]> granicus.if.org Git - postgresql/blobdiff - src/backend/access/nbtree/nbtutils.c
Report progress of CREATE INDEX operations
[postgresql] / src / backend / access / nbtree / nbtutils.c
index b8b9ff780ea27afdd4bdab82b8a5590c3bdb4a92..7e409d616fe401fa3843d2931b6e4eca9ab97099 100644 (file)
@@ -3,28 +3,56 @@
  * nbtutils.c
  *       Utility code for Postgres btree implementation.
  *
- * Portions Copyright (c) 1996-2006, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
  * Portions Copyright (c) 1994, Regents of the University of California
  *
  *
  * IDENTIFICATION
- *       $PostgreSQL: pgsql/src/backend/access/nbtree/nbtutils.c,v 1.72 2006/03/05 15:58:21 momjian Exp $
+ *       src/backend/access/nbtree/nbtutils.c
  *
  *-------------------------------------------------------------------------
  */
 
 #include "postgres.h"
 
-#include "access/genam.h"
-#include "access/nbtree.h"
-#include "catalog/catalog.h"
-#include "executor/execdebug.h"
-
+#include <time.h>
 
+#include "access/nbtree.h"
+#include "access/reloptions.h"
+#include "access/relscan.h"
+#include "commands/progress.h"
+#include "miscadmin.h"
+#include "utils/array.h"
+#include "utils/datum.h"
+#include "utils/lsyscache.h"
+#include "utils/memutils.h"
+#include "utils/rel.h"
+
+
+typedef struct BTSortArrayContext
+{
+       FmgrInfo        flinfo;
+       Oid                     collation;
+       bool            reverse;
+} BTSortArrayContext;
+
+static Datum _bt_find_extreme_element(IndexScanDesc scan, ScanKey skey,
+                                                StrategyNumber strat,
+                                                Datum *elems, int nelems);
+static int _bt_sort_array_elements(IndexScanDesc scan, ScanKey skey,
+                                               bool reverse,
+                                               Datum *elems, int nelems);
+static int     _bt_compare_array_elements(const void *a, const void *b, void *arg);
+static bool _bt_compare_scankey_args(IndexScanDesc scan, ScanKey op,
+                                                ScanKey leftarg, ScanKey rightarg,
+                                                bool *result);
+static bool _bt_fix_scankey_strategy(ScanKey skey, int16 *indoption);
 static void _bt_mark_scankey_required(ScanKey skey);
 static bool _bt_check_rowcompare(ScanKey skey,
-                                                                IndexTuple tuple, TupleDesc tupdesc,
-                                                                ScanDirection dir, bool *continuescan);
+                                        IndexTuple tuple, int tupnatts, TupleDesc tupdesc,
+                                        ScanDirection dir, bool *continuescan);
+static int _bt_keep_natts(Relation rel, IndexTuple lastleft,
+                          IndexTuple firstright, BTScanInsert itup_key);
 
 
 /*
@@ -32,131 +60,621 @@ static bool _bt_check_rowcompare(ScanKey skey,
  *             Build an insertion scan key that contains comparison data from itup
  *             as well as comparator routines appropriate to the key datatypes.
  *
- *             The result is intended for use with _bt_compare().
+ *             When itup is a non-pivot tuple, the returned insertion scan key is
+ *             suitable for finding a place for it to go on the leaf level.  Pivot
+ *             tuples can be used to re-find leaf page with matching high key, but
+ *             then caller needs to set scan key's pivotsearch field to true.  This
+ *             allows caller to search for a leaf page with a matching high key,
+ *             which is usually to the left of the first leaf page a non-pivot match
+ *             might appear on.
+ *
+ *             The result is intended for use with _bt_compare() and _bt_truncate().
+ *             Callers that don't need to fill out the insertion scankey arguments
+ *             (e.g. they use an ad-hoc comparison routine, or only need a scankey
+ *             for _bt_truncate()) can pass a NULL index tuple.  The scankey will
+ *             be initialized as if an "all truncated" pivot tuple was passed
+ *             instead.
+ *
+ *             Note that we may occasionally have to share lock the metapage to
+ *             determine whether or not the keys in the index are expected to be
+ *             unique (i.e. if this is a "heapkeyspace" index).  We assume a
+ *             heapkeyspace index when caller passes a NULL tuple, allowing index
+ *             build callers to avoid accessing the non-existent metapage.
  */
-ScanKey
+BTScanInsert
 _bt_mkscankey(Relation rel, IndexTuple itup)
 {
+       BTScanInsert key;
        ScanKey         skey;
        TupleDesc       itupdesc;
-       int                     natts;
+       int                     indnkeyatts;
+       int16      *indoption;
+       int                     tupnatts;
        int                     i;
 
        itupdesc = RelationGetDescr(rel);
-       natts = RelationGetNumberOfAttributes(rel);
+       indnkeyatts = IndexRelationGetNumberOfKeyAttributes(rel);
+       indoption = rel->rd_indoption;
+       tupnatts = itup ? BTreeTupleGetNAtts(itup, rel) : 0;
 
-       skey = (ScanKey) palloc(natts * sizeof(ScanKeyData));
+       Assert(tupnatts <= IndexRelationGetNumberOfAttributes(rel));
 
-       for (i = 0; i < natts; i++)
+       /*
+        * We'll execute search using scan key constructed on key columns.
+        * Truncated attributes and non-key attributes are omitted from the final
+        * scan key.
+        */
+       key = palloc(offsetof(BTScanInsertData, scankeys) +
+                                sizeof(ScanKeyData) * indnkeyatts);
+       key->heapkeyspace = itup == NULL || _bt_heapkeyspace(rel);
+       key->nextkey = false;
+       key->pivotsearch = false;
+       key->keysz = Min(indnkeyatts, tupnatts);
+       key->scantid = key->heapkeyspace && itup ?
+               BTreeTupleGetHeapTID(itup) : NULL;
+       skey = key->scankeys;
+       for (i = 0; i < indnkeyatts; i++)
        {
                FmgrInfo   *procinfo;
                Datum           arg;
                bool            null;
+               int                     flags;
 
                /*
                 * We can use the cached (default) support procs since no cross-type
                 * comparison can be needed.
                 */
                procinfo = index_getprocinfo(rel, i + 1, BTORDER_PROC);
-               arg = index_getattr(itup, i + 1, itupdesc, &null);
+
+               /*
+                * Key arguments built from truncated attributes (or when caller
+                * provides no tuple) are defensively represented as NULL values. They
+                * should never be used.
+                */
+               if (i < tupnatts)
+                       arg = index_getattr(itup, i + 1, itupdesc, &null);
+               else
+               {
+                       arg = (Datum) 0;
+                       null = true;
+               }
+               flags = (null ? SK_ISNULL : 0) | (indoption[i] << SK_BT_INDOPTION_SHIFT);
                ScanKeyEntryInitializeWithInfo(&skey[i],
-                                                                          null ? SK_ISNULL : 0,
+                                                                          flags,
                                                                           (AttrNumber) (i + 1),
                                                                           InvalidStrategy,
                                                                           InvalidOid,
+                                                                          rel->rd_indcollation[i],
                                                                           procinfo,
                                                                           arg);
        }
 
-       return skey;
+       return key;
+}
+
+/*
+ * free a retracement stack made by _bt_search.
+ */
+void
+_bt_freestack(BTStack stack)
+{
+       BTStack         ostack;
+
+       while (stack != NULL)
+       {
+               ostack = stack;
+               stack = stack->bts_parent;
+               pfree(ostack);
+       }
 }
 
+
 /*
- * _bt_mkscankey_nodata
- *             Build an insertion scan key that contains 3-way comparator routines
- *             appropriate to the key datatypes, but no comparison data.  The
- *             comparison data ultimately used must match the key datatypes.
+ *     _bt_preprocess_array_keys() -- Preprocess SK_SEARCHARRAY scan keys
+ *
+ * If there are any SK_SEARCHARRAY scan keys, deconstruct the array(s) and
+ * set up BTArrayKeyInfo info for each one that is an equality-type key.
+ * Prepare modified scan keys in so->arrayKeyData, which will hold the current
+ * array elements during each primitive indexscan operation.  For inequality
+ * array keys, it's sufficient to find the extreme element value and replace
+ * the whole array with that scalar value.
  *
- *             The result cannot be used with _bt_compare(), unless comparison
- *             data is first stored into the key entries.  Currently this
- *             routine is only called by nbtsort.c and tuplesort.c, which have
- *             their own comparison routines.
+ * Note: the reason we need so->arrayKeyData, rather than just scribbling
+ * on scan->keyData, is that callers are permitted to call btrescan without
+ * supplying a new set of scankey data.
  */
-ScanKey
-_bt_mkscankey_nodata(Relation rel)
+void
+_bt_preprocess_array_keys(IndexScanDesc scan)
 {
-       ScanKey         skey;
-       int                     natts;
+       BTScanOpaque so = (BTScanOpaque) scan->opaque;
+       int                     numberOfKeys = scan->numberOfKeys;
+       int16      *indoption = scan->indexRelation->rd_indoption;
+       int                     numArrayKeys;
+       ScanKey         cur;
        int                     i;
+       MemoryContext oldContext;
+
+       /* Quick check to see if there are any array keys */
+       numArrayKeys = 0;
+       for (i = 0; i < numberOfKeys; i++)
+       {
+               cur = &scan->keyData[i];
+               if (cur->sk_flags & SK_SEARCHARRAY)
+               {
+                       numArrayKeys++;
+                       Assert(!(cur->sk_flags & (SK_ROW_HEADER | SK_SEARCHNULL | SK_SEARCHNOTNULL)));
+                       /* If any arrays are null as a whole, we can quit right now. */
+                       if (cur->sk_flags & SK_ISNULL)
+                       {
+                               so->numArrayKeys = -1;
+                               so->arrayKeyData = NULL;
+                               return;
+                       }
+               }
+       }
+
+       /* Quit if nothing to do. */
+       if (numArrayKeys == 0)
+       {
+               so->numArrayKeys = 0;
+               so->arrayKeyData = NULL;
+               return;
+       }
+
+       /*
+        * Make a scan-lifespan context to hold array-associated data, or reset it
+        * if we already have one from a previous rescan cycle.
+        */
+       if (so->arrayContext == NULL)
+               so->arrayContext = AllocSetContextCreate(CurrentMemoryContext,
+                                                                                                "BTree array context",
+                                                                                                ALLOCSET_SMALL_SIZES);
+       else
+               MemoryContextReset(so->arrayContext);
 
-       natts = RelationGetNumberOfAttributes(rel);
+       oldContext = MemoryContextSwitchTo(so->arrayContext);
 
-       skey = (ScanKey) palloc(natts * sizeof(ScanKeyData));
+       /* Create modifiable copy of scan->keyData in the workspace context */
+       so->arrayKeyData = (ScanKey) palloc(scan->numberOfKeys * sizeof(ScanKeyData));
+       memcpy(so->arrayKeyData,
+                  scan->keyData,
+                  scan->numberOfKeys * sizeof(ScanKeyData));
 
-       for (i = 0; i < natts; i++)
+       /* Allocate space for per-array data in the workspace context */
+       so->arrayKeys = (BTArrayKeyInfo *) palloc0(numArrayKeys * sizeof(BTArrayKeyInfo));
+
+       /* Now process each array key */
+       numArrayKeys = 0;
+       for (i = 0; i < numberOfKeys; i++)
        {
-               FmgrInfo   *procinfo;
+               ArrayType  *arrayval;
+               int16           elmlen;
+               bool            elmbyval;
+               char            elmalign;
+               int                     num_elems;
+               Datum      *elem_values;
+               bool       *elem_nulls;
+               int                     num_nonnulls;
+               int                     j;
+
+               cur = &so->arrayKeyData[i];
+               if (!(cur->sk_flags & SK_SEARCHARRAY))
+                       continue;
 
                /*
-                * We can use the cached (default) support procs since no cross-type
-                * comparison can be needed.
+                * First, deconstruct the array into elements.  Anything allocated
+                * here (including a possibly detoasted array value) is in the
+                * workspace context.
                 */
-               procinfo = index_getprocinfo(rel, i + 1, BTORDER_PROC);
-               ScanKeyEntryInitializeWithInfo(&skey[i],
-                                                                          SK_ISNULL,
-                                                                          (AttrNumber) (i + 1),
-                                                                          InvalidStrategy,
-                                                                          InvalidOid,
-                                                                          procinfo,
-                                                                          (Datum) 0);
+               arrayval = DatumGetArrayTypeP(cur->sk_argument);
+               /* We could cache this data, but not clear it's worth it */
+               get_typlenbyvalalign(ARR_ELEMTYPE(arrayval),
+                                                        &elmlen, &elmbyval, &elmalign);
+               deconstruct_array(arrayval,
+                                                 ARR_ELEMTYPE(arrayval),
+                                                 elmlen, elmbyval, elmalign,
+                                                 &elem_values, &elem_nulls, &num_elems);
+
+               /*
+                * Compress out any null elements.  We can ignore them since we assume
+                * all btree operators are strict.
+                */
+               num_nonnulls = 0;
+               for (j = 0; j < num_elems; j++)
+               {
+                       if (!elem_nulls[j])
+                               elem_values[num_nonnulls++] = elem_values[j];
+               }
+
+               /* We could pfree(elem_nulls) now, but not worth the cycles */
+
+               /* If there's no non-nulls, the scan qual is unsatisfiable */
+               if (num_nonnulls == 0)
+               {
+                       numArrayKeys = -1;
+                       break;
+               }
+
+               /*
+                * If the comparison operator is not equality, then the array qual
+                * degenerates to a simple comparison against the smallest or largest
+                * non-null array element, as appropriate.
+                */
+               switch (cur->sk_strategy)
+               {
+                       case BTLessStrategyNumber:
+                       case BTLessEqualStrategyNumber:
+                               cur->sk_argument =
+                                       _bt_find_extreme_element(scan, cur,
+                                                                                        BTGreaterStrategyNumber,
+                                                                                        elem_values, num_nonnulls);
+                               continue;
+                       case BTEqualStrategyNumber:
+                               /* proceed with rest of loop */
+                               break;
+                       case BTGreaterEqualStrategyNumber:
+                       case BTGreaterStrategyNumber:
+                               cur->sk_argument =
+                                       _bt_find_extreme_element(scan, cur,
+                                                                                        BTLessStrategyNumber,
+                                                                                        elem_values, num_nonnulls);
+                               continue;
+                       default:
+                               elog(ERROR, "unrecognized StrategyNumber: %d",
+                                        (int) cur->sk_strategy);
+                               break;
+               }
+
+               /*
+                * Sort the non-null elements and eliminate any duplicates.  We must
+                * sort in the same ordering used by the index column, so that the
+                * successive primitive indexscans produce data in index order.
+                */
+               num_elems = _bt_sort_array_elements(scan, cur,
+                                                                                       (indoption[cur->sk_attno - 1] & INDOPTION_DESC) != 0,
+                                                                                       elem_values, num_nonnulls);
+
+               /*
+                * And set up the BTArrayKeyInfo data.
+                */
+               so->arrayKeys[numArrayKeys].scan_key = i;
+               so->arrayKeys[numArrayKeys].num_elems = num_elems;
+               so->arrayKeys[numArrayKeys].elem_values = elem_values;
+               numArrayKeys++;
+       }
+
+       so->numArrayKeys = numArrayKeys;
+
+       MemoryContextSwitchTo(oldContext);
+}
+
+/*
+ * _bt_find_extreme_element() -- get least or greatest array element
+ *
+ * scan and skey identify the index column, whose opfamily determines the
+ * comparison semantics.  strat should be BTLessStrategyNumber to get the
+ * least element, or BTGreaterStrategyNumber to get the greatest.
+ */
+static Datum
+_bt_find_extreme_element(IndexScanDesc scan, ScanKey skey,
+                                                StrategyNumber strat,
+                                                Datum *elems, int nelems)
+{
+       Relation        rel = scan->indexRelation;
+       Oid                     elemtype,
+                               cmp_op;
+       RegProcedure cmp_proc;
+       FmgrInfo        flinfo;
+       Datum           result;
+       int                     i;
+
+       /*
+        * Determine the nominal datatype of the array elements.  We have to
+        * support the convention that sk_subtype == InvalidOid means the opclass
+        * input type; this is a hack to simplify life for ScanKeyInit().
+        */
+       elemtype = skey->sk_subtype;
+       if (elemtype == InvalidOid)
+               elemtype = rel->rd_opcintype[skey->sk_attno - 1];
+
+       /*
+        * Look up the appropriate comparison operator in the opfamily.
+        *
+        * Note: it's possible that this would fail, if the opfamily is
+        * incomplete, but it seems quite unlikely that an opfamily would omit
+        * non-cross-type comparison operators for any datatype that it supports
+        * at all.
+        */
+       cmp_op = get_opfamily_member(rel->rd_opfamily[skey->sk_attno - 1],
+                                                                elemtype,
+                                                                elemtype,
+                                                                strat);
+       if (!OidIsValid(cmp_op))
+               elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
+                        strat, elemtype, elemtype,
+                        rel->rd_opfamily[skey->sk_attno - 1]);
+       cmp_proc = get_opcode(cmp_op);
+       if (!RegProcedureIsValid(cmp_proc))
+               elog(ERROR, "missing oprcode for operator %u", cmp_op);
+
+       fmgr_info(cmp_proc, &flinfo);
+
+       Assert(nelems > 0);
+       result = elems[0];
+       for (i = 1; i < nelems; i++)
+       {
+               if (DatumGetBool(FunctionCall2Coll(&flinfo,
+                                                                                  skey->sk_collation,
+                                                                                  elems[i],
+                                                                                  result)))
+                       result = elems[i];
+       }
+
+       return result;
+}
+
+/*
+ * _bt_sort_array_elements() -- sort and de-dup array elements
+ *
+ * The array elements are sorted in-place, and the new number of elements
+ * after duplicate removal is returned.
+ *
+ * scan and skey identify the index column, whose opfamily determines the
+ * comparison semantics.  If reverse is true, we sort in descending order.
+ */
+static int
+_bt_sort_array_elements(IndexScanDesc scan, ScanKey skey,
+                                               bool reverse,
+                                               Datum *elems, int nelems)
+{
+       Relation        rel = scan->indexRelation;
+       Oid                     elemtype;
+       RegProcedure cmp_proc;
+       BTSortArrayContext cxt;
+       int                     last_non_dup;
+       int                     i;
+
+       if (nelems <= 1)
+               return nelems;                  /* no work to do */
+
+       /*
+        * Determine the nominal datatype of the array elements.  We have to
+        * support the convention that sk_subtype == InvalidOid means the opclass
+        * input type; this is a hack to simplify life for ScanKeyInit().
+        */
+       elemtype = skey->sk_subtype;
+       if (elemtype == InvalidOid)
+               elemtype = rel->rd_opcintype[skey->sk_attno - 1];
+
+       /*
+        * Look up the appropriate comparison function in the opfamily.
+        *
+        * Note: it's possible that this would fail, if the opfamily is
+        * incomplete, but it seems quite unlikely that an opfamily would omit
+        * non-cross-type support functions for any datatype that it supports at
+        * all.
+        */
+       cmp_proc = get_opfamily_proc(rel->rd_opfamily[skey->sk_attno - 1],
+                                                                elemtype,
+                                                                elemtype,
+                                                                BTORDER_PROC);
+       if (!RegProcedureIsValid(cmp_proc))
+               elog(ERROR, "missing support function %d(%u,%u) in opfamily %u",
+                        BTORDER_PROC, elemtype, elemtype,
+                        rel->rd_opfamily[skey->sk_attno - 1]);
+
+       /* Sort the array elements */
+       fmgr_info(cmp_proc, &cxt.flinfo);
+       cxt.collation = skey->sk_collation;
+       cxt.reverse = reverse;
+       qsort_arg((void *) elems, nelems, sizeof(Datum),
+                         _bt_compare_array_elements, (void *) &cxt);
+
+       /* Now scan the sorted elements and remove duplicates */
+       last_non_dup = 0;
+       for (i = 1; i < nelems; i++)
+       {
+               int32           compare;
+
+               compare = DatumGetInt32(FunctionCall2Coll(&cxt.flinfo,
+                                                                                                 cxt.collation,
+                                                                                                 elems[last_non_dup],
+                                                                                                 elems[i]));
+               if (compare != 0)
+                       elems[++last_non_dup] = elems[i];
        }
 
-       return skey;
+       return last_non_dup + 1;
 }
 
 /*
- * free a scan key made by either _bt_mkscankey or _bt_mkscankey_nodata.
+ * qsort_arg comparator for sorting array elements
+ */
+static int
+_bt_compare_array_elements(const void *a, const void *b, void *arg)
+{
+       Datum           da = *((const Datum *) a);
+       Datum           db = *((const Datum *) b);
+       BTSortArrayContext *cxt = (BTSortArrayContext *) arg;
+       int32           compare;
+
+       compare = DatumGetInt32(FunctionCall2Coll(&cxt->flinfo,
+                                                                                         cxt->collation,
+                                                                                         da, db));
+       if (cxt->reverse)
+               INVERT_COMPARE_RESULT(compare);
+       return compare;
+}
+
+/*
+ * _bt_start_array_keys() -- Initialize array keys at start of a scan
+ *
+ * Set up the cur_elem counters and fill in the first sk_argument value for
+ * each array scankey.  We can't do this until we know the scan direction.
  */
 void
-_bt_freeskey(ScanKey skey)
+_bt_start_array_keys(IndexScanDesc scan, ScanDirection dir)
 {
-       pfree(skey);
+       BTScanOpaque so = (BTScanOpaque) scan->opaque;
+       int                     i;
+
+       for (i = 0; i < so->numArrayKeys; i++)
+       {
+               BTArrayKeyInfo *curArrayKey = &so->arrayKeys[i];
+               ScanKey         skey = &so->arrayKeyData[curArrayKey->scan_key];
+
+               Assert(curArrayKey->num_elems > 0);
+               if (ScanDirectionIsBackward(dir))
+                       curArrayKey->cur_elem = curArrayKey->num_elems - 1;
+               else
+                       curArrayKey->cur_elem = 0;
+               skey->sk_argument = curArrayKey->elem_values[curArrayKey->cur_elem];
+       }
 }
 
 /*
- * free a retracement stack made by _bt_search.
+ * _bt_advance_array_keys() -- Advance to next set of array elements
+ *
+ * Returns true if there is another set of values to consider, false if not.
+ * On true result, the scankeys are initialized with the next set of values.
+ */
+bool
+_bt_advance_array_keys(IndexScanDesc scan, ScanDirection dir)
+{
+       BTScanOpaque so = (BTScanOpaque) scan->opaque;
+       bool            found = false;
+       int                     i;
+
+       /*
+        * We must advance the last array key most quickly, since it will
+        * correspond to the lowest-order index column among the available
+        * qualifications. This is necessary to ensure correct ordering of output
+        * when there are multiple array keys.
+        */
+       for (i = so->numArrayKeys - 1; i >= 0; i--)
+       {
+               BTArrayKeyInfo *curArrayKey = &so->arrayKeys[i];
+               ScanKey         skey = &so->arrayKeyData[curArrayKey->scan_key];
+               int                     cur_elem = curArrayKey->cur_elem;
+               int                     num_elems = curArrayKey->num_elems;
+
+               if (ScanDirectionIsBackward(dir))
+               {
+                       if (--cur_elem < 0)
+                       {
+                               cur_elem = num_elems - 1;
+                               found = false;  /* need to advance next array key */
+                       }
+                       else
+                               found = true;
+               }
+               else
+               {
+                       if (++cur_elem >= num_elems)
+                       {
+                               cur_elem = 0;
+                               found = false;  /* need to advance next array key */
+                       }
+                       else
+                               found = true;
+               }
+
+               curArrayKey->cur_elem = cur_elem;
+               skey->sk_argument = curArrayKey->elem_values[cur_elem];
+               if (found)
+                       break;
+       }
+
+       /* advance parallel scan */
+       if (scan->parallel_scan != NULL)
+               _bt_parallel_advance_array_keys(scan);
+
+       return found;
+}
+
+/*
+ * _bt_mark_array_keys() -- Handle array keys during btmarkpos
+ *
+ * Save the current state of the array keys as the "mark" position.
  */
 void
-_bt_freestack(BTStack stack)
+_bt_mark_array_keys(IndexScanDesc scan)
 {
-       BTStack         ostack;
+       BTScanOpaque so = (BTScanOpaque) scan->opaque;
+       int                     i;
 
-       while (stack != NULL)
+       for (i = 0; i < so->numArrayKeys; i++)
        {
-               ostack = stack;
-               stack = stack->bts_parent;
-               pfree(ostack);
+               BTArrayKeyInfo *curArrayKey = &so->arrayKeys[i];
+
+               curArrayKey->mark_elem = curArrayKey->cur_elem;
+       }
+}
+
+/*
+ * _bt_restore_array_keys() -- Handle array keys during btrestrpos
+ *
+ * Restore the array keys to where they were when the mark was set.
+ */
+void
+_bt_restore_array_keys(IndexScanDesc scan)
+{
+       BTScanOpaque so = (BTScanOpaque) scan->opaque;
+       bool            changed = false;
+       int                     i;
+
+       /* Restore each array key to its position when the mark was set */
+       for (i = 0; i < so->numArrayKeys; i++)
+       {
+               BTArrayKeyInfo *curArrayKey = &so->arrayKeys[i];
+               ScanKey         skey = &so->arrayKeyData[curArrayKey->scan_key];
+               int                     mark_elem = curArrayKey->mark_elem;
+
+               if (curArrayKey->cur_elem != mark_elem)
+               {
+                       curArrayKey->cur_elem = mark_elem;
+                       skey->sk_argument = curArrayKey->elem_values[mark_elem];
+                       changed = true;
+               }
+       }
+
+       /*
+        * If we changed any keys, we must redo _bt_preprocess_keys.  That might
+        * sound like overkill, but in cases with multiple keys per index column
+        * it seems necessary to do the full set of pushups.
+        */
+       if (changed)
+       {
+               _bt_preprocess_keys(scan);
+               /* The mark should have been set on a consistent set of keys... */
+               Assert(so->qual_ok);
        }
 }
 
 
-/*----------
+/*
  *     _bt_preprocess_keys() -- Preprocess scan keys
  *
- * The caller-supplied search-type keys (in scan->keyData[]) are copied to
- * so->keyData[] with possible transformation. scan->numberOfKeys is
- * the number of input keys, so->numberOfKeys gets the number of output
- * keys (possibly less, never greater).
+ * The given search-type keys (in scan->keyData[] or so->arrayKeyData[])
+ * are copied to so->keyData[] with possible transformation.
+ * scan->numberOfKeys is the number of input keys, so->numberOfKeys gets
+ * the number of output keys (possibly less, never greater).
+ *
+ * The output keys are marked with additional sk_flag bits beyond the
+ * system-standard bits supplied by the caller.  The DESC and NULLS_FIRST
+ * indoption bits for the relevant index attribute are copied into the flags.
+ * Also, for a DESC column, we commute (flip) all the sk_strategy numbers
+ * so that the index sorts in the desired direction.
  *
- * The primary purpose of this routine is to discover how many scan keys
- * must be satisfied to continue the scan.     It also attempts to eliminate
- * redundant keys and detect contradictory keys.  At present, redundant and
- * contradictory keys can only be detected for same-data-type comparisons,
- * but that's the usual case so it seems worth doing.
+ * One key purpose of this routine is to discover which scan keys must be
+ * satisfied to continue the scan.  It also attempts to eliminate redundant
+ * keys and detect contradictory keys.  (If the index opfamily provides
+ * incomplete sets of cross-type operators, we may fail to detect redundant
+ * or contradictory keys, but we can survive that.)
  *
  * The output keys must be sorted by index attribute.  Presently we expect
  * (but verify) that the input keys are already so sorted --- this is done
- * by group_clauses_by_indexkey() in indxpath.c.  Some reordering of the keys
+ * by match_clauses_to_index() in indxpath.c.  Some reordering of the keys
  * within each attribute may be done as a byproduct of the processing here,
  * but no other code depends on that.
  *
@@ -179,54 +697,58 @@ _bt_freestack(BTStack stack)
  * If possible, redundant keys are eliminated: we keep only the tightest
  * >/>= bound and the tightest </<= bound, and if there's an = key then
  * that's the only one returned.  (So, we return either a single = key,
- * or one or two boundary-condition keys for each attr.)  However, we can
- * only detect redundant keys when the right-hand datatypes are all equal
- * to the index datatype, because we do not know suitable operators for
- * comparing right-hand values of two different datatypes.     (In theory
- * we could handle comparison of a RHS of the index datatype with a RHS of
- * another type, but that seems too much pain for too little gain.)  So,
- * keys whose operator has a nondefault subtype (ie, its RHS is not of the
- * index datatype) are ignored here, except for noting whether they include
- * an "=" condition or not.  The logic about required keys still works if
- * we don't eliminate redundant keys.
+ * or one or two boundary-condition keys for each attr.)  However, if we
+ * cannot compare two keys for lack of a suitable cross-type operator,
+ * we cannot eliminate either.  If there are two such keys of the same
+ * operator strategy, the second one is just pushed into the output array
+ * without further processing here.  We may also emit both >/>= or both
+ * </<= keys if we can't compare them.  The logic about required keys still
+ * works if we don't eliminate redundant keys.
+ *
+ * Note that one reason we need direction-sensitive required-key flags is
+ * precisely that we may not be able to eliminate redundant keys.  Suppose
+ * we have "x > 4::int AND x > 10::bigint", and we are unable to determine
+ * which key is more restrictive for lack of a suitable cross-type operator.
+ * _bt_first will arbitrarily pick one of the keys to do the initial
+ * positioning with.  If it picks x > 4, then the x > 10 condition will fail
+ * until we reach index entries > 10; but we can't stop the scan just because
+ * x > 10 is failing.  On the other hand, if we are scanning backwards, then
+ * failure of either key is indeed enough to stop the scan.  (In general, when
+ * inequality keys are present, the initial-positioning code only promises to
+ * position before the first possible match, not exactly at the first match,
+ * for a forward scan; or after the last match for a backward scan.)
  *
  * As a byproduct of this work, we can detect contradictory quals such
- * as "x = 1 AND x > 2".  If we see that, we return so->quals_ok = FALSE,
+ * as "x = 1 AND x > 2".  If we see that, we return so->qual_ok = false,
  * indicating the scan need not be run at all since no tuples can match.
- * Again though, only keys with RHS datatype equal to the index datatype
- * can be checked for contradictions.
- *
- * Furthermore, we detect the case where the index is unique and we have
- * equality quals for all columns.     In this case there can be at most one
- * (visible) matching tuple.  index_getnext uses this to avoid uselessly
- * continuing the scan after finding one match.
+ * (In this case we do not bother completing the output key array!)
+ * Again, missing cross-type operators might cause us to fail to prove the
+ * quals contradictory when they really are, but the scan will work correctly.
  *
- * Row comparison keys are treated the same as comparisons to nondefault
- * datatypes: we just transfer them into the preprocessed array without any
+ * Row comparison keys are currently also treated without any smarts:
+ * we just transfer them into the preprocessed array without any
  * editorialization.  We can treat them the same as an ordinary inequality
  * comparison on the row's first index column, for the purposes of the logic
  * about required keys.
  *
  * Note: the reason we have to copy the preprocessed scan keys into private
  * storage is that we are modifying the array based on comparisons of the
- * key argument values, which could change on a rescan.  Therefore we can't
- * overwrite the caller's data structure.
- *----------
+ * key argument values, which could change on a rescan or after moving to
+ * new elements of array keys.  Therefore we can't overwrite the source data.
  */
 void
 _bt_preprocess_keys(IndexScanDesc scan)
 {
-       Relation        relation = scan->indexRelation;
        BTScanOpaque so = (BTScanOpaque) scan->opaque;
        int                     numberOfKeys = scan->numberOfKeys;
+       int16      *indoption = scan->indexRelation->rd_indoption;
        int                     new_numberOfKeys;
        int                     numberOfEqualCols;
        ScanKey         inkeys;
        ScanKey         outkeys;
        ScanKey         cur;
        ScanKey         xform[BTMaxStrategyNumber];
-       bool            hasOtherTypeEqual;
-       Datum           test;
+       bool            test_result;
        int                     i,
                                j;
        AttrNumber      attno;
@@ -234,12 +756,18 @@ _bt_preprocess_keys(IndexScanDesc scan)
        /* initialize result variables */
        so->qual_ok = true;
        so->numberOfKeys = 0;
-       scan->keys_are_unique = false;
 
        if (numberOfKeys < 1)
                return;                                 /* done if qual-less scan */
 
-       inkeys = scan->keyData;
+       /*
+        * Read so->arrayKeyData if array keys are present, else scan->keyData
+        */
+       if (so->arrayKeyData != NULL)
+               inkeys = so->arrayKeyData;
+       else
+               inkeys = scan->keyData;
+
        outkeys = so->keyData;
        cur = &inkeys[0];
        /* we check that input keys are correctly ordered */
@@ -249,21 +777,10 @@ _bt_preprocess_keys(IndexScanDesc scan)
        /* We can short-circuit most of the work if there's just one key */
        if (numberOfKeys == 1)
        {
-               /*
-                * We don't use indices for 'A is null' and 'A is not null' currently
-                * and 'A < = > <> NULL' will always fail - so qual is not OK if
-                * comparison value is NULL.      - vadim 03/21/97
-                */
-               if (cur->sk_flags & SK_ISNULL)
+               /* Apply indoption to scankey (might change sk_strategy!) */
+               if (!_bt_fix_scankey_strategy(cur, indoption))
                        so->qual_ok = false;
-               else if (relation->rd_index->indisunique &&
-                                relation->rd_rel->relnatts == 1)
-               {
-                       /* it's a unique index, do we have an equality qual? */
-                       if (cur->sk_strategy == BTEqualStrategyNumber)
-                               scan->keys_are_unique = true;
-               }
-               memcpy(outkeys, inkeys, sizeof(ScanKeyData));
+               memcpy(outkeys, cur, sizeof(ScanKeyData));
                so->numberOfKeys = 1;
                /* We can mark the qual as required if it's for first index col */
                if (cur->sk_attno == 1)
@@ -280,15 +797,11 @@ _bt_preprocess_keys(IndexScanDesc scan)
        /*
         * Initialize for processing of keys for attr 1.
         *
-        * xform[i] points to the currently best scan key of strategy type i+1, if
-        * any is found with a default operator subtype; it is NULL if we haven't
-        * yet found such a key for this attr.  Scan keys of nondefault subtypes
-        * are transferred to the output with no processing except for noting if
-        * they are of "=" type.
+        * xform[i] points to the currently best scan key of strategy type i+1; it
+        * is NULL if we haven't yet found such a key for this attr.
         */
        attno = 1;
        memset(xform, 0, sizeof(xform));
-       hasOtherTypeEqual = false;
 
        /*
         * Loop iterates from 0 to numberOfKeys inclusive; we use the last pass to
@@ -299,16 +812,11 @@ _bt_preprocess_keys(IndexScanDesc scan)
        {
                if (i < numberOfKeys)
                {
-                       /* See comments above: any NULL implies cannot match qual */
-                       /* Note: we assume SK_ISNULL is never set in a row header key */
-                       if (cur->sk_flags & SK_ISNULL)
+                       /* Apply indoption to scankey (might change sk_strategy!) */
+                       if (!_bt_fix_scankey_strategy(cur, indoption))
                        {
+                               /* NULL can't be matched, so give up */
                                so->qual_ok = false;
-
-                               /*
-                                * Quit processing so we don't try to invoke comparison
-                                * routines on NULLs.
-                                */
                                return;
                        }
                }
@@ -326,9 +834,15 @@ _bt_preprocess_keys(IndexScanDesc scan)
                                elog(ERROR, "btree index keys must be ordered by attribute");
 
                        /*
-                        * If = has been specified, no other key will be used. In case of
-                        * key > 2 && key == 1 and so on we have to set qual_ok to false
-                        * before discarding the other keys.
+                        * If = has been specified, all other keys can be eliminated as
+                        * redundant.  If we have a case like key = 1 AND key > 2, we can
+                        * set qual_ok to false and abandon further processing.
+                        *
+                        * We also have to deal with the case of "key IS NULL", which is
+                        * unsatisfiable in combination with any other index condition. By
+                        * the time we get here, that's been classified as an equality
+                        * check, and we've rejected any combination of it with a regular
+                        * equality condition; but not with other types of conditions.
                         */
                        if (xform[BTEqualStrategyNumber - 1])
                        {
@@ -340,59 +854,64 @@ _bt_preprocess_keys(IndexScanDesc scan)
 
                                        if (!chk || j == (BTEqualStrategyNumber - 1))
                                                continue;
-                                       test = FunctionCall2(&chk->sk_func,
-                                                                                eq->sk_argument,
-                                                                                chk->sk_argument);
-                                       if (!DatumGetBool(test))
+
+                                       if (eq->sk_flags & SK_SEARCHNULL)
                                        {
+                                               /* IS NULL is contradictory to anything else */
                                                so->qual_ok = false;
-                                               break;
+                                               return;
                                        }
+
+                                       if (_bt_compare_scankey_args(scan, chk, eq, chk,
+                                                                                                &test_result))
+                                       {
+                                               if (!test_result)
+                                               {
+                                                       /* keys proven mutually contradictory */
+                                                       so->qual_ok = false;
+                                                       return;
+                                               }
+                                               /* else discard the redundant non-equality key */
+                                               xform[j] = NULL;
+                                       }
+                                       /* else, cannot determine redundancy, keep both keys */
                                }
-                               xform[BTLessStrategyNumber - 1] = NULL;
-                               xform[BTLessEqualStrategyNumber - 1] = NULL;
-                               xform[BTGreaterEqualStrategyNumber - 1] = NULL;
-                               xform[BTGreaterStrategyNumber - 1] = NULL;
                                /* track number of attrs for which we have "=" keys */
                                numberOfEqualCols++;
                        }
-                       else
-                       {
-                               /* track number of attrs for which we have "=" keys */
-                               if (hasOtherTypeEqual)
-                                       numberOfEqualCols++;
-                       }
 
-                       /* keep only one of <, <= */
+                       /* try to keep only one of <, <= */
                        if (xform[BTLessStrategyNumber - 1]
                                && xform[BTLessEqualStrategyNumber - 1])
                        {
                                ScanKey         lt = xform[BTLessStrategyNumber - 1];
                                ScanKey         le = xform[BTLessEqualStrategyNumber - 1];
 
-                               test = FunctionCall2(&le->sk_func,
-                                                                        lt->sk_argument,
-                                                                        le->sk_argument);
-                               if (DatumGetBool(test))
-                                       xform[BTLessEqualStrategyNumber - 1] = NULL;
-                               else
-                                       xform[BTLessStrategyNumber - 1] = NULL;
+                               if (_bt_compare_scankey_args(scan, le, lt, le,
+                                                                                        &test_result))
+                               {
+                                       if (test_result)
+                                               xform[BTLessEqualStrategyNumber - 1] = NULL;
+                                       else
+                                               xform[BTLessStrategyNumber - 1] = NULL;
+                               }
                        }
 
-                       /* keep only one of >, >= */
+                       /* try to keep only one of >, >= */
                        if (xform[BTGreaterStrategyNumber - 1]
                                && xform[BTGreaterEqualStrategyNumber - 1])
                        {
                                ScanKey         gt = xform[BTGreaterStrategyNumber - 1];
                                ScanKey         ge = xform[BTGreaterEqualStrategyNumber - 1];
 
-                               test = FunctionCall2(&ge->sk_func,
-                                                                        gt->sk_argument,
-                                                                        ge->sk_argument);
-                               if (DatumGetBool(test))
-                                       xform[BTGreaterEqualStrategyNumber - 1] = NULL;
-                               else
-                                       xform[BTGreaterStrategyNumber - 1] = NULL;
+                               if (_bt_compare_scankey_args(scan, ge, gt, ge,
+                                                                                        &test_result))
+                               {
+                                       if (test_result)
+                                               xform[BTGreaterEqualStrategyNumber - 1] = NULL;
+                                       else
+                                               xform[BTGreaterStrategyNumber - 1] = NULL;
+                               }
                        }
 
                        /*
@@ -421,57 +940,341 @@ _bt_preprocess_keys(IndexScanDesc scan)
                        /* Re-initialize for new attno */
                        attno = cur->sk_attno;
                        memset(xform, 0, sizeof(xform));
-                       hasOtherTypeEqual = false;
                }
 
                /* check strategy this key's operator corresponds to */
                j = cur->sk_strategy - 1;
 
-               /* if row comparison or wrong RHS data type, punt */
-               if ((cur->sk_flags & SK_ROW_HEADER) || cur->sk_subtype != InvalidOid)
+               /* if row comparison, push it directly to the output array */
+               if (cur->sk_flags & SK_ROW_HEADER)
                {
                        ScanKey         outkey = &outkeys[new_numberOfKeys++];
 
                        memcpy(outkey, cur, sizeof(ScanKeyData));
                        if (numberOfEqualCols == attno - 1)
                                _bt_mark_scankey_required(outkey);
-                       if (j == (BTEqualStrategyNumber - 1))
-                               hasOtherTypeEqual = true;
+
+                       /*
+                        * We don't support RowCompare using equality; such a qual would
+                        * mess up the numberOfEqualCols tracking.
+                        */
+                       Assert(j != (BTEqualStrategyNumber - 1));
                        continue;
                }
 
                /* have we seen one of these before? */
-               if (xform[j])
-               {
-                       /* yup, keep the more restrictive key */
-                       test = FunctionCall2(&cur->sk_func,
-                                                                cur->sk_argument,
-                                                                xform[j]->sk_argument);
-                       if (DatumGetBool(test))
-                               xform[j] = cur;
-                       else if (j == (BTEqualStrategyNumber - 1))
-                       {
-                               /* key == a && key == b, but a != b */
-                               so->qual_ok = false;
-                               return;
-                       }
-               }
-               else
+               if (xform[j] == NULL)
                {
                        /* nope, so remember this scankey */
                        xform[j] = cur;
                }
+               else
+               {
+                       /* yup, keep only the more restrictive key */
+                       if (_bt_compare_scankey_args(scan, cur, cur, xform[j],
+                                                                                &test_result))
+                       {
+                               if (test_result)
+                                       xform[j] = cur;
+                               else if (j == (BTEqualStrategyNumber - 1))
+                               {
+                                       /* key == a && key == b, but a != b */
+                                       so->qual_ok = false;
+                                       return;
+                               }
+                               /* else old key is more restrictive, keep it */
+                       }
+                       else
+                       {
+                               /*
+                                * We can't determine which key is more restrictive.  Keep the
+                                * previous one in xform[j] and push this one directly to the
+                                * output array.
+                                */
+                               ScanKey         outkey = &outkeys[new_numberOfKeys++];
+
+                               memcpy(outkey, cur, sizeof(ScanKeyData));
+                               if (numberOfEqualCols == attno - 1)
+                                       _bt_mark_scankey_required(outkey);
+                       }
+               }
        }
 
        so->numberOfKeys = new_numberOfKeys;
-
-       /*
-        * If unique index and we have equality keys for all columns, set
-        * keys_are_unique flag for higher levels.
-        */
-       if (relation->rd_index->indisunique &&
-               relation->rd_rel->relnatts == numberOfEqualCols)
-               scan->keys_are_unique = true;
+}
+
+/*
+ * Compare two scankey values using a specified operator.
+ *
+ * The test we want to perform is logically "leftarg op rightarg", where
+ * leftarg and rightarg are the sk_argument values in those ScanKeys, and
+ * the comparison operator is the one in the op ScanKey.  However, in
+ * cross-data-type situations we may need to look up the correct operator in
+ * the index's opfamily: it is the one having amopstrategy = op->sk_strategy
+ * and amoplefttype/amoprighttype equal to the two argument datatypes.
+ *
+ * If the opfamily doesn't supply a complete set of cross-type operators we
+ * may not be able to make the comparison.  If we can make the comparison
+ * we store the operator result in *result and return true.  We return false
+ * if the comparison could not be made.
+ *
+ * Note: op always points at the same ScanKey as either leftarg or rightarg.
+ * Since we don't scribble on the scankeys, this aliasing should cause no
+ * trouble.
+ *
+ * Note: this routine needs to be insensitive to any DESC option applied
+ * to the index column.  For example, "x < 4" is a tighter constraint than
+ * "x < 5" regardless of which way the index is sorted.
+ */
+static bool
+_bt_compare_scankey_args(IndexScanDesc scan, ScanKey op,
+                                                ScanKey leftarg, ScanKey rightarg,
+                                                bool *result)
+{
+       Relation        rel = scan->indexRelation;
+       Oid                     lefttype,
+                               righttype,
+                               optype,
+                               opcintype,
+                               cmp_op;
+       StrategyNumber strat;
+
+       /*
+        * First, deal with cases where one or both args are NULL.  This should
+        * only happen when the scankeys represent IS NULL/NOT NULL conditions.
+        */
+       if ((leftarg->sk_flags | rightarg->sk_flags) & SK_ISNULL)
+       {
+               bool            leftnull,
+                                       rightnull;
+
+               if (leftarg->sk_flags & SK_ISNULL)
+               {
+                       Assert(leftarg->sk_flags & (SK_SEARCHNULL | SK_SEARCHNOTNULL));
+                       leftnull = true;
+               }
+               else
+                       leftnull = false;
+               if (rightarg->sk_flags & SK_ISNULL)
+               {
+                       Assert(rightarg->sk_flags & (SK_SEARCHNULL | SK_SEARCHNOTNULL));
+                       rightnull = true;
+               }
+               else
+                       rightnull = false;
+
+               /*
+                * We treat NULL as either greater than or less than all other values.
+                * Since true > false, the tests below work correctly for NULLS LAST
+                * logic.  If the index is NULLS FIRST, we need to flip the strategy.
+                */
+               strat = op->sk_strategy;
+               if (op->sk_flags & SK_BT_NULLS_FIRST)
+                       strat = BTCommuteStrategyNumber(strat);
+
+               switch (strat)
+               {
+                       case BTLessStrategyNumber:
+                               *result = (leftnull < rightnull);
+                               break;
+                       case BTLessEqualStrategyNumber:
+                               *result = (leftnull <= rightnull);
+                               break;
+                       case BTEqualStrategyNumber:
+                               *result = (leftnull == rightnull);
+                               break;
+                       case BTGreaterEqualStrategyNumber:
+                               *result = (leftnull >= rightnull);
+                               break;
+                       case BTGreaterStrategyNumber:
+                               *result = (leftnull > rightnull);
+                               break;
+                       default:
+                               elog(ERROR, "unrecognized StrategyNumber: %d", (int) strat);
+                               *result = false;        /* keep compiler quiet */
+                               break;
+               }
+               return true;
+       }
+
+       /*
+        * The opfamily we need to worry about is identified by the index column.
+        */
+       Assert(leftarg->sk_attno == rightarg->sk_attno);
+
+       opcintype = rel->rd_opcintype[leftarg->sk_attno - 1];
+
+       /*
+        * Determine the actual datatypes of the ScanKey arguments.  We have to
+        * support the convention that sk_subtype == InvalidOid means the opclass
+        * input type; this is a hack to simplify life for ScanKeyInit().
+        */
+       lefttype = leftarg->sk_subtype;
+       if (lefttype == InvalidOid)
+               lefttype = opcintype;
+       righttype = rightarg->sk_subtype;
+       if (righttype == InvalidOid)
+               righttype = opcintype;
+       optype = op->sk_subtype;
+       if (optype == InvalidOid)
+               optype = opcintype;
+
+       /*
+        * If leftarg and rightarg match the types expected for the "op" scankey,
+        * we can use its already-looked-up comparison function.
+        */
+       if (lefttype == opcintype && righttype == optype)
+       {
+               *result = DatumGetBool(FunctionCall2Coll(&op->sk_func,
+                                                                                                op->sk_collation,
+                                                                                                leftarg->sk_argument,
+                                                                                                rightarg->sk_argument));
+               return true;
+       }
+
+       /*
+        * Otherwise, we need to go to the syscache to find the appropriate
+        * operator.  (This cannot result in infinite recursion, since no
+        * indexscan initiated by syscache lookup will use cross-data-type
+        * operators.)
+        *
+        * If the sk_strategy was flipped by _bt_fix_scankey_strategy, we have to
+        * un-flip it to get the correct opfamily member.
+        */
+       strat = op->sk_strategy;
+       if (op->sk_flags & SK_BT_DESC)
+               strat = BTCommuteStrategyNumber(strat);
+
+       cmp_op = get_opfamily_member(rel->rd_opfamily[leftarg->sk_attno - 1],
+                                                                lefttype,
+                                                                righttype,
+                                                                strat);
+       if (OidIsValid(cmp_op))
+       {
+               RegProcedure cmp_proc = get_opcode(cmp_op);
+
+               if (RegProcedureIsValid(cmp_proc))
+               {
+                       *result = DatumGetBool(OidFunctionCall2Coll(cmp_proc,
+                                                                                                               op->sk_collation,
+                                                                                                               leftarg->sk_argument,
+                                                                                                               rightarg->sk_argument));
+                       return true;
+               }
+       }
+
+       /* Can't make the comparison */
+       *result = false;                        /* suppress compiler warnings */
+       return false;
+}
+
+/*
+ * Adjust a scankey's strategy and flags setting as needed for indoptions.
+ *
+ * We copy the appropriate indoption value into the scankey sk_flags
+ * (shifting to avoid clobbering system-defined flag bits).  Also, if
+ * the DESC option is set, commute (flip) the operator strategy number.
+ *
+ * A secondary purpose is to check for IS NULL/NOT NULL scankeys and set up
+ * the strategy field correctly for them.
+ *
+ * Lastly, for ordinary scankeys (not IS NULL/NOT NULL), we check for a
+ * NULL comparison value.  Since all btree operators are assumed strict,
+ * a NULL means that the qual cannot be satisfied.  We return true if the
+ * comparison value isn't NULL, or false if the scan should be abandoned.
+ *
+ * This function is applied to the *input* scankey structure; therefore
+ * on a rescan we will be looking at already-processed scankeys.  Hence
+ * we have to be careful not to re-commute the strategy if we already did it.
+ * It's a bit ugly to modify the caller's copy of the scankey but in practice
+ * there shouldn't be any problem, since the index's indoptions are certainly
+ * not going to change while the scankey survives.
+ */
+static bool
+_bt_fix_scankey_strategy(ScanKey skey, int16 *indoption)
+{
+       int                     addflags;
+
+       addflags = indoption[skey->sk_attno - 1] << SK_BT_INDOPTION_SHIFT;
+
+       /*
+        * We treat all btree operators as strict (even if they're not so marked
+        * in pg_proc). This means that it is impossible for an operator condition
+        * with a NULL comparison constant to succeed, and we can reject it right
+        * away.
+        *
+        * However, we now also support "x IS NULL" clauses as search conditions,
+        * so in that case keep going. The planner has not filled in any
+        * particular strategy in this case, so set it to BTEqualStrategyNumber
+        * --- we can treat IS NULL as an equality operator for purposes of search
+        * strategy.
+        *
+        * Likewise, "x IS NOT NULL" is supported.  We treat that as either "less
+        * than NULL" in a NULLS LAST index, or "greater than NULL" in a NULLS
+        * FIRST index.
+        *
+        * Note: someday we might have to fill in sk_collation from the index
+        * column's collation.  At the moment this is a non-issue because we'll
+        * never actually call the comparison operator on a NULL.
+        */
+       if (skey->sk_flags & SK_ISNULL)
+       {
+               /* SK_ISNULL shouldn't be set in a row header scankey */
+               Assert(!(skey->sk_flags & SK_ROW_HEADER));
+
+               /* Set indoption flags in scankey (might be done already) */
+               skey->sk_flags |= addflags;
+
+               /* Set correct strategy for IS NULL or NOT NULL search */
+               if (skey->sk_flags & SK_SEARCHNULL)
+               {
+                       skey->sk_strategy = BTEqualStrategyNumber;
+                       skey->sk_subtype = InvalidOid;
+                       skey->sk_collation = InvalidOid;
+               }
+               else if (skey->sk_flags & SK_SEARCHNOTNULL)
+               {
+                       if (skey->sk_flags & SK_BT_NULLS_FIRST)
+                               skey->sk_strategy = BTGreaterStrategyNumber;
+                       else
+                               skey->sk_strategy = BTLessStrategyNumber;
+                       skey->sk_subtype = InvalidOid;
+                       skey->sk_collation = InvalidOid;
+               }
+               else
+               {
+                       /* regular qual, so it cannot be satisfied */
+                       return false;
+               }
+
+               /* Needn't do the rest */
+               return true;
+       }
+
+       /* Adjust strategy for DESC, if we didn't already */
+       if ((addflags & SK_BT_DESC) && !(skey->sk_flags & SK_BT_DESC))
+               skey->sk_strategy = BTCommuteStrategyNumber(skey->sk_strategy);
+       skey->sk_flags |= addflags;
+
+       /* If it's a row header, fix row member flags and strategies similarly */
+       if (skey->sk_flags & SK_ROW_HEADER)
+       {
+               ScanKey         subkey = (ScanKey) DatumGetPointer(skey->sk_argument);
+
+               for (;;)
+               {
+                       Assert(subkey->sk_flags & SK_ROW_MEMBER);
+                       addflags = indoption[subkey->sk_attno - 1] << SK_BT_INDOPTION_SHIFT;
+                       if ((addflags & SK_BT_DESC) && !(subkey->sk_flags & SK_BT_DESC))
+                               subkey->sk_strategy = BTCommuteStrategyNumber(subkey->sk_strategy);
+                       subkey->sk_flags |= addflags;
+                       if (subkey->sk_flags & SK_ROW_END)
+                               break;
+                       subkey++;
+               }
+       }
+
+       return true;
 }
 
 /*
@@ -479,11 +1282,9 @@ _bt_preprocess_keys(IndexScanDesc scan)
  *
  * Depending on the operator type, the key may be required for both scan
  * directions or just one.  Also, if the key is a row comparison header,
- * we have to mark the appropriate subsidiary ScanKeys as required.  In
- * such cases, the first subsidiary key is required, but subsequent ones
- * are required only as long as they correspond to successive index columns.
- * Otherwise the row comparison ordering is different from the index ordering
- * and so we can't stop the scan on the basis of those lower-order columns.
+ * we have to mark its first subsidiary ScanKey as required.  (Subsequent
+ * subsidiary ScanKeys are normally for lower-order columns, and thus
+ * cannot be required, since they're after the first non-equality scankey.)
  *
  * Note: when we set required-key flag bits in a subsidiary scankey, we are
  * scribbling on a data structure belonging to the index AM's caller, not on
@@ -494,7 +1295,7 @@ _bt_preprocess_keys(IndexScanDesc scan)
 static void
 _bt_mark_scankey_required(ScanKey skey)
 {
-       int             addflags;
+       int                     addflags;
 
        switch (skey->sk_strategy)
        {
@@ -520,95 +1321,47 @@ _bt_mark_scankey_required(ScanKey skey)
 
        if (skey->sk_flags & SK_ROW_HEADER)
        {
-               ScanKey subkey = (ScanKey) DatumGetPointer(skey->sk_argument);
-               AttrNumber attno = skey->sk_attno;
-
-               /* First subkey should be same as the header says */
-               Assert(subkey->sk_attno == attno);
+               ScanKey         subkey = (ScanKey) DatumGetPointer(skey->sk_argument);
 
-               for (;;)
-               {
-                       Assert(subkey->sk_flags & SK_ROW_MEMBER);
-                       Assert(subkey->sk_strategy == skey->sk_strategy);
-                       if (subkey->sk_attno != attno)
-                               break;                  /* non-adjacent key, so not required */
-                       subkey->sk_flags |= addflags;
-                       if (subkey->sk_flags & SK_ROW_END)
-                               break;
-                       subkey++;
-                       attno++;
-               }
+               /* First subkey should be same column/operator as the header */
+               Assert(subkey->sk_flags & SK_ROW_MEMBER);
+               Assert(subkey->sk_attno == skey->sk_attno);
+               Assert(subkey->sk_strategy == skey->sk_strategy);
+               subkey->sk_flags |= addflags;
        }
 }
 
 /*
  * Test whether an indextuple satisfies all the scankey conditions.
  *
- * If so, copy its TID into scan->xs_ctup.t_self, and return TRUE.
- * If not, return FALSE (xs_ctup is not changed).
+ * Return true if so, false if not.  If the tuple fails to pass the qual,
+ * we also determine whether there's any need to continue the scan beyond
+ * this tuple, and set *continuescan accordingly.  See comments for
+ * _bt_preprocess_keys(), above, about how this is done.
  *
- * If the tuple fails to pass the qual, we also determine whether there's
- * any need to continue the scan beyond this tuple, and set *continuescan
- * accordingly.  See comments for _bt_preprocess_keys(), above, about how
- * this is done.
+ * Forward scan callers can pass a high key tuple in the hopes of having
+ * us set *continuescanthat to false, and avoiding an unnecessary visit to
+ * the page to the right.
  *
  * scan: index scan descriptor (containing a search-type scankey)
- * page: buffer page containing index tuple
- * offnum: offset number of index tuple (must be a valid item!)
+ * tuple: index tuple to test
+ * tupnatts: number of attributes in tupnatts (high key may be truncated)
  * dir: direction we are scanning in
  * continuescan: output parameter (will be set correctly in all cases)
  */
 bool
-_bt_checkkeys(IndexScanDesc scan,
-                         Page page, OffsetNumber offnum,
+_bt_checkkeys(IndexScanDesc scan, IndexTuple tuple, int tupnatts,
                          ScanDirection dir, bool *continuescan)
 {
-       ItemId          iid = PageGetItemId(page, offnum);
-       bool            tuple_valid;
-       IndexTuple      tuple;
        TupleDesc       tupdesc;
        BTScanOpaque so;
        int                     keysz;
        int                     ikey;
        ScanKey         key;
 
-       *continuescan = true;           /* default assumption */
-
-       /*
-        * If the scan specifies not to return killed tuples, then we treat
-        * a killed tuple as not passing the qual.  Most of the time, it's a
-        * win to not bother examining the tuple's index keys, but just return
-        * immediately with continuescan = true to proceed to the next tuple.
-        * However, if this is the last tuple on the page, we should check
-        * the index keys to prevent uselessly advancing to the next page.
-        */
-       if (scan->ignore_killed_tuples && ItemIdDeleted(iid))
-       {
-               /* return immediately if there are more tuples on the page */
-               if (ScanDirectionIsForward(dir))
-               {
-                       if (offnum < PageGetMaxOffsetNumber(page))
-                               return false;
-               }
-               else
-               {
-                       BTPageOpaque opaque = (BTPageOpaque) PageGetSpecialPointer(page);
-
-                       if (offnum > P_FIRSTDATAKEY(opaque))
-                               return false;
-               }
-               /*
-                * OK, we want to check the keys, but we'll return FALSE even
-                * if the tuple passes the key tests.
-                */
-               tuple_valid = false;
-       }
-       else
-               tuple_valid = true;
-
-       tuple = (IndexTuple) PageGetItem(page, iid);
+       Assert(BTreeTupleGetNAtts(tuple, scan->indexRelation) == tupnatts);
 
-       IncrIndexProcessed();
+       *continuescan = true;           /* default assumption */
 
        tupdesc = RelationGetDescr(scan->indexRelation);
        so = (BTScanOpaque) scan->opaque;
@@ -620,10 +1373,23 @@ _bt_checkkeys(IndexScanDesc scan,
                bool            isNull;
                Datum           test;
 
+               if (key->sk_attno > tupnatts)
+               {
+                       /*
+                        * This attribute is truncated (must be high key).  The value for
+                        * this attribute in the first non-pivot tuple on the page to the
+                        * right could be any possible value.  Assume that truncated
+                        * attribute passes the qual.
+                        */
+                       Assert(ScanDirectionIsForward(dir));
+                       continue;
+               }
+
                /* row-comparison keys need special processing */
                if (key->sk_flags & SK_ROW_HEADER)
                {
-                       if (_bt_check_rowcompare(key, tuple, tupdesc, dir, continuescan))
+                       if (_bt_check_rowcompare(key, tuple, tupnatts, tupdesc, dir,
+                                                                        continuescan))
                                continue;
                        return false;
                }
@@ -633,25 +1399,73 @@ _bt_checkkeys(IndexScanDesc scan,
                                                          tupdesc,
                                                          &isNull);
 
-               /* btree doesn't support 'A is null' clauses, yet */
                if (key->sk_flags & SK_ISNULL)
                {
-                       /* we shouldn't get here, really; see _bt_preprocess_keys() */
-                       *continuescan = false;
+                       /* Handle IS NULL/NOT NULL tests */
+                       if (key->sk_flags & SK_SEARCHNULL)
+                       {
+                               if (isNull)
+                                       continue;       /* tuple satisfies this qual */
+                       }
+                       else
+                       {
+                               Assert(key->sk_flags & SK_SEARCHNOTNULL);
+                               if (!isNull)
+                                       continue;       /* tuple satisfies this qual */
+                       }
+
+                       /*
+                        * Tuple fails this qual.  If it's a required qual for the current
+                        * scan direction, then we can conclude no further tuples will
+                        * pass, either.
+                        */
+                       if ((key->sk_flags & SK_BT_REQFWD) &&
+                               ScanDirectionIsForward(dir))
+                               *continuescan = false;
+                       else if ((key->sk_flags & SK_BT_REQBKWD) &&
+                                        ScanDirectionIsBackward(dir))
+                               *continuescan = false;
+
+                       /*
+                        * In any case, this indextuple doesn't match the qual.
+                        */
                        return false;
                }
 
                if (isNull)
                {
-                       /*
-                        * Since NULLs are sorted after non-NULLs, we know we have reached
-                        * the upper limit of the range of values for this index attr.  On
-                        * a forward scan, we can stop if this qual is one of the "must
-                        * match" subset.  On a backward scan, however, we should keep
-                        * going.
-                        */
-                       if ((key->sk_flags & SK_BT_REQFWD) && ScanDirectionIsForward(dir))
-                               *continuescan = false;
+                       if (key->sk_flags & SK_BT_NULLS_FIRST)
+                       {
+                               /*
+                                * Since NULLs are sorted before non-NULLs, we know we have
+                                * reached the lower limit of the range of values for this
+                                * index attr.  On a backward scan, we can stop if this qual
+                                * is one of the "must match" subset.  We can stop regardless
+                                * of whether the qual is > or <, so long as it's required,
+                                * because it's not possible for any future tuples to pass. On
+                                * a forward scan, however, we must keep going, because we may
+                                * have initially positioned to the start of the index.
+                                */
+                               if ((key->sk_flags & (SK_BT_REQFWD | SK_BT_REQBKWD)) &&
+                                       ScanDirectionIsBackward(dir))
+                                       *continuescan = false;
+                       }
+                       else
+                       {
+                               /*
+                                * Since NULLs are sorted after non-NULLs, we know we have
+                                * reached the upper limit of the range of values for this
+                                * index attr.  On a forward scan, we can stop if this qual is
+                                * one of the "must match" subset.  We can stop regardless of
+                                * whether the qual is > or <, so long as it's required,
+                                * because it's not possible for any future tuples to pass. On
+                                * a backward scan, however, we must keep going, because we
+                                * may have initially positioned to the end of the index.
+                                */
+                               if ((key->sk_flags & (SK_BT_REQFWD | SK_BT_REQBKWD)) &&
+                                       ScanDirectionIsForward(dir))
+                                       *continuescan = false;
+                       }
 
                        /*
                         * In any case, this indextuple doesn't match the qual.
@@ -659,7 +1473,8 @@ _bt_checkkeys(IndexScanDesc scan,
                        return false;
                }
 
-               test = FunctionCall2(&key->sk_func, datum, key->sk_argument);
+               test = FunctionCall2Coll(&key->sk_func, key->sk_collation,
+                                                                datum, key->sk_argument);
 
                if (!DatumGetBool(test))
                {
@@ -688,10 +1503,7 @@ _bt_checkkeys(IndexScanDesc scan,
        }
 
        /* If we get here, the tuple passes all index quals. */
-       if (tuple_valid)
-               scan->xs_ctup.t_self = tuple->t_tid;
-
-       return tuple_valid;
+       return true;
 }
 
 /*
@@ -704,8 +1516,8 @@ _bt_checkkeys(IndexScanDesc scan,
  * This is a subroutine for _bt_checkkeys, which see for more info.
  */
 static bool
-_bt_check_rowcompare(ScanKey skey, IndexTuple tuple, TupleDesc tupdesc,
-                                        ScanDirection dir, bool *continuescan)
+_bt_check_rowcompare(ScanKey skey, IndexTuple tuple, int tupnatts,
+                                        TupleDesc tupdesc, ScanDirection dir, bool *continuescan)
 {
        ScanKey         subkey = (ScanKey) DatumGetPointer(skey->sk_argument);
        int32           cmpresult = 0;
@@ -721,7 +1533,22 @@ _bt_check_rowcompare(ScanKey skey, IndexTuple tuple, TupleDesc tupdesc,
                bool            isNull;
 
                Assert(subkey->sk_flags & SK_ROW_MEMBER);
-               Assert(subkey->sk_strategy == skey->sk_strategy);
+
+               if (subkey->sk_attno > tupnatts)
+               {
+                       /*
+                        * This attribute is truncated (must be high key).  The value for
+                        * this attribute in the first non-pivot tuple on the page to the
+                        * right could be any possible value.  Assume that truncated
+                        * attribute passes the qual.
+                        */
+                       Assert(ScanDirectionIsForward(dir));
+                       cmpresult = 0;
+                       if (subkey->sk_flags & SK_ROW_END)
+                               break;
+                       subkey++;
+                       continue;
+               }
 
                datum = index_getattr(tuple,
                                                          subkey->sk_attno,
@@ -730,16 +1557,38 @@ _bt_check_rowcompare(ScanKey skey, IndexTuple tuple, TupleDesc tupdesc,
 
                if (isNull)
                {
-                       /*
-                        * Since NULLs are sorted after non-NULLs, we know we have reached
-                        * the upper limit of the range of values for this index attr.  On
-                        * a forward scan, we can stop if this qual is one of the "must
-                        * match" subset.  On a backward scan, however, we should keep
-                        * going.
-                        */
-                       if ((subkey->sk_flags & SK_BT_REQFWD) &&
-                               ScanDirectionIsForward(dir))
-                               *continuescan = false;
+                       if (subkey->sk_flags & SK_BT_NULLS_FIRST)
+                       {
+                               /*
+                                * Since NULLs are sorted before non-NULLs, we know we have
+                                * reached the lower limit of the range of values for this
+                                * index attr.  On a backward scan, we can stop if this qual
+                                * is one of the "must match" subset.  We can stop regardless
+                                * of whether the qual is > or <, so long as it's required,
+                                * because it's not possible for any future tuples to pass. On
+                                * a forward scan, however, we must keep going, because we may
+                                * have initially positioned to the start of the index.
+                                */
+                               if ((subkey->sk_flags & (SK_BT_REQFWD | SK_BT_REQBKWD)) &&
+                                       ScanDirectionIsBackward(dir))
+                                       *continuescan = false;
+                       }
+                       else
+                       {
+                               /*
+                                * Since NULLs are sorted after non-NULLs, we know we have
+                                * reached the upper limit of the range of values for this
+                                * index attr.  On a forward scan, we can stop if this qual is
+                                * one of the "must match" subset.  We can stop regardless of
+                                * whether the qual is > or <, so long as it's required,
+                                * because it's not possible for any future tuples to pass. On
+                                * a backward scan, however, we must keep going, because we
+                                * may have initially positioned to the end of the index.
+                                */
+                               if ((subkey->sk_flags & (SK_BT_REQFWD | SK_BT_REQBKWD)) &&
+                                       ScanDirectionIsForward(dir))
+                                       *continuescan = false;
+                       }
 
                        /*
                         * In any case, this indextuple doesn't match the qual.
@@ -752,9 +1601,8 @@ _bt_check_rowcompare(ScanKey skey, IndexTuple tuple, TupleDesc tupdesc,
                        /*
                         * Unlike the simple-scankey case, this isn't a disallowed case.
                         * But it can never match.  If all the earlier row comparison
-                        * columns are required for the scan direction, we can stop
-                        * the scan, because there can't be another tuple that will
-                        * succeed.
+                        * columns are required for the scan direction, we can stop the
+                        * scan, because there can't be another tuple that will succeed.
                         */
                        if (subkey != (ScanKey) DatumGetPointer(skey->sk_argument))
                                subkey--;
@@ -768,9 +1616,13 @@ _bt_check_rowcompare(ScanKey skey, IndexTuple tuple, TupleDesc tupdesc,
                }
 
                /* Perform the test --- three-way comparison not bool operator */
-               cmpresult = DatumGetInt32(FunctionCall2(&subkey->sk_func,
-                                                                                               datum,
-                                                                                               subkey->sk_argument));
+               cmpresult = DatumGetInt32(FunctionCall2Coll(&subkey->sk_func,
+                                                                                                       subkey->sk_collation,
+                                                                                                       datum,
+                                                                                                       subkey->sk_argument));
+
+               if (subkey->sk_flags & SK_BT_DESC)
+                       INVERT_COMPARE_RESULT(cmpresult);
 
                /* Done comparing if unequal, else advance to next column */
                if (cmpresult != 0)
@@ -788,7 +1640,7 @@ _bt_check_rowcompare(ScanKey skey, IndexTuple tuple, TupleDesc tupdesc,
         */
        switch (subkey->sk_strategy)
        {
-               /* EQ and NE cases aren't allowed here */
+                       /* EQ and NE cases aren't allowed here */
                case BTLessStrategyNumber:
                        result = (cmpresult < 0);
                        break;
@@ -812,8 +1664,8 @@ _bt_check_rowcompare(ScanKey skey, IndexTuple tuple, TupleDesc tupdesc,
        {
                /*
                 * Tuple fails this qual.  If it's a required qual for the current
-                * scan direction, then we can conclude no further tuples will
-                * pass, either.  Note we have to look at the deciding column, not
+                * scan direction, then we can conclude no further tuples will pass,
+                * either.  Note we have to look at the deciding column, not
                 * necessarily the first or last column of the row condition.
                 */
                if ((subkey->sk_flags & SK_BT_REQFWD) &&
@@ -826,3 +1678,896 @@ _bt_check_rowcompare(ScanKey skey, IndexTuple tuple, TupleDesc tupdesc,
 
        return result;
 }
+
+/*
+ * _bt_killitems - set LP_DEAD state for items an indexscan caller has
+ * told us were killed
+ *
+ * scan->opaque, referenced locally through so, contains information about the
+ * current page and killed tuples thereon (generally, this should only be
+ * called if so->numKilled > 0).
+ *
+ * The caller does not have a lock on the page and may or may not have the
+ * page pinned in a buffer.  Note that read-lock is sufficient for setting
+ * LP_DEAD status (which is only a hint).
+ *
+ * We match items by heap TID before assuming they are the right ones to
+ * delete.  We cope with cases where items have moved right due to insertions.
+ * If an item has moved off the current page due to a split, we'll fail to
+ * find it and do nothing (this is not an error case --- we assume the item
+ * will eventually get marked in a future indexscan).
+ *
+ * Note that if we hold a pin on the target page continuously from initially
+ * reading the items until applying this function, VACUUM cannot have deleted
+ * any items from the page, and so there is no need to search left from the
+ * recorded offset.  (This observation also guarantees that the item is still
+ * the right one to delete, which might otherwise be questionable since heap
+ * TIDs can get recycled.)     This holds true even if the page has been modified
+ * by inserts and page splits, so there is no need to consult the LSN.
+ *
+ * If the pin was released after reading the page, then we re-read it.  If it
+ * has been modified since we read it (as determined by the LSN), we dare not
+ * flag any entries because it is possible that the old entry was vacuumed
+ * away and the TID was re-used by a completely different heap tuple.
+ */
+void
+_bt_killitems(IndexScanDesc scan)
+{
+       BTScanOpaque so = (BTScanOpaque) scan->opaque;
+       Page            page;
+       BTPageOpaque opaque;
+       OffsetNumber minoff;
+       OffsetNumber maxoff;
+       int                     i;
+       int                     numKilled = so->numKilled;
+       bool            killedsomething = false;
+
+       Assert(BTScanPosIsValid(so->currPos));
+
+       /*
+        * Always reset the scan state, so we don't look for same items on other
+        * pages.
+        */
+       so->numKilled = 0;
+
+       if (BTScanPosIsPinned(so->currPos))
+       {
+               /*
+                * We have held the pin on this page since we read the index tuples,
+                * so all we need to do is lock it.  The pin will have prevented
+                * re-use of any TID on the page, so there is no need to check the
+                * LSN.
+                */
+               LockBuffer(so->currPos.buf, BT_READ);
+
+               page = BufferGetPage(so->currPos.buf);
+       }
+       else
+       {
+               Buffer          buf;
+
+               /* Attempt to re-read the buffer, getting pin and lock. */
+               buf = _bt_getbuf(scan->indexRelation, so->currPos.currPage, BT_READ);
+
+               /* It might not exist anymore; in which case we can't hint it. */
+               if (!BufferIsValid(buf))
+                       return;
+
+               page = BufferGetPage(buf);
+               if (BufferGetLSNAtomic(buf) == so->currPos.lsn)
+                       so->currPos.buf = buf;
+               else
+               {
+                       /* Modified while not pinned means hinting is not safe. */
+                       _bt_relbuf(scan->indexRelation, buf);
+                       return;
+               }
+       }
+
+       opaque = (BTPageOpaque) PageGetSpecialPointer(page);
+       minoff = P_FIRSTDATAKEY(opaque);
+       maxoff = PageGetMaxOffsetNumber(page);
+
+       for (i = 0; i < numKilled; i++)
+       {
+               int                     itemIndex = so->killedItems[i];
+               BTScanPosItem *kitem = &so->currPos.items[itemIndex];
+               OffsetNumber offnum = kitem->indexOffset;
+
+               Assert(itemIndex >= so->currPos.firstItem &&
+                          itemIndex <= so->currPos.lastItem);
+               if (offnum < minoff)
+                       continue;                       /* pure paranoia */
+               while (offnum <= maxoff)
+               {
+                       ItemId          iid = PageGetItemId(page, offnum);
+                       IndexTuple      ituple = (IndexTuple) PageGetItem(page, iid);
+
+                       if (ItemPointerEquals(&ituple->t_tid, &kitem->heapTid))
+                       {
+                               /* found the item */
+                               ItemIdMarkDead(iid);
+                               killedsomething = true;
+                               break;                  /* out of inner search loop */
+                       }
+                       offnum = OffsetNumberNext(offnum);
+               }
+       }
+
+       /*
+        * Since this can be redone later if needed, mark as dirty hint.
+        *
+        * Whenever we mark anything LP_DEAD, we also set the page's
+        * BTP_HAS_GARBAGE flag, which is likewise just a hint.
+        */
+       if (killedsomething)
+       {
+               opaque->btpo_flags |= BTP_HAS_GARBAGE;
+               MarkBufferDirtyHint(so->currPos.buf, true);
+       }
+
+       LockBuffer(so->currPos.buf, BUFFER_LOCK_UNLOCK);
+}
+
+
+/*
+ * The following routines manage a shared-memory area in which we track
+ * assignment of "vacuum cycle IDs" to currently-active btree vacuuming
+ * operations.  There is a single counter which increments each time we
+ * start a vacuum to assign it a cycle ID.  Since multiple vacuums could
+ * be active concurrently, we have to track the cycle ID for each active
+ * vacuum; this requires at most MaxBackends entries (usually far fewer).
+ * We assume at most one vacuum can be active for a given index.
+ *
+ * Access to the shared memory area is controlled by BtreeVacuumLock.
+ * In principle we could use a separate lmgr locktag for each index,
+ * but a single LWLock is much cheaper, and given the short time that
+ * the lock is ever held, the concurrency hit should be minimal.
+ */
+
+typedef struct BTOneVacInfo
+{
+       LockRelId       relid;                  /* global identifier of an index */
+       BTCycleId       cycleid;                /* cycle ID for its active VACUUM */
+} BTOneVacInfo;
+
+typedef struct BTVacInfo
+{
+       BTCycleId       cycle_ctr;              /* cycle ID most recently assigned */
+       int                     num_vacuums;    /* number of currently active VACUUMs */
+       int                     max_vacuums;    /* allocated length of vacuums[] array */
+       BTOneVacInfo vacuums[FLEXIBLE_ARRAY_MEMBER];
+} BTVacInfo;
+
+static BTVacInfo *btvacinfo;
+
+
+/*
+ * _bt_vacuum_cycleid --- get the active vacuum cycle ID for an index,
+ *             or zero if there is no active VACUUM
+ *
+ * Note: for correct interlocking, the caller must already hold pin and
+ * exclusive lock on each buffer it will store the cycle ID into.  This
+ * ensures that even if a VACUUM starts immediately afterwards, it cannot
+ * process those pages until the page split is complete.
+ */
+BTCycleId
+_bt_vacuum_cycleid(Relation rel)
+{
+       BTCycleId       result = 0;
+       int                     i;
+
+       /* Share lock is enough since this is a read-only operation */
+       LWLockAcquire(BtreeVacuumLock, LW_SHARED);
+
+       for (i = 0; i < btvacinfo->num_vacuums; i++)
+       {
+               BTOneVacInfo *vac = &btvacinfo->vacuums[i];
+
+               if (vac->relid.relId == rel->rd_lockInfo.lockRelId.relId &&
+                       vac->relid.dbId == rel->rd_lockInfo.lockRelId.dbId)
+               {
+                       result = vac->cycleid;
+                       break;
+               }
+       }
+
+       LWLockRelease(BtreeVacuumLock);
+       return result;
+}
+
+/*
+ * _bt_start_vacuum --- assign a cycle ID to a just-starting VACUUM operation
+ *
+ * Note: the caller must guarantee that it will eventually call
+ * _bt_end_vacuum, else we'll permanently leak an array slot.  To ensure
+ * that this happens even in elog(FATAL) scenarios, the appropriate coding
+ * is not just a PG_TRY, but
+ *             PG_ENSURE_ERROR_CLEANUP(_bt_end_vacuum_callback, PointerGetDatum(rel))
+ */
+BTCycleId
+_bt_start_vacuum(Relation rel)
+{
+       BTCycleId       result;
+       int                     i;
+       BTOneVacInfo *vac;
+
+       LWLockAcquire(BtreeVacuumLock, LW_EXCLUSIVE);
+
+       /*
+        * Assign the next cycle ID, being careful to avoid zero as well as the
+        * reserved high values.
+        */
+       result = ++(btvacinfo->cycle_ctr);
+       if (result == 0 || result > MAX_BT_CYCLE_ID)
+               result = btvacinfo->cycle_ctr = 1;
+
+       /* Let's just make sure there's no entry already for this index */
+       for (i = 0; i < btvacinfo->num_vacuums; i++)
+       {
+               vac = &btvacinfo->vacuums[i];
+               if (vac->relid.relId == rel->rd_lockInfo.lockRelId.relId &&
+                       vac->relid.dbId == rel->rd_lockInfo.lockRelId.dbId)
+               {
+                       /*
+                        * Unlike most places in the backend, we have to explicitly
+                        * release our LWLock before throwing an error.  This is because
+                        * we expect _bt_end_vacuum() to be called before transaction
+                        * abort cleanup can run to release LWLocks.
+                        */
+                       LWLockRelease(BtreeVacuumLock);
+                       elog(ERROR, "multiple active vacuums for index \"%s\"",
+                                RelationGetRelationName(rel));
+               }
+       }
+
+       /* OK, add an entry */
+       if (btvacinfo->num_vacuums >= btvacinfo->max_vacuums)
+       {
+               LWLockRelease(BtreeVacuumLock);
+               elog(ERROR, "out of btvacinfo slots");
+       }
+       vac = &btvacinfo->vacuums[btvacinfo->num_vacuums];
+       vac->relid = rel->rd_lockInfo.lockRelId;
+       vac->cycleid = result;
+       btvacinfo->num_vacuums++;
+
+       LWLockRelease(BtreeVacuumLock);
+       return result;
+}
+
+/*
+ * _bt_end_vacuum --- mark a btree VACUUM operation as done
+ *
+ * Note: this is deliberately coded not to complain if no entry is found;
+ * this allows the caller to put PG_TRY around the start_vacuum operation.
+ */
+void
+_bt_end_vacuum(Relation rel)
+{
+       int                     i;
+
+       LWLockAcquire(BtreeVacuumLock, LW_EXCLUSIVE);
+
+       /* Find the array entry */
+       for (i = 0; i < btvacinfo->num_vacuums; i++)
+       {
+               BTOneVacInfo *vac = &btvacinfo->vacuums[i];
+
+               if (vac->relid.relId == rel->rd_lockInfo.lockRelId.relId &&
+                       vac->relid.dbId == rel->rd_lockInfo.lockRelId.dbId)
+               {
+                       /* Remove it by shifting down the last entry */
+                       *vac = btvacinfo->vacuums[btvacinfo->num_vacuums - 1];
+                       btvacinfo->num_vacuums--;
+                       break;
+               }
+       }
+
+       LWLockRelease(BtreeVacuumLock);
+}
+
+/*
+ * _bt_end_vacuum wrapped as an on_shmem_exit callback function
+ */
+void
+_bt_end_vacuum_callback(int code, Datum arg)
+{
+       _bt_end_vacuum((Relation) DatumGetPointer(arg));
+}
+
+/*
+ * BTreeShmemSize --- report amount of shared memory space needed
+ */
+Size
+BTreeShmemSize(void)
+{
+       Size            size;
+
+       size = offsetof(BTVacInfo, vacuums);
+       size = add_size(size, mul_size(MaxBackends, sizeof(BTOneVacInfo)));
+       return size;
+}
+
+/*
+ * BTreeShmemInit --- initialize this module's shared memory
+ */
+void
+BTreeShmemInit(void)
+{
+       bool            found;
+
+       btvacinfo = (BTVacInfo *) ShmemInitStruct("BTree Vacuum State",
+                                                                                         BTreeShmemSize(),
+                                                                                         &found);
+
+       if (!IsUnderPostmaster)
+       {
+               /* Initialize shared memory area */
+               Assert(!found);
+
+               /*
+                * It doesn't really matter what the cycle counter starts at, but
+                * having it always start the same doesn't seem good.  Seed with
+                * low-order bits of time() instead.
+                */
+               btvacinfo->cycle_ctr = (BTCycleId) time(NULL);
+
+               btvacinfo->num_vacuums = 0;
+               btvacinfo->max_vacuums = MaxBackends;
+       }
+       else
+               Assert(found);
+}
+
+bytea *
+btoptions(Datum reloptions, bool validate)
+{
+       return default_reloptions(reloptions, validate, RELOPT_KIND_BTREE);
+}
+
+/*
+ *     btproperty() -- Check boolean properties of indexes.
+ *
+ * This is optional, but handling AMPROP_RETURNABLE here saves opening the rel
+ * to call btcanreturn.
+ */
+bool
+btproperty(Oid index_oid, int attno,
+                  IndexAMProperty prop, const char *propname,
+                  bool *res, bool *isnull)
+{
+       switch (prop)
+       {
+               case AMPROP_RETURNABLE:
+                       /* answer only for columns, not AM or whole index */
+                       if (attno == 0)
+                               return false;
+                       /* otherwise, btree can always return data */
+                       *res = true;
+                       return true;
+
+               default:
+                       return false;           /* punt to generic code */
+       }
+}
+
+/*
+ *     btbuildphasename() -- Return name of index build phase.
+ */
+char *
+btbuildphasename(int64 phasenum)
+{
+       switch (phasenum)
+       {
+               case PROGRESS_CREATEIDX_SUBPHASE_INITIALIZE:
+                       return "initializing";
+               case PROGRESS_BTREE_PHASE_INDEXBUILD_TABLESCAN:
+                       return "scanning table";
+               case PROGRESS_BTREE_PHASE_PERFORMSORT_1:
+                       return "sorting live tuples";
+               case PROGRESS_BTREE_PHASE_PERFORMSORT_2:
+                       return "sorting dead tuples";
+               case PROGRESS_BTREE_PHASE_LEAF_LOAD:
+                       return "loading tuples in tree";
+               default:
+                       return NULL;
+       }
+}
+
+/*
+ *     _bt_truncate() -- create tuple without unneeded suffix attributes.
+ *
+ * Returns truncated pivot index tuple allocated in caller's memory context,
+ * with key attributes copied from caller's firstright argument.  If rel is
+ * an INCLUDE index, non-key attributes will definitely be truncated away,
+ * since they're not part of the key space.  More aggressive suffix
+ * truncation can take place when it's clear that the returned tuple does not
+ * need one or more suffix key attributes.  We only need to keep firstright
+ * attributes up to and including the first non-lastleft-equal attribute.
+ * Caller's insertion scankey is used to compare the tuples; the scankey's
+ * argument values are not considered here.
+ *
+ * Sometimes this routine will return a new pivot tuple that takes up more
+ * space than firstright, because a new heap TID attribute had to be added to
+ * distinguish lastleft from firstright.  This should only happen when the
+ * caller is in the process of splitting a leaf page that has many logical
+ * duplicates, where it's unavoidable.
+ *
+ * Note that returned tuple's t_tid offset will hold the number of attributes
+ * present, so the original item pointer offset is not represented.  Caller
+ * should only change truncated tuple's downlink.  Note also that truncated
+ * key attributes are treated as containing "minus infinity" values by
+ * _bt_compare().
+ *
+ * In the worst case (when a heap TID is appended) the size of the returned
+ * tuple is the size of the first right tuple plus an additional MAXALIGN()'d
+ * item pointer.  This guarantee is important, since callers need to stay
+ * under the 1/3 of a page restriction on tuple size.  If this routine is ever
+ * taught to truncate within an attribute/datum, it will need to avoid
+ * returning an enlarged tuple to caller when truncation + TOAST compression
+ * ends up enlarging the final datum.
+ */
+IndexTuple
+_bt_truncate(Relation rel, IndexTuple lastleft, IndexTuple firstright,
+                        BTScanInsert itup_key)
+{
+       TupleDesc       itupdesc = RelationGetDescr(rel);
+       int16           natts = IndexRelationGetNumberOfAttributes(rel);
+       int16           nkeyatts = IndexRelationGetNumberOfKeyAttributes(rel);
+       int                     keepnatts;
+       IndexTuple      pivot;
+       ItemPointer pivotheaptid;
+       Size            newsize;
+
+       /*
+        * We should only ever truncate leaf index tuples.  It's never okay to
+        * truncate a second time.
+        */
+       Assert(BTreeTupleGetNAtts(lastleft, rel) == natts);
+       Assert(BTreeTupleGetNAtts(firstright, rel) == natts);
+
+       /* Determine how many attributes must be kept in truncated tuple */
+       keepnatts = _bt_keep_natts(rel, lastleft, firstright, itup_key);
+
+#ifdef DEBUG_NO_TRUNCATE
+       /* Force truncation to be ineffective for testing purposes */
+       keepnatts = nkeyatts + 1;
+#endif
+
+       if (keepnatts <= natts)
+       {
+               IndexTuple      tidpivot;
+
+               pivot = index_truncate_tuple(itupdesc, firstright, keepnatts);
+
+               /*
+                * If there is a distinguishing key attribute within new pivot tuple,
+                * there is no need to add an explicit heap TID attribute
+                */
+               if (keepnatts <= nkeyatts)
+               {
+                       BTreeTupleSetNAtts(pivot, keepnatts);
+                       return pivot;
+               }
+
+               /*
+                * Only truncation of non-key attributes was possible, since key
+                * attributes are all equal.  It's necessary to add a heap TID
+                * attribute to the new pivot tuple.
+                */
+               Assert(natts != nkeyatts);
+               newsize = IndexTupleSize(pivot) + MAXALIGN(sizeof(ItemPointerData));
+               tidpivot = palloc0(newsize);
+               memcpy(tidpivot, pivot, IndexTupleSize(pivot));
+               /* cannot leak memory here */
+               pfree(pivot);
+               pivot = tidpivot;
+       }
+       else
+       {
+               /*
+                * No truncation was possible, since key attributes are all equal.
+                * It's necessary to add a heap TID attribute to the new pivot tuple.
+                */
+               Assert(natts == nkeyatts);
+               newsize = IndexTupleSize(firstright) + MAXALIGN(sizeof(ItemPointerData));
+               pivot = palloc0(newsize);
+               memcpy(pivot, firstright, IndexTupleSize(firstright));
+       }
+
+       /*
+        * We have to use heap TID as a unique-ifier in the new pivot tuple, since
+        * no non-TID key attribute in the right item readily distinguishes the
+        * right side of the split from the left side.  Use enlarged space that
+        * holds a copy of first right tuple; place a heap TID value within the
+        * extra space that remains at the end.
+        *
+        * nbtree conceptualizes this case as an inability to truncate away any
+        * key attribute.  We must use an alternative representation of heap TID
+        * within pivots because heap TID is only treated as an attribute within
+        * nbtree (e.g., there is no pg_attribute entry).
+        */
+       Assert(itup_key->heapkeyspace);
+       pivot->t_info &= ~INDEX_SIZE_MASK;
+       pivot->t_info |= newsize;
+
+       /*
+        * Lehman & Yao use lastleft as the leaf high key in all cases, but don't
+        * consider suffix truncation.  It seems like a good idea to follow that
+        * example in cases where no truncation takes place -- use lastleft's heap
+        * TID.  (This is also the closest value to negative infinity that's
+        * legally usable.)
+        */
+       pivotheaptid = (ItemPointer) ((char *) pivot + newsize -
+                                                                 sizeof(ItemPointerData));
+       ItemPointerCopy(&lastleft->t_tid, pivotheaptid);
+
+       /*
+        * Lehman and Yao require that the downlink to the right page, which is to
+        * be inserted into the parent page in the second phase of a page split be
+        * a strict lower bound on items on the right page, and a non-strict upper
+        * bound for items on the left page.  Assert that heap TIDs follow these
+        * invariants, since a heap TID value is apparently needed as a
+        * tiebreaker.
+        */
+#ifndef DEBUG_NO_TRUNCATE
+       Assert(ItemPointerCompare(&lastleft->t_tid, &firstright->t_tid) < 0);
+       Assert(ItemPointerCompare(pivotheaptid, &lastleft->t_tid) >= 0);
+       Assert(ItemPointerCompare(pivotheaptid, &firstright->t_tid) < 0);
+#else
+
+       /*
+        * Those invariants aren't guaranteed to hold for lastleft + firstright
+        * heap TID attribute values when they're considered here only because
+        * DEBUG_NO_TRUNCATE is defined (a heap TID is probably not actually
+        * needed as a tiebreaker).  DEBUG_NO_TRUNCATE must therefore use a heap
+        * TID value that always works as a strict lower bound for items to the
+        * right.  In particular, it must avoid using firstright's leading key
+        * attribute values along with lastleft's heap TID value when lastleft's
+        * TID happens to be greater than firstright's TID.
+        */
+       ItemPointerCopy(&firstright->t_tid, pivotheaptid);
+
+       /*
+        * Pivot heap TID should never be fully equal to firstright.  Note that
+        * the pivot heap TID will still end up equal to lastleft's heap TID when
+        * that's the only usable value.
+        */
+       ItemPointerSetOffsetNumber(pivotheaptid,
+                                                          OffsetNumberPrev(ItemPointerGetOffsetNumber(pivotheaptid)));
+       Assert(ItemPointerCompare(pivotheaptid, &firstright->t_tid) < 0);
+#endif
+
+       BTreeTupleSetNAtts(pivot, nkeyatts);
+       BTreeTupleSetAltHeapTID(pivot);
+
+       return pivot;
+}
+
+/*
+ * _bt_keep_natts - how many key attributes to keep when truncating.
+ *
+ * Caller provides two tuples that enclose a split point.  Caller's insertion
+ * scankey is used to compare the tuples; the scankey's argument values are
+ * not considered here.
+ *
+ * This can return a number of attributes that is one greater than the
+ * number of key attributes for the index relation.  This indicates that the
+ * caller must use a heap TID as a unique-ifier in new pivot tuple.
+ */
+static int
+_bt_keep_natts(Relation rel, IndexTuple lastleft, IndexTuple firstright,
+                          BTScanInsert itup_key)
+{
+       int                     nkeyatts = IndexRelationGetNumberOfKeyAttributes(rel);
+       TupleDesc       itupdesc = RelationGetDescr(rel);
+       int                     keepnatts;
+       ScanKey         scankey;
+
+       /*
+        * Be consistent about the representation of BTREE_VERSION 2/3 tuples
+        * across Postgres versions; don't allow new pivot tuples to have
+        * truncated key attributes there.  _bt_compare() treats truncated key
+        * attributes as having the value minus infinity, which would break
+        * searches within !heapkeyspace indexes.
+        */
+       if (!itup_key->heapkeyspace)
+       {
+               Assert(nkeyatts != IndexRelationGetNumberOfAttributes(rel));
+               return nkeyatts;
+       }
+
+       scankey = itup_key->scankeys;
+       keepnatts = 1;
+       for (int attnum = 1; attnum <= nkeyatts; attnum++, scankey++)
+       {
+               Datum           datum1,
+                                       datum2;
+               bool            isNull1,
+                                       isNull2;
+
+               datum1 = index_getattr(lastleft, attnum, itupdesc, &isNull1);
+               datum2 = index_getattr(firstright, attnum, itupdesc, &isNull2);
+
+               if (isNull1 != isNull2)
+                       break;
+
+               if (!isNull1 &&
+                       DatumGetInt32(FunctionCall2Coll(&scankey->sk_func,
+                                                                                       scankey->sk_collation,
+                                                                                       datum1,
+                                                                                       datum2)) != 0)
+                       break;
+
+               keepnatts++;
+       }
+
+       return keepnatts;
+}
+
+/*
+ * _bt_keep_natts_fast - fast bitwise variant of _bt_keep_natts.
+ *
+ * This is exported so that a candidate split point can have its effect on
+ * suffix truncation inexpensively evaluated ahead of time when finding a
+ * split location.  A naive bitwise approach to datum comparisons is used to
+ * save cycles.
+ *
+ * The approach taken here usually provides the same answer as _bt_keep_natts
+ * will (for the same pair of tuples from a heapkeyspace index), since the
+ * majority of btree opclasses can never indicate that two datums are equal
+ * unless they're bitwise equal (once detoasted).  Similarly, result may
+ * differ from the _bt_keep_natts result when either tuple has TOASTed datums,
+ * though this is barely possible in practice.
+ *
+ * These issues must be acceptable to callers, typically because they're only
+ * concerned about making suffix truncation as effective as possible without
+ * leaving excessive amounts of free space on either side of page split.
+ * Callers can rely on the fact that attributes considered equal here are
+ * definitely also equal according to _bt_keep_natts.
+ */
+int
+_bt_keep_natts_fast(Relation rel, IndexTuple lastleft, IndexTuple firstright)
+{
+       TupleDesc       itupdesc = RelationGetDescr(rel);
+       int                     keysz = IndexRelationGetNumberOfKeyAttributes(rel);
+       int                     keepnatts;
+
+       keepnatts = 1;
+       for (int attnum = 1; attnum <= keysz; attnum++)
+       {
+               Datum           datum1,
+                                       datum2;
+               bool            isNull1,
+                                       isNull2;
+               Form_pg_attribute att;
+
+               datum1 = index_getattr(lastleft, attnum, itupdesc, &isNull1);
+               datum2 = index_getattr(firstright, attnum, itupdesc, &isNull2);
+               att = TupleDescAttr(itupdesc, attnum - 1);
+
+               if (isNull1 != isNull2)
+                       break;
+
+               if (!isNull1 &&
+                       !datumIsEqual(datum1, datum2, att->attbyval, att->attlen))
+                       break;
+
+               keepnatts++;
+       }
+
+       return keepnatts;
+}
+
+/*
+ *  _bt_check_natts() -- Verify tuple has expected number of attributes.
+ *
+ * Returns value indicating if the expected number of attributes were found
+ * for a particular offset on page.  This can be used as a general purpose
+ * sanity check.
+ *
+ * Testing a tuple directly with BTreeTupleGetNAtts() should generally be
+ * preferred to calling here.  That's usually more convenient, and is always
+ * more explicit.  Call here instead when offnum's tuple may be a negative
+ * infinity tuple that uses the pre-v11 on-disk representation, or when a low
+ * context check is appropriate.  This routine is as strict as possible about
+ * what is expected on each version of btree.
+ */
+bool
+_bt_check_natts(Relation rel, bool heapkeyspace, Page page, OffsetNumber offnum)
+{
+       int16           natts = IndexRelationGetNumberOfAttributes(rel);
+       int16           nkeyatts = IndexRelationGetNumberOfKeyAttributes(rel);
+       BTPageOpaque opaque = (BTPageOpaque) PageGetSpecialPointer(page);
+       IndexTuple      itup;
+       int                     tupnatts;
+
+       /*
+        * We cannot reliably test a deleted or half-deleted page, since they have
+        * dummy high keys
+        */
+       if (P_IGNORE(opaque))
+               return true;
+
+       Assert(offnum >= FirstOffsetNumber &&
+                  offnum <= PageGetMaxOffsetNumber(page));
+
+       /*
+        * Mask allocated for number of keys in index tuple must be able to fit
+        * maximum possible number of index attributes
+        */
+       StaticAssertStmt(BT_N_KEYS_OFFSET_MASK >= INDEX_MAX_KEYS,
+                                        "BT_N_KEYS_OFFSET_MASK can't fit INDEX_MAX_KEYS");
+
+       itup = (IndexTuple) PageGetItem(page, PageGetItemId(page, offnum));
+       tupnatts = BTreeTupleGetNAtts(itup, rel);
+
+       if (P_ISLEAF(opaque))
+       {
+               if (offnum >= P_FIRSTDATAKEY(opaque))
+               {
+                       /*
+                        * Non-pivot tuples currently never use alternative heap TID
+                        * representation -- even those within heapkeyspace indexes
+                        */
+                       if ((itup->t_info & INDEX_ALT_TID_MASK) != 0)
+                               return false;
+
+                       /*
+                        * Leaf tuples that are not the page high key (non-pivot tuples)
+                        * should never be truncated.  (Note that tupnatts must have been
+                        * inferred, rather than coming from an explicit on-disk
+                        * representation.)
+                        */
+                       return tupnatts == natts;
+               }
+               else
+               {
+                       /*
+                        * Rightmost page doesn't contain a page high key, so tuple was
+                        * checked above as ordinary leaf tuple
+                        */
+                       Assert(!P_RIGHTMOST(opaque));
+
+                       /*
+                        * !heapkeyspace high key tuple contains only key attributes. Note
+                        * that tupnatts will only have been explicitly represented in
+                        * !heapkeyspace indexes that happen to have non-key attributes.
+                        */
+                       if (!heapkeyspace)
+                               return tupnatts == nkeyatts;
+
+                       /* Use generic heapkeyspace pivot tuple handling */
+               }
+       }
+       else                                            /* !P_ISLEAF(opaque) */
+       {
+               if (offnum == P_FIRSTDATAKEY(opaque))
+               {
+                       /*
+                        * The first tuple on any internal page (possibly the first after
+                        * its high key) is its negative infinity tuple.  Negative
+                        * infinity tuples are always truncated to zero attributes.  They
+                        * are a particular kind of pivot tuple.
+                        */
+                       if (heapkeyspace)
+                               return tupnatts == 0;
+
+                       /*
+                        * The number of attributes won't be explicitly represented if the
+                        * negative infinity tuple was generated during a page split that
+                        * occurred with a version of Postgres before v11.  There must be
+                        * a problem when there is an explicit representation that is
+                        * non-zero, or when there is no explicit representation and the
+                        * tuple is evidently not a pre-pg_upgrade tuple.
+                        *
+                        * Prior to v11, downlinks always had P_HIKEY as their offset. Use
+                        * that to decide if the tuple is a pre-v11 tuple.
+                        */
+                       return tupnatts == 0 ||
+                               ((itup->t_info & INDEX_ALT_TID_MASK) == 0 &&
+                                ItemPointerGetOffsetNumber(&(itup->t_tid)) == P_HIKEY);
+               }
+               else
+               {
+                       /*
+                        * !heapkeyspace downlink tuple with separator key contains only
+                        * key attributes.  Note that tupnatts will only have been
+                        * explicitly represented in !heapkeyspace indexes that happen to
+                        * have non-key attributes.
+                        */
+                       if (!heapkeyspace)
+                               return tupnatts == nkeyatts;
+
+                       /* Use generic heapkeyspace pivot tuple handling */
+               }
+
+       }
+
+       /* Handle heapkeyspace pivot tuples (excluding minus infinity items) */
+       Assert(heapkeyspace);
+
+       /*
+        * Explicit representation of the number of attributes is mandatory with
+        * heapkeyspace index pivot tuples, regardless of whether or not there are
+        * non-key attributes.
+        */
+       if ((itup->t_info & INDEX_ALT_TID_MASK) == 0)
+               return false;
+
+       /*
+        * Heap TID is a tiebreaker key attribute, so it cannot be untruncated
+        * when any other key attribute is truncated
+        */
+       if (BTreeTupleGetHeapTID(itup) != NULL && tupnatts != nkeyatts)
+               return false;
+
+       /*
+        * Pivot tuple must have at least one untruncated key attribute (minus
+        * infinity pivot tuples are the only exception).  Pivot tuples can never
+        * represent that there is a value present for a key attribute that
+        * exceeds pg_index.indnkeyatts for the index.
+        */
+       return tupnatts > 0 && tupnatts <= nkeyatts;
+}
+
+/*
+ *
+ *  _bt_check_third_page() -- check whether tuple fits on a btree page at all.
+ *
+ * We actually need to be able to fit three items on every page, so restrict
+ * any one item to 1/3 the per-page available space.  Note that itemsz should
+ * not include the ItemId overhead.
+ *
+ * It might be useful to apply TOAST methods rather than throw an error here.
+ * Using out of line storage would break assumptions made by suffix truncation
+ * and by contrib/amcheck, though.
+ */
+void
+_bt_check_third_page(Relation rel, Relation heap, bool needheaptidspace,
+                                        Page page, IndexTuple newtup)
+{
+       Size            itemsz;
+       BTPageOpaque opaque;
+
+       itemsz = MAXALIGN(IndexTupleSize(newtup));
+
+       /* Double check item size against limit */
+       if (itemsz <= BTMaxItemSize(page))
+               return;
+
+       /*
+        * Tuple is probably too large to fit on page, but it's possible that the
+        * index uses version 2 or version 3, or that page is an internal page, in
+        * which case a slightly higher limit applies.
+        */
+       if (!needheaptidspace && itemsz <= BTMaxItemSizeNoHeapTid(page))
+               return;
+
+       /*
+        * Internal page insertions cannot fail here, because that would mean that
+        * an earlier leaf level insertion that should have failed didn't
+        */
+       opaque = (BTPageOpaque) PageGetSpecialPointer(page);
+       if (!P_ISLEAF(opaque))
+               elog(ERROR, "cannot insert oversized tuple of size %zu on internal page of index \"%s\"",
+                        itemsz, RelationGetRelationName(rel));
+
+       ereport(ERROR,
+                       (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
+                        errmsg("index row size %zu exceeds btree version %u maximum %zu for index \"%s\"",
+                                       itemsz,
+                                       needheaptidspace ? BTREE_VERSION : BTREE_NOVAC_VERSION,
+                                       needheaptidspace ? BTMaxItemSize(page) :
+                                       BTMaxItemSizeNoHeapTid(page),
+                                       RelationGetRelationName(rel)),
+                        errdetail("Index row references tuple (%u,%u) in relation \"%s\".",
+                                          ItemPointerGetBlockNumber(&newtup->t_tid),
+                                          ItemPointerGetOffsetNumber(&newtup->t_tid),
+                                          RelationGetRelationName(heap)),
+                        errhint("Values larger than 1/3 of a buffer page cannot be indexed.\n"
+                                        "Consider a function index of an MD5 hash of the value, "
+                                        "or use full text indexing."),
+                        errtableconstraint(heap, RelationGetRelationName(rel))));
+}