]> granicus.if.org Git - clang/blobdiff - lib/CodeGen/CGOpenMPRuntimeNVPTX.cpp
Merging r308455:
[clang] / lib / CodeGen / CGOpenMPRuntimeNVPTX.cpp
index 680ed578134d1f88e9fcd5e526e653138e398f0f..3ced05d08a47c995df79709f2af498fd9661f796 100644 (file)
 
 #include "CGOpenMPRuntimeNVPTX.h"
 #include "clang/AST/DeclOpenMP.h"
+#include "CodeGenFunction.h"
+#include "clang/AST/StmtOpenMP.h"
 
 using namespace clang;
 using namespace CodeGen;
 
+namespace {
+enum OpenMPRTLFunctionNVPTX {
+  /// \brief Call to void __kmpc_kernel_init(kmp_int32 thread_limit);
+  OMPRTL_NVPTX__kmpc_kernel_init,
+  /// \brief Call to void __kmpc_kernel_deinit();
+  OMPRTL_NVPTX__kmpc_kernel_deinit,
+  /// \brief Call to void __kmpc_spmd_kernel_init(kmp_int32 thread_limit,
+  /// short RequiresOMPRuntime, short RequiresDataSharing);
+  OMPRTL_NVPTX__kmpc_spmd_kernel_init,
+  /// \brief Call to void __kmpc_spmd_kernel_deinit();
+  OMPRTL_NVPTX__kmpc_spmd_kernel_deinit,
+  /// \brief Call to void __kmpc_kernel_prepare_parallel(void
+  /// *outlined_function);
+  OMPRTL_NVPTX__kmpc_kernel_prepare_parallel,
+  /// \brief Call to bool __kmpc_kernel_parallel(void **outlined_function);
+  OMPRTL_NVPTX__kmpc_kernel_parallel,
+  /// \brief Call to void __kmpc_kernel_end_parallel();
+  OMPRTL_NVPTX__kmpc_kernel_end_parallel,
+  /// Call to void __kmpc_serialized_parallel(ident_t *loc, kmp_int32
+  /// global_tid);
+  OMPRTL_NVPTX__kmpc_serialized_parallel,
+  /// Call to void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32
+  /// global_tid);
+  OMPRTL_NVPTX__kmpc_end_serialized_parallel,
+  /// \brief Call to int32_t __kmpc_shuffle_int32(int32_t element,
+  /// int16_t lane_offset, int16_t warp_size);
+  OMPRTL_NVPTX__kmpc_shuffle_int32,
+  /// \brief Call to int64_t __kmpc_shuffle_int64(int64_t element,
+  /// int16_t lane_offset, int16_t warp_size);
+  OMPRTL_NVPTX__kmpc_shuffle_int64,
+  /// \brief Call to __kmpc_nvptx_parallel_reduce_nowait(kmp_int32
+  /// global_tid, kmp_int32 num_vars, size_t reduce_size, void* reduce_data,
+  /// void (*kmp_ShuffleReductFctPtr)(void *rhsData, int16_t lane_id, int16_t
+  /// lane_offset, int16_t shortCircuit),
+  /// void (*kmp_InterWarpCopyFctPtr)(void* src, int32_t warp_num));
+  OMPRTL_NVPTX__kmpc_parallel_reduce_nowait,
+  /// \brief Call to __kmpc_nvptx_teams_reduce_nowait(int32_t global_tid,
+  /// int32_t num_vars, size_t reduce_size, void *reduce_data,
+  /// void (*kmp_ShuffleReductFctPtr)(void *rhs, int16_t lane_id, int16_t
+  /// lane_offset, int16_t shortCircuit),
+  /// void (*kmp_InterWarpCopyFctPtr)(void* src, int32_t warp_num),
+  /// void (*kmp_CopyToScratchpadFctPtr)(void *reduce_data, void * scratchpad,
+  /// int32_t index, int32_t width),
+  /// void (*kmp_LoadReduceFctPtr)(void *reduce_data, void * scratchpad, int32_t
+  /// index, int32_t width, int32_t reduce))
+  OMPRTL_NVPTX__kmpc_teams_reduce_nowait,
+  /// \brief Call to __kmpc_nvptx_end_reduce_nowait(int32_t global_tid);
+  OMPRTL_NVPTX__kmpc_end_reduce_nowait
+};
+
+/// Pre(post)-action for different OpenMP constructs specialized for NVPTX.
+class NVPTXActionTy final : public PrePostActionTy {
+  llvm::Value *EnterCallee;
+  ArrayRef<llvm::Value *> EnterArgs;
+  llvm::Value *ExitCallee;
+  ArrayRef<llvm::Value *> ExitArgs;
+  bool Conditional;
+  llvm::BasicBlock *ContBlock = nullptr;
+
+public:
+  NVPTXActionTy(llvm::Value *EnterCallee, ArrayRef<llvm::Value *> EnterArgs,
+                llvm::Value *ExitCallee, ArrayRef<llvm::Value *> ExitArgs,
+                bool Conditional = false)
+      : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee),
+        ExitArgs(ExitArgs), Conditional(Conditional) {}
+  void Enter(CodeGenFunction &CGF) override {
+    llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs);
+    if (Conditional) {
+      llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes);
+      auto *ThenBlock = CGF.createBasicBlock("omp_if.then");
+      ContBlock = CGF.createBasicBlock("omp_if.end");
+      // Generate the branch (If-stmt)
+      CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock);
+      CGF.EmitBlock(ThenBlock);
+    }
+  }
+  void Done(CodeGenFunction &CGF) {
+    // Emit the rest of blocks/branches
+    CGF.EmitBranch(ContBlock);
+    CGF.EmitBlock(ContBlock, true);
+  }
+  void Exit(CodeGenFunction &CGF) override {
+    CGF.EmitRuntimeCall(ExitCallee, ExitArgs);
+  }
+};
+
+// A class to track the execution mode when codegening directives within
+// a target region. The appropriate mode (generic/spmd) is set on entry
+// to the target region and used by containing directives such as 'parallel'
+// to emit optimized code.
+class ExecutionModeRAII {
+private:
+  CGOpenMPRuntimeNVPTX::ExecutionMode SavedMode;
+  CGOpenMPRuntimeNVPTX::ExecutionMode &Mode;
+
+public:
+  ExecutionModeRAII(CGOpenMPRuntimeNVPTX::ExecutionMode &Mode,
+                    CGOpenMPRuntimeNVPTX::ExecutionMode NewMode)
+      : Mode(Mode) {
+    SavedMode = Mode;
+    Mode = NewMode;
+  }
+  ~ExecutionModeRAII() { Mode = SavedMode; }
+};
+
+/// GPU Configuration:  This information can be derived from cuda registers,
+/// however, providing compile time constants helps generate more efficient
+/// code.  For all practical purposes this is fine because the configuration
+/// is the same for all known NVPTX architectures.
+enum MachineConfiguration : unsigned {
+  WarpSize = 32,
+  /// Number of bits required to represent a lane identifier, which is
+  /// computed as log_2(WarpSize).
+  LaneIDBits = 5,
+  LaneIDMask = WarpSize - 1,
+
+  /// Global memory alignment for performance.
+  GlobalMemoryAlignment = 256,
+};
+
+enum NamedBarrier : unsigned {
+  /// Synchronize on this barrier #ID using a named barrier primitive.
+  /// Only the subset of active threads in a parallel region arrive at the
+  /// barrier.
+  NB_Parallel = 1,
+};
+} // anonymous namespace
+
+/// Get the GPU warp size.
+static llvm::Value *getNVPTXWarpSize(CodeGenFunction &CGF) {
+  CGBuilderTy &Bld = CGF.Builder;
+  return Bld.CreateCall(
+      llvm::Intrinsic::getDeclaration(
+          &CGF.CGM.getModule(), llvm::Intrinsic::nvvm_read_ptx_sreg_warpsize),
+      llvm::None, "nvptx_warp_size");
+}
+
+/// Get the id of the current thread on the GPU.
+static llvm::Value *getNVPTXThreadID(CodeGenFunction &CGF) {
+  CGBuilderTy &Bld = CGF.Builder;
+  return Bld.CreateCall(
+      llvm::Intrinsic::getDeclaration(
+          &CGF.CGM.getModule(), llvm::Intrinsic::nvvm_read_ptx_sreg_tid_x),
+      llvm::None, "nvptx_tid");
+}
+
+/// Get the id of the warp in the block.
+/// We assume that the warp size is 32, which is always the case
+/// on the NVPTX device, to generate more efficient code.
+static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) {
+  CGBuilderTy &Bld = CGF.Builder;
+  return Bld.CreateAShr(getNVPTXThreadID(CGF), LaneIDBits, "nvptx_warp_id");
+}
+
+/// Get the id of the current lane in the Warp.
+/// We assume that the warp size is 32, which is always the case
+/// on the NVPTX device, to generate more efficient code.
+static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) {
+  CGBuilderTy &Bld = CGF.Builder;
+  return Bld.CreateAnd(getNVPTXThreadID(CGF), Bld.getInt32(LaneIDMask),
+                       "nvptx_lane_id");
+}
+
+/// Get the maximum number of threads in a block of the GPU.
+static llvm::Value *getNVPTXNumThreads(CodeGenFunction &CGF) {
+  CGBuilderTy &Bld = CGF.Builder;
+  return Bld.CreateCall(
+      llvm::Intrinsic::getDeclaration(
+          &CGF.CGM.getModule(), llvm::Intrinsic::nvvm_read_ptx_sreg_ntid_x),
+      llvm::None, "nvptx_num_threads");
+}
+
+/// Get barrier to synchronize all threads in a block.
+static void getNVPTXCTABarrier(CodeGenFunction &CGF) {
+  CGBuilderTy &Bld = CGF.Builder;
+  Bld.CreateCall(llvm::Intrinsic::getDeclaration(
+      &CGF.CGM.getModule(), llvm::Intrinsic::nvvm_barrier0));
+}
+
+/// Get barrier #ID to synchronize selected (multiple of warp size) threads in
+/// a CTA.
+static void getNVPTXBarrier(CodeGenFunction &CGF, int ID,
+                            llvm::Value *NumThreads) {
+  CGBuilderTy &Bld = CGF.Builder;
+  llvm::Value *Args[] = {Bld.getInt32(ID), NumThreads};
+  Bld.CreateCall(llvm::Intrinsic::getDeclaration(&CGF.CGM.getModule(),
+                                                 llvm::Intrinsic::nvvm_barrier),
+                 Args);
+}
+
+/// Synchronize all GPU threads in a block.
+static void syncCTAThreads(CodeGenFunction &CGF) { getNVPTXCTABarrier(CGF); }
+
+/// Synchronize worker threads in a parallel region.
+static void syncParallelThreads(CodeGenFunction &CGF, llvm::Value *NumThreads) {
+  return getNVPTXBarrier(CGF, NB_Parallel, NumThreads);
+}
+
+/// Get the value of the thread_limit clause in the teams directive.
+/// For the 'generic' execution mode, the runtime encodes thread_limit in
+/// the launch parameters, always starting thread_limit+warpSize threads per
+/// CTA. The threads in the last warp are reserved for master execution.
+/// For the 'spmd' execution mode, all threads in a CTA are part of the team.
+static llvm::Value *getThreadLimit(CodeGenFunction &CGF,
+                                   bool IsInSpmdExecutionMode = false) {
+  CGBuilderTy &Bld = CGF.Builder;
+  return IsInSpmdExecutionMode
+             ? getNVPTXNumThreads(CGF)
+             : Bld.CreateSub(getNVPTXNumThreads(CGF), getNVPTXWarpSize(CGF),
+                             "thread_limit");
+}
+
+/// Get the thread id of the OMP master thread.
+/// The master thread id is the first thread (lane) of the last warp in the
+/// GPU block.  Warp size is assumed to be some power of 2.
+/// Thread id is 0 indexed.
+/// E.g: If NumThreads is 33, master id is 32.
+///      If NumThreads is 64, master id is 32.
+///      If NumThreads is 1024, master id is 992.
+static llvm::Value *getMasterThreadID(CodeGenFunction &CGF) {
+  CGBuilderTy &Bld = CGF.Builder;
+  llvm::Value *NumThreads = getNVPTXNumThreads(CGF);
+
+  // We assume that the warp size is a power of 2.
+  llvm::Value *Mask = Bld.CreateSub(getNVPTXWarpSize(CGF), Bld.getInt32(1));
+
+  return Bld.CreateAnd(Bld.CreateSub(NumThreads, Bld.getInt32(1)),
+                       Bld.CreateNot(Mask), "master_tid");
+}
+
+CGOpenMPRuntimeNVPTX::WorkerFunctionState::WorkerFunctionState(
+    CodeGenModule &CGM)
+    : WorkerFn(nullptr), CGFI(nullptr) {
+  createWorkerFunction(CGM);
+}
+
+void CGOpenMPRuntimeNVPTX::WorkerFunctionState::createWorkerFunction(
+    CodeGenModule &CGM) {
+  // Create an worker function with no arguments.
+  CGFI = &CGM.getTypes().arrangeNullaryFunction();
+
+  WorkerFn = llvm::Function::Create(
+      CGM.getTypes().GetFunctionType(*CGFI), llvm::GlobalValue::InternalLinkage,
+      /* placeholder */ "_worker", &CGM.getModule());
+  CGM.SetInternalFunctionAttributes(/*D=*/nullptr, WorkerFn, *CGFI);
+}
+
+bool CGOpenMPRuntimeNVPTX::isInSpmdExecutionMode() const {
+  return CurrentExecutionMode == CGOpenMPRuntimeNVPTX::ExecutionMode::Spmd;
+}
+
+static CGOpenMPRuntimeNVPTX::ExecutionMode
+getExecutionModeForDirective(CodeGenModule &CGM,
+                             const OMPExecutableDirective &D) {
+  OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
+  switch (DirectiveKind) {
+  case OMPD_target:
+  case OMPD_target_teams:
+    return CGOpenMPRuntimeNVPTX::ExecutionMode::Generic;
+  case OMPD_target_parallel:
+    return CGOpenMPRuntimeNVPTX::ExecutionMode::Spmd;
+  default:
+    llvm_unreachable("Unsupported directive on NVPTX device.");
+  }
+  llvm_unreachable("Unsupported directive on NVPTX device.");
+}
+
+void CGOpenMPRuntimeNVPTX::emitGenericKernel(const OMPExecutableDirective &D,
+                                             StringRef ParentName,
+                                             llvm::Function *&OutlinedFn,
+                                             llvm::Constant *&OutlinedFnID,
+                                             bool IsOffloadEntry,
+                                             const RegionCodeGenTy &CodeGen) {
+  ExecutionModeRAII ModeRAII(CurrentExecutionMode,
+                             CGOpenMPRuntimeNVPTX::ExecutionMode::Generic);
+  EntryFunctionState EST;
+  WorkerFunctionState WST(CGM);
+  Work.clear();
+
+  // Emit target region as a standalone region.
+  class NVPTXPrePostActionTy : public PrePostActionTy {
+    CGOpenMPRuntimeNVPTX &RT;
+    CGOpenMPRuntimeNVPTX::EntryFunctionState &EST;
+    CGOpenMPRuntimeNVPTX::WorkerFunctionState &WST;
+
+  public:
+    NVPTXPrePostActionTy(CGOpenMPRuntimeNVPTX &RT,
+                         CGOpenMPRuntimeNVPTX::EntryFunctionState &EST,
+                         CGOpenMPRuntimeNVPTX::WorkerFunctionState &WST)
+        : RT(RT), EST(EST), WST(WST) {}
+    void Enter(CodeGenFunction &CGF) override {
+      RT.emitGenericEntryHeader(CGF, EST, WST);
+    }
+    void Exit(CodeGenFunction &CGF) override {
+      RT.emitGenericEntryFooter(CGF, EST);
+    }
+  } Action(*this, EST, WST);
+  CodeGen.setAction(Action);
+  emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
+                                   IsOffloadEntry, CodeGen);
+
+  // Create the worker function
+  emitWorkerFunction(WST);
+
+  // Now change the name of the worker function to correspond to this target
+  // region's entry function.
+  WST.WorkerFn->setName(OutlinedFn->getName() + "_worker");
+}
+
+// Setup NVPTX threads for master-worker OpenMP scheme.
+void CGOpenMPRuntimeNVPTX::emitGenericEntryHeader(CodeGenFunction &CGF,
+                                                  EntryFunctionState &EST,
+                                                  WorkerFunctionState &WST) {
+  CGBuilderTy &Bld = CGF.Builder;
+
+  llvm::BasicBlock *WorkerBB = CGF.createBasicBlock(".worker");
+  llvm::BasicBlock *MasterCheckBB = CGF.createBasicBlock(".mastercheck");
+  llvm::BasicBlock *MasterBB = CGF.createBasicBlock(".master");
+  EST.ExitBB = CGF.createBasicBlock(".exit");
+
+  auto *IsWorker =
+      Bld.CreateICmpULT(getNVPTXThreadID(CGF), getThreadLimit(CGF));
+  Bld.CreateCondBr(IsWorker, WorkerBB, MasterCheckBB);
+
+  CGF.EmitBlock(WorkerBB);
+  CGF.EmitCallOrInvoke(WST.WorkerFn, llvm::None);
+  CGF.EmitBranch(EST.ExitBB);
+
+  CGF.EmitBlock(MasterCheckBB);
+  auto *IsMaster =
+      Bld.CreateICmpEQ(getNVPTXThreadID(CGF), getMasterThreadID(CGF));
+  Bld.CreateCondBr(IsMaster, MasterBB, EST.ExitBB);
+
+  CGF.EmitBlock(MasterBB);
+  // First action in sequential region:
+  // Initialize the state of the OpenMP runtime library on the GPU.
+  llvm::Value *Args[] = {getThreadLimit(CGF)};
+  CGF.EmitRuntimeCall(
+      createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_init), Args);
+}
+
+void CGOpenMPRuntimeNVPTX::emitGenericEntryFooter(CodeGenFunction &CGF,
+                                                  EntryFunctionState &EST) {
+  if (!EST.ExitBB)
+    EST.ExitBB = CGF.createBasicBlock(".exit");
+
+  llvm::BasicBlock *TerminateBB = CGF.createBasicBlock(".termination.notifier");
+  CGF.EmitBranch(TerminateBB);
+
+  CGF.EmitBlock(TerminateBB);
+  // Signal termination condition.
+  CGF.EmitRuntimeCall(
+      createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_deinit), None);
+  // Barrier to terminate worker threads.
+  syncCTAThreads(CGF);
+  // Master thread jumps to exit point.
+  CGF.EmitBranch(EST.ExitBB);
+
+  CGF.EmitBlock(EST.ExitBB);
+  EST.ExitBB = nullptr;
+}
+
+void CGOpenMPRuntimeNVPTX::emitSpmdKernel(const OMPExecutableDirective &D,
+                                          StringRef ParentName,
+                                          llvm::Function *&OutlinedFn,
+                                          llvm::Constant *&OutlinedFnID,
+                                          bool IsOffloadEntry,
+                                          const RegionCodeGenTy &CodeGen) {
+  ExecutionModeRAII ModeRAII(CurrentExecutionMode,
+                             CGOpenMPRuntimeNVPTX::ExecutionMode::Spmd);
+  EntryFunctionState EST;
+
+  // Emit target region as a standalone region.
+  class NVPTXPrePostActionTy : public PrePostActionTy {
+    CGOpenMPRuntimeNVPTX &RT;
+    CGOpenMPRuntimeNVPTX::EntryFunctionState &EST;
+    const OMPExecutableDirective &D;
+
+  public:
+    NVPTXPrePostActionTy(CGOpenMPRuntimeNVPTX &RT,
+                         CGOpenMPRuntimeNVPTX::EntryFunctionState &EST,
+                         const OMPExecutableDirective &D)
+        : RT(RT), EST(EST), D(D) {}
+    void Enter(CodeGenFunction &CGF) override {
+      RT.emitSpmdEntryHeader(CGF, EST, D);
+    }
+    void Exit(CodeGenFunction &CGF) override {
+      RT.emitSpmdEntryFooter(CGF, EST);
+    }
+  } Action(*this, EST, D);
+  CodeGen.setAction(Action);
+  emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
+                                   IsOffloadEntry, CodeGen);
+  return;
+}
+
+void CGOpenMPRuntimeNVPTX::emitSpmdEntryHeader(
+    CodeGenFunction &CGF, EntryFunctionState &EST,
+    const OMPExecutableDirective &D) {
+  auto &Bld = CGF.Builder;
+
+  // Setup BBs in entry function.
+  llvm::BasicBlock *ExecuteBB = CGF.createBasicBlock(".execute");
+  EST.ExitBB = CGF.createBasicBlock(".exit");
+
+  // Initialize the OMP state in the runtime; called by all active threads.
+  // TODO: Set RequiresOMPRuntime and RequiresDataSharing parameters
+  // based on code analysis of the target region.
+  llvm::Value *Args[] = {getThreadLimit(CGF, /*IsInSpmdExecutionMode=*/true),
+                         /*RequiresOMPRuntime=*/Bld.getInt16(1),
+                         /*RequiresDataSharing=*/Bld.getInt16(1)};
+  CGF.EmitRuntimeCall(
+      createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_spmd_kernel_init), Args);
+  CGF.EmitBranch(ExecuteBB);
+
+  CGF.EmitBlock(ExecuteBB);
+}
+
+void CGOpenMPRuntimeNVPTX::emitSpmdEntryFooter(CodeGenFunction &CGF,
+                                               EntryFunctionState &EST) {
+  if (!EST.ExitBB)
+    EST.ExitBB = CGF.createBasicBlock(".exit");
+
+  llvm::BasicBlock *OMPDeInitBB = CGF.createBasicBlock(".omp.deinit");
+  CGF.EmitBranch(OMPDeInitBB);
+
+  CGF.EmitBlock(OMPDeInitBB);
+  // DeInitialize the OMP state in the runtime; called by all active threads.
+  CGF.EmitRuntimeCall(
+      createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_spmd_kernel_deinit), None);
+  CGF.EmitBranch(EST.ExitBB);
+
+  CGF.EmitBlock(EST.ExitBB);
+  EST.ExitBB = nullptr;
+}
+
+// Create a unique global variable to indicate the execution mode of this target
+// region. The execution mode is either 'generic', or 'spmd' depending on the
+// target directive. This variable is picked up by the offload library to setup
+// the device appropriately before kernel launch. If the execution mode is
+// 'generic', the runtime reserves one warp for the master, otherwise, all
+// warps participate in parallel work.
+static void setPropertyExecutionMode(CodeGenModule &CGM, StringRef Name,
+                                     CGOpenMPRuntimeNVPTX::ExecutionMode Mode) {
+  (void)new llvm::GlobalVariable(
+      CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
+      llvm::GlobalValue::WeakAnyLinkage,
+      llvm::ConstantInt::get(CGM.Int8Ty, Mode), Name + Twine("_exec_mode"));
+}
+
+void CGOpenMPRuntimeNVPTX::emitWorkerFunction(WorkerFunctionState &WST) {
+  auto &Ctx = CGM.getContext();
+
+  CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
+  CGF.disableDebugInfo();
+  CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, WST.WorkerFn, *WST.CGFI, {});
+  emitWorkerLoop(CGF, WST);
+  CGF.FinishFunction();
+}
+
+void CGOpenMPRuntimeNVPTX::emitWorkerLoop(CodeGenFunction &CGF,
+                                          WorkerFunctionState &WST) {
+  //
+  // The workers enter this loop and wait for parallel work from the master.
+  // When the master encounters a parallel region it sets up the work + variable
+  // arguments, and wakes up the workers.  The workers first check to see if
+  // they are required for the parallel region, i.e., within the # of requested
+  // parallel threads.  The activated workers load the variable arguments and
+  // execute the parallel work.
+  //
+
+  CGBuilderTy &Bld = CGF.Builder;
+
+  llvm::BasicBlock *AwaitBB = CGF.createBasicBlock(".await.work");
+  llvm::BasicBlock *SelectWorkersBB = CGF.createBasicBlock(".select.workers");
+  llvm::BasicBlock *ExecuteBB = CGF.createBasicBlock(".execute.parallel");
+  llvm::BasicBlock *TerminateBB = CGF.createBasicBlock(".terminate.parallel");
+  llvm::BasicBlock *BarrierBB = CGF.createBasicBlock(".barrier.parallel");
+  llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".exit");
+
+  CGF.EmitBranch(AwaitBB);
+
+  // Workers wait for work from master.
+  CGF.EmitBlock(AwaitBB);
+  // Wait for parallel work
+  syncCTAThreads(CGF);
+
+  Address WorkFn =
+      CGF.CreateDefaultAlignTempAlloca(CGF.Int8PtrTy, /*Name=*/"work_fn");
+  Address ExecStatus =
+      CGF.CreateDefaultAlignTempAlloca(CGF.Int8Ty, /*Name=*/"exec_status");
+  CGF.InitTempAlloca(ExecStatus, Bld.getInt8(/*C=*/0));
+  CGF.InitTempAlloca(WorkFn, llvm::Constant::getNullValue(CGF.Int8PtrTy));
+
+  llvm::Value *Args[] = {WorkFn.getPointer()};
+  llvm::Value *Ret = CGF.EmitRuntimeCall(
+      createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_parallel), Args);
+  Bld.CreateStore(Bld.CreateZExt(Ret, CGF.Int8Ty), ExecStatus);
+
+  // On termination condition (workid == 0), exit loop.
+  llvm::Value *ShouldTerminate =
+      Bld.CreateIsNull(Bld.CreateLoad(WorkFn), "should_terminate");
+  Bld.CreateCondBr(ShouldTerminate, ExitBB, SelectWorkersBB);
+
+  // Activate requested workers.
+  CGF.EmitBlock(SelectWorkersBB);
+  llvm::Value *IsActive =
+      Bld.CreateIsNotNull(Bld.CreateLoad(ExecStatus), "is_active");
+  Bld.CreateCondBr(IsActive, ExecuteBB, BarrierBB);
+
+  // Signal start of parallel region.
+  CGF.EmitBlock(ExecuteBB);
+
+  // Process work items: outlined parallel functions.
+  for (auto *W : Work) {
+    // Try to match this outlined function.
+    auto *ID = Bld.CreatePointerBitCastOrAddrSpaceCast(W, CGM.Int8PtrTy);
+
+    llvm::Value *WorkFnMatch =
+        Bld.CreateICmpEQ(Bld.CreateLoad(WorkFn), ID, "work_match");
+
+    llvm::BasicBlock *ExecuteFNBB = CGF.createBasicBlock(".execute.fn");
+    llvm::BasicBlock *CheckNextBB = CGF.createBasicBlock(".check.next");
+    Bld.CreateCondBr(WorkFnMatch, ExecuteFNBB, CheckNextBB);
+
+    // Execute this outlined function.
+    CGF.EmitBlock(ExecuteFNBB);
+
+    // Insert call to work function.
+    // FIXME: Pass arguments to outlined function from master thread.
+    auto *Fn = cast<llvm::Function>(W);
+    Address ZeroAddr =
+        CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, /*Name=*/".zero.addr");
+    CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C=*/0));
+    llvm::Value *FnArgs[] = {ZeroAddr.getPointer(), ZeroAddr.getPointer()};
+    CGF.EmitCallOrInvoke(Fn, FnArgs);
+
+    // Go to end of parallel region.
+    CGF.EmitBranch(TerminateBB);
+
+    CGF.EmitBlock(CheckNextBB);
+  }
+
+  // Signal end of parallel region.
+  CGF.EmitBlock(TerminateBB);
+  CGF.EmitRuntimeCall(
+      createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_end_parallel),
+      llvm::None);
+  CGF.EmitBranch(BarrierBB);
+
+  // All active and inactive workers wait at a barrier after parallel region.
+  CGF.EmitBlock(BarrierBB);
+  // Barrier after parallel region.
+  syncCTAThreads(CGF);
+  CGF.EmitBranch(AwaitBB);
+
+  // Exit target region.
+  CGF.EmitBlock(ExitBB);
+}
+
+/// \brief Returns specified OpenMP runtime function for the current OpenMP
+/// implementation.  Specialized for the NVPTX device.
+/// \param Function OpenMP runtime function.
+/// \return Specified function.
+llvm::Constant *
+CGOpenMPRuntimeNVPTX::createNVPTXRuntimeFunction(unsigned Function) {
+  llvm::Constant *RTLFn = nullptr;
+  switch (static_cast<OpenMPRTLFunctionNVPTX>(Function)) {
+  case OMPRTL_NVPTX__kmpc_kernel_init: {
+    // Build void __kmpc_kernel_init(kmp_int32 thread_limit);
+    llvm::Type *TypeParams[] = {CGM.Int32Ty};
+    llvm::FunctionType *FnTy =
+        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_init");
+    break;
+  }
+  case OMPRTL_NVPTX__kmpc_kernel_deinit: {
+    // Build void __kmpc_kernel_deinit();
+    llvm::FunctionType *FnTy =
+        llvm::FunctionType::get(CGM.VoidTy, llvm::None, /*isVarArg*/ false);
+    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_deinit");
+    break;
+  }
+  case OMPRTL_NVPTX__kmpc_spmd_kernel_init: {
+    // Build void __kmpc_spmd_kernel_init(kmp_int32 thread_limit,
+    // short RequiresOMPRuntime, short RequiresDataSharing);
+    llvm::Type *TypeParams[] = {CGM.Int32Ty, CGM.Int16Ty, CGM.Int16Ty};
+    llvm::FunctionType *FnTy =
+        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_spmd_kernel_init");
+    break;
+  }
+  case OMPRTL_NVPTX__kmpc_spmd_kernel_deinit: {
+    // Build void __kmpc_spmd_kernel_deinit();
+    llvm::FunctionType *FnTy =
+        llvm::FunctionType::get(CGM.VoidTy, llvm::None, /*isVarArg*/ false);
+    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_spmd_kernel_deinit");
+    break;
+  }
+  case OMPRTL_NVPTX__kmpc_kernel_prepare_parallel: {
+    /// Build void __kmpc_kernel_prepare_parallel(
+    /// void *outlined_function);
+    llvm::Type *TypeParams[] = {CGM.Int8PtrTy};
+    llvm::FunctionType *FnTy =
+        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_prepare_parallel");
+    break;
+  }
+  case OMPRTL_NVPTX__kmpc_kernel_parallel: {
+    /// Build bool __kmpc_kernel_parallel(void **outlined_function);
+    llvm::Type *TypeParams[] = {CGM.Int8PtrPtrTy};
+    llvm::Type *RetTy = CGM.getTypes().ConvertType(CGM.getContext().BoolTy);
+    llvm::FunctionType *FnTy =
+        llvm::FunctionType::get(RetTy, TypeParams, /*isVarArg*/ false);
+    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_parallel");
+    break;
+  }
+  case OMPRTL_NVPTX__kmpc_kernel_end_parallel: {
+    /// Build void __kmpc_kernel_end_parallel();
+    llvm::FunctionType *FnTy =
+        llvm::FunctionType::get(CGM.VoidTy, llvm::None, /*isVarArg*/ false);
+    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_end_parallel");
+    break;
+  }
+  case OMPRTL_NVPTX__kmpc_serialized_parallel: {
+    // Build void __kmpc_serialized_parallel(ident_t *loc, kmp_int32
+    // global_tid);
+    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+    llvm::FunctionType *FnTy =
+        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_serialized_parallel");
+    break;
+  }
+  case OMPRTL_NVPTX__kmpc_end_serialized_parallel: {
+    // Build void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32
+    // global_tid);
+    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+    llvm::FunctionType *FnTy =
+        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_serialized_parallel");
+    break;
+  }
+  case OMPRTL_NVPTX__kmpc_shuffle_int32: {
+    // Build int32_t __kmpc_shuffle_int32(int32_t element,
+    // int16_t lane_offset, int16_t warp_size);
+    llvm::Type *TypeParams[] = {CGM.Int32Ty, CGM.Int16Ty, CGM.Int16Ty};
+    llvm::FunctionType *FnTy =
+        llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
+    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_shuffle_int32");
+    break;
+  }
+  case OMPRTL_NVPTX__kmpc_shuffle_int64: {
+    // Build int64_t __kmpc_shuffle_int64(int64_t element,
+    // int16_t lane_offset, int16_t warp_size);
+    llvm::Type *TypeParams[] = {CGM.Int64Ty, CGM.Int16Ty, CGM.Int16Ty};
+    llvm::FunctionType *FnTy =
+        llvm::FunctionType::get(CGM.Int64Ty, TypeParams, /*isVarArg*/ false);
+    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_shuffle_int64");
+    break;
+  }
+  case OMPRTL_NVPTX__kmpc_parallel_reduce_nowait: {
+    // Build int32_t kmpc_nvptx_parallel_reduce_nowait(kmp_int32 global_tid,
+    // kmp_int32 num_vars, size_t reduce_size, void* reduce_data,
+    // void (*kmp_ShuffleReductFctPtr)(void *rhsData, int16_t lane_id, int16_t
+    // lane_offset, int16_t Algorithm Version),
+    // void (*kmp_InterWarpCopyFctPtr)(void* src, int warp_num));
+    llvm::Type *ShuffleReduceTypeParams[] = {CGM.VoidPtrTy, CGM.Int16Ty,
+                                             CGM.Int16Ty, CGM.Int16Ty};
+    auto *ShuffleReduceFnTy =
+        llvm::FunctionType::get(CGM.VoidTy, ShuffleReduceTypeParams,
+                                /*isVarArg=*/false);
+    llvm::Type *InterWarpCopyTypeParams[] = {CGM.VoidPtrTy, CGM.Int32Ty};
+    auto *InterWarpCopyFnTy =
+        llvm::FunctionType::get(CGM.VoidTy, InterWarpCopyTypeParams,
+                                /*isVarArg=*/false);
+    llvm::Type *TypeParams[] = {CGM.Int32Ty,
+                                CGM.Int32Ty,
+                                CGM.SizeTy,
+                                CGM.VoidPtrTy,
+                                ShuffleReduceFnTy->getPointerTo(),
+                                InterWarpCopyFnTy->getPointerTo()};
+    llvm::FunctionType *FnTy =
+        llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
+    RTLFn = CGM.CreateRuntimeFunction(
+        FnTy, /*Name=*/"__kmpc_nvptx_parallel_reduce_nowait");
+    break;
+  }
+  case OMPRTL_NVPTX__kmpc_teams_reduce_nowait: {
+    // Build int32_t __kmpc_nvptx_teams_reduce_nowait(int32_t global_tid,
+    // int32_t num_vars, size_t reduce_size, void *reduce_data,
+    // void (*kmp_ShuffleReductFctPtr)(void *rhsData, int16_t lane_id, int16_t
+    // lane_offset, int16_t shortCircuit),
+    // void (*kmp_InterWarpCopyFctPtr)(void* src, int32_t warp_num),
+    // void (*kmp_CopyToScratchpadFctPtr)(void *reduce_data, void * scratchpad,
+    // int32_t index, int32_t width),
+    // void (*kmp_LoadReduceFctPtr)(void *reduce_data, void * scratchpad,
+    // int32_t index, int32_t width, int32_t reduce))
+    llvm::Type *ShuffleReduceTypeParams[] = {CGM.VoidPtrTy, CGM.Int16Ty,
+                                             CGM.Int16Ty, CGM.Int16Ty};
+    auto *ShuffleReduceFnTy =
+        llvm::FunctionType::get(CGM.VoidTy, ShuffleReduceTypeParams,
+                                /*isVarArg=*/false);
+    llvm::Type *InterWarpCopyTypeParams[] = {CGM.VoidPtrTy, CGM.Int32Ty};
+    auto *InterWarpCopyFnTy =
+        llvm::FunctionType::get(CGM.VoidTy, InterWarpCopyTypeParams,
+                                /*isVarArg=*/false);
+    llvm::Type *CopyToScratchpadTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy,
+                                                CGM.Int32Ty, CGM.Int32Ty};
+    auto *CopyToScratchpadFnTy =
+        llvm::FunctionType::get(CGM.VoidTy, CopyToScratchpadTypeParams,
+                                /*isVarArg=*/false);
+    llvm::Type *LoadReduceTypeParams[] = {
+        CGM.VoidPtrTy, CGM.VoidPtrTy, CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty};
+    auto *LoadReduceFnTy =
+        llvm::FunctionType::get(CGM.VoidTy, LoadReduceTypeParams,
+                                /*isVarArg=*/false);
+    llvm::Type *TypeParams[] = {CGM.Int32Ty,
+                                CGM.Int32Ty,
+                                CGM.SizeTy,
+                                CGM.VoidPtrTy,
+                                ShuffleReduceFnTy->getPointerTo(),
+                                InterWarpCopyFnTy->getPointerTo(),
+                                CopyToScratchpadFnTy->getPointerTo(),
+                                LoadReduceFnTy->getPointerTo()};
+    llvm::FunctionType *FnTy =
+        llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
+    RTLFn = CGM.CreateRuntimeFunction(
+        FnTy, /*Name=*/"__kmpc_nvptx_teams_reduce_nowait");
+    break;
+  }
+  case OMPRTL_NVPTX__kmpc_end_reduce_nowait: {
+    // Build __kmpc_end_reduce_nowait(kmp_int32 global_tid);
+    llvm::Type *TypeParams[] = {CGM.Int32Ty};
+    llvm::FunctionType *FnTy =
+        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+    RTLFn = CGM.CreateRuntimeFunction(
+        FnTy, /*Name=*/"__kmpc_nvptx_end_reduce_nowait");
+    break;
+  }
+  }
+  return RTLFn;
+}
+
+void CGOpenMPRuntimeNVPTX::createOffloadEntry(llvm::Constant *ID,
+                                              llvm::Constant *Addr,
+                                              uint64_t Size, int32_t) {
+  auto *F = dyn_cast<llvm::Function>(Addr);
+  // TODO: Add support for global variables on the device after declare target
+  // support.
+  if (!F)
+    return;
+  llvm::Module *M = F->getParent();
+  llvm::LLVMContext &Ctx = M->getContext();
+
+  // Get "nvvm.annotations" metadata node
+  llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
+
+  llvm::Metadata *MDVals[] = {
+      llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, "kernel"),
+      llvm::ConstantAsMetadata::get(
+          llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1))};
+  // Append metadata to nvvm.annotations
+  MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
+}
+
+void CGOpenMPRuntimeNVPTX::emitTargetOutlinedFunction(
+    const OMPExecutableDirective &D, StringRef ParentName,
+    llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
+    bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
+  if (!IsOffloadEntry) // Nothing to do.
+    return;
+
+  assert(!ParentName.empty() && "Invalid target region parent name!");
+
+  CGOpenMPRuntimeNVPTX::ExecutionMode Mode =
+      getExecutionModeForDirective(CGM, D);
+  switch (Mode) {
+  case CGOpenMPRuntimeNVPTX::ExecutionMode::Generic:
+    emitGenericKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
+                      CodeGen);
+    break;
+  case CGOpenMPRuntimeNVPTX::ExecutionMode::Spmd:
+    emitSpmdKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
+                   CodeGen);
+    break;
+  case CGOpenMPRuntimeNVPTX::ExecutionMode::Unknown:
+    llvm_unreachable(
+        "Unknown programming model for OpenMP directive on NVPTX target.");
+  }
+
+  setPropertyExecutionMode(CGM, OutlinedFn->getName(), Mode);
+}
+
 CGOpenMPRuntimeNVPTX::CGOpenMPRuntimeNVPTX(CodeGenModule &CGM)
-    : CGOpenMPRuntime(CGM) {}
+    : CGOpenMPRuntime(CGM), CurrentExecutionMode(ExecutionMode::Unknown) {
+  if (!CGM.getLangOpts().OpenMPIsDevice)
+    llvm_unreachable("OpenMP NVPTX can only handle device code.");
+}
+
+void CGOpenMPRuntimeNVPTX::emitProcBindClause(CodeGenFunction &CGF,
+                                              OpenMPProcBindClauseKind ProcBind,
+                                              SourceLocation Loc) {
+  // Do nothing in case of Spmd mode and L0 parallel.
+  // TODO: If in Spmd mode and L1 parallel emit the clause.
+  if (isInSpmdExecutionMode())
+    return;
+
+  CGOpenMPRuntime::emitProcBindClause(CGF, ProcBind, Loc);
+}
+
+void CGOpenMPRuntimeNVPTX::emitNumThreadsClause(CodeGenFunction &CGF,
+                                                llvm::Value *NumThreads,
+                                                SourceLocation Loc) {
+  // Do nothing in case of Spmd mode and L0 parallel.
+  // TODO: If in Spmd mode and L1 parallel emit the clause.
+  if (isInSpmdExecutionMode())
+    return;
+
+  CGOpenMPRuntime::emitNumThreadsClause(CGF, NumThreads, Loc);
+}
+
+void CGOpenMPRuntimeNVPTX::emitNumTeamsClause(CodeGenFunction &CGF,
+                                              const Expr *NumTeams,
+                                              const Expr *ThreadLimit,
+                                              SourceLocation Loc) {}
+
+llvm::Value *CGOpenMPRuntimeNVPTX::emitParallelOutlinedFunction(
+    const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
+    OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
+  return CGOpenMPRuntime::emitParallelOutlinedFunction(D, ThreadIDVar,
+                                                       InnermostKind, CodeGen);
+}
+
+llvm::Value *CGOpenMPRuntimeNVPTX::emitTeamsOutlinedFunction(
+    const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
+    OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
+
+  llvm::Value *OutlinedFunVal = CGOpenMPRuntime::emitTeamsOutlinedFunction(
+      D, ThreadIDVar, InnermostKind, CodeGen);
+  llvm::Function *OutlinedFun = cast<llvm::Function>(OutlinedFunVal);
+  OutlinedFun->removeFnAttr(llvm::Attribute::NoInline);
+  OutlinedFun->removeFnAttr(llvm::Attribute::OptimizeNone);
+  OutlinedFun->addFnAttr(llvm::Attribute::AlwaysInline);
+
+  return OutlinedFun;
+}
+
+void CGOpenMPRuntimeNVPTX::emitTeamsCall(CodeGenFunction &CGF,
+                                         const OMPExecutableDirective &D,
+                                         SourceLocation Loc,
+                                         llvm::Value *OutlinedFn,
+                                         ArrayRef<llvm::Value *> CapturedVars) {
+  if (!CGF.HaveInsertPoint())
+    return;
+
+  Address ZeroAddr =
+      CGF.CreateTempAlloca(CGF.Int32Ty, CharUnits::fromQuantity(4),
+                           /*Name*/ ".zero.addr");
+  CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
+  llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
+  OutlinedFnArgs.push_back(ZeroAddr.getPointer());
+  OutlinedFnArgs.push_back(ZeroAddr.getPointer());
+  OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
+  CGF.EmitCallOrInvoke(OutlinedFn, OutlinedFnArgs);
+}
+
+void CGOpenMPRuntimeNVPTX::emitParallelCall(
+    CodeGenFunction &CGF, SourceLocation Loc, llvm::Value *OutlinedFn,
+    ArrayRef<llvm::Value *> CapturedVars, const Expr *IfCond) {
+  if (!CGF.HaveInsertPoint())
+    return;
+
+  if (isInSpmdExecutionMode())
+    emitSpmdParallelCall(CGF, Loc, OutlinedFn, CapturedVars, IfCond);
+  else
+    emitGenericParallelCall(CGF, Loc, OutlinedFn, CapturedVars, IfCond);
+}
+
+void CGOpenMPRuntimeNVPTX::emitGenericParallelCall(
+    CodeGenFunction &CGF, SourceLocation Loc, llvm::Value *OutlinedFn,
+    ArrayRef<llvm::Value *> CapturedVars, const Expr *IfCond) {
+  llvm::Function *Fn = cast<llvm::Function>(OutlinedFn);
+
+  auto &&L0ParallelGen = [this, Fn](CodeGenFunction &CGF, PrePostActionTy &) {
+    CGBuilderTy &Bld = CGF.Builder;
+
+    // Prepare for parallel region. Indicate the outlined function.
+    llvm::Value *Args[] = {Bld.CreateBitOrPointerCast(Fn, CGM.Int8PtrTy)};
+    CGF.EmitRuntimeCall(
+        createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_prepare_parallel),
+        Args);
+
+    // Activate workers. This barrier is used by the master to signal
+    // work for the workers.
+    syncCTAThreads(CGF);
+
+    // OpenMP [2.5, Parallel Construct, p.49]
+    // There is an implied barrier at the end of a parallel region. After the
+    // end of a parallel region, only the master thread of the team resumes
+    // execution of the enclosing task region.
+    //
+    // The master waits at this barrier until all workers are done.
+    syncCTAThreads(CGF);
+
+    // Remember for post-processing in worker loop.
+    Work.push_back(Fn);
+  };
+
+  auto *RTLoc = emitUpdateLocation(CGF, Loc);
+  auto *ThreadID = getThreadID(CGF, Loc);
+  llvm::Value *Args[] = {RTLoc, ThreadID};
+
+  auto &&SeqGen = [this, Fn, &CapturedVars, &Args](CodeGenFunction &CGF,
+                                                   PrePostActionTy &) {
+    auto &&CodeGen = [this, Fn, &CapturedVars](CodeGenFunction &CGF,
+                                               PrePostActionTy &Action) {
+      Action.Enter(CGF);
+
+      llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
+      OutlinedFnArgs.push_back(
+          llvm::ConstantPointerNull::get(CGM.Int32Ty->getPointerTo()));
+      OutlinedFnArgs.push_back(
+          llvm::ConstantPointerNull::get(CGM.Int32Ty->getPointerTo()));
+      OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
+      CGF.EmitCallOrInvoke(Fn, OutlinedFnArgs);
+    };
+
+    RegionCodeGenTy RCG(CodeGen);
+    NVPTXActionTy Action(
+        createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_serialized_parallel),
+        Args,
+        createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_end_serialized_parallel),
+        Args);
+    RCG.setAction(Action);
+    RCG(CGF);
+  };
+
+  if (IfCond)
+    emitOMPIfClause(CGF, IfCond, L0ParallelGen, SeqGen);
+  else {
+    CodeGenFunction::RunCleanupsScope Scope(CGF);
+    RegionCodeGenTy ThenRCG(L0ParallelGen);
+    ThenRCG(CGF);
+  }
+}
+
+void CGOpenMPRuntimeNVPTX::emitSpmdParallelCall(
+    CodeGenFunction &CGF, SourceLocation Loc, llvm::Value *OutlinedFn,
+    ArrayRef<llvm::Value *> CapturedVars, const Expr *IfCond) {
+  // Just call the outlined function to execute the parallel region.
+  // OutlinedFn(&GTid, &zero, CapturedStruct);
+  //
+  // TODO: Do something with IfCond when support for the 'if' clause
+  // is added on Spmd target directives.
+  llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
+  OutlinedFnArgs.push_back(
+      llvm::ConstantPointerNull::get(CGM.Int32Ty->getPointerTo()));
+  OutlinedFnArgs.push_back(
+      llvm::ConstantPointerNull::get(CGM.Int32Ty->getPointerTo()));
+  OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
+  CGF.EmitCallOrInvoke(OutlinedFn, OutlinedFnArgs);
+}
+
+/// This function creates calls to one of two shuffle functions to copy
+/// variables between lanes in a warp.
+static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF,
+                                                 QualType ElemTy,
+                                                 llvm::Value *Elem,
+                                                 llvm::Value *Offset) {
+  auto &CGM = CGF.CGM;
+  auto &C = CGM.getContext();
+  auto &Bld = CGF.Builder;
+  CGOpenMPRuntimeNVPTX &RT =
+      *(static_cast<CGOpenMPRuntimeNVPTX *>(&CGM.getOpenMPRuntime()));
+
+  unsigned Size = CGM.getContext().getTypeSizeInChars(ElemTy).getQuantity();
+  assert(Size <= 8 && "Unsupported bitwidth in shuffle instruction.");
+
+  OpenMPRTLFunctionNVPTX ShuffleFn = Size <= 4
+                                         ? OMPRTL_NVPTX__kmpc_shuffle_int32
+                                         : OMPRTL_NVPTX__kmpc_shuffle_int64;
+
+  // Cast all types to 32- or 64-bit values before calling shuffle routines.
+  auto CastTy = Size <= 4 ? CGM.Int32Ty : CGM.Int64Ty;
+  auto *ElemCast = Bld.CreateSExtOrBitCast(Elem, CastTy);
+  auto *WarpSize = CGF.EmitScalarConversion(
+      getNVPTXWarpSize(CGF), C.getIntTypeForBitwidth(32, /* Signed */ true),
+      C.getIntTypeForBitwidth(16, /* Signed */ true), SourceLocation());
+
+  auto *ShuffledVal =
+      CGF.EmitRuntimeCall(RT.createNVPTXRuntimeFunction(ShuffleFn),
+                          {ElemCast, Offset, WarpSize});
+
+  return Bld.CreateTruncOrBitCast(ShuffledVal, CGF.ConvertTypeForMem(ElemTy));
+}
+
+namespace {
+enum CopyAction : unsigned {
+  // RemoteLaneToThread: Copy over a Reduce list from a remote lane in
+  // the warp using shuffle instructions.
+  RemoteLaneToThread,
+  // ThreadCopy: Make a copy of a Reduce list on the thread's stack.
+  ThreadCopy,
+  // ThreadToScratchpad: Copy a team-reduced array to the scratchpad.
+  ThreadToScratchpad,
+  // ScratchpadToThread: Copy from a scratchpad array in global memory
+  // containing team-reduced data to a thread's stack.
+  ScratchpadToThread,
+};
+} // namespace
+
+struct CopyOptionsTy {
+  llvm::Value *RemoteLaneOffset;
+  llvm::Value *ScratchpadIndex;
+  llvm::Value *ScratchpadWidth;
+};
+
+/// Emit instructions to copy a Reduce list, which contains partially
+/// aggregated values, in the specified direction.
+static void emitReductionListCopy(
+    CopyAction Action, CodeGenFunction &CGF, QualType ReductionArrayTy,
+    ArrayRef<const Expr *> Privates, Address SrcBase, Address DestBase,
+    CopyOptionsTy CopyOptions = {nullptr, nullptr, nullptr}) {
+
+  auto &CGM = CGF.CGM;
+  auto &C = CGM.getContext();
+  auto &Bld = CGF.Builder;
+
+  auto *RemoteLaneOffset = CopyOptions.RemoteLaneOffset;
+  auto *ScratchpadIndex = CopyOptions.ScratchpadIndex;
+  auto *ScratchpadWidth = CopyOptions.ScratchpadWidth;
+
+  // Iterates, element-by-element, through the source Reduce list and
+  // make a copy.
+  unsigned Idx = 0;
+  unsigned Size = Privates.size();
+  for (auto &Private : Privates) {
+    Address SrcElementAddr = Address::invalid();
+    Address DestElementAddr = Address::invalid();
+    Address DestElementPtrAddr = Address::invalid();
+    // Should we shuffle in an element from a remote lane?
+    bool ShuffleInElement = false;
+    // Set to true to update the pointer in the dest Reduce list to a
+    // newly created element.
+    bool UpdateDestListPtr = false;
+    // Increment the src or dest pointer to the scratchpad, for each
+    // new element.
+    bool IncrScratchpadSrc = false;
+    bool IncrScratchpadDest = false;
+
+    switch (Action) {
+    case RemoteLaneToThread: {
+      // Step 1.1: Get the address for the src element in the Reduce list.
+      Address SrcElementPtrAddr =
+          Bld.CreateConstArrayGEP(SrcBase, Idx, CGF.getPointerSize());
+      llvm::Value *SrcElementPtrPtr = CGF.EmitLoadOfScalar(
+          SrcElementPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
+      SrcElementAddr =
+          Address(SrcElementPtrPtr, C.getTypeAlignInChars(Private->getType()));
+
+      // Step 1.2: Create a temporary to store the element in the destination
+      // Reduce list.
+      DestElementPtrAddr =
+          Bld.CreateConstArrayGEP(DestBase, Idx, CGF.getPointerSize());
+      DestElementAddr =
+          CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
+      ShuffleInElement = true;
+      UpdateDestListPtr = true;
+      break;
+    }
+    case ThreadCopy: {
+      // Step 1.1: Get the address for the src element in the Reduce list.
+      Address SrcElementPtrAddr =
+          Bld.CreateConstArrayGEP(SrcBase, Idx, CGF.getPointerSize());
+      llvm::Value *SrcElementPtrPtr = CGF.EmitLoadOfScalar(
+          SrcElementPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
+      SrcElementAddr =
+          Address(SrcElementPtrPtr, C.getTypeAlignInChars(Private->getType()));
+
+      // Step 1.2: Get the address for dest element.  The destination
+      // element has already been created on the thread's stack.
+      DestElementPtrAddr =
+          Bld.CreateConstArrayGEP(DestBase, Idx, CGF.getPointerSize());
+      llvm::Value *DestElementPtr =
+          CGF.EmitLoadOfScalar(DestElementPtrAddr, /*Volatile=*/false,
+                               C.VoidPtrTy, SourceLocation());
+      Address DestElemAddr =
+          Address(DestElementPtr, C.getTypeAlignInChars(Private->getType()));
+      DestElementAddr = Bld.CreateElementBitCast(
+          DestElemAddr, CGF.ConvertTypeForMem(Private->getType()));
+      break;
+    }
+    case ThreadToScratchpad: {
+      // Step 1.1: Get the address for the src element in the Reduce list.
+      Address SrcElementPtrAddr =
+          Bld.CreateConstArrayGEP(SrcBase, Idx, CGF.getPointerSize());
+      llvm::Value *SrcElementPtrPtr = CGF.EmitLoadOfScalar(
+          SrcElementPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
+      SrcElementAddr =
+          Address(SrcElementPtrPtr, C.getTypeAlignInChars(Private->getType()));
+
+      // Step 1.2: Get the address for dest element:
+      // address = base + index * ElementSizeInChars.
+      unsigned ElementSizeInChars =
+          C.getTypeSizeInChars(Private->getType()).getQuantity();
+      auto *CurrentOffset =
+          Bld.CreateMul(llvm::ConstantInt::get(CGM.SizeTy, ElementSizeInChars),
+                        ScratchpadIndex);
+      auto *ScratchPadElemAbsolutePtrVal =
+          Bld.CreateAdd(DestBase.getPointer(), CurrentOffset);
+      ScratchPadElemAbsolutePtrVal =
+          Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy);
+      Address ScratchpadPtr =
+          Address(ScratchPadElemAbsolutePtrVal,
+                  C.getTypeAlignInChars(Private->getType()));
+      DestElementAddr = Bld.CreateElementBitCast(
+          ScratchpadPtr, CGF.ConvertTypeForMem(Private->getType()));
+      IncrScratchpadDest = true;
+      break;
+    }
+    case ScratchpadToThread: {
+      // Step 1.1: Get the address for the src element in the scratchpad.
+      // address = base + index * ElementSizeInChars.
+      unsigned ElementSizeInChars =
+          C.getTypeSizeInChars(Private->getType()).getQuantity();
+      auto *CurrentOffset =
+          Bld.CreateMul(llvm::ConstantInt::get(CGM.SizeTy, ElementSizeInChars),
+                        ScratchpadIndex);
+      auto *ScratchPadElemAbsolutePtrVal =
+          Bld.CreateAdd(SrcBase.getPointer(), CurrentOffset);
+      ScratchPadElemAbsolutePtrVal =
+          Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy);
+      SrcElementAddr = Address(ScratchPadElemAbsolutePtrVal,
+                               C.getTypeAlignInChars(Private->getType()));
+      IncrScratchpadSrc = true;
+
+      // Step 1.2: Create a temporary to store the element in the destination
+      // Reduce list.
+      DestElementPtrAddr =
+          Bld.CreateConstArrayGEP(DestBase, Idx, CGF.getPointerSize());
+      DestElementAddr =
+          CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
+      UpdateDestListPtr = true;
+      break;
+    }
+    }
+
+    // Regardless of src and dest of copy, we emit the load of src
+    // element as this is required in all directions
+    SrcElementAddr = Bld.CreateElementBitCast(
+        SrcElementAddr, CGF.ConvertTypeForMem(Private->getType()));
+    llvm::Value *Elem =
+        CGF.EmitLoadOfScalar(SrcElementAddr, /*Volatile=*/false,
+                             Private->getType(), SourceLocation());
+
+    // Now that all active lanes have read the element in the
+    // Reduce list, shuffle over the value from the remote lane.
+    if (ShuffleInElement) {
+      Elem = createRuntimeShuffleFunction(CGF, Private->getType(), Elem,
+                                          RemoteLaneOffset);
+    }
+
+    // Store the source element value to the dest element address.
+    CGF.EmitStoreOfScalar(Elem, DestElementAddr, /*Volatile=*/false,
+                          Private->getType());
+
+    // Step 3.1: Modify reference in dest Reduce list as needed.
+    // Modifying the reference in Reduce list to point to the newly
+    // created element.  The element is live in the current function
+    // scope and that of functions it invokes (i.e., reduce_function).
+    // RemoteReduceData[i] = (void*)&RemoteElem
+    if (UpdateDestListPtr) {
+      CGF.EmitStoreOfScalar(Bld.CreatePointerBitCastOrAddrSpaceCast(
+                                DestElementAddr.getPointer(), CGF.VoidPtrTy),
+                            DestElementPtrAddr, /*Volatile=*/false,
+                            C.VoidPtrTy);
+    }
+
+    // Step 4.1: Increment SrcBase/DestBase so that it points to the starting
+    // address of the next element in scratchpad memory, unless we're currently
+    // processing the last one.  Memory alignment is also taken care of here.
+    if ((IncrScratchpadDest || IncrScratchpadSrc) && (Idx + 1 < Size)) {
+      llvm::Value *ScratchpadBasePtr =
+          IncrScratchpadDest ? DestBase.getPointer() : SrcBase.getPointer();
+      unsigned ElementSizeInChars =
+          C.getTypeSizeInChars(Private->getType()).getQuantity();
+      ScratchpadBasePtr = Bld.CreateAdd(
+          ScratchpadBasePtr,
+          Bld.CreateMul(ScratchpadWidth, llvm::ConstantInt::get(
+                                             CGM.SizeTy, ElementSizeInChars)));
+
+      // Take care of global memory alignment for performance
+      ScratchpadBasePtr = Bld.CreateSub(ScratchpadBasePtr,
+                                        llvm::ConstantInt::get(CGM.SizeTy, 1));
+      ScratchpadBasePtr = Bld.CreateSDiv(
+          ScratchpadBasePtr,
+          llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment));
+      ScratchpadBasePtr = Bld.CreateAdd(ScratchpadBasePtr,
+                                        llvm::ConstantInt::get(CGM.SizeTy, 1));
+      ScratchpadBasePtr = Bld.CreateMul(
+          ScratchpadBasePtr,
+          llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment));
+
+      if (IncrScratchpadDest)
+        DestBase = Address(ScratchpadBasePtr, CGF.getPointerAlign());
+      else /* IncrScratchpadSrc = true */
+        SrcBase = Address(ScratchpadBasePtr, CGF.getPointerAlign());
+    }
+
+    Idx++;
+  }
+}
+
+/// This function emits a helper that loads data from the scratchpad array
+/// and (optionally) reduces it with the input operand.
+///
+///  load_and_reduce(local, scratchpad, index, width, should_reduce)
+///  reduce_data remote;
+///  for elem in remote:
+///    remote.elem = Scratchpad[elem_id][index]
+///  if (should_reduce)
+///    local = local @ remote
+///  else
+///    local = remote
+static llvm::Value *
+emitReduceScratchpadFunction(CodeGenModule &CGM,
+                             ArrayRef<const Expr *> Privates,
+                             QualType ReductionArrayTy, llvm::Value *ReduceFn) {
+  auto &C = CGM.getContext();
+  auto Int32Ty = C.getIntTypeForBitwidth(32, /* Signed */ true);
+
+  // Destination of the copy.
+  ImplicitParamDecl ReduceListArg(C, C.VoidPtrTy, ImplicitParamDecl::Other);
+  // Base address of the scratchpad array, with each element storing a
+  // Reduce list per team.
+  ImplicitParamDecl ScratchPadArg(C, C.VoidPtrTy, ImplicitParamDecl::Other);
+  // A source index into the scratchpad array.
+  ImplicitParamDecl IndexArg(C, Int32Ty, ImplicitParamDecl::Other);
+  // Row width of an element in the scratchpad array, typically
+  // the number of teams.
+  ImplicitParamDecl WidthArg(C, Int32Ty, ImplicitParamDecl::Other);
+  // If should_reduce == 1, then it's load AND reduce,
+  // If should_reduce == 0 (or otherwise), then it only loads (+ copy).
+  // The latter case is used for initialization.
+  ImplicitParamDecl ShouldReduceArg(C, Int32Ty, ImplicitParamDecl::Other);
+
+  FunctionArgList Args;
+  Args.push_back(&ReduceListArg);
+  Args.push_back(&ScratchPadArg);
+  Args.push_back(&IndexArg);
+  Args.push_back(&WidthArg);
+  Args.push_back(&ShouldReduceArg);
+
+  auto &CGFI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
+  auto *Fn = llvm::Function::Create(
+      CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
+      "_omp_reduction_load_and_reduce", &CGM.getModule());
+  CGM.SetInternalFunctionAttributes(/*DC=*/nullptr, Fn, CGFI);
+  CodeGenFunction CGF(CGM);
+  // We don't need debug information in this function as nothing here refers to
+  // user code.
+  CGF.disableDebugInfo();
+  CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args);
+
+  auto &Bld = CGF.Builder;
+
+  // Get local Reduce list pointer.
+  Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
+  Address ReduceListAddr(
+      Bld.CreatePointerBitCastOrAddrSpaceCast(
+          CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
+                               C.VoidPtrTy, SourceLocation()),
+          CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
+      CGF.getPointerAlign());
+
+  Address AddrScratchPadArg = CGF.GetAddrOfLocalVar(&ScratchPadArg);
+  llvm::Value *ScratchPadBase = CGF.EmitLoadOfScalar(
+      AddrScratchPadArg, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
+
+  Address AddrIndexArg = CGF.GetAddrOfLocalVar(&IndexArg);
+  llvm::Value *IndexVal =
+      Bld.CreateIntCast(CGF.EmitLoadOfScalar(AddrIndexArg, /*Volatile=*/false,
+                                             Int32Ty, SourceLocation()),
+                        CGM.SizeTy, /*isSigned=*/true);
+
+  Address AddrWidthArg = CGF.GetAddrOfLocalVar(&WidthArg);
+  llvm::Value *WidthVal =
+      Bld.CreateIntCast(CGF.EmitLoadOfScalar(AddrWidthArg, /*Volatile=*/false,
+                                             Int32Ty, SourceLocation()),
+                        CGM.SizeTy, /*isSigned=*/true);
+
+  Address AddrShouldReduceArg = CGF.GetAddrOfLocalVar(&ShouldReduceArg);
+  llvm::Value *ShouldReduceVal = CGF.EmitLoadOfScalar(
+      AddrShouldReduceArg, /*Volatile=*/false, Int32Ty, SourceLocation());
+
+  // The absolute ptr address to the base addr of the next element to copy.
+  llvm::Value *CumulativeElemBasePtr =
+      Bld.CreatePtrToInt(ScratchPadBase, CGM.SizeTy);
+  Address SrcDataAddr(CumulativeElemBasePtr, CGF.getPointerAlign());
+
+  // Create a Remote Reduce list to store the elements read from the
+  // scratchpad array.
+  Address RemoteReduceList =
+      CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_red_list");
+
+  // Assemble remote Reduce list from scratchpad array.
+  emitReductionListCopy(ScratchpadToThread, CGF, ReductionArrayTy, Privates,
+                        SrcDataAddr, RemoteReduceList,
+                        {/*RemoteLaneOffset=*/nullptr,
+                         /*ScratchpadIndex=*/IndexVal,
+                         /*ScratchpadWidth=*/WidthVal});
+
+  llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
+  llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
+  llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
+
+  auto CondReduce = Bld.CreateICmpEQ(ShouldReduceVal, Bld.getInt32(1));
+  Bld.CreateCondBr(CondReduce, ThenBB, ElseBB);
+
+  CGF.EmitBlock(ThenBB);
+  // We should reduce with the local Reduce list.
+  // reduce_function(LocalReduceList, RemoteReduceList)
+  llvm::Value *LocalDataPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
+      ReduceListAddr.getPointer(), CGF.VoidPtrTy);
+  llvm::Value *RemoteDataPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
+      RemoteReduceList.getPointer(), CGF.VoidPtrTy);
+  CGF.EmitCallOrInvoke(ReduceFn, {LocalDataPtr, RemoteDataPtr});
+  Bld.CreateBr(MergeBB);
+
+  CGF.EmitBlock(ElseBB);
+  // No reduction; just copy:
+  // Local Reduce list = Remote Reduce list.
+  emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates,
+                        RemoteReduceList, ReduceListAddr);
+  Bld.CreateBr(MergeBB);
+
+  CGF.EmitBlock(MergeBB);
+
+  CGF.FinishFunction();
+  return Fn;
+}
+
+/// This function emits a helper that stores reduced data from the team
+/// master to a scratchpad array in global memory.
+///
+///  for elem in Reduce List:
+///    scratchpad[elem_id][index] = elem
+///
+static llvm::Value *emitCopyToScratchpad(CodeGenModule &CGM,
+                                         ArrayRef<const Expr *> Privates,
+                                         QualType ReductionArrayTy) {
+
+  auto &C = CGM.getContext();
+  auto Int32Ty = C.getIntTypeForBitwidth(32, /* Signed */ true);
+
+  // Source of the copy.
+  ImplicitParamDecl ReduceListArg(C, C.VoidPtrTy, ImplicitParamDecl::Other);
+  // Base address of the scratchpad array, with each element storing a
+  // Reduce list per team.
+  ImplicitParamDecl ScratchPadArg(C, C.VoidPtrTy, ImplicitParamDecl::Other);
+  // A destination index into the scratchpad array, typically the team
+  // identifier.
+  ImplicitParamDecl IndexArg(C, Int32Ty, ImplicitParamDecl::Other);
+  // Row width of an element in the scratchpad array, typically
+  // the number of teams.
+  ImplicitParamDecl WidthArg(C, Int32Ty, ImplicitParamDecl::Other);
+
+  FunctionArgList Args;
+  Args.push_back(&ReduceListArg);
+  Args.push_back(&ScratchPadArg);
+  Args.push_back(&IndexArg);
+  Args.push_back(&WidthArg);
+
+  auto &CGFI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
+  auto *Fn = llvm::Function::Create(
+      CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
+      "_omp_reduction_copy_to_scratchpad", &CGM.getModule());
+  CGM.SetInternalFunctionAttributes(/*DC=*/nullptr, Fn, CGFI);
+  CodeGenFunction CGF(CGM);
+  // We don't need debug information in this function as nothing here refers to
+  // user code.
+  CGF.disableDebugInfo();
+  CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args);
+
+  auto &Bld = CGF.Builder;
+
+  Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
+  Address SrcDataAddr(
+      Bld.CreatePointerBitCastOrAddrSpaceCast(
+          CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
+                               C.VoidPtrTy, SourceLocation()),
+          CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
+      CGF.getPointerAlign());
+
+  Address AddrScratchPadArg = CGF.GetAddrOfLocalVar(&ScratchPadArg);
+  llvm::Value *ScratchPadBase = CGF.EmitLoadOfScalar(
+      AddrScratchPadArg, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
+
+  Address AddrIndexArg = CGF.GetAddrOfLocalVar(&IndexArg);
+  llvm::Value *IndexVal =
+      Bld.CreateIntCast(CGF.EmitLoadOfScalar(AddrIndexArg, /*Volatile=*/false,
+                                             Int32Ty, SourceLocation()),
+                        CGF.SizeTy, /*isSigned=*/true);
+
+  Address AddrWidthArg = CGF.GetAddrOfLocalVar(&WidthArg);
+  llvm::Value *WidthVal =
+      Bld.CreateIntCast(CGF.EmitLoadOfScalar(AddrWidthArg, /*Volatile=*/false,
+                                             Int32Ty, SourceLocation()),
+                        CGF.SizeTy, /*isSigned=*/true);
+
+  // The absolute ptr address to the base addr of the next element to copy.
+  llvm::Value *CumulativeElemBasePtr =
+      Bld.CreatePtrToInt(ScratchPadBase, CGM.SizeTy);
+  Address DestDataAddr(CumulativeElemBasePtr, CGF.getPointerAlign());
+
+  emitReductionListCopy(ThreadToScratchpad, CGF, ReductionArrayTy, Privates,
+                        SrcDataAddr, DestDataAddr,
+                        {/*RemoteLaneOffset=*/nullptr,
+                         /*ScratchpadIndex=*/IndexVal,
+                         /*ScratchpadWidth=*/WidthVal});
+
+  CGF.FinishFunction();
+  return Fn;
+}
+
+/// This function emits a helper that gathers Reduce lists from the first
+/// lane of every active warp to lanes in the first warp.
+///
+/// void inter_warp_copy_func(void* reduce_data, num_warps)
+///   shared smem[warp_size];
+///   For all data entries D in reduce_data:
+///     If (I am the first lane in each warp)
+///       Copy my local D to smem[warp_id]
+///     sync
+///     if (I am the first warp)
+///       Copy smem[thread_id] to my local D
+///     sync
+static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM,
+                                              ArrayRef<const Expr *> Privates,
+                                              QualType ReductionArrayTy) {
+  auto &C = CGM.getContext();
+  auto &M = CGM.getModule();
+
+  // ReduceList: thread local Reduce list.
+  // At the stage of the computation when this function is called, partially
+  // aggregated values reside in the first lane of every active warp.
+  ImplicitParamDecl ReduceListArg(C, C.VoidPtrTy, ImplicitParamDecl::Other);
+  // NumWarps: number of warps active in the parallel region.  This could
+  // be smaller than 32 (max warps in a CTA) for partial block reduction.
+  ImplicitParamDecl NumWarpsArg(C,
+                                C.getIntTypeForBitwidth(32, /* Signed */ true),
+                                ImplicitParamDecl::Other);
+  FunctionArgList Args;
+  Args.push_back(&ReduceListArg);
+  Args.push_back(&NumWarpsArg);
+
+  auto &CGFI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
+  auto *Fn = llvm::Function::Create(
+      CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
+      "_omp_reduction_inter_warp_copy_func", &CGM.getModule());
+  CGM.SetInternalFunctionAttributes(/*DC=*/nullptr, Fn, CGFI);
+  CodeGenFunction CGF(CGM);
+  // We don't need debug information in this function as nothing here refers to
+  // user code.
+  CGF.disableDebugInfo();
+  CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args);
+
+  auto &Bld = CGF.Builder;
+
+  // This array is used as a medium to transfer, one reduce element at a time,
+  // the data from the first lane of every warp to lanes in the first warp
+  // in order to perform the final step of a reduction in a parallel region
+  // (reduction across warps).  The array is placed in NVPTX __shared__ memory
+  // for reduced latency, as well as to have a distinct copy for concurrently
+  // executing target regions.  The array is declared with common linkage so
+  // as to be shared across compilation units.
+  const char *TransferMediumName =
+      "__openmp_nvptx_data_transfer_temporary_storage";
+  llvm::GlobalVariable *TransferMedium =
+      M.getGlobalVariable(TransferMediumName);
+  if (!TransferMedium) {
+    auto *Ty = llvm::ArrayType::get(CGM.Int64Ty, WarpSize);
+    unsigned SharedAddressSpace = C.getTargetAddressSpace(LangAS::cuda_shared);
+    TransferMedium = new llvm::GlobalVariable(
+        M, Ty,
+        /*isConstant=*/false, llvm::GlobalVariable::CommonLinkage,
+        llvm::Constant::getNullValue(Ty), TransferMediumName,
+        /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
+        SharedAddressSpace);
+  }
+
+  // Get the CUDA thread id of the current OpenMP thread on the GPU.
+  auto *ThreadID = getNVPTXThreadID(CGF);
+  // nvptx_lane_id = nvptx_id % warpsize
+  auto *LaneID = getNVPTXLaneID(CGF);
+  // nvptx_warp_id = nvptx_id / warpsize
+  auto *WarpID = getNVPTXWarpID(CGF);
+
+  Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
+  Address LocalReduceList(
+      Bld.CreatePointerBitCastOrAddrSpaceCast(
+          CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
+                               C.VoidPtrTy, SourceLocation()),
+          CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
+      CGF.getPointerAlign());
+
+  unsigned Idx = 0;
+  for (auto &Private : Privates) {
+    //
+    // Warp master copies reduce element to transfer medium in __shared__
+    // memory.
+    //
+    llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
+    llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
+    llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
+
+    // if (lane_id == 0)
+    auto IsWarpMaster =
+        Bld.CreateICmpEQ(LaneID, Bld.getInt32(0), "warp_master");
+    Bld.CreateCondBr(IsWarpMaster, ThenBB, ElseBB);
+    CGF.EmitBlock(ThenBB);
+
+    // Reduce element = LocalReduceList[i]
+    Address ElemPtrPtrAddr =
+        Bld.CreateConstArrayGEP(LocalReduceList, Idx, CGF.getPointerSize());
+    llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
+        ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
+    // elemptr = (type[i]*)(elemptrptr)
+    Address ElemPtr =
+        Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType()));
+    ElemPtr = Bld.CreateElementBitCast(
+        ElemPtr, CGF.ConvertTypeForMem(Private->getType()));
+    // elem = *elemptr
+    llvm::Value *Elem = CGF.EmitLoadOfScalar(
+        ElemPtr, /*Volatile=*/false, Private->getType(), SourceLocation());
+
+    // Get pointer to location in transfer medium.
+    // MediumPtr = &medium[warp_id]
+    llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP(
+        TransferMedium, {llvm::Constant::getNullValue(CGM.Int64Ty), WarpID});
+    Address MediumPtr(MediumPtrVal, C.getTypeAlignInChars(Private->getType()));
+    // Casting to actual data type.
+    // MediumPtr = (type[i]*)MediumPtrAddr;
+    MediumPtr = Bld.CreateElementBitCast(
+        MediumPtr, CGF.ConvertTypeForMem(Private->getType()));
+
+    //*MediumPtr = elem
+    Bld.CreateStore(Elem, MediumPtr);
+
+    Bld.CreateBr(MergeBB);
+
+    CGF.EmitBlock(ElseBB);
+    Bld.CreateBr(MergeBB);
+
+    CGF.EmitBlock(MergeBB);
+
+    Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg);
+    llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar(
+        AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, SourceLocation());
+
+    auto *NumActiveThreads = Bld.CreateNSWMul(
+        NumWarpsVal, getNVPTXWarpSize(CGF), "num_active_threads");
+    // named_barrier_sync(ParallelBarrierID, num_active_threads)
+    syncParallelThreads(CGF, NumActiveThreads);
+
+    //
+    // Warp 0 copies reduce element from transfer medium.
+    //
+    llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock("then");
+    llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock("else");
+    llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock("ifcont");
+
+    // Up to 32 threads in warp 0 are active.
+    auto IsActiveThread =
+        Bld.CreateICmpULT(ThreadID, NumWarpsVal, "is_active_thread");
+    Bld.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB);
+
+    CGF.EmitBlock(W0ThenBB);
+
+    // SrcMediumPtr = &medium[tid]
+    llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP(
+        TransferMedium, {llvm::Constant::getNullValue(CGM.Int64Ty), ThreadID});
+    Address SrcMediumPtr(SrcMediumPtrVal,
+                         C.getTypeAlignInChars(Private->getType()));
+    // SrcMediumVal = *SrcMediumPtr;
+    SrcMediumPtr = Bld.CreateElementBitCast(
+        SrcMediumPtr, CGF.ConvertTypeForMem(Private->getType()));
+    llvm::Value *SrcMediumValue = CGF.EmitLoadOfScalar(
+        SrcMediumPtr, /*Volatile=*/false, Private->getType(), SourceLocation());
+
+    // TargetElemPtr = (type[i]*)(SrcDataAddr[i])
+    Address TargetElemPtrPtr =
+        Bld.CreateConstArrayGEP(LocalReduceList, Idx, CGF.getPointerSize());
+    llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar(
+        TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
+    Address TargetElemPtr =
+        Address(TargetElemPtrVal, C.getTypeAlignInChars(Private->getType()));
+    TargetElemPtr = Bld.CreateElementBitCast(
+        TargetElemPtr, CGF.ConvertTypeForMem(Private->getType()));
+
+    // *TargetElemPtr = SrcMediumVal;
+    CGF.EmitStoreOfScalar(SrcMediumValue, TargetElemPtr, /*Volatile=*/false,
+                          Private->getType());
+    Bld.CreateBr(W0MergeBB);
+
+    CGF.EmitBlock(W0ElseBB);
+    Bld.CreateBr(W0MergeBB);
+
+    CGF.EmitBlock(W0MergeBB);
+
+    // While warp 0 copies values from transfer medium, all other warps must
+    // wait.
+    syncParallelThreads(CGF, NumActiveThreads);
+    Idx++;
+  }
+
+  CGF.FinishFunction();
+  return Fn;
+}
+
+/// Emit a helper that reduces data across two OpenMP threads (lanes)
+/// in the same warp.  It uses shuffle instructions to copy over data from
+/// a remote lane's stack.  The reduction algorithm performed is specified
+/// by the fourth parameter.
+///
+/// Algorithm Versions.
+/// Full Warp Reduce (argument value 0):
+///   This algorithm assumes that all 32 lanes are active and gathers
+///   data from these 32 lanes, producing a single resultant value.
+/// Contiguous Partial Warp Reduce (argument value 1):
+///   This algorithm assumes that only a *contiguous* subset of lanes
+///   are active.  This happens for the last warp in a parallel region
+///   when the user specified num_threads is not an integer multiple of
+///   32.  This contiguous subset always starts with the zeroth lane.
+/// Partial Warp Reduce (argument value 2):
+///   This algorithm gathers data from any number of lanes at any position.
+/// All reduced values are stored in the lowest possible lane.  The set
+/// of problems every algorithm addresses is a super set of those
+/// addressable by algorithms with a lower version number.  Overhead
+/// increases as algorithm version increases.
+///
+/// Terminology
+/// Reduce element:
+///   Reduce element refers to the individual data field with primitive
+///   data types to be combined and reduced across threads.
+/// Reduce list:
+///   Reduce list refers to a collection of local, thread-private
+///   reduce elements.
+/// Remote Reduce list:
+///   Remote Reduce list refers to a collection of remote (relative to
+///   the current thread) reduce elements.
+///
+/// We distinguish between three states of threads that are important to
+/// the implementation of this function.
+/// Alive threads:
+///   Threads in a warp executing the SIMT instruction, as distinguished from
+///   threads that are inactive due to divergent control flow.
+/// Active threads:
+///   The minimal set of threads that has to be alive upon entry to this
+///   function.  The computation is correct iff active threads are alive.
+///   Some threads are alive but they are not active because they do not
+///   contribute to the computation in any useful manner.  Turning them off
+///   may introduce control flow overheads without any tangible benefits.
+/// Effective threads:
+///   In order to comply with the argument requirements of the shuffle
+///   function, we must keep all lanes holding data alive.  But at most
+///   half of them perform value aggregation; we refer to this half of
+///   threads as effective. The other half is simply handing off their
+///   data.
+///
+/// Procedure
+/// Value shuffle:
+///   In this step active threads transfer data from higher lane positions
+///   in the warp to lower lane positions, creating Remote Reduce list.
+/// Value aggregation:
+///   In this step, effective threads combine their thread local Reduce list
+///   with Remote Reduce list and store the result in the thread local
+///   Reduce list.
+/// Value copy:
+///   In this step, we deal with the assumption made by algorithm 2
+///   (i.e. contiguity assumption).  When we have an odd number of lanes
+///   active, say 2k+1, only k threads will be effective and therefore k
+///   new values will be produced.  However, the Reduce list owned by the
+///   (2k+1)th thread is ignored in the value aggregation.  Therefore
+///   we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so
+///   that the contiguity assumption still holds.
+static llvm::Value *
+emitShuffleAndReduceFunction(CodeGenModule &CGM,
+                             ArrayRef<const Expr *> Privates,
+                             QualType ReductionArrayTy, llvm::Value *ReduceFn) {
+  auto &C = CGM.getContext();
+
+  // Thread local Reduce list used to host the values of data to be reduced.
+  ImplicitParamDecl ReduceListArg(C, C.VoidPtrTy, ImplicitParamDecl::Other);
+  // Current lane id; could be logical.
+  ImplicitParamDecl LaneIDArg(C, C.ShortTy, ImplicitParamDecl::Other);
+  // Offset of the remote source lane relative to the current lane.
+  ImplicitParamDecl RemoteLaneOffsetArg(C, C.ShortTy,
+                                        ImplicitParamDecl::Other);
+  // Algorithm version.  This is expected to be known at compile time.
+  ImplicitParamDecl AlgoVerArg(C, C.ShortTy, ImplicitParamDecl::Other);
+  FunctionArgList Args;
+  Args.push_back(&ReduceListArg);
+  Args.push_back(&LaneIDArg);
+  Args.push_back(&RemoteLaneOffsetArg);
+  Args.push_back(&AlgoVerArg);
+
+  auto &CGFI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
+  auto *Fn = llvm::Function::Create(
+      CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
+      "_omp_reduction_shuffle_and_reduce_func", &CGM.getModule());
+  CGM.SetInternalFunctionAttributes(/*D=*/nullptr, Fn, CGFI);
+  CodeGenFunction CGF(CGM);
+  // We don't need debug information in this function as nothing here refers to
+  // user code.
+  CGF.disableDebugInfo();
+  CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args);
+
+  auto &Bld = CGF.Builder;
+
+  Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
+  Address LocalReduceList(
+      Bld.CreatePointerBitCastOrAddrSpaceCast(
+          CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
+                               C.VoidPtrTy, SourceLocation()),
+          CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
+      CGF.getPointerAlign());
+
+  Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg);
+  llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar(
+      AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
+
+  Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg);
+  llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar(
+      AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
+
+  Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg);
+  llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar(
+      AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
+
+  // Create a local thread-private variable to host the Reduce list
+  // from a remote lane.
+  Address RemoteReduceList =
+      CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_reduce_list");
+
+  // This loop iterates through the list of reduce elements and copies,
+  // element by element, from a remote lane in the warp to RemoteReduceList,
+  // hosted on the thread's stack.
+  emitReductionListCopy(RemoteLaneToThread, CGF, ReductionArrayTy, Privates,
+                        LocalReduceList, RemoteReduceList,
+                        {/*RemoteLaneOffset=*/RemoteLaneOffsetArgVal,
+                         /*ScratchpadIndex=*/nullptr,
+                         /*ScratchpadWidth=*/nullptr});
+
+  // The actions to be performed on the Remote Reduce list is dependent
+  // on the algorithm version.
+  //
+  //  if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 &&
+  //  LaneId % 2 == 0 && Offset > 0):
+  //    do the reduction value aggregation
+  //
+  //  The thread local variable Reduce list is mutated in place to host the
+  //  reduced data, which is the aggregated value produced from local and
+  //  remote lanes.
+  //
+  //  Note that AlgoVer is expected to be a constant integer known at compile
+  //  time.
+  //  When AlgoVer==0, the first conjunction evaluates to true, making
+  //    the entire predicate true during compile time.
+  //  When AlgoVer==1, the second conjunction has only the second part to be
+  //    evaluated during runtime.  Other conjunctions evaluates to false
+  //    during compile time.
+  //  When AlgoVer==2, the third conjunction has only the second part to be
+  //    evaluated during runtime.  Other conjunctions evaluates to false
+  //    during compile time.
+  auto CondAlgo0 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(0));
+
+  auto Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
+  auto CondAlgo1 = Bld.CreateAnd(
+      Algo1, Bld.CreateICmpULT(LaneIDArgVal, RemoteLaneOffsetArgVal));
+
+  auto Algo2 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(2));
+  auto CondAlgo2 = Bld.CreateAnd(
+      Algo2,
+      Bld.CreateICmpEQ(Bld.CreateAnd(LaneIDArgVal, Bld.getInt16(1)),
+                       Bld.getInt16(0)));
+  CondAlgo2 = Bld.CreateAnd(
+      CondAlgo2, Bld.CreateICmpSGT(RemoteLaneOffsetArgVal, Bld.getInt16(0)));
+
+  auto CondReduce = Bld.CreateOr(CondAlgo0, CondAlgo1);
+  CondReduce = Bld.CreateOr(CondReduce, CondAlgo2);
+
+  llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
+  llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
+  llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
+  Bld.CreateCondBr(CondReduce, ThenBB, ElseBB);
+
+  CGF.EmitBlock(ThenBB);
+  // reduce_function(LocalReduceList, RemoteReduceList)
+  llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
+      LocalReduceList.getPointer(), CGF.VoidPtrTy);
+  llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
+      RemoteReduceList.getPointer(), CGF.VoidPtrTy);
+  CGF.EmitCallOrInvoke(ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr});
+  Bld.CreateBr(MergeBB);
+
+  CGF.EmitBlock(ElseBB);
+  Bld.CreateBr(MergeBB);
+
+  CGF.EmitBlock(MergeBB);
+
+  // if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local
+  // Reduce list.
+  Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
+  auto CondCopy = Bld.CreateAnd(
+      Algo1, Bld.CreateICmpUGE(LaneIDArgVal, RemoteLaneOffsetArgVal));
+
+  llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock("then");
+  llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock("else");
+  llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock("ifcont");
+  Bld.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB);
+
+  CGF.EmitBlock(CpyThenBB);
+  emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates,
+                        RemoteReduceList, LocalReduceList);
+  Bld.CreateBr(CpyMergeBB);
+
+  CGF.EmitBlock(CpyElseBB);
+  Bld.CreateBr(CpyMergeBB);
+
+  CGF.EmitBlock(CpyMergeBB);
+
+  CGF.FinishFunction();
+  return Fn;
+}
+
+///
+/// Design of OpenMP reductions on the GPU
+///
+/// Consider a typical OpenMP program with one or more reduction
+/// clauses:
+///
+/// float foo;
+/// double bar;
+/// #pragma omp target teams distribute parallel for \
+///             reduction(+:foo) reduction(*:bar)
+/// for (int i = 0; i < N; i++) {
+///   foo += A[i]; bar *= B[i];
+/// }
+///
+/// where 'foo' and 'bar' are reduced across all OpenMP threads in
+/// all teams.  In our OpenMP implementation on the NVPTX device an
+/// OpenMP team is mapped to a CUDA threadblock and OpenMP threads
+/// within a team are mapped to CUDA threads within a threadblock.
+/// Our goal is to efficiently aggregate values across all OpenMP
+/// threads such that:
+///
+///   - the compiler and runtime are logically concise, and
+///   - the reduction is performed efficiently in a hierarchical
+///     manner as follows: within OpenMP threads in the same warp,
+///     across warps in a threadblock, and finally across teams on
+///     the NVPTX device.
+///
+/// Introduction to Decoupling
+///
+/// We would like to decouple the compiler and the runtime so that the
+/// latter is ignorant of the reduction variables (number, data types)
+/// and the reduction operators.  This allows a simpler interface
+/// and implementation while still attaining good performance.
+///
+/// Pseudocode for the aforementioned OpenMP program generated by the
+/// compiler is as follows:
+///
+/// 1. Create private copies of reduction variables on each OpenMP
+///    thread: 'foo_private', 'bar_private'
+/// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned
+///    to it and writes the result in 'foo_private' and 'bar_private'
+///    respectively.
+/// 3. Call the OpenMP runtime on the GPU to reduce within a team
+///    and store the result on the team master:
+///
+///     __kmpc_nvptx_parallel_reduce_nowait(...,
+///        reduceData, shuffleReduceFn, interWarpCpyFn)
+///
+///     where:
+///       struct ReduceData {
+///         double *foo;
+///         double *bar;
+///       } reduceData
+///       reduceData.foo = &foo_private
+///       reduceData.bar = &bar_private
+///
+///     'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two
+///     auxiliary functions generated by the compiler that operate on
+///     variables of type 'ReduceData'.  They aid the runtime perform
+///     algorithmic steps in a data agnostic manner.
+///
+///     'shuffleReduceFn' is a pointer to a function that reduces data
+///     of type 'ReduceData' across two OpenMP threads (lanes) in the
+///     same warp.  It takes the following arguments as input:
+///
+///     a. variable of type 'ReduceData' on the calling lane,
+///     b. its lane_id,
+///     c. an offset relative to the current lane_id to generate a
+///        remote_lane_id.  The remote lane contains the second
+///        variable of type 'ReduceData' that is to be reduced.
+///     d. an algorithm version parameter determining which reduction
+///        algorithm to use.
+///
+///     'shuffleReduceFn' retrieves data from the remote lane using
+///     efficient GPU shuffle intrinsics and reduces, using the
+///     algorithm specified by the 4th parameter, the two operands
+///     element-wise.  The result is written to the first operand.
+///
+///     Different reduction algorithms are implemented in different
+///     runtime functions, all calling 'shuffleReduceFn' to perform
+///     the essential reduction step.  Therefore, based on the 4th
+///     parameter, this function behaves slightly differently to
+///     cooperate with the runtime to ensure correctness under
+///     different circumstances.
+///
+///     'InterWarpCpyFn' is a pointer to a function that transfers
+///     reduced variables across warps.  It tunnels, through CUDA
+///     shared memory, the thread-private data of type 'ReduceData'
+///     from lane 0 of each warp to a lane in the first warp.
+/// 4. Call the OpenMP runtime on the GPU to reduce across teams.
+///    The last team writes the global reduced value to memory.
+///
+///     ret = __kmpc_nvptx_teams_reduce_nowait(...,
+///             reduceData, shuffleReduceFn, interWarpCpyFn,
+///             scratchpadCopyFn, loadAndReduceFn)
+///
+///     'scratchpadCopyFn' is a helper that stores reduced
+///     data from the team master to a scratchpad array in
+///     global memory.
+///
+///     'loadAndReduceFn' is a helper that loads data from
+///     the scratchpad array and reduces it with the input
+///     operand.
+///
+///     These compiler generated functions hide address
+///     calculation and alignment information from the runtime.
+/// 5. if ret == 1:
+///     The team master of the last team stores the reduced
+///     result to the globals in memory.
+///     foo += reduceData.foo; bar *= reduceData.bar
+///
+///
+/// Warp Reduction Algorithms
+///
+/// On the warp level, we have three algorithms implemented in the
+/// OpenMP runtime depending on the number of active lanes:
+///
+/// Full Warp Reduction
+///
+/// The reduce algorithm within a warp where all lanes are active
+/// is implemented in the runtime as follows:
+///
+/// full_warp_reduce(void *reduce_data,
+///                  kmp_ShuffleReductFctPtr ShuffleReduceFn) {
+///   for (int offset = WARPSIZE/2; offset > 0; offset /= 2)
+///     ShuffleReduceFn(reduce_data, 0, offset, 0);
+/// }
+///
+/// The algorithm completes in log(2, WARPSIZE) steps.
+///
+/// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is
+/// not used therefore we save instructions by not retrieving lane_id
+/// from the corresponding special registers.  The 4th parameter, which
+/// represents the version of the algorithm being used, is set to 0 to
+/// signify full warp reduction.
+///
+/// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
+///
+/// #reduce_elem refers to an element in the local lane's data structure
+/// #remote_elem is retrieved from a remote lane
+/// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
+/// reduce_elem = reduce_elem REDUCE_OP remote_elem;
+///
+/// Contiguous Partial Warp Reduction
+///
+/// This reduce algorithm is used within a warp where only the first
+/// 'n' (n <= WARPSIZE) lanes are active.  It is typically used when the
+/// number of OpenMP threads in a parallel region is not a multiple of
+/// WARPSIZE.  The algorithm is implemented in the runtime as follows:
+///
+/// void
+/// contiguous_partial_reduce(void *reduce_data,
+///                           kmp_ShuffleReductFctPtr ShuffleReduceFn,
+///                           int size, int lane_id) {
+///   int curr_size;
+///   int offset;
+///   curr_size = size;
+///   mask = curr_size/2;
+///   while (offset>0) {
+///     ShuffleReduceFn(reduce_data, lane_id, offset, 1);
+///     curr_size = (curr_size+1)/2;
+///     offset = curr_size/2;
+///   }
+/// }
+///
+/// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
+///
+/// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
+/// if (lane_id < offset)
+///     reduce_elem = reduce_elem REDUCE_OP remote_elem
+/// else
+///     reduce_elem = remote_elem
+///
+/// This algorithm assumes that the data to be reduced are located in a
+/// contiguous subset of lanes starting from the first.  When there is
+/// an odd number of active lanes, the data in the last lane is not
+/// aggregated with any other lane's dat but is instead copied over.
+///
+/// Dispersed Partial Warp Reduction
+///
+/// This algorithm is used within a warp when any discontiguous subset of
+/// lanes are active.  It is used to implement the reduction operation
+/// across lanes in an OpenMP simd region or in a nested parallel region.
+///
+/// void
+/// dispersed_partial_reduce(void *reduce_data,
+///                          kmp_ShuffleReductFctPtr ShuffleReduceFn) {
+///   int size, remote_id;
+///   int logical_lane_id = number_of_active_lanes_before_me() * 2;
+///   do {
+///       remote_id = next_active_lane_id_right_after_me();
+///       # the above function returns 0 of no active lane
+///       # is present right after the current lane.
+///       size = number_of_active_lanes_in_this_warp();
+///       logical_lane_id /= 2;
+///       ShuffleReduceFn(reduce_data, logical_lane_id,
+///                       remote_id-1-threadIdx.x, 2);
+///   } while (logical_lane_id % 2 == 0 && size > 1);
+/// }
+///
+/// There is no assumption made about the initial state of the reduction.
+/// Any number of lanes (>=1) could be active at any position.  The reduction
+/// result is returned in the first active lane.
+///
+/// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
+///
+/// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
+/// if (lane_id % 2 == 0 && offset > 0)
+///     reduce_elem = reduce_elem REDUCE_OP remote_elem
+/// else
+///     reduce_elem = remote_elem
+///
+///
+/// Intra-Team Reduction
+///
+/// This function, as implemented in the runtime call
+/// '__kmpc_nvptx_parallel_reduce_nowait', aggregates data across OpenMP
+/// threads in a team.  It first reduces within a warp using the
+/// aforementioned algorithms.  We then proceed to gather all such
+/// reduced values at the first warp.
+///
+/// The runtime makes use of the function 'InterWarpCpyFn', which copies
+/// data from each of the "warp master" (zeroth lane of each warp, where
+/// warp-reduced data is held) to the zeroth warp.  This step reduces (in
+/// a mathematical sense) the problem of reduction across warp masters in
+/// a block to the problem of warp reduction.
+///
+///
+/// Inter-Team Reduction
+///
+/// Once a team has reduced its data to a single value, it is stored in
+/// a global scratchpad array.  Since each team has a distinct slot, this
+/// can be done without locking.
+///
+/// The last team to write to the scratchpad array proceeds to reduce the
+/// scratchpad array.  One or more workers in the last team use the helper
+/// 'loadAndReduceDataFn' to load and reduce values from the array, i.e.,
+/// the k'th worker reduces every k'th element.
+///
+/// Finally, a call is made to '__kmpc_nvptx_parallel_reduce_nowait' to
+/// reduce across workers and compute a globally reduced value.
+///
+void CGOpenMPRuntimeNVPTX::emitReduction(
+    CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates,
+    ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
+    ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) {
+  if (!CGF.HaveInsertPoint())
+    return;
+
+  bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind);
+  bool TeamsReduction = isOpenMPTeamsDirective(Options.ReductionKind);
+  // FIXME: Add support for simd reduction.
+  assert((TeamsReduction || ParallelReduction) &&
+         "Invalid reduction selection in emitReduction.");
+
+  auto &C = CGM.getContext();
+
+  // 1. Build a list of reduction variables.
+  // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
+  auto Size = RHSExprs.size();
+  for (auto *E : Privates) {
+    if (E->getType()->isVariablyModifiedType())
+      // Reserve place for array size.
+      ++Size;
+  }
+  llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size);
+  QualType ReductionArrayTy =
+      C.getConstantArrayType(C.VoidPtrTy, ArraySize, ArrayType::Normal,
+                             /*IndexTypeQuals=*/0);
+  Address ReductionList =
+      CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
+  auto IPriv = Privates.begin();
+  unsigned Idx = 0;
+  for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) {
+    Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx,
+                                                   CGF.getPointerSize());
+    CGF.Builder.CreateStore(
+        CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+            CGF.EmitLValue(RHSExprs[I]).getPointer(), CGF.VoidPtrTy),
+        Elem);
+    if ((*IPriv)->getType()->isVariablyModifiedType()) {
+      // Store array size.
+      ++Idx;
+      Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx,
+                                             CGF.getPointerSize());
+      llvm::Value *Size = CGF.Builder.CreateIntCast(
+          CGF.getVLASize(
+                 CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
+              .first,
+          CGF.SizeTy, /*isSigned=*/false);
+      CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
+                              Elem);
+    }
+  }
+
+  // 2. Emit reduce_func().
+  auto *ReductionFn = emitReductionFunction(
+      CGM, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates,
+      LHSExprs, RHSExprs, ReductionOps);
+
+  // 4. Build res = __kmpc_reduce{_nowait}(<gtid>, <n>, sizeof(RedList),
+  // RedList, shuffle_reduce_func, interwarp_copy_func);
+  auto *ThreadId = getThreadID(CGF, Loc);
+  auto *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy);
+  auto *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+      ReductionList.getPointer(), CGF.VoidPtrTy);
+
+  auto *ShuffleAndReduceFn = emitShuffleAndReduceFunction(
+      CGM, Privates, ReductionArrayTy, ReductionFn);
+  auto *InterWarpCopyFn =
+      emitInterWarpCopyFunction(CGM, Privates, ReductionArrayTy);
+
+  llvm::Value *Res = nullptr;
+  if (ParallelReduction) {
+    llvm::Value *Args[] = {ThreadId,
+                           CGF.Builder.getInt32(RHSExprs.size()),
+                           ReductionArrayTySize,
+                           RL,
+                           ShuffleAndReduceFn,
+                           InterWarpCopyFn};
+
+    Res = CGF.EmitRuntimeCall(
+        createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_parallel_reduce_nowait),
+        Args);
+  }
+
+  if (TeamsReduction) {
+    auto *ScratchPadCopyFn =
+        emitCopyToScratchpad(CGM, Privates, ReductionArrayTy);
+    auto *LoadAndReduceFn = emitReduceScratchpadFunction(
+        CGM, Privates, ReductionArrayTy, ReductionFn);
+
+    llvm::Value *Args[] = {ThreadId,
+                           CGF.Builder.getInt32(RHSExprs.size()),
+                           ReductionArrayTySize,
+                           RL,
+                           ShuffleAndReduceFn,
+                           InterWarpCopyFn,
+                           ScratchPadCopyFn,
+                           LoadAndReduceFn};
+    Res = CGF.EmitRuntimeCall(
+        createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_teams_reduce_nowait),
+        Args);
+  }
+
+  // 5. Build switch(res)
+  auto *DefaultBB = CGF.createBasicBlock(".omp.reduction.default");
+  auto *SwInst = CGF.Builder.CreateSwitch(Res, DefaultBB, /*NumCases=*/1);
+
+  // 6. Build case 1: where we have reduced values in the master
+  //    thread in each team.
+  //    __kmpc_end_reduce{_nowait}(<gtid>);
+  //    break;
+  auto *Case1BB = CGF.createBasicBlock(".omp.reduction.case1");
+  SwInst->addCase(CGF.Builder.getInt32(1), Case1BB);
+  CGF.EmitBlock(Case1BB);
+
+  // Add emission of __kmpc_end_reduce{_nowait}(<gtid>);
+  llvm::Value *EndArgs[] = {ThreadId};
+  auto &&CodeGen = [&Privates, &LHSExprs, &RHSExprs, &ReductionOps,
+                    this](CodeGenFunction &CGF, PrePostActionTy &Action) {
+    auto IPriv = Privates.begin();
+    auto ILHS = LHSExprs.begin();
+    auto IRHS = RHSExprs.begin();
+    for (auto *E : ReductionOps) {
+      emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
+                                  cast<DeclRefExpr>(*IRHS));
+      ++IPriv;
+      ++ILHS;
+      ++IRHS;
+    }
+  };
+  RegionCodeGenTy RCG(CodeGen);
+  NVPTXActionTy Action(
+      nullptr, llvm::None,
+      createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_end_reduce_nowait),
+      EndArgs);
+  RCG.setAction(Action);
+  RCG(CGF);
+  CGF.EmitBranch(DefaultBB);
+  CGF.EmitBlock(DefaultBB, /*IsFinished=*/true);
+}