ANDed-list form at this point, even though they are
         * declared as Node *.
         */
        newHaving = NIL;
-       foreach(lst, (List *) parse->havingQual)
+       foreach(l, (List *) parse->havingQual)
        {
-               Node       *havingclause = (Node *) lfirst(lst);
+               Node       *havingclause = (Node *) lfirst(l);
 
-               if (contain_agg_clause(havingclause))
+               if (contain_agg_clause(havingclause) ||
+                       contain_volatile_functions(havingclause) ||
+                       contain_subplans(havingclause))
+               {
+                       /* keep it in HAVING */
                        newHaving = lappend(newHaving, havingclause);
-               else
+               }
+               else if (parse->groupClause)
+               {
+                       /* move it to WHERE */
                        parse->jointree->quals = (Node *)
                                lappend((List *) parse->jointree->quals, havingclause);
+               }
+               else
+               {
+                       /* put a copy in WHERE, keep it in HAVING */
+                       parse->jointree->quals = (Node *)
+                               lappend((List *) parse->jointree->quals,
+                                               copyObject(havingclause));
+                       newHaving = lappend(newHaving, havingclause);
+               }
        }
        parse->havingQual = (Node *) newHaving;
 
@@ -288,8 +350,8 @@ subquery_planner(Query *parse, double tuple_fraction)
         * joins. This step is most easily done after we've done expression
         * preprocessing.
         */
-       if (hasOuterJoins)
-               reduce_outer_joins(parse);
+       if (root->hasOuterJoins)
+               reduce_outer_joins(root);
 
        /*
         * See if we can simplify the jointree; opportunities for this may
@@ -300,7 +362,7 @@ subquery_planner(Query *parse, double tuple_fraction)
         * after reduce_outer_joins, anyway.
         */
        parse->jointree = (FromExpr *)
-               simplify_jointree(parse, (Node *) parse->jointree);
+               simplify_jointree(root, (Node *) parse->jointree);
 
        /*
         * Do the main planning.  If we have an inherited target relation,
@@ -308,47 +370,22 @@ subquery_planner(Query *parse, double tuple_fraction)
         * grouping_planner.
         */
        if (parse->resultRelation &&
-               (lst = expand_inherited_rtentry(parse, parse->resultRelation,
-                                                                               false)) != NIL)
-               plan = inheritance_planner(parse, lst);
+               (lst = expand_inherited_rtentry(root, parse->resultRelation)) != NIL)
+               plan = inheritance_planner(root, lst);
        else
-               plan = grouping_planner(parse, tuple_fraction);
+               plan = grouping_planner(root, tuple_fraction);
 
        /*
         * If any subplans were generated, or if we're inside a subplan, build
-        * initPlan list and extParam/allParam sets for plan nodes.
+        * initPlan list and extParam/allParam sets for plan nodes, and attach
+        * the initPlans to the top plan node.
         */
        if (PlannerPlanId != saved_planid || PlannerQueryLevel > 1)
-       {
-               Cost            initplan_cost = 0;
-
-               /* Prepare extParam/allParam sets for all nodes in tree */
                SS_finalize_plan(plan, parse->rtable);
 
-               /*
-                * SS_finalize_plan doesn't handle initPlans, so we have to
-                * manually attach them to the topmost plan node, and add their
-                * extParams to the topmost node's, too.
-                *
-                * We also add the total_cost of each initPlan to the startup cost of
-                * the top node.  This is a conservative overestimate, since in
-                * fact each initPlan might be executed later than plan startup,
-                * or even not at all.
-                */
-               plan->initPlan = PlannerInitPlan;
-
-               foreach(lst, plan->initPlan)
-               {
-                       SubPlan    *initplan = (SubPlan *) lfirst(lst);
-
-                       plan->extParam = bms_add_members(plan->extParam,
-                                                                                        initplan->plan->extParam);
-                       initplan_cost += initplan->plan->total_cost;
-               }
-
-               plan->startup_cost += initplan_cost;
-               plan->total_cost += initplan_cost;
-       }
+       /* Return sort ordering info if caller wants it */
+       if (subquery_pathkeys)
+               *subquery_pathkeys = root->query_pathkeys;
 
        /* Return to outer subquery context */
        PlannerQueryLevel--;
@@ -365,25 +402,48 @@ subquery_planner(Query *parse, double tuple_fraction)
  *             conditions), or a HAVING clause.
  */
 static Node *
-preprocess_expression(Query *parse, Node *expr, int kind)
+preprocess_expression(PlannerInfo *root, Node *expr, int kind)
 {
+       /*
+        * Fall out quickly if expression is empty.  This occurs often enough
+        * to be worth checking.  Note that null->null is the correct conversion
+        * for implicit-AND result format, too.
+        */
+       if (expr == NULL)
+               return NULL;
+
        /*
         * If the query has any join RTEs, replace join alias variables with
         * base-relation variables. We must do this before sublink processing,
         * else sublinks expanded out from join aliases wouldn't get
         * processed.
         */
-       if (parse->hasJoinRTEs)
-               expr = flatten_join_alias_vars(parse, expr);
+       if (root->hasJoinRTEs)
+               expr = flatten_join_alias_vars(root, expr);
 
        /*
-        * If it's a qual or havingQual, canonicalize it.  It seems most useful
-        * to do this before applying eval_const_expressions, since the latter
-        * can optimize flattened AND/ORs better than unflattened ones.
+        * Simplify constant expressions.
+        *
+        * Note: this also flattens nested AND and OR expressions into N-argument
+        * form.  All processing of a qual expression after this point must be
+        * careful to maintain AND/OR flatness --- that is, do not generate a tree
+        * with AND directly under AND, nor OR directly under OR.
         *
-        * Note: all processing of a qual expression after this point must be
-        * careful to maintain AND/OR flatness --- that is, do not generate a
-        * tree with AND directly under AND, nor OR directly under OR.
+        * Because this is a relatively expensive process, we skip it when the
+        * query is trivial, such as "SELECT 2+2;" or "INSERT ... VALUES()".
+        * The expression will only be evaluated once anyway, so no point in
+        * pre-simplifying; we can't execute it any faster than the executor can,
+        * and we will waste cycles copying the tree.  Notice however that we
+        * still must do it for quals (to get AND/OR flatness); and if we are
+        * in a subquery we should not assume it will be done only once.
+        */
+       if (root->parse->jointree->fromlist != NIL ||
+               kind == EXPRKIND_QUAL ||
+               PlannerQueryLevel > 1)
+               expr = eval_const_expressions(expr);
+
+       /*
+        * If it's a qual or havingQual, canonicalize it.
         */
        if (kind == EXPRKIND_QUAL)
        {
@@ -395,13 +455,8 @@ preprocess_expression(Query *parse, Node *expr, int kind)
 #endif
        }
 
-       /*
-        * Simplify constant expressions.
-        */
-       expr = eval_const_expressions(expr);
-
        /* Expand SubLinks to SubPlans */
-       if (parse->hasSubLinks)
+       if (root->parse->hasSubLinks)
                expr = SS_process_sublinks(expr, (kind == EXPRKIND_QUAL));
 
        /*
@@ -416,7 +471,7 @@ preprocess_expression(Query *parse, Node *expr, int kind)
        /*
         * If it's a qual or havingQual, convert it to implicit-AND format.
         * (We don't want to do this before eval_const_expressions, since the
-        * latter would be unable to simplify a top-level AND correctly.  Also,
+        * latter would be unable to simplify a top-level AND correctly. Also,
         * SS_process_sublinks expects explicit-AND format.)
         */
        if (kind == EXPRKIND_QUAL)
@@ -431,7 +486,7 @@ preprocess_expression(Query *parse, Node *expr, int kind)
  *             preprocessing work on each qual condition found therein.
  */
 static void
-preprocess_qual_conditions(Query *parse, Node *jtnode)
+preprocess_qual_conditions(PlannerInfo *root, Node *jtnode)
 {
        if (jtnode == NULL)
                return;
@@ -442,21 +497,21 @@ preprocess_qual_conditions(Query *parse, Node *jtnode)
        else if (IsA(jtnode, FromExpr))
        {
                FromExpr   *f = (FromExpr *) jtnode;
-               List       *l;
+               ListCell   *l;
 
                foreach(l, f->fromlist)
-                       preprocess_qual_conditions(parse, lfirst(l));
+                       preprocess_qual_conditions(root, lfirst(l));
 
-               f->quals = preprocess_expression(parse, f->quals, EXPRKIND_QUAL);
+               f->quals = preprocess_expression(root, f->quals, EXPRKIND_QUAL);
        }
        else if (IsA(jtnode, JoinExpr))
        {
                JoinExpr   *j = (JoinExpr *) jtnode;
 
-               preprocess_qual_conditions(parse, j->larg);
-               preprocess_qual_conditions(parse, j->rarg);
+               preprocess_qual_conditions(root, j->larg);
+               preprocess_qual_conditions(root, j->rarg);
 
-               j->quals = preprocess_expression(parse, j->quals, EXPRKIND_QUAL);
+               j->quals = preprocess_expression(root, j->quals, EXPRKIND_QUAL);
        }
        else
                elog(ERROR, "unrecognized node type: %d",
@@ -478,56 +533,84 @@ preprocess_qual_conditions(Query *parse, Node *jtnode)
  * can never be the nullable side of an outer join, so it's OK to generate
  * the plan this way.
  *
- * parse is the querytree produced by the parser & rewriter.
  * inheritlist is an integer list of RT indexes for the result relation set.
  *
  * Returns a query plan.
  *--------------------
  */
 static Plan *
-inheritance_planner(Query *parse, List *inheritlist)
+inheritance_planner(PlannerInfo *root, List *inheritlist)
 {
+       Query      *parse = root->parse;
        int                     parentRTindex = parse->resultRelation;
        Oid                     parentOID = getrelid(parentRTindex, parse->rtable);
-       int                     mainrtlength = length(parse->rtable);
+       int                     mainrtlength = list_length(parse->rtable);
        List       *subplans = NIL;
        List       *tlist = NIL;
-       List       *l;
+       ListCell   *l;
 
        foreach(l, inheritlist)
        {
-               int                     childRTindex = lfirsti(l);
+               int                     childRTindex = lfirst_int(l);
                Oid                     childOID = getrelid(childRTindex, parse->rtable);
-               int                     subrtlength;
-               Query      *subquery;
+               PlannerInfo subroot;
                Plan       *subplan;
 
-               /* Generate modified query with this rel as target */
-               subquery = (Query *) adjust_inherited_attrs((Node *) parse,
-                                                                                               parentRTindex, parentOID,
-                                                                                                childRTindex, childOID);
+               /*
+                * Generate modified query with this rel as target.  We have to
+                * be prepared to translate varnos in in_info_list as well as in
+                * the Query proper.
+                */
+               memcpy(&subroot, root, sizeof(PlannerInfo));
+               subroot.parse = (Query *)
+                       adjust_inherited_attrs((Node *) parse,
+                                                                  parentRTindex, parentOID,
+                                                                  childRTindex, childOID);
+               subroot.in_info_list = (List *)
+                       adjust_inherited_attrs((Node *) root->in_info_list,
+                                                                  parentRTindex, parentOID,
+                                                                  childRTindex, childOID);
+
                /* Generate plan */
-               subplan = grouping_planner(subquery, 0.0 /* retrieve all tuples */ );
+               subplan = grouping_planner(&subroot, 0.0 /* retrieve all tuples */ );
+
                subplans = lappend(subplans, subplan);
 
                /*
-                * It's possible that additional RTEs got added to the rangetable
-                * due to expansion of inherited source tables (see allpaths.c).
-                * If so, we must copy 'em back to the main parse tree's rtable.
+                * XXX my goodness this next bit is ugly.  Really need to think about
+                * ways to rein in planner's habit of scribbling on its input.
                 *
-                * XXX my goodness this is ugly.  Really need to think about ways to
-                * rein in planner's habit of scribbling on its input.
+                * Planning of the subquery might have modified the rangetable,
+                * either by addition of RTEs due to expansion of inherited source
+                * tables, or by changes of the Query structures inside subquery
+                * RTEs.  We have to ensure that this gets propagated back to the
+                * master copy.  However, if we aren't done planning yet, we also
+                * need to ensure that subsequent calls to grouping_planner have
+                * virgin sub-Queries to work from.  So, if we are at the last
+                * list entry, just copy the subquery rangetable back to the master
+                * copy; if we are not, then extend the master copy by adding
+                * whatever the subquery added.  (We assume these added entries
+                * will go untouched by the future grouping_planner calls.  We are
+                * also effectively assuming that sub-Queries will get planned
+                * identically each time, or at least that the impacts on their
+                * rangetables will be the same each time.  Did I say this is ugly?)
                 */
-               subrtlength = length(subquery->rtable);
-               if (subrtlength > mainrtlength)
+               if (lnext(l) == NULL)
+                       parse->rtable = subroot.parse->rtable;
+               else
                {
-                       List       *subrt = subquery->rtable;
+                       int             subrtlength = list_length(subroot.parse->rtable);
 
-                       while (mainrtlength-- > 0)      /* wish we had nthcdr() */
-                               subrt = lnext(subrt);
-                       parse->rtable = nconc(parse->rtable, subrt);
-                       mainrtlength = subrtlength;
+                       if (subrtlength > mainrtlength)
+                       {
+                               List       *subrt;
+
+                               subrt = list_copy_tail(subroot.parse->rtable, mainrtlength);
+                               parse->rtable = list_concat(parse->rtable, subrt);
+                               mainrtlength = subrtlength;
+                       }
                }
+
                /* Save preprocessed tlist from first rel for use in Append */
                if (tlist == NIL)
                        tlist = subplan->targetlist;
@@ -537,7 +620,7 @@ inheritance_planner(Query *parse, List *inheritlist)
        parse->resultRelations = inheritlist;
 
        /* Mark result as unordered (probably unnecessary) */
-       parse->query_pathkeys = NIL;
+       root->query_pathkeys = NIL;
 
        return (Plan *) make_append(subplans, true, tlist);
 }
@@ -548,7 +631,6 @@ inheritance_planner(Query *parse, List *inheritlist)
  *       This primarily means adding top-level processing to the basic
  *       query plan produced by query_planner.
  *
- * parse is the querytree produced by the parser & rewriter.
  * tuple_fraction is the fraction of tuples we expect will be retrieved
  *
  * tuple_fraction is interpreted as follows:
@@ -558,25 +640,53 @@ inheritance_planner(Query *parse, List *inheritlist)
  *       tuple_fraction >= 1: tuple_fraction is the absolute number of tuples
  *             expected to be retrieved (ie, a LIMIT specification)
  *
- * Returns a query plan.  Also, parse->query_pathkeys is returned as the
+ * Returns a query plan.  Also, root->query_pathkeys is returned as the
  * actual output ordering of the plan (in pathkey format).
  *--------------------
  */
 static Plan *
-grouping_planner(Query *parse, double tuple_fraction)
+grouping_planner(PlannerInfo *root, double tuple_fraction)
 {
+       Query      *parse = root->parse;
        List       *tlist = parse->targetList;
        Plan       *result_plan;
        List       *current_pathkeys;
        List       *sort_pathkeys;
 
+       /* Tweak caller-supplied tuple_fraction if have LIMIT */
+       if (parse->limitCount != NULL)
+               tuple_fraction = adjust_tuple_fraction_for_limit(root, tuple_fraction);
+
        if (parse->setOperations)
        {
+               List       *set_sortclauses;
+
+               /*
+                * If there's a top-level ORDER BY, assume we have to fetch all
+                * the tuples.  This might seem too simplistic given all the
+                * hackery below to possibly avoid the sort ... but a nonzero
+                * tuple_fraction is only of use to plan_set_operations() when
+                * the setop is UNION ALL, and the result of UNION ALL is always
+                * unsorted.
+                */
+               if (parse->sortClause)
+                       tuple_fraction = 0.0;
+
                /*
                 * Construct the plan for set operations.  The result will not
                 * need any work except perhaps a top-level sort and/or LIMIT.
                 */
-               result_plan = plan_set_operations(parse);
+               result_plan = plan_set_operations(root, tuple_fraction,
+                                                                                 &set_sortclauses);
+
+               /*
+                * Calculate pathkeys representing the sort order (if any) of the
+                * set operation's result.  We have to do this before overwriting
+                * the sort key information...
+                */
+               current_pathkeys = make_pathkeys_for_sortclauses(set_sortclauses,
+                                                                                               result_plan->targetlist);
+               current_pathkeys = canonicalize_pathkeys(root, current_pathkeys);
 
                /*
                 * We should not need to call preprocess_targetlist, since we must
@@ -590,29 +700,20 @@ grouping_planner(Query *parse, double tuple_fraction)
                tlist = postprocess_setop_tlist(result_plan->targetlist, tlist);
 
                /*
-                * Can't handle FOR UPDATE here (parser should have checked
+                * Can't handle FOR UPDATE/SHARE here (parser should have checked
                 * already, but let's make sure).
                 */
                if (parse->rowMarks)
                        ereport(ERROR,
                                        (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
-                                        errmsg("SELECT FOR UPDATE is not allowed with UNION/INTERSECT/EXCEPT")));
-
-               /*
-                * We set current_pathkeys NIL indicating we do not know sort
-                * order.  This is correct when the top set operation is UNION
-                * ALL, since the appended-together results are unsorted even if
-                * the subplans were sorted.  For other set operations we could be
-                * smarter --- room for future improvement!
-                */
-               current_pathkeys = NIL;
+                                        errmsg("SELECT FOR UPDATE/SHARE is not allowed with UNION/INTERSECT/EXCEPT")));
 
                /*
-                * Calculate pathkeys that represent ordering requirements
+                * Calculate pathkeys that represent result ordering requirements
                 */
                sort_pathkeys = make_pathkeys_for_sortclauses(parse->sortClause,
                                                                                                          tlist);
-               sort_pathkeys = canonicalize_pathkeys(parse, sort_pathkeys);
+               sort_pathkeys = canonicalize_pathkeys(root, sort_pathkeys);
        }
        else
        {
@@ -625,77 +726,23 @@ grouping_planner(Query *parse, double tuple_fraction)
                double          sub_tuple_fraction;
                Path       *cheapest_path;
                Path       *sorted_path;
+               Path       *best_path;
                double          dNumGroups = 0;
                long            numGroups = 0;
-               int                     numAggs = 0;
-               int                     numGroupCols = length(parse->groupClause);
+               AggClauseCounts agg_counts;
+               int                     numGroupCols = list_length(parse->groupClause);
                bool            use_hashed_grouping = false;
 
-               /* Preprocess targetlist in case we are inside an INSERT/UPDATE. */
-               tlist = preprocess_targetlist(tlist,
-                                                                         parse->commandType,
-                                                                         parse->resultRelation,
-                                                                         parse->rtable);
+               MemSet(&agg_counts, 0, sizeof(AggClauseCounts));
 
-               /*
-                * Add TID targets for rels selected FOR UPDATE (should this be
-                * done in preprocess_targetlist?).  The executor uses the TID to
-                * know which rows to lock, much as for UPDATE or DELETE.
-                */
-               if (parse->rowMarks)
-               {
-                       List       *l;
-
-                       /*
-                        * We've got trouble if the FOR UPDATE appears inside
-                        * grouping, since grouping renders a reference to individual
-                        * tuple CTIDs invalid.  This is also checked at parse time,
-                        * but that's insufficient because of rule substitution, query
-                        * pullup, etc.
-                        */
-                       CheckSelectForUpdate(parse);
-
-                       /*
-                        * Currently the executor only supports FOR UPDATE at top
-                        * level
-                        */
-                       if (PlannerQueryLevel > 1)
-                               ereport(ERROR,
-                                               (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
-                                                errmsg("SELECT FOR UPDATE is not allowed in subqueries")));
-
-                       foreach(l, parse->rowMarks)
-                       {
-                               Index           rti = lfirsti(l);
-                               char       *resname;
-                               Resdom     *resdom;
-                               Var                *var;
-                               TargetEntry *ctid;
-
-                               resname = (char *) palloc(32);
-                               snprintf(resname, 32, "ctid%u", rti);
-                               resdom = makeResdom(length(tlist) + 1,
-                                                                       TIDOID,
-                                                                       -1,
-                                                                       resname,
-                                                                       true);
-
-                               var = makeVar(rti,
-                                                         SelfItemPointerAttributeNumber,
-                                                         TIDOID,
-                                                         -1,
-                                                         0);
-
-                               ctid = makeTargetEntry(resdom, (Expr *) var);
-                               tlist = lappend(tlist, ctid);
-                       }
-               }
+               /* Preprocess targetlist */
+               tlist = preprocess_targetlist(root, tlist);
 
                /*
                 * Generate appropriate target list for subplan; may be different
                 * from tlist if grouping or aggregation is needed.
                 */
-               sub_tlist = make_subplanTargetList(parse, tlist,
+               sub_tlist = make_subplanTargetList(root, tlist,
                                                                                 &groupColIdx, &need_tlist_eval);
 
                /*
@@ -709,18 +756,19 @@ grouping_planner(Query *parse, double tuple_fraction)
 
                /*
                 * Will need actual number of aggregates for estimating costs.
-                * Also, it's possible that optimization has eliminated all
-                * aggregates, and we may as well check for that here.
                 *
                 * Note: we do not attempt to detect duplicate aggregates here; a
                 * somewhat-overestimated count is okay for our present purposes.
+                *
+                * Note: think not that we can turn off hasAggs if we find no aggs.
+                * It is possible for constant-expression simplification to remove
+                * all explicit references to aggs, but we still have to follow
+                * the aggregate semantics (eg, producing only one output row).
                 */
                if (parse->hasAggs)
                {
-                       numAggs = count_agg_clause((Node *) tlist) +
-                               count_agg_clause(parse->havingQual);
-                       if (numAggs == 0)
-                               parse->hasAggs = false;
+                       count_agg_clauses((Node *) tlist, &agg_counts);
+                       count_agg_clauses(parse->havingQual, &agg_counts);
                }
 
                /*
@@ -735,113 +783,11 @@ grouping_planner(Query *parse, double tuple_fraction)
                 * Needs more thought...)
                 */
                if (parse->groupClause)
-                       parse->query_pathkeys = group_pathkeys;
+                       root->query_pathkeys = group_pathkeys;
                else if (parse->sortClause)
-                       parse->query_pathkeys = sort_pathkeys;
+                       root->query_pathkeys = sort_pathkeys;
                else
-                       parse->query_pathkeys = NIL;
-
-               /*
-                * Adjust tuple_fraction if we see that we are going to apply
-                * limiting/grouping/aggregation/etc.  This is not overridable by
-                * the caller, since it reflects plan actions that this routine
-                * will certainly take, not assumptions about context.
-                */
-               if (parse->limitCount != NULL)
-               {
-                       /*
-                        * A LIMIT clause limits the absolute number of tuples
-                        * returned. However, if it's not a constant LIMIT then we
-                        * have to punt; for lack of a better idea, assume 10% of the
-                        * plan's result is wanted.
-                        */
-                       double          limit_fraction = 0.0;
-
-                       if (IsA(parse->limitCount, Const))
-                       {
-                               Const      *limitc = (Const *) parse->limitCount;
-                               int32           count = DatumGetInt32(limitc->constvalue);
-
-                               /*
-                                * A NULL-constant LIMIT represents "LIMIT ALL", which we
-                                * treat the same as no limit (ie, expect to retrieve all
-                                * the tuples).
-                                */
-                               if (!limitc->constisnull && count > 0)
-                               {
-                                       limit_fraction = (double) count;
-                                       /* We must also consider the OFFSET, if present */
-                                       if (parse->limitOffset != NULL)
-                                       {
-                                               if (IsA(parse->limitOffset, Const))
-                                               {
-                                                       int32           offset;
-
-                                                       limitc = (Const *) parse->limitOffset;
-                                                       offset = DatumGetInt32(limitc->constvalue);
-                                                       if (!limitc->constisnull && offset > 0)
-                                                               limit_fraction += (double) offset;
-                                               }
-                                               else
-                                               {
-                                                       /* OFFSET is an expression ... punt ... */
-                                                       limit_fraction = 0.10;
-                                               }
-                                       }
-                               }
-                       }
-                       else
-                       {
-                               /* LIMIT is an expression ... punt ... */
-                               limit_fraction = 0.10;
-                       }
-
-                       if (limit_fraction > 0.0)
-                       {
-                               /*
-                                * If we have absolute limits from both caller and LIMIT,
-                                * use the smaller value; if one is fractional and the
-                                * other absolute, treat the fraction as a fraction of the
-                                * absolute value; else we can multiply the two fractions
-                                * together.
-                                */
-                               if (tuple_fraction >= 1.0)
-                               {
-                                       if (limit_fraction >= 1.0)
-                                       {
-                                               /* both absolute */
-                                               tuple_fraction = Min(tuple_fraction, limit_fraction);
-                                       }
-                                       else
-                                       {
-                                               /* caller absolute, limit fractional */
-                                               tuple_fraction *= limit_fraction;
-                                               if (tuple_fraction < 1.0)
-                                                       tuple_fraction = 1.0;
-                                       }
-                               }
-                               else if (tuple_fraction > 0.0)
-                               {
-                                       if (limit_fraction >= 1.0)
-                                       {
-                                               /* caller fractional, limit absolute */
-                                               tuple_fraction *= limit_fraction;
-                                               if (tuple_fraction < 1.0)
-                                                       tuple_fraction = 1.0;
-                                       }
-                                       else
-                                       {
-                                               /* both fractional */
-                                               tuple_fraction *= limit_fraction;
-                                       }
-                               }
-                               else
-                               {
-                                       /* no info from caller, just use limit */
-                                       tuple_fraction = limit_fraction;
-                               }
-                       }
-               }
+                       root->query_pathkeys = NIL;
 
                /*
                 * With grouping or aggregation, the tuple fraction to pass to
@@ -900,358 +846,258 @@ grouping_planner(Query *parse, double tuple_fraction)
                 * Generate the best unsorted and presorted paths for this Query
                 * (but note there may not be any presorted path).
                 */
-               query_planner(parse, sub_tlist, sub_tuple_fraction,
+               query_planner(root, sub_tlist, sub_tuple_fraction,
                                          &cheapest_path, &sorted_path);
 
                /*
                 * We couldn't canonicalize group_pathkeys and sort_pathkeys
                 * before running query_planner(), so do it now.
                 */
-               group_pathkeys = canonicalize_pathkeys(parse, group_pathkeys);
-               sort_pathkeys = canonicalize_pathkeys(parse, sort_pathkeys);
+               group_pathkeys = canonicalize_pathkeys(root, group_pathkeys);
+               sort_pathkeys = canonicalize_pathkeys(root, sort_pathkeys);
 
                /*
-                * Consider whether we might want to use hashed grouping.
+                * If grouping, estimate the number of groups.  (We can't do this
+                * until after running query_planner(), either.)  Then decide
+                * whether we want to use hashed grouping.
                 */
                if (parse->groupClause)
                {
                        List       *groupExprs;
                        double          cheapest_path_rows;
-                       int                     cheapest_path_width;
 
                        /*
-                        * Beware in this section of the possibility that
-                        * cheapest_path->parent is NULL.  This could happen if user
-                        * does something silly like SELECT 'foo' GROUP BY 1;
+                        * Beware of the possibility that cheapest_path->parent is NULL.
+                        * This could happen if user does something silly like
+                        *              SELECT 'foo' GROUP BY 1;
                         */
                        if (cheapest_path->parent)
-                       {
                                cheapest_path_rows = cheapest_path->parent->rows;
-                               cheapest_path_width = cheapest_path->parent->width;
-                       }
                        else
-                       {
                                cheapest_path_rows = 1; /* assume non-set result */
-                               cheapest_path_width = 100;              /* arbitrary */
-                       }
 
-                       /*
-                        * Always estimate the number of groups.  We can't do this
-                        * until after running query_planner(), either.
-                        */
                        groupExprs = get_sortgrouplist_exprs(parse->groupClause,
                                                                                                 parse->targetList);
-                       dNumGroups = estimate_num_groups(parse,
+                       dNumGroups = estimate_num_groups(root,
                                                                                         groupExprs,
                                                                                         cheapest_path_rows);
                        /* Also want it as a long int --- but 'ware overflow! */
                        numGroups = (long) Min(dNumGroups, (double) LONG_MAX);
 
-                       /*
-                        * Check can't-do-it conditions, including whether the
-                        * grouping operators are hashjoinable.
-                        *
-                        * Executor doesn't support hashed aggregation with DISTINCT
-                        * aggregates.  (Doing so would imply storing *all* the input
-                        * values in the hash table, which seems like a certain
-                        * loser.)
-                        */
-                       if (!enable_hashagg || !hash_safe_grouping(parse))
-                               use_hashed_grouping = false;
-                       else if (parse->hasAggs &&
-                                        (contain_distinct_agg_clause((Node *) tlist) ||
-                                         contain_distinct_agg_clause(parse->havingQual)))
-                               use_hashed_grouping = false;
-                       else
-                       {
-                               /*
-                                * Use hashed grouping if (a) we think we can fit the
-                                * hashtable into work_mem, *and* (b) the estimated cost is
-                                * no more than doing it the other way.  While avoiding
-                                * the need for sorted input is usually a win, the fact
-                                * that the output won't be sorted may be a loss; so we
-                                * need to do an actual cost comparison.
-                                *
-                                * In most cases we have no good way to estimate the size of
-                                * the transition value needed by an aggregate;
-                                * arbitrarily assume it is 100 bytes.  Also set the
-                                * overhead per hashtable entry at 64 bytes.
-                                */
-                               int                     hashentrysize = cheapest_path_width + 64 + numAggs * 100;
-
-                               if (hashentrysize * dNumGroups <= work_mem * 1024L)
-                               {
-                                       /*
-                                        * Okay, do the cost comparison.  We need to consider
-                                        * cheapest_path + hashagg [+ final sort] versus
-                                        * either cheapest_path [+ sort] + group or agg [+
-                                        * final sort] or presorted_path + group or agg [+
-                                        * final sort] where brackets indicate a step that may
-                                        * not be needed. We assume query_planner() will have
-                                        * returned a presorted path only if it's a winner
-                                        * compared to cheapest_path for this purpose.
-                                        *
-                                        * These path variables are dummies that just hold cost
-                                        * fields; we don't make actual Paths for these steps.
-                                        */
-                                       Path            hashed_p;
-                                       Path            sorted_p;
-
-                                       cost_agg(&hashed_p, parse,
-                                                        AGG_HASHED, numAggs,
-                                                        numGroupCols, dNumGroups,
-                                                        cheapest_path->startup_cost,
-                                                        cheapest_path->total_cost,
-                                                        cheapest_path_rows);
-                                       /* Result of hashed agg is always unsorted */
-                                       if (sort_pathkeys)
-                                               cost_sort(&hashed_p, parse, sort_pathkeys,
-                                                                 hashed_p.total_cost,
-                                                                 dNumGroups,
-                                                                 cheapest_path_width);
-
-                                       if (sorted_path)
-                                       {
-                                               sorted_p.startup_cost = sorted_path->startup_cost;
-                                               sorted_p.total_cost = sorted_path->total_cost;
-                                               current_pathkeys = sorted_path->pathkeys;
-                                       }
-                                       else
-                                       {
-                                               sorted_p.startup_cost = cheapest_path->startup_cost;
-                                               sorted_p.total_cost = cheapest_path->total_cost;
-                                               current_pathkeys = cheapest_path->pathkeys;
-                                       }
-                                       if (!pathkeys_contained_in(group_pathkeys,
-                                                                                          current_pathkeys))
-                                       {
-                                               cost_sort(&sorted_p, parse, group_pathkeys,
-                                                                 sorted_p.total_cost,
-                                                                 cheapest_path_rows,
-                                                                 cheapest_path_width);
-                                               current_pathkeys = group_pathkeys;
-                                       }
-                                       if (parse->hasAggs)
-                                               cost_agg(&sorted_p, parse,
-                                                                AGG_SORTED, numAggs,
-                                                                numGroupCols, dNumGroups,
-                                                                sorted_p.startup_cost,
-                                                                sorted_p.total_cost,
-                                                                cheapest_path_rows);
-                                       else
-                                               cost_group(&sorted_p, parse,
-                                                                  numGroupCols, dNumGroups,
-                                                                  sorted_p.startup_cost,
-                                                                  sorted_p.total_cost,
-                                                                  cheapest_path_rows);
-                                       /* The Agg or Group node will preserve ordering */
-                                       if (sort_pathkeys &&
-                                               !pathkeys_contained_in(sort_pathkeys,
-                                                                                          current_pathkeys))
-                                       {
-                                               cost_sort(&sorted_p, parse, sort_pathkeys,
-                                                                 sorted_p.total_cost,
-                                                                 dNumGroups,
-                                                                 cheapest_path_width);
-                                       }
-
-                                       /*
-                                        * Now make the decision using the top-level tuple
-                                        * fraction.  First we have to convert an absolute
-                                        * count (LIMIT) into fractional form.
-                                        */
-                                       if (tuple_fraction >= 1.0)
-                                               tuple_fraction /= dNumGroups;
-
-                                       if (compare_fractional_path_costs(&hashed_p, &sorted_p,
-                                                                                                         tuple_fraction) < 0)
-                                       {
-                                               /* Hashed is cheaper, so use it */
-                                               use_hashed_grouping = true;
-                                       }
-                               }
-                       }
+                       use_hashed_grouping =
+                               choose_hashed_grouping(root, tuple_fraction,
+                                                                          cheapest_path, sorted_path,
+                                                                          sort_pathkeys, group_pathkeys,
+                                                                          dNumGroups, &agg_counts);
                }
 
                /*
-                * Select the best path and create a plan to execute it.
-                *
-                * If we are doing hashed grouping, we will always read all the input
-                * tuples, so use the cheapest-total path.      Otherwise, trust
-                * query_planner's decision about which to use.
+                * Select the best path.  If we are doing hashed grouping, we will
+                * always read all the input tuples, so use the cheapest-total
+                * path. Otherwise, trust query_planner's decision about which to use.
                 */
-               if (sorted_path && !use_hashed_grouping)
-               {
-                       result_plan = create_plan(parse, sorted_path);
-                       current_pathkeys = sorted_path->pathkeys;
-               }
+               if (use_hashed_grouping || !sorted_path)
+                       best_path = cheapest_path;
                else
-               {
-                       result_plan = create_plan(parse, cheapest_path);
-                       current_pathkeys = cheapest_path->pathkeys;
-               }
+                       best_path = sorted_path;
 
                /*
-                * create_plan() returns a plan with just a "flat" tlist of
-                * required Vars.  Usually we need to insert the sub_tlist as the
-                * tlist of the top plan node.  However, we can skip that if we
-                * determined that whatever query_planner chose to return will be
-                * good enough.
+                * Check to see if it's possible to optimize MIN/MAX aggregates.
+                * If so, we will forget all the work we did so far to choose a
+                * "regular" path ... but we had to do it anyway to be able to
+                * tell which way is cheaper.
                 */
-               if (need_tlist_eval)
+               result_plan = optimize_minmax_aggregates(root,
+                                                                                                tlist,
+                                                                                                best_path);
+               if (result_plan != NULL)
                {
                        /*
-                        * If the top-level plan node is one that cannot do expression
-                        * evaluation, we must insert a Result node to project the
-                        * desired tlist.
+                        * optimize_minmax_aggregates generated the full plan, with
+                        * the right tlist, and it has no sort order.
                         */
-                       if (!is_projection_capable_plan(result_plan))
-                       {
-                               result_plan = (Plan *) make_result(sub_tlist, NULL,
-                                                                                                  result_plan);
-                       }
-                       else
-                       {
-                               /*
-                                * Otherwise, just replace the subplan's flat tlist with
-                                * the desired tlist.
-                                */
-                               result_plan->targetlist = sub_tlist;
-                       }
-
-                       /*
-                        * Also, account for the cost of evaluation of the sub_tlist.
-                        *
-                        * Up to now, we have only been dealing with "flat" tlists,
-                        * containing just Vars.  So their evaluation cost is zero
-                        * according to the model used by cost_qual_eval() (or if you
-                        * prefer, the cost is factored into cpu_tuple_cost).  Thus we
-                        * can avoid accounting for tlist cost throughout
-                        * query_planner() and subroutines.  But now we've inserted a
-                        * tlist that might contain actual operators, sub-selects, etc
-                        * --- so we'd better account for its cost.
-                        *
-                        * Below this point, any tlist eval cost for added-on nodes
-                        * should be accounted for as we create those nodes.
-                        * Presently, of the node types we can add on, only Agg and
-                        * Group project new tlists (the rest just copy their input
-                        * tuples) --- so make_agg() and make_group() are responsible
-                        * for computing the added cost.
-                        */
-                       cost_qual_eval(&tlist_cost, sub_tlist);
-                       result_plan->startup_cost += tlist_cost.startup;
-                       result_plan->total_cost += tlist_cost.startup +
-                               tlist_cost.per_tuple * result_plan->plan_rows;
+                       current_pathkeys = NIL;
                }
                else
                {
                        /*
-                        * Since we're using query_planner's tlist and not the one
-                        * make_subplanTargetList calculated, we have to refigure any
-                        * grouping-column indexes make_subplanTargetList computed.
+                        * Normal case --- create a plan according to query_planner's
+                        * results.
                         */
-                       locate_grouping_columns(parse, tlist, result_plan->targetlist,
-                                                                       groupColIdx);
-               }
-
-               /*
-                * Insert AGG or GROUP node if needed, plus an explicit sort step
-                * if necessary.
-                *
-                * HAVING clause, if any, becomes qual of the Agg node
-                */
-               if (use_hashed_grouping)
-               {
-                       /* Hashed aggregate plan --- no sort needed */
-                       result_plan = (Plan *) make_agg(parse,
-                                                                                       tlist,
-                                                                                       (List *) parse->havingQual,
-                                                                                       AGG_HASHED,
-                                                                                       numGroupCols,
-                                                                                       groupColIdx,
-                                                                                       numGroups,
-                                                                                       numAggs,
-                                                                                       result_plan);
-                       /* Hashed aggregation produces randomly-ordered results */
-                       current_pathkeys = NIL;
-               }
-               else if (parse->hasAggs)
-               {
-                       /* Plain aggregate plan --- sort if needed */
-                       AggStrategy aggstrategy;
+                       result_plan = create_plan(root, best_path);
+                       current_pathkeys = best_path->pathkeys;
 
-                       if (parse->groupClause)
+                       /*
+                        * create_plan() returns a plan with just a "flat" tlist of
+                        * required Vars.  Usually we need to insert the sub_tlist as the
+                        * tlist of the top plan node.  However, we can skip that if we
+                        * determined that whatever query_planner chose to return will be
+                        * good enough.
+                        */
+                       if (need_tlist_eval)
                        {
-                               if (!pathkeys_contained_in(group_pathkeys, current_pathkeys))
+                               /*
+                                * If the top-level plan node is one that cannot do expression
+                                * evaluation, we must insert a Result node to project the
+                                * desired tlist.
+                                */
+                               if (!is_projection_capable_plan(result_plan))
                                {
-                                       result_plan = (Plan *)
-                                               make_sort_from_groupcols(parse,
-                                                                                                parse->groupClause,
-                                                                                                groupColIdx,
-                                                                                                result_plan);
-                                       current_pathkeys = group_pathkeys;
+                                       result_plan = (Plan *) make_result(sub_tlist, NULL,
+                                                                                                          result_plan);
+                               }
+                               else
+                               {
+                                       /*
+                                        * Otherwise, just replace the subplan's flat tlist with
+                                        * the desired tlist.
+                                        */
+                                       result_plan->targetlist = sub_tlist;
                                }
-                               aggstrategy = AGG_SORTED;
 
                                /*
-                                * The AGG node will not change the sort ordering of its
-                                * groups, so current_pathkeys describes the result too.
+                                * Also, account for the cost of evaluation of the sub_tlist.
+                                *
+                                * Up to now, we have only been dealing with "flat" tlists,
+                                * containing just Vars.  So their evaluation cost is zero
+                                * according to the model used by cost_qual_eval() (or if you
+                                * prefer, the cost is factored into cpu_tuple_cost).  Thus we
+                                * can avoid accounting for tlist cost throughout
+                                * query_planner() and subroutines.  But now we've inserted a
+                                * tlist that might contain actual operators, sub-selects, etc
+                                * --- so we'd better account for its cost.
+                                *
+                                * Below this point, any tlist eval cost for added-on nodes
+                                * should be accounted for as we create those nodes.
+                                * Presently, of the node types we can add on, only Agg and
+                                * Group project new tlists (the rest just copy their input
+                                * tuples) --- so make_agg() and make_group() are responsible
+                                * for computing the added cost.
                                 */
+                               cost_qual_eval(&tlist_cost, sub_tlist);
+                               result_plan->startup_cost += tlist_cost.startup;
+                               result_plan->total_cost += tlist_cost.startup +
+                                       tlist_cost.per_tuple * result_plan->plan_rows;
                        }
                        else
                        {
-                               aggstrategy = AGG_PLAIN;
-                               /* Result will be only one row anyway; no sort order */
-                               current_pathkeys = NIL;
+                               /*
+                                * Since we're using query_planner's tlist and not the one
+                                * make_subplanTargetList calculated, we have to refigure any
+                                * grouping-column indexes make_subplanTargetList computed.
+                                */
+                               locate_grouping_columns(root, tlist, result_plan->targetlist,
+                                                                               groupColIdx);
                        }
 
-                       result_plan = (Plan *) make_agg(parse,
-                                                                                       tlist,
-                                                                                       (List *) parse->havingQual,
-                                                                                       aggstrategy,
-                                                                                       numGroupCols,
-                                                                                       groupColIdx,
-                                                                                       numGroups,
-                                                                                       numAggs,
-                                                                                       result_plan);
-               }
-               else
-               {
                        /*
-                        * If there are no Aggs, we shouldn't have any HAVING qual
-                        * anymore
+                        * Insert AGG or GROUP node if needed, plus an explicit sort step
+                        * if necessary.
+                        *
+                        * HAVING clause, if any, becomes qual of the Agg or Group node.
                         */
-                       Assert(parse->havingQual == NULL);
+                       if (use_hashed_grouping)
+                       {
+                               /* Hashed aggregate plan --- no sort needed */
+                               result_plan = (Plan *) make_agg(root,
+                                                                                               tlist,
+                                                                                               (List *) parse->havingQual,
+                                                                                               AGG_HASHED,
+                                                                                               numGroupCols,
+                                                                                               groupColIdx,
+                                                                                               numGroups,
+                                                                                               agg_counts.numAggs,
+                                                                                               result_plan);
+                               /* Hashed aggregation produces randomly-ordered results */
+                               current_pathkeys = NIL;
+                       }
+                       else if (parse->hasAggs)
+                       {
+                               /* Plain aggregate plan --- sort if needed */
+                               AggStrategy aggstrategy;
 
-                       /*
-                        * If we have a GROUP BY clause, insert a group node (plus the
-                        * appropriate sort node, if necessary).
-                        */
-                       if (parse->groupClause)
+                               if (parse->groupClause)
+                               {
+                                       if (!pathkeys_contained_in(group_pathkeys,
+                                                                                          current_pathkeys))
+                                       {
+                                               result_plan = (Plan *)
+                                                       make_sort_from_groupcols(root,
+                                                                                                        parse->groupClause,
+                                                                                                        groupColIdx,
+                                                                                                        result_plan);
+                                               current_pathkeys = group_pathkeys;
+                                       }
+                                       aggstrategy = AGG_SORTED;
+
+                                       /*
+                                        * The AGG node will not change the sort ordering of its
+                                        * groups, so current_pathkeys describes the result too.
+                                        */
+                               }
+                               else
+                               {
+                                       aggstrategy = AGG_PLAIN;
+                                       /* Result will be only one row anyway; no sort order */
+                                       current_pathkeys = NIL;
+                               }
+
+                               result_plan = (Plan *) make_agg(root,
+                                                                                               tlist,
+                                                                                               (List *) parse->havingQual,
+                                                                                               aggstrategy,
+                                                                                               numGroupCols,
+                                                                                               groupColIdx,
+                                                                                               numGroups,
+                                                                                               agg_counts.numAggs,
+                                                                                               result_plan);
+                       }
+                       else if (parse->groupClause)
                        {
                                /*
+                                * GROUP BY without aggregation, so insert a group node (plus
+                                * the appropriate sort node, if necessary).
+                                *
                                 * Add an explicit sort if we couldn't make the path come
                                 * out the way the GROUP node needs it.
                                 */
                                if (!pathkeys_contained_in(group_pathkeys, current_pathkeys))
                                {
                                        result_plan = (Plan *)
-                                               make_sort_from_groupcols(parse,
+                                               make_sort_from_groupcols(root,
                                                                                                 parse->groupClause,
                                                                                                 groupColIdx,
                                                                                                 result_plan);
                                        current_pathkeys = group_pathkeys;
                                }
 
-                               result_plan = (Plan *) make_group(parse,
+                               result_plan = (Plan *) make_group(root,
                                                                                                  tlist,
+                                                                                                 (List *) parse->havingQual,
                                                                                                  numGroupCols,
                                                                                                  groupColIdx,
                                                                                                  dNumGroups,
                                                                                                  result_plan);
                                /* The Group node won't change sort ordering */
                        }
-               }
+                       else if (root->hasHavingQual)
+                       {
+                               /*
+                                * No aggregates, and no GROUP BY, but we have a HAVING qual.
+                                * This is a degenerate case in which we are supposed to emit
+                                * either 0 or 1 row depending on whether HAVING succeeds.
+                                * Furthermore, there cannot be any variables in either HAVING
+                                * or the targetlist, so we actually do not need the FROM table
+                                * at all!  We can just throw away the plan-so-far and generate
+                                * a Result node.  This is a sufficiently unusual corner case
+                                * that it's not worth contorting the structure of this routine
+                                * to avoid having to generate the plan in the first place.
+                                */
+                               result_plan = (Plan *) make_result(tlist,
+                                                                                                  parse->havingQual,
+                                                                                                  NULL);
+                       }
+               }                                               /* end of non-minmax-aggregate case */
        }                                                       /* end of if (setOperations) */
 
        /*
@@ -1263,7 +1109,7 @@ grouping_planner(Query *parse, double tuple_fraction)
                if (!pathkeys_contained_in(sort_pathkeys, current_pathkeys))
                {
                        result_plan = (Plan *)
-                               make_sort_from_sortclauses(parse,
+                               make_sort_from_sortclauses(root,
                                                                                   parse->sortClause,
                                                                                   result_plan);
                        current_pathkeys = sort_pathkeys;
@@ -1283,13 +1129,13 @@ grouping_planner(Query *parse, double tuple_fraction)
                 * it's reasonable to assume the UNIQUE filter has effects
                 * comparable to GROUP BY.
                 */
-               if (!parse->groupClause && !parse->hasAggs)
+               if (!parse->groupClause && !root->hasHavingQual && !parse->hasAggs)
                {
                        List       *distinctExprs;
 
                        distinctExprs = get_sortgrouplist_exprs(parse->distinctClause,
                                                                                                        parse->targetList);
-                       result_plan->plan_rows = estimate_num_groups(parse,
+                       result_plan->plan_rows = estimate_num_groups(root,
                                                                                                                 distinctExprs,
                                                                                                 result_plan->plan_rows);
                }
@@ -1309,11 +1155,259 @@ grouping_planner(Query *parse, double tuple_fraction)
         * Return the actual output ordering in query_pathkeys for possible
         * use by an outer query level.
         */
-       parse->query_pathkeys = current_pathkeys;
+       root->query_pathkeys = current_pathkeys;
 
        return result_plan;
 }
 
+/*
+ * adjust_tuple_fraction_for_limit - adjust tuple fraction for LIMIT
+ *
+ * If the query contains LIMIT, we adjust the caller-supplied tuple_fraction
+ * accordingly.  This is not overridable by the caller, since it reflects plan
+ * actions that grouping_planner() will certainly take, not assumptions about
+ * context.
+ */
+static double
+adjust_tuple_fraction_for_limit(PlannerInfo *root, double tuple_fraction)
+{
+       Query      *parse = root->parse;
+       double          limit_fraction = 0.0;
+
+       /* Should not be called unless LIMIT */
+       Assert(parse->limitCount != NULL);
+
+       /*
+        * A LIMIT clause limits the absolute number of tuples returned. However,
+        * if it's not a constant LIMIT then we have to punt; for lack of a better
+        * idea, assume 10% of the plan's result is wanted.
+        */
+       if (IsA(parse->limitCount, Const))
+       {
+               Const      *limitc = (Const *) parse->limitCount;
+               int32           count = DatumGetInt32(limitc->constvalue);
+
+               /*
+                * A NULL-constant LIMIT represents "LIMIT ALL", which we treat the
+                * same as no limit (ie, expect to retrieve all the tuples).
+                */
+               if (!limitc->constisnull && count > 0)
+               {
+                       limit_fraction = (double) count;
+                       /* We must also consider the OFFSET, if present */
+                       if (parse->limitOffset != NULL)
+                       {
+                               if (IsA(parse->limitOffset, Const))
+                               {
+                                       int32           offset;
+
+                                       limitc = (Const *) parse->limitOffset;
+                                       offset = DatumGetInt32(limitc->constvalue);
+                                       if (!limitc->constisnull && offset > 0)
+                                               limit_fraction += (double) offset;
+                               }
+                               else
+                               {
+                                       /* OFFSET is an expression ... punt ... */
+                                       limit_fraction = 0.10;
+                               }
+                       }
+               }
+       }
+       else
+       {
+               /* LIMIT is an expression ... punt ... */
+               limit_fraction = 0.10;
+       }
+
+       if (limit_fraction > 0.0)
+       {
+               /*
+                * If we have absolute limits from both caller and LIMIT, use the
+                * smaller value; if one is fractional and the other absolute,
+                * treat the fraction as a fraction of the absolute value;
+                * else we can multiply the two fractions together.
+                */
+               if (tuple_fraction >= 1.0)
+               {
+                       if (limit_fraction >= 1.0)
+                       {
+                               /* both absolute */
+                               tuple_fraction = Min(tuple_fraction, limit_fraction);
+                       }
+                       else
+                       {
+                               /* caller absolute, limit fractional */
+                               tuple_fraction *= limit_fraction;
+                               if (tuple_fraction < 1.0)
+                                       tuple_fraction = 1.0;
+                       }
+               }
+               else if (tuple_fraction > 0.0)
+               {
+                       if (limit_fraction >= 1.0)
+                       {
+                               /* caller fractional, limit absolute */
+                               tuple_fraction *= limit_fraction;
+                               if (tuple_fraction < 1.0)
+                                       tuple_fraction = 1.0;
+                       }
+                       else
+                       {
+                               /* both fractional */
+                               tuple_fraction *= limit_fraction;
+                       }
+               }
+               else
+               {
+                       /* no info from caller, just use limit */
+                       tuple_fraction = limit_fraction;
+               }
+       }
+
+       return tuple_fraction;
+}
+
+/*
+ * choose_hashed_grouping - should we use hashed grouping?
+ */
+static bool
+choose_hashed_grouping(PlannerInfo *root, double tuple_fraction,
+                                          Path *cheapest_path, Path *sorted_path,
+                                          List *sort_pathkeys, List *group_pathkeys,
+                                          double dNumGroups, AggClauseCounts *agg_counts)
+{
+       int                     numGroupCols = list_length(root->parse->groupClause);
+       double          cheapest_path_rows;
+       int                     cheapest_path_width;
+       Size            hashentrysize;
+       List       *current_pathkeys;
+       Path            hashed_p;
+       Path            sorted_p;
+
+       /*
+        * Check can't-do-it conditions, including whether the grouping operators
+        * are hashjoinable.
+        *
+        * Executor doesn't support hashed aggregation with DISTINCT aggregates.
+        * (Doing so would imply storing *all* the input values in the hash table,
+        * which seems like a certain loser.)
+        */
+       if (!enable_hashagg)
+               return false;
+       if (agg_counts->numDistinctAggs != 0)
+               return false;
+       if (!hash_safe_grouping(root))
+               return false;
+
+       /*
+        * Don't do it if it doesn't look like the hashtable will fit into
+        * work_mem.
+        *
+        * Beware here of the possibility that cheapest_path->parent is NULL.
+        * This could happen if user does something silly like
+        *              SELECT 'foo' GROUP BY 1;
+        */
+       if (cheapest_path->parent)
+       {
+               cheapest_path_rows = cheapest_path->parent->rows;
+               cheapest_path_width = cheapest_path->parent->width;
+       }
+       else
+       {
+               cheapest_path_rows = 1;                         /* assume non-set result */
+               cheapest_path_width = 100;                      /* arbitrary */
+       }
+
+       /* Estimate per-hash-entry space at tuple width... */
+       hashentrysize = cheapest_path_width;
+       /* plus space for pass-by-ref transition values... */
+       hashentrysize += agg_counts->transitionSpace;
+       /* plus the per-hash-entry overhead */
+       hashentrysize += hash_agg_entry_size(agg_counts->numAggs);
+
+       if (hashentrysize * dNumGroups > work_mem * 1024L)
+               return false;
+
+       /*
+        * See if the estimated cost is no more than doing it the other way.
+        * While avoiding the need for sorted input is usually a win, the fact
+        * that the output won't be sorted may be a loss; so we need to do an
+        * actual cost comparison.
+        *
+        * We need to consider
+        *              cheapest_path + hashagg [+ final sort]
+        * versus either
+        *              cheapest_path [+ sort] + group or agg [+ final sort]
+        * or
+        *              presorted_path + group or agg [+ final sort]
+        * where brackets indicate a step that may not be needed. We assume
+        * query_planner() will have returned a presorted path only if it's a
+        * winner compared to cheapest_path for this purpose.
+        *
+        * These path variables are dummies that just hold cost fields; we don't
+        * make actual Paths for these steps.
+        */
+       cost_agg(&hashed_p, root, AGG_HASHED, agg_counts->numAggs,
+                        numGroupCols, dNumGroups,
+                        cheapest_path->startup_cost, cheapest_path->total_cost,
+                        cheapest_path_rows);
+       /* Result of hashed agg is always unsorted */
+       if (sort_pathkeys)
+               cost_sort(&hashed_p, root, sort_pathkeys, hashed_p.total_cost,
+                                 dNumGroups, cheapest_path_width);
+
+       if (sorted_path)
+       {
+               sorted_p.startup_cost = sorted_path->startup_cost;
+               sorted_p.total_cost = sorted_path->total_cost;
+               current_pathkeys = sorted_path->pathkeys;
+       }
+       else
+       {
+               sorted_p.startup_cost = cheapest_path->startup_cost;
+               sorted_p.total_cost = cheapest_path->total_cost;
+               current_pathkeys = cheapest_path->pathkeys;
+       }
+       if (!pathkeys_contained_in(group_pathkeys,
+                                                          current_pathkeys))
+       {
+               cost_sort(&sorted_p, root, group_pathkeys, sorted_p.total_cost,
+                                 cheapest_path_rows, cheapest_path_width);
+               current_pathkeys = group_pathkeys;
+       }
+
+       if (root->parse->hasAggs)
+               cost_agg(&sorted_p, root, AGG_SORTED, agg_counts->numAggs,
+                                numGroupCols, dNumGroups,
+                                sorted_p.startup_cost, sorted_p.total_cost,
+                                cheapest_path_rows);
+       else
+               cost_group(&sorted_p, root, numGroupCols, dNumGroups,
+                                  sorted_p.startup_cost, sorted_p.total_cost,
+                                  cheapest_path_rows);
+       /* The Agg or Group node will preserve ordering */
+       if (sort_pathkeys &&
+               !pathkeys_contained_in(sort_pathkeys, current_pathkeys))
+               cost_sort(&sorted_p, root, sort_pathkeys, sorted_p.total_cost,
+                                 dNumGroups, cheapest_path_width);
+
+       /*
+        * Now make the decision using the top-level tuple fraction.  First we
+        * have to convert an absolute count (LIMIT) into fractional form.
+        */
+       if (tuple_fraction >= 1.0)
+               tuple_fraction /= dNumGroups;
+
+       if (compare_fractional_path_costs(&hashed_p, &sorted_p,
+                                                                         tuple_fraction) < 0)
+       {
+               /* Hashed is cheaper, so use it */
+               return true;
+       }
+       return false;
+}
+
 /*
  * hash_safe_grouping - are grouping operators hashable?
  *
@@ -1321,18 +1415,19 @@ grouping_planner(Query *parse, double tuple_fraction)
  * is marked hashjoinable.
  */
 static bool
-hash_safe_grouping(Query *parse)
+hash_safe_grouping(PlannerInfo *root)
 {
-       List       *gl;
+       ListCell   *gl;
 
-       foreach(gl, parse->groupClause)
+       foreach(gl, root->parse->groupClause)
        {
                GroupClause *grpcl = (GroupClause *) lfirst(gl);
-               TargetEntry *tle = get_sortgroupclause_tle(grpcl, parse->targetList);
+               TargetEntry *tle = get_sortgroupclause_tle(grpcl,
+                                                                                                  root->parse->targetList);
                Operator        optup;
                bool            oprcanhash;
 
-               optup = equality_oper(tle->resdom->restype, true);
+               optup = equality_oper(exprType((Node *) tle->expr), true);
                if (!optup)
                        return false;
                oprcanhash = ((Form_pg_operator) GETSTRUCT(optup))->oprcanhash;
@@ -1347,19 +1442,18 @@ hash_safe_grouping(Query *parse)
  * make_subplanTargetList
  *       Generate appropriate target list when grouping is required.
  *
- * When grouping_planner inserts Aggregate or Group plan nodes above
- * the result of query_planner, we typically want to pass a different
+ * When grouping_planner inserts Aggregate, Group, or Result plan nodes
+ * above the result of query_planner, we typically want to pass a different
  * target list to query_planner than the outer plan nodes should have.
  * This routine generates the correct target list for the subplan.
  *
  * The initial target list passed from the parser already contains entries
  * for all ORDER BY and GROUP BY expressions, but it will not have entries
  * for variables used only in HAVING clauses; so we need to add those
- * variables to the subplan target list.  Also, if we are doing either
- * grouping or aggregation, we flatten all expressions except GROUP BY items
- * into their component variables; the other expressions will be computed by
- * the inserted nodes rather than by the subplan.  For example,
- * given a query like
+ * variables to the subplan target list.  Also, we flatten all expressions
+ * except GROUP BY items into their component variables; the other expressions
+ * will be computed by the inserted nodes rather than by the subplan.
+ * For example, given a query like
  *             SELECT a+b,SUM(c+d) FROM table GROUP BY a+b;
  * we want to pass this targetlist to the subplan:
  *             a,b,c,d,a+b
@@ -1376,7 +1470,6 @@ hash_safe_grouping(Query *parse)
  * need to force it to be evaluated, because all the Vars it contains
  * should be present in the output of query_planner anyway.
  *
- * 'parse' is the query being processed.
  * 'tlist' is the query's target list.
  * 'groupColIdx' receives an array of column numbers for the GROUP BY
  *                     expressions (if there are any) in the subplan's target list.
@@ -1387,11 +1480,12 @@ hash_safe_grouping(Query *parse)
  *---------------
  */
 static List *
-make_subplanTargetList(Query *parse,
+make_subplanTargetList(PlannerInfo *root,
                                           List *tlist,
                                           AttrNumber **groupColIdx,
                                           bool *need_tlist_eval)
 {
+       Query      *parse = root->parse;
        List       *sub_tlist;
        List       *extravars;
        int                     numCols;
@@ -1399,10 +1493,10 @@ make_subplanTargetList(Query *parse,
        *groupColIdx = NULL;
 
        /*
-        * If we're not grouping or aggregating, nothing to do here;
+        * If we're not grouping or aggregating, there's nothing to do here;
         * query_planner should receive the unmodified target list.
         */
-       if (!parse->hasAggs && !parse->groupClause)
+       if (!parse->hasAggs && !parse->groupClause && !root->hasHavingQual)
        {
                *need_tlist_eval = true;
                return tlist;
@@ -1416,7 +1510,7 @@ make_subplanTargetList(Query *parse,
        sub_tlist = flatten_tlist(tlist);
        extravars = pull_var_clause(parse->havingQual, false);
        sub_tlist = add_to_flat_tlist(sub_tlist, extravars);
-       freeList(extravars);
+       list_free(extravars);
        *need_tlist_eval = false;       /* only eval if not flat tlist */
 
        /*
@@ -1425,12 +1519,12 @@ make_subplanTargetList(Query *parse,
         * already), and make an array showing where the group columns are in
         * the sub_tlist.
         */
-       numCols = length(parse->groupClause);
+       numCols = list_length(parse->groupClause);
        if (numCols > 0)
        {
                int                     keyno = 0;
                AttrNumber *grpColIdx;
-               List       *gl;
+               ListCell   *gl;
 
                grpColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols);
                *groupColIdx = grpColIdx;
@@ -1440,7 +1534,7 @@ make_subplanTargetList(Query *parse,
                        GroupClause *grpcl = (GroupClause *) lfirst(gl);
                        Node       *groupexpr = get_sortgroupclause_expr(grpcl, tlist);
                        TargetEntry *te = NULL;
-                       List       *sl;
+                       ListCell   *sl;
 
                        /* Find or make a matching sub_tlist entry */
                        foreach(sl, sub_tlist)
@@ -1451,18 +1545,16 @@ make_subplanTargetList(Query *parse,
                        }
                        if (!sl)
                        {
-                               te = makeTargetEntry(makeResdom(length(sub_tlist) + 1,
-                                                                                               exprType(groupexpr),
-                                                                                               exprTypmod(groupexpr),
-                                                                                               NULL,
-                                                                                               false),
-                                                                        (Expr *) groupexpr);
+                               te = makeTargetEntry((Expr *) groupexpr,
+                                                                        list_length(sub_tlist) + 1,
+                                                                        NULL,
+                                                                        false);
                                sub_tlist = lappend(sub_tlist, te);
                                *need_tlist_eval = true;                /* it's not flat anymore */
                        }
 
                        /* and save its resno */
-                       grpColIdx[keyno++] = te->resdom->resno;
+                       grpColIdx[keyno++] = te->resno;
                }
        }
 
@@ -1478,30 +1570,30 @@ make_subplanTargetList(Query *parse,
  * by that routine and re-locate the grouping vars in the real sub_tlist.
  */
 static void
-locate_grouping_columns(Query *parse,
+locate_grouping_columns(PlannerInfo *root,
                                                List *tlist,
                                                List *sub_tlist,
                                                AttrNumber *groupColIdx)
 {
        int                     keyno = 0;
-       List       *gl;
+       ListCell   *gl;
 
        /*
         * No work unless grouping.
         */
-       if (!parse->groupClause)
+       if (!root->parse->groupClause)
        {
                Assert(groupColIdx == NULL);
                return;
        }
        Assert(groupColIdx != NULL);
 
-       foreach(gl, parse->groupClause)
+       foreach(gl, root->parse->groupClause)
        {
                GroupClause *grpcl = (GroupClause *) lfirst(gl);
                Node       *groupexpr = get_sortgroupclause_expr(grpcl, tlist);
                TargetEntry *te = NULL;
-               List       *sl;
+               ListCell   *sl;
 
                foreach(sl, sub_tlist)
                {
@@ -1512,7 +1604,7 @@ locate_grouping_columns(Query *parse,
                if (!sl)
                        elog(ERROR, "failed to locate grouping columns");
 
-               groupColIdx[keyno++] = te->resdom->resno;
+               groupColIdx[keyno++] = te->resno;
        }
 }
 
@@ -1529,7 +1621,8 @@ locate_grouping_columns(Query *parse,
 static List *
 postprocess_setop_tlist(List *new_tlist, List *orig_tlist)
 {
-       List       *l;
+       ListCell   *l;
+       ListCell   *orig_tlist_item = list_head(orig_tlist);
 
        foreach(l, new_tlist)
        {
@@ -1537,19 +1630,18 @@ postprocess_setop_tlist(List *new_tlist, List *orig_tlist)
                TargetEntry *orig_tle;
 
                /* ignore resjunk columns in setop result */
-               if (new_tle->resdom->resjunk)
+               if (new_tle->resjunk)
                        continue;
 
-               Assert(orig_tlist != NIL);
-               orig_tle = (TargetEntry *) lfirst(orig_tlist);
-               orig_tlist = lnext(orig_tlist);
-               if (orig_tle->resdom->resjunk)  /* should not happen */
+               Assert(orig_tlist_item != NULL);
+               orig_tle = (TargetEntry *) lfirst(orig_tlist_item);
+               orig_tlist_item = lnext(orig_tlist_item);
+               if (orig_tle->resjunk)                  /* should not happen */
                        elog(ERROR, "resjunk output columns are not implemented");
-               Assert(new_tle->resdom->resno == orig_tle->resdom->resno);
-               Assert(new_tle->resdom->restype == orig_tle->resdom->restype);
-               new_tle->resdom->ressortgroupref = orig_tle->resdom->ressortgroupref;
+               Assert(new_tle->resno == orig_tle->resno);
+               new_tle->ressortgroupref = orig_tle->ressortgroupref;
        }
-       if (orig_tlist != NIL)
+       if (orig_tlist_item != NULL)
                elog(ERROR, "resjunk output columns are not implemented");
        return new_tlist;
 }