/* * Copyright (c) 2013 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include #include #include #include #include "third_party/googletest/src/include/gtest/gtest.h" #include "./vpx_config.h" #include "./vp8_rtcd.h" #include "test/acm_random.h" #include "vpx/vpx_integer.h" #include "vpx_ports/mem.h" namespace { typedef void (*FdctFunc)(int16_t *a, int16_t *b, int a_stride); const int cospi8sqrt2minus1 = 20091; const int sinpi8sqrt2 = 35468; void reference_idct4x4(const int16_t *input, int16_t *output) { const int16_t *ip = input; int16_t *op = output; for (int i = 0; i < 4; ++i) { const int a1 = ip[0] + ip[8]; const int b1 = ip[0] - ip[8]; const int temp1 = (ip[4] * sinpi8sqrt2) >> 16; const int temp2 = ip[12] + ((ip[12] * cospi8sqrt2minus1) >> 16); const int c1 = temp1 - temp2; const int temp3 = ip[4] + ((ip[4] * cospi8sqrt2minus1) >> 16); const int temp4 = (ip[12] * sinpi8sqrt2) >> 16; const int d1 = temp3 + temp4; op[0] = a1 + d1; op[12] = a1 - d1; op[4] = b1 + c1; op[8] = b1 - c1; ++ip; ++op; } ip = output; op = output; for (int i = 0; i < 4; ++i) { const int a1 = ip[0] + ip[2]; const int b1 = ip[0] - ip[2]; const int temp1 = (ip[1] * sinpi8sqrt2) >> 16; const int temp2 = ip[3] + ((ip[3] * cospi8sqrt2minus1) >> 16); const int c1 = temp1 - temp2; const int temp3 = ip[1] + ((ip[1] * cospi8sqrt2minus1) >> 16); const int temp4 = (ip[3] * sinpi8sqrt2) >> 16; const int d1 = temp3 + temp4; op[0] = (a1 + d1 + 4) >> 3; op[3] = (a1 - d1 + 4) >> 3; op[1] = (b1 + c1 + 4) >> 3; op[2] = (b1 - c1 + 4) >> 3; ip += 4; op += 4; } } using libvpx_test::ACMRandom; class FdctTest : public ::testing::TestWithParam { public: virtual void SetUp() { fdct_func_ = GetParam(); rnd_.Reset(ACMRandom::DeterministicSeed()); } protected: FdctFunc fdct_func_; ACMRandom rnd_; }; TEST_P(FdctTest, SignBiasCheck) { int16_t test_input_block[16]; DECLARE_ALIGNED(16, int16_t, test_output_block[16]); const int pitch = 8; int count_sign_block[16][2]; const int count_test_block = 1000000; memset(count_sign_block, 0, sizeof(count_sign_block)); for (int i = 0; i < count_test_block; ++i) { // Initialize a test block with input range [-255, 255]. for (int j = 0; j < 16; ++j) { test_input_block[j] = rnd_.Rand8() - rnd_.Rand8(); } fdct_func_(test_input_block, test_output_block, pitch); for (int j = 0; j < 16; ++j) { if (test_output_block[j] < 0) { ++count_sign_block[j][0]; } else if (test_output_block[j] > 0) { ++count_sign_block[j][1]; } } } bool bias_acceptable = true; for (int j = 0; j < 16; ++j) { bias_acceptable = bias_acceptable && (abs(count_sign_block[j][0] - count_sign_block[j][1]) < 10000); } EXPECT_EQ(true, bias_acceptable) << "Error: 4x4 FDCT has a sign bias > 1% for input range [-255, 255]"; memset(count_sign_block, 0, sizeof(count_sign_block)); for (int i = 0; i < count_test_block; ++i) { // Initialize a test block with input range [-15, 15]. for (int j = 0; j < 16; ++j) { test_input_block[j] = (rnd_.Rand8() >> 4) - (rnd_.Rand8() >> 4); } fdct_func_(test_input_block, test_output_block, pitch); for (int j = 0; j < 16; ++j) { if (test_output_block[j] < 0) { ++count_sign_block[j][0]; } else if (test_output_block[j] > 0) { ++count_sign_block[j][1]; } } } bias_acceptable = true; for (int j = 0; j < 16; ++j) { bias_acceptable = bias_acceptable && (abs(count_sign_block[j][0] - count_sign_block[j][1]) < 100000); } EXPECT_EQ(true, bias_acceptable) << "Error: 4x4 FDCT has a sign bias > 10% for input range [-15, 15]"; }; TEST_P(FdctTest, RoundTripErrorCheck) { int max_error = 0; double total_error = 0; const int count_test_block = 1000000; for (int i = 0; i < count_test_block; ++i) { int16_t test_input_block[16]; int16_t test_output_block[16]; DECLARE_ALIGNED(16, int16_t, test_temp_block[16]); // Initialize a test block with input range [-255, 255]. for (int j = 0; j < 16; ++j) { test_input_block[j] = rnd_.Rand8() - rnd_.Rand8(); } const int pitch = 8; fdct_func_(test_input_block, test_temp_block, pitch); reference_idct4x4(test_temp_block, test_output_block); for (int j = 0; j < 16; ++j) { const int diff = test_input_block[j] - test_output_block[j]; const int error = diff * diff; if (max_error < error) max_error = error; total_error += error; } } EXPECT_GE(1, max_error) << "Error: FDCT/IDCT has an individual roundtrip error > 1"; EXPECT_GE(count_test_block, total_error) << "Error: FDCT/IDCT has average roundtrip error > 1 per block"; }; INSTANTIATE_TEST_CASE_P(C, FdctTest, ::testing::Values(vp8_short_fdct4x4_c)); #if HAVE_NEON INSTANTIATE_TEST_CASE_P(NEON, FdctTest, ::testing::Values(vp8_short_fdct4x4_neon)); #endif // HAVE_NEON #if HAVE_SSE2 INSTANTIATE_TEST_CASE_P(SSE2, FdctTest, ::testing::Values(vp8_short_fdct4x4_sse2)); #endif // HAVE_SSE2 #if HAVE_MSA INSTANTIATE_TEST_CASE_P(MSA, FdctTest, ::testing::Values(vp8_short_fdct4x4_msa)); #endif // HAVE_MSA #if HAVE_MMI INSTANTIATE_TEST_CASE_P(MMI, FdctTest, ::testing::Values(vp8_short_fdct4x4_mmi)); #endif // HAVE_MMI } // namespace