/*------------------------------------------------------------------------- * * reorderbuffer.c * PostgreSQL logical replay/reorder buffer management * * * Copyright (c) 2012-2019, PostgreSQL Global Development Group * * * IDENTIFICATION * src/backend/replication/reorderbuffer.c * * NOTES * This module gets handed individual pieces of transactions in the order * they are written to the WAL and is responsible to reassemble them into * toplevel transaction sized pieces. When a transaction is completely * reassembled - signalled by reading the transaction commit record - it * will then call the output plugin (cf. ReorderBufferCommit()) with the * individual changes. The output plugins rely on snapshots built by * snapbuild.c which hands them to us. * * Transactions and subtransactions/savepoints in postgres are not * immediately linked to each other from outside the performing * backend. Only at commit/abort (or special xact_assignment records) they * are linked together. Which means that we will have to splice together a * toplevel transaction from its subtransactions. To do that efficiently we * build a binary heap indexed by the smallest current lsn of the individual * subtransactions' changestreams. As the individual streams are inherently * ordered by LSN - since that is where we build them from - the transaction * can easily be reassembled by always using the subtransaction with the * smallest current LSN from the heap. * * In order to cope with large transactions - which can be several times as * big as the available memory - this module supports spooling the contents * of a large transactions to disk. When the transaction is replayed the * contents of individual (sub-)transactions will be read from disk in * chunks. * * This module also has to deal with reassembling toast records from the * individual chunks stored in WAL. When a new (or initial) version of a * tuple is stored in WAL it will always be preceded by the toast chunks * emitted for the columns stored out of line. Within a single toplevel * transaction there will be no other data carrying records between a row's * toast chunks and the row data itself. See ReorderBufferToast* for * details. * * ReorderBuffer uses two special memory context types - SlabContext for * allocations of fixed-length structures (changes and transactions), and * GenerationContext for the variable-length transaction data (allocated * and freed in groups with similar lifespan). * * ------------------------------------------------------------------------- */ #include "postgres.h" #include #include #include "access/detoast.h" #include "access/heapam.h" #include "access/rewriteheap.h" #include "access/transam.h" #include "access/xact.h" #include "access/xlog_internal.h" #include "catalog/catalog.h" #include "lib/binaryheap.h" #include "miscadmin.h" #include "pgstat.h" #include "replication/logical.h" #include "replication/reorderbuffer.h" #include "replication/slot.h" #include "replication/snapbuild.h" /* just for SnapBuildSnapDecRefcount */ #include "storage/bufmgr.h" #include "storage/fd.h" #include "storage/sinval.h" #include "utils/builtins.h" #include "utils/combocid.h" #include "utils/memdebug.h" #include "utils/memutils.h" #include "utils/rel.h" #include "utils/relfilenodemap.h" /* entry for a hash table we use to map from xid to our transaction state */ typedef struct ReorderBufferTXNByIdEnt { TransactionId xid; ReorderBufferTXN *txn; } ReorderBufferTXNByIdEnt; /* data structures for (relfilenode, ctid) => (cmin, cmax) mapping */ typedef struct ReorderBufferTupleCidKey { RelFileNode relnode; ItemPointerData tid; } ReorderBufferTupleCidKey; typedef struct ReorderBufferTupleCidEnt { ReorderBufferTupleCidKey key; CommandId cmin; CommandId cmax; CommandId combocid; /* just for debugging */ } ReorderBufferTupleCidEnt; /* k-way in-order change iteration support structures */ typedef struct ReorderBufferIterTXNEntry { XLogRecPtr lsn; ReorderBufferChange *change; ReorderBufferTXN *txn; int fd; XLogSegNo segno; } ReorderBufferIterTXNEntry; typedef struct ReorderBufferIterTXNState { binaryheap *heap; Size nr_txns; dlist_head old_change; ReorderBufferIterTXNEntry entries[FLEXIBLE_ARRAY_MEMBER]; } ReorderBufferIterTXNState; /* toast datastructures */ typedef struct ReorderBufferToastEnt { Oid chunk_id; /* toast_table.chunk_id */ int32 last_chunk_seq; /* toast_table.chunk_seq of the last chunk we * have seen */ Size num_chunks; /* number of chunks we've already seen */ Size size; /* combined size of chunks seen */ dlist_head chunks; /* linked list of chunks */ struct varlena *reconstructed; /* reconstructed varlena now pointed to in * main tup */ } ReorderBufferToastEnt; /* Disk serialization support datastructures */ typedef struct ReorderBufferDiskChange { Size size; ReorderBufferChange change; /* data follows */ } ReorderBufferDiskChange; /* * Maximum number of changes kept in memory, per transaction. After that, * changes are spooled to disk. * * The current value should be sufficient to decode the entire transaction * without hitting disk in OLTP workloads, while starting to spool to disk in * other workloads reasonably fast. * * At some point in the future it probably makes sense to have a more elaborate * resource management here, but it's not entirely clear what that would look * like. */ static const Size max_changes_in_memory = 4096; /* --------------------------------------- * primary reorderbuffer support routines * --------------------------------------- */ static ReorderBufferTXN *ReorderBufferGetTXN(ReorderBuffer *rb); static void ReorderBufferReturnTXN(ReorderBuffer *rb, ReorderBufferTXN *txn); static ReorderBufferTXN *ReorderBufferTXNByXid(ReorderBuffer *rb, TransactionId xid, bool create, bool *is_new, XLogRecPtr lsn, bool create_as_top); static void ReorderBufferTransferSnapToParent(ReorderBufferTXN *txn, ReorderBufferTXN *subtxn); static void AssertTXNLsnOrder(ReorderBuffer *rb); /* --------------------------------------- * support functions for lsn-order iterating over the ->changes of a * transaction and its subtransactions * * used for iteration over the k-way heap merge of a transaction and its * subtransactions * --------------------------------------- */ static ReorderBufferIterTXNState *ReorderBufferIterTXNInit(ReorderBuffer *rb, ReorderBufferTXN *txn); static ReorderBufferChange *ReorderBufferIterTXNNext(ReorderBuffer *rb, ReorderBufferIterTXNState *state); static void ReorderBufferIterTXNFinish(ReorderBuffer *rb, ReorderBufferIterTXNState *state); static void ReorderBufferExecuteInvalidations(ReorderBuffer *rb, ReorderBufferTXN *txn); /* * --------------------------------------- * Disk serialization support functions * --------------------------------------- */ static void ReorderBufferCheckSerializeTXN(ReorderBuffer *rb, ReorderBufferTXN *txn); static void ReorderBufferSerializeTXN(ReorderBuffer *rb, ReorderBufferTXN *txn); static void ReorderBufferSerializeChange(ReorderBuffer *rb, ReorderBufferTXN *txn, int fd, ReorderBufferChange *change); static Size ReorderBufferRestoreChanges(ReorderBuffer *rb, ReorderBufferTXN *txn, int *fd, XLogSegNo *segno); static void ReorderBufferRestoreChange(ReorderBuffer *rb, ReorderBufferTXN *txn, char *change); static void ReorderBufferRestoreCleanup(ReorderBuffer *rb, ReorderBufferTXN *txn); static void ReorderBufferCleanupSerializedTXNs(const char *slotname); static void ReorderBufferSerializedPath(char *path, ReplicationSlot *slot, TransactionId xid, XLogSegNo segno); static void ReorderBufferFreeSnap(ReorderBuffer *rb, Snapshot snap); static Snapshot ReorderBufferCopySnap(ReorderBuffer *rb, Snapshot orig_snap, ReorderBufferTXN *txn, CommandId cid); /* --------------------------------------- * toast reassembly support * --------------------------------------- */ static void ReorderBufferToastInitHash(ReorderBuffer *rb, ReorderBufferTXN *txn); static void ReorderBufferToastReset(ReorderBuffer *rb, ReorderBufferTXN *txn); static void ReorderBufferToastReplace(ReorderBuffer *rb, ReorderBufferTXN *txn, Relation relation, ReorderBufferChange *change); static void ReorderBufferToastAppendChunk(ReorderBuffer *rb, ReorderBufferTXN *txn, Relation relation, ReorderBufferChange *change); /* * Allocate a new ReorderBuffer and clean out any old serialized state from * prior ReorderBuffer instances for the same slot. */ ReorderBuffer * ReorderBufferAllocate(void) { ReorderBuffer *buffer; HASHCTL hash_ctl; MemoryContext new_ctx; Assert(MyReplicationSlot != NULL); /* allocate memory in own context, to have better accountability */ new_ctx = AllocSetContextCreate(CurrentMemoryContext, "ReorderBuffer", ALLOCSET_DEFAULT_SIZES); buffer = (ReorderBuffer *) MemoryContextAlloc(new_ctx, sizeof(ReorderBuffer)); memset(&hash_ctl, 0, sizeof(hash_ctl)); buffer->context = new_ctx; buffer->change_context = SlabContextCreate(new_ctx, "Change", SLAB_DEFAULT_BLOCK_SIZE, sizeof(ReorderBufferChange)); buffer->txn_context = SlabContextCreate(new_ctx, "TXN", SLAB_DEFAULT_BLOCK_SIZE, sizeof(ReorderBufferTXN)); buffer->tup_context = GenerationContextCreate(new_ctx, "Tuples", SLAB_LARGE_BLOCK_SIZE); hash_ctl.keysize = sizeof(TransactionId); hash_ctl.entrysize = sizeof(ReorderBufferTXNByIdEnt); hash_ctl.hcxt = buffer->context; buffer->by_txn = hash_create("ReorderBufferByXid", 1000, &hash_ctl, HASH_ELEM | HASH_BLOBS | HASH_CONTEXT); buffer->by_txn_last_xid = InvalidTransactionId; buffer->by_txn_last_txn = NULL; buffer->outbuf = NULL; buffer->outbufsize = 0; buffer->current_restart_decoding_lsn = InvalidXLogRecPtr; dlist_init(&buffer->toplevel_by_lsn); dlist_init(&buffer->txns_by_base_snapshot_lsn); /* * Ensure there's no stale data from prior uses of this slot, in case some * prior exit avoided calling ReorderBufferFree. Failure to do this can * produce duplicated txns, and it's very cheap if there's nothing there. */ ReorderBufferCleanupSerializedTXNs(NameStr(MyReplicationSlot->data.name)); return buffer; } /* * Free a ReorderBuffer */ void ReorderBufferFree(ReorderBuffer *rb) { MemoryContext context = rb->context; /* * We free separately allocated data by entirely scrapping reorderbuffer's * memory context. */ MemoryContextDelete(context); /* Free disk space used by unconsumed reorder buffers */ ReorderBufferCleanupSerializedTXNs(NameStr(MyReplicationSlot->data.name)); } /* * Get an unused, possibly preallocated, ReorderBufferTXN. */ static ReorderBufferTXN * ReorderBufferGetTXN(ReorderBuffer *rb) { ReorderBufferTXN *txn; txn = (ReorderBufferTXN *) MemoryContextAlloc(rb->txn_context, sizeof(ReorderBufferTXN)); memset(txn, 0, sizeof(ReorderBufferTXN)); dlist_init(&txn->changes); dlist_init(&txn->tuplecids); dlist_init(&txn->subtxns); return txn; } /* * Free a ReorderBufferTXN. */ static void ReorderBufferReturnTXN(ReorderBuffer *rb, ReorderBufferTXN *txn) { /* clean the lookup cache if we were cached (quite likely) */ if (rb->by_txn_last_xid == txn->xid) { rb->by_txn_last_xid = InvalidTransactionId; rb->by_txn_last_txn = NULL; } /* free data that's contained */ if (txn->tuplecid_hash != NULL) { hash_destroy(txn->tuplecid_hash); txn->tuplecid_hash = NULL; } if (txn->invalidations) { pfree(txn->invalidations); txn->invalidations = NULL; } pfree(txn); } /* * Get an fresh ReorderBufferChange. */ ReorderBufferChange * ReorderBufferGetChange(ReorderBuffer *rb) { ReorderBufferChange *change; change = (ReorderBufferChange *) MemoryContextAlloc(rb->change_context, sizeof(ReorderBufferChange)); memset(change, 0, sizeof(ReorderBufferChange)); return change; } /* * Free an ReorderBufferChange. */ void ReorderBufferReturnChange(ReorderBuffer *rb, ReorderBufferChange *change) { /* free contained data */ switch (change->action) { case REORDER_BUFFER_CHANGE_INSERT: case REORDER_BUFFER_CHANGE_UPDATE: case REORDER_BUFFER_CHANGE_DELETE: case REORDER_BUFFER_CHANGE_INTERNAL_SPEC_INSERT: if (change->data.tp.newtuple) { ReorderBufferReturnTupleBuf(rb, change->data.tp.newtuple); change->data.tp.newtuple = NULL; } if (change->data.tp.oldtuple) { ReorderBufferReturnTupleBuf(rb, change->data.tp.oldtuple); change->data.tp.oldtuple = NULL; } break; case REORDER_BUFFER_CHANGE_MESSAGE: if (change->data.msg.prefix != NULL) pfree(change->data.msg.prefix); change->data.msg.prefix = NULL; if (change->data.msg.message != NULL) pfree(change->data.msg.message); change->data.msg.message = NULL; break; case REORDER_BUFFER_CHANGE_INTERNAL_SNAPSHOT: if (change->data.snapshot) { ReorderBufferFreeSnap(rb, change->data.snapshot); change->data.snapshot = NULL; } break; /* no data in addition to the struct itself */ case REORDER_BUFFER_CHANGE_TRUNCATE: if (change->data.truncate.relids != NULL) { ReorderBufferReturnRelids(rb, change->data.truncate.relids); change->data.truncate.relids = NULL; } break; case REORDER_BUFFER_CHANGE_INTERNAL_SPEC_CONFIRM: case REORDER_BUFFER_CHANGE_INTERNAL_COMMAND_ID: case REORDER_BUFFER_CHANGE_INTERNAL_TUPLECID: break; } pfree(change); } /* * Get a fresh ReorderBufferTupleBuf fitting at least a tuple of size * tuple_len (excluding header overhead). */ ReorderBufferTupleBuf * ReorderBufferGetTupleBuf(ReorderBuffer *rb, Size tuple_len) { ReorderBufferTupleBuf *tuple; Size alloc_len; alloc_len = tuple_len + SizeofHeapTupleHeader; tuple = (ReorderBufferTupleBuf *) MemoryContextAlloc(rb->tup_context, sizeof(ReorderBufferTupleBuf) + MAXIMUM_ALIGNOF + alloc_len); tuple->alloc_tuple_size = alloc_len; tuple->tuple.t_data = ReorderBufferTupleBufData(tuple); return tuple; } /* * Free an ReorderBufferTupleBuf. */ void ReorderBufferReturnTupleBuf(ReorderBuffer *rb, ReorderBufferTupleBuf *tuple) { pfree(tuple); } /* * Get an array for relids of truncated relations. * * We use the global memory context (for the whole reorder buffer), because * none of the existing ones seems like a good match (some are SLAB, so we * can't use those, and tup_context is meant for tuple data, not relids). We * could add yet another context, but it seems like an overkill - TRUNCATE is * not particularly common operation, so it does not seem worth it. */ Oid * ReorderBufferGetRelids(ReorderBuffer *rb, int nrelids) { Oid *relids; Size alloc_len; alloc_len = sizeof(Oid) * nrelids; relids = (Oid *) MemoryContextAlloc(rb->context, alloc_len); return relids; } /* * Free an array of relids. */ void ReorderBufferReturnRelids(ReorderBuffer *rb, Oid *relids) { pfree(relids); } /* * Return the ReorderBufferTXN from the given buffer, specified by Xid. * If create is true, and a transaction doesn't already exist, create it * (with the given LSN, and as top transaction if that's specified); * when this happens, is_new is set to true. */ static ReorderBufferTXN * ReorderBufferTXNByXid(ReorderBuffer *rb, TransactionId xid, bool create, bool *is_new, XLogRecPtr lsn, bool create_as_top) { ReorderBufferTXN *txn; ReorderBufferTXNByIdEnt *ent; bool found; Assert(TransactionIdIsValid(xid)); /* * Check the one-entry lookup cache first */ if (TransactionIdIsValid(rb->by_txn_last_xid) && rb->by_txn_last_xid == xid) { txn = rb->by_txn_last_txn; if (txn != NULL) { /* found it, and it's valid */ if (is_new) *is_new = false; return txn; } /* * cached as non-existent, and asked not to create? Then nothing else * to do. */ if (!create) return NULL; /* otherwise fall through to create it */ } /* * If the cache wasn't hit or it yielded an "does-not-exist" and we want * to create an entry. */ /* search the lookup table */ ent = (ReorderBufferTXNByIdEnt *) hash_search(rb->by_txn, (void *) &xid, create ? HASH_ENTER : HASH_FIND, &found); if (found) txn = ent->txn; else if (create) { /* initialize the new entry, if creation was requested */ Assert(ent != NULL); Assert(lsn != InvalidXLogRecPtr); ent->txn = ReorderBufferGetTXN(rb); ent->txn->xid = xid; txn = ent->txn; txn->first_lsn = lsn; txn->restart_decoding_lsn = rb->current_restart_decoding_lsn; if (create_as_top) { dlist_push_tail(&rb->toplevel_by_lsn, &txn->node); AssertTXNLsnOrder(rb); } } else txn = NULL; /* not found and not asked to create */ /* update cache */ rb->by_txn_last_xid = xid; rb->by_txn_last_txn = txn; if (is_new) *is_new = !found; Assert(!create || txn != NULL); return txn; } /* * Queue a change into a transaction so it can be replayed upon commit. */ void ReorderBufferQueueChange(ReorderBuffer *rb, TransactionId xid, XLogRecPtr lsn, ReorderBufferChange *change) { ReorderBufferTXN *txn; txn = ReorderBufferTXNByXid(rb, xid, true, NULL, lsn, true); change->lsn = lsn; Assert(InvalidXLogRecPtr != lsn); dlist_push_tail(&txn->changes, &change->node); txn->nentries++; txn->nentries_mem++; ReorderBufferCheckSerializeTXN(rb, txn); } /* * Queue message into a transaction so it can be processed upon commit. */ void ReorderBufferQueueMessage(ReorderBuffer *rb, TransactionId xid, Snapshot snapshot, XLogRecPtr lsn, bool transactional, const char *prefix, Size message_size, const char *message) { if (transactional) { MemoryContext oldcontext; ReorderBufferChange *change; Assert(xid != InvalidTransactionId); oldcontext = MemoryContextSwitchTo(rb->context); change = ReorderBufferGetChange(rb); change->action = REORDER_BUFFER_CHANGE_MESSAGE; change->data.msg.prefix = pstrdup(prefix); change->data.msg.message_size = message_size; change->data.msg.message = palloc(message_size); memcpy(change->data.msg.message, message, message_size); ReorderBufferQueueChange(rb, xid, lsn, change); MemoryContextSwitchTo(oldcontext); } else { ReorderBufferTXN *txn = NULL; volatile Snapshot snapshot_now = snapshot; if (xid != InvalidTransactionId) txn = ReorderBufferTXNByXid(rb, xid, true, NULL, lsn, true); /* setup snapshot to allow catalog access */ SetupHistoricSnapshot(snapshot_now, NULL); PG_TRY(); { rb->message(rb, txn, lsn, false, prefix, message_size, message); TeardownHistoricSnapshot(false); } PG_CATCH(); { TeardownHistoricSnapshot(true); PG_RE_THROW(); } PG_END_TRY(); } } /* * AssertTXNLsnOrder * Verify LSN ordering of transaction lists in the reorderbuffer * * Other LSN-related invariants are checked too. * * No-op if assertions are not in use. */ static void AssertTXNLsnOrder(ReorderBuffer *rb) { #ifdef USE_ASSERT_CHECKING dlist_iter iter; XLogRecPtr prev_first_lsn = InvalidXLogRecPtr; XLogRecPtr prev_base_snap_lsn = InvalidXLogRecPtr; dlist_foreach(iter, &rb->toplevel_by_lsn) { ReorderBufferTXN *cur_txn = dlist_container(ReorderBufferTXN, node, iter.cur); /* start LSN must be set */ Assert(cur_txn->first_lsn != InvalidXLogRecPtr); /* If there is an end LSN, it must be higher than start LSN */ if (cur_txn->end_lsn != InvalidXLogRecPtr) Assert(cur_txn->first_lsn <= cur_txn->end_lsn); /* Current initial LSN must be strictly higher than previous */ if (prev_first_lsn != InvalidXLogRecPtr) Assert(prev_first_lsn < cur_txn->first_lsn); /* known-as-subtxn txns must not be listed */ Assert(!cur_txn->is_known_as_subxact); prev_first_lsn = cur_txn->first_lsn; } dlist_foreach(iter, &rb->txns_by_base_snapshot_lsn) { ReorderBufferTXN *cur_txn = dlist_container(ReorderBufferTXN, base_snapshot_node, iter.cur); /* base snapshot (and its LSN) must be set */ Assert(cur_txn->base_snapshot != NULL); Assert(cur_txn->base_snapshot_lsn != InvalidXLogRecPtr); /* current LSN must be strictly higher than previous */ if (prev_base_snap_lsn != InvalidXLogRecPtr) Assert(prev_base_snap_lsn < cur_txn->base_snapshot_lsn); /* known-as-subtxn txns must not be listed */ Assert(!cur_txn->is_known_as_subxact); prev_base_snap_lsn = cur_txn->base_snapshot_lsn; } #endif } /* * ReorderBufferGetOldestTXN * Return oldest transaction in reorderbuffer */ ReorderBufferTXN * ReorderBufferGetOldestTXN(ReorderBuffer *rb) { ReorderBufferTXN *txn; AssertTXNLsnOrder(rb); if (dlist_is_empty(&rb->toplevel_by_lsn)) return NULL; txn = dlist_head_element(ReorderBufferTXN, node, &rb->toplevel_by_lsn); Assert(!txn->is_known_as_subxact); Assert(txn->first_lsn != InvalidXLogRecPtr); return txn; } /* * ReorderBufferGetOldestXmin * Return oldest Xmin in reorderbuffer * * Returns oldest possibly running Xid from the point of view of snapshots * used in the transactions kept by reorderbuffer, or InvalidTransactionId if * there are none. * * Since snapshots are assigned monotonically, this equals the Xmin of the * base snapshot with minimal base_snapshot_lsn. */ TransactionId ReorderBufferGetOldestXmin(ReorderBuffer *rb) { ReorderBufferTXN *txn; AssertTXNLsnOrder(rb); if (dlist_is_empty(&rb->txns_by_base_snapshot_lsn)) return InvalidTransactionId; txn = dlist_head_element(ReorderBufferTXN, base_snapshot_node, &rb->txns_by_base_snapshot_lsn); return txn->base_snapshot->xmin; } void ReorderBufferSetRestartPoint(ReorderBuffer *rb, XLogRecPtr ptr) { rb->current_restart_decoding_lsn = ptr; } /* * ReorderBufferAssignChild * * Make note that we know that subxid is a subtransaction of xid, seen as of * the given lsn. */ void ReorderBufferAssignChild(ReorderBuffer *rb, TransactionId xid, TransactionId subxid, XLogRecPtr lsn) { ReorderBufferTXN *txn; ReorderBufferTXN *subtxn; bool new_top; bool new_sub; txn = ReorderBufferTXNByXid(rb, xid, true, &new_top, lsn, true); subtxn = ReorderBufferTXNByXid(rb, subxid, true, &new_sub, lsn, false); if (new_top && !new_sub) elog(ERROR, "subtransaction logged without previous top-level txn record"); if (!new_sub) { if (subtxn->is_known_as_subxact) { /* already associated, nothing to do */ return; } else { /* * We already saw this transaction, but initially added it to the * list of top-level txns. Now that we know it's not top-level, * remove it from there. */ dlist_delete(&subtxn->node); } } subtxn->is_known_as_subxact = true; subtxn->toplevel_xid = xid; Assert(subtxn->nsubtxns == 0); /* add to subtransaction list */ dlist_push_tail(&txn->subtxns, &subtxn->node); txn->nsubtxns++; /* Possibly transfer the subtxn's snapshot to its top-level txn. */ ReorderBufferTransferSnapToParent(txn, subtxn); /* Verify LSN-ordering invariant */ AssertTXNLsnOrder(rb); } /* * ReorderBufferTransferSnapToParent * Transfer base snapshot from subtxn to top-level txn, if needed * * This is done if the top-level txn doesn't have a base snapshot, or if the * subtxn's base snapshot has an earlier LSN than the top-level txn's base * snapshot's LSN. This can happen if there are no changes in the toplevel * txn but there are some in the subtxn, or the first change in subtxn has * earlier LSN than first change in the top-level txn and we learned about * their kinship only now. * * The subtransaction's snapshot is cleared regardless of the transfer * happening, since it's not needed anymore in either case. * * We do this as soon as we become aware of their kinship, to avoid queueing * extra snapshots to txns known-as-subtxns -- only top-level txns will * receive further snapshots. */ static void ReorderBufferTransferSnapToParent(ReorderBufferTXN *txn, ReorderBufferTXN *subtxn) { Assert(subtxn->toplevel_xid == txn->xid); if (subtxn->base_snapshot != NULL) { if (txn->base_snapshot == NULL || subtxn->base_snapshot_lsn < txn->base_snapshot_lsn) { /* * If the toplevel transaction already has a base snapshot but * it's newer than the subxact's, purge it. */ if (txn->base_snapshot != NULL) { SnapBuildSnapDecRefcount(txn->base_snapshot); dlist_delete(&txn->base_snapshot_node); } /* * The snapshot is now the top transaction's; transfer it, and * adjust the list position of the top transaction in the list by * moving it to where the subtransaction is. */ txn->base_snapshot = subtxn->base_snapshot; txn->base_snapshot_lsn = subtxn->base_snapshot_lsn; dlist_insert_before(&subtxn->base_snapshot_node, &txn->base_snapshot_node); /* * The subtransaction doesn't have a snapshot anymore (so it * mustn't be in the list.) */ subtxn->base_snapshot = NULL; subtxn->base_snapshot_lsn = InvalidXLogRecPtr; dlist_delete(&subtxn->base_snapshot_node); } else { /* Base snap of toplevel is fine, so subxact's is not needed */ SnapBuildSnapDecRefcount(subtxn->base_snapshot); dlist_delete(&subtxn->base_snapshot_node); subtxn->base_snapshot = NULL; subtxn->base_snapshot_lsn = InvalidXLogRecPtr; } } } /* * Associate a subtransaction with its toplevel transaction at commit * time. There may be no further changes added after this. */ void ReorderBufferCommitChild(ReorderBuffer *rb, TransactionId xid, TransactionId subxid, XLogRecPtr commit_lsn, XLogRecPtr end_lsn) { ReorderBufferTXN *subtxn; subtxn = ReorderBufferTXNByXid(rb, subxid, false, NULL, InvalidXLogRecPtr, false); /* * No need to do anything if that subtxn didn't contain any changes */ if (!subtxn) return; subtxn->final_lsn = commit_lsn; subtxn->end_lsn = end_lsn; /* * Assign this subxact as a child of the toplevel xact (no-op if already * done.) */ ReorderBufferAssignChild(rb, xid, subxid, InvalidXLogRecPtr); } /* * Support for efficiently iterating over a transaction's and its * subtransactions' changes. * * We do by doing a k-way merge between transactions/subtransactions. For that * we model the current heads of the different transactions as a binary heap * so we easily know which (sub-)transaction has the change with the smallest * lsn next. * * We assume the changes in individual transactions are already sorted by LSN. */ /* * Binary heap comparison function. */ static int ReorderBufferIterCompare(Datum a, Datum b, void *arg) { ReorderBufferIterTXNState *state = (ReorderBufferIterTXNState *) arg; XLogRecPtr pos_a = state->entries[DatumGetInt32(a)].lsn; XLogRecPtr pos_b = state->entries[DatumGetInt32(b)].lsn; if (pos_a < pos_b) return 1; else if (pos_a == pos_b) return 0; return -1; } /* * Allocate & initialize an iterator which iterates in lsn order over a * transaction and all its subtransactions. */ static ReorderBufferIterTXNState * ReorderBufferIterTXNInit(ReorderBuffer *rb, ReorderBufferTXN *txn) { Size nr_txns = 0; ReorderBufferIterTXNState *state; dlist_iter cur_txn_i; int32 off; /* * Calculate the size of our heap: one element for every transaction that * contains changes. (Besides the transactions already in the reorder * buffer, we count the one we were directly passed.) */ if (txn->nentries > 0) nr_txns++; dlist_foreach(cur_txn_i, &txn->subtxns) { ReorderBufferTXN *cur_txn; cur_txn = dlist_container(ReorderBufferTXN, node, cur_txn_i.cur); if (cur_txn->nentries > 0) nr_txns++; } /* * TODO: Consider adding fastpath for the rather common nr_txns=1 case, no * need to allocate/build a heap then. */ /* allocate iteration state */ state = (ReorderBufferIterTXNState *) MemoryContextAllocZero(rb->context, sizeof(ReorderBufferIterTXNState) + sizeof(ReorderBufferIterTXNEntry) * nr_txns); state->nr_txns = nr_txns; dlist_init(&state->old_change); for (off = 0; off < state->nr_txns; off++) { state->entries[off].fd = -1; state->entries[off].segno = 0; } /* allocate heap */ state->heap = binaryheap_allocate(state->nr_txns, ReorderBufferIterCompare, state); /* * Now insert items into the binary heap, in an unordered fashion. (We * will run a heap assembly step at the end; this is more efficient.) */ off = 0; /* add toplevel transaction if it contains changes */ if (txn->nentries > 0) { ReorderBufferChange *cur_change; if (txn->serialized) { /* serialize remaining changes */ ReorderBufferSerializeTXN(rb, txn); ReorderBufferRestoreChanges(rb, txn, &state->entries[off].fd, &state->entries[off].segno); } cur_change = dlist_head_element(ReorderBufferChange, node, &txn->changes); state->entries[off].lsn = cur_change->lsn; state->entries[off].change = cur_change; state->entries[off].txn = txn; binaryheap_add_unordered(state->heap, Int32GetDatum(off++)); } /* add subtransactions if they contain changes */ dlist_foreach(cur_txn_i, &txn->subtxns) { ReorderBufferTXN *cur_txn; cur_txn = dlist_container(ReorderBufferTXN, node, cur_txn_i.cur); if (cur_txn->nentries > 0) { ReorderBufferChange *cur_change; if (cur_txn->serialized) { /* serialize remaining changes */ ReorderBufferSerializeTXN(rb, cur_txn); ReorderBufferRestoreChanges(rb, cur_txn, &state->entries[off].fd, &state->entries[off].segno); } cur_change = dlist_head_element(ReorderBufferChange, node, &cur_txn->changes); state->entries[off].lsn = cur_change->lsn; state->entries[off].change = cur_change; state->entries[off].txn = cur_txn; binaryheap_add_unordered(state->heap, Int32GetDatum(off++)); } } /* assemble a valid binary heap */ binaryheap_build(state->heap); return state; } /* * Return the next change when iterating over a transaction and its * subtransactions. * * Returns NULL when no further changes exist. */ static ReorderBufferChange * ReorderBufferIterTXNNext(ReorderBuffer *rb, ReorderBufferIterTXNState *state) { ReorderBufferChange *change; ReorderBufferIterTXNEntry *entry; int32 off; /* nothing there anymore */ if (state->heap->bh_size == 0) return NULL; off = DatumGetInt32(binaryheap_first(state->heap)); entry = &state->entries[off]; /* free memory we might have "leaked" in the previous *Next call */ if (!dlist_is_empty(&state->old_change)) { change = dlist_container(ReorderBufferChange, node, dlist_pop_head_node(&state->old_change)); ReorderBufferReturnChange(rb, change); Assert(dlist_is_empty(&state->old_change)); } change = entry->change; /* * update heap with information about which transaction has the next * relevant change in LSN order */ /* there are in-memory changes */ if (dlist_has_next(&entry->txn->changes, &entry->change->node)) { dlist_node *next = dlist_next_node(&entry->txn->changes, &change->node); ReorderBufferChange *next_change = dlist_container(ReorderBufferChange, node, next); /* txn stays the same */ state->entries[off].lsn = next_change->lsn; state->entries[off].change = next_change; binaryheap_replace_first(state->heap, Int32GetDatum(off)); return change; } /* try to load changes from disk */ if (entry->txn->nentries != entry->txn->nentries_mem) { /* * Ugly: restoring changes will reuse *Change records, thus delete the * current one from the per-tx list and only free in the next call. */ dlist_delete(&change->node); dlist_push_tail(&state->old_change, &change->node); if (ReorderBufferRestoreChanges(rb, entry->txn, &entry->fd, &state->entries[off].segno)) { /* successfully restored changes from disk */ ReorderBufferChange *next_change = dlist_head_element(ReorderBufferChange, node, &entry->txn->changes); elog(DEBUG2, "restored %u/%u changes from disk", (uint32) entry->txn->nentries_mem, (uint32) entry->txn->nentries); Assert(entry->txn->nentries_mem); /* txn stays the same */ state->entries[off].lsn = next_change->lsn; state->entries[off].change = next_change; binaryheap_replace_first(state->heap, Int32GetDatum(off)); return change; } } /* ok, no changes there anymore, remove */ binaryheap_remove_first(state->heap); return change; } /* * Deallocate the iterator */ static void ReorderBufferIterTXNFinish(ReorderBuffer *rb, ReorderBufferIterTXNState *state) { int32 off; for (off = 0; off < state->nr_txns; off++) { if (state->entries[off].fd != -1) CloseTransientFile(state->entries[off].fd); } /* free memory we might have "leaked" in the last *Next call */ if (!dlist_is_empty(&state->old_change)) { ReorderBufferChange *change; change = dlist_container(ReorderBufferChange, node, dlist_pop_head_node(&state->old_change)); ReorderBufferReturnChange(rb, change); Assert(dlist_is_empty(&state->old_change)); } binaryheap_free(state->heap); pfree(state); } /* * Cleanup the contents of a transaction, usually after the transaction * committed or aborted. */ static void ReorderBufferCleanupTXN(ReorderBuffer *rb, ReorderBufferTXN *txn) { bool found; dlist_mutable_iter iter; /* cleanup subtransactions & their changes */ dlist_foreach_modify(iter, &txn->subtxns) { ReorderBufferTXN *subtxn; subtxn = dlist_container(ReorderBufferTXN, node, iter.cur); /* * Subtransactions are always associated to the toplevel TXN, even if * they originally were happening inside another subtxn, so we won't * ever recurse more than one level deep here. */ Assert(subtxn->is_known_as_subxact); Assert(subtxn->nsubtxns == 0); ReorderBufferCleanupTXN(rb, subtxn); } /* cleanup changes in the toplevel txn */ dlist_foreach_modify(iter, &txn->changes) { ReorderBufferChange *change; change = dlist_container(ReorderBufferChange, node, iter.cur); ReorderBufferReturnChange(rb, change); } /* * Cleanup the tuplecids we stored for decoding catalog snapshot access. * They are always stored in the toplevel transaction. */ dlist_foreach_modify(iter, &txn->tuplecids) { ReorderBufferChange *change; change = dlist_container(ReorderBufferChange, node, iter.cur); Assert(change->action == REORDER_BUFFER_CHANGE_INTERNAL_TUPLECID); ReorderBufferReturnChange(rb, change); } /* * Cleanup the base snapshot, if set. */ if (txn->base_snapshot != NULL) { SnapBuildSnapDecRefcount(txn->base_snapshot); dlist_delete(&txn->base_snapshot_node); } /* * Remove TXN from its containing list. * * Note: if txn->is_known_as_subxact, we are deleting the TXN from its * parent's list of known subxacts; this leaves the parent's nsubxacts * count too high, but we don't care. Otherwise, we are deleting the TXN * from the LSN-ordered list of toplevel TXNs. */ dlist_delete(&txn->node); /* now remove reference from buffer */ hash_search(rb->by_txn, (void *) &txn->xid, HASH_REMOVE, &found); Assert(found); /* remove entries spilled to disk */ if (txn->serialized) ReorderBufferRestoreCleanup(rb, txn); /* deallocate */ ReorderBufferReturnTXN(rb, txn); } /* * Build a hash with a (relfilenode, ctid) -> (cmin, cmax) mapping for use by * HeapTupleSatisfiesHistoricMVCC. */ static void ReorderBufferBuildTupleCidHash(ReorderBuffer *rb, ReorderBufferTXN *txn) { dlist_iter iter; HASHCTL hash_ctl; if (!txn->has_catalog_changes || dlist_is_empty(&txn->tuplecids)) return; memset(&hash_ctl, 0, sizeof(hash_ctl)); hash_ctl.keysize = sizeof(ReorderBufferTupleCidKey); hash_ctl.entrysize = sizeof(ReorderBufferTupleCidEnt); hash_ctl.hcxt = rb->context; /* * create the hash with the exact number of to-be-stored tuplecids from * the start */ txn->tuplecid_hash = hash_create("ReorderBufferTupleCid", txn->ntuplecids, &hash_ctl, HASH_ELEM | HASH_BLOBS | HASH_CONTEXT); dlist_foreach(iter, &txn->tuplecids) { ReorderBufferTupleCidKey key; ReorderBufferTupleCidEnt *ent; bool found; ReorderBufferChange *change; change = dlist_container(ReorderBufferChange, node, iter.cur); Assert(change->action == REORDER_BUFFER_CHANGE_INTERNAL_TUPLECID); /* be careful about padding */ memset(&key, 0, sizeof(ReorderBufferTupleCidKey)); key.relnode = change->data.tuplecid.node; ItemPointerCopy(&change->data.tuplecid.tid, &key.tid); ent = (ReorderBufferTupleCidEnt *) hash_search(txn->tuplecid_hash, (void *) &key, HASH_ENTER | HASH_FIND, &found); if (!found) { ent->cmin = change->data.tuplecid.cmin; ent->cmax = change->data.tuplecid.cmax; ent->combocid = change->data.tuplecid.combocid; } else { /* * Maybe we already saw this tuple before in this transaction, but * if so it must have the same cmin. */ Assert(ent->cmin == change->data.tuplecid.cmin); /* * cmax may be initially invalid, but once set it can only grow, * and never become invalid again. */ Assert((ent->cmax == InvalidCommandId) || ((change->data.tuplecid.cmax != InvalidCommandId) && (change->data.tuplecid.cmax > ent->cmax))); ent->cmax = change->data.tuplecid.cmax; } } } /* * Copy a provided snapshot so we can modify it privately. This is needed so * that catalog modifying transactions can look into intermediate catalog * states. */ static Snapshot ReorderBufferCopySnap(ReorderBuffer *rb, Snapshot orig_snap, ReorderBufferTXN *txn, CommandId cid) { Snapshot snap; dlist_iter iter; int i = 0; Size size; size = sizeof(SnapshotData) + sizeof(TransactionId) * orig_snap->xcnt + sizeof(TransactionId) * (txn->nsubtxns + 1); snap = MemoryContextAllocZero(rb->context, size); memcpy(snap, orig_snap, sizeof(SnapshotData)); snap->copied = true; snap->active_count = 1; /* mark as active so nobody frees it */ snap->regd_count = 0; snap->xip = (TransactionId *) (snap + 1); memcpy(snap->xip, orig_snap->xip, sizeof(TransactionId) * snap->xcnt); /* * snap->subxip contains all txids that belong to our transaction which we * need to check via cmin/cmax. That's why we store the toplevel * transaction in there as well. */ snap->subxip = snap->xip + snap->xcnt; snap->subxip[i++] = txn->xid; /* * subxcnt isn't decreased when subtransactions abort, so count manually. * Since it's an upper boundary it is safe to use it for the allocation * above. */ snap->subxcnt = 1; dlist_foreach(iter, &txn->subtxns) { ReorderBufferTXN *sub_txn; sub_txn = dlist_container(ReorderBufferTXN, node, iter.cur); snap->subxip[i++] = sub_txn->xid; snap->subxcnt++; } /* sort so we can bsearch() later */ qsort(snap->subxip, snap->subxcnt, sizeof(TransactionId), xidComparator); /* store the specified current CommandId */ snap->curcid = cid; return snap; } /* * Free a previously ReorderBufferCopySnap'ed snapshot */ static void ReorderBufferFreeSnap(ReorderBuffer *rb, Snapshot snap) { if (snap->copied) pfree(snap); else SnapBuildSnapDecRefcount(snap); } /* * Perform the replay of a transaction and its non-aborted subtransactions. * * Subtransactions previously have to be processed by * ReorderBufferCommitChild(), even if previously assigned to the toplevel * transaction with ReorderBufferAssignChild. * * We currently can only decode a transaction's contents when its commit * record is read because that's the only place where we know about cache * invalidations. Thus, once a toplevel commit is read, we iterate over the top * and subtransactions (using a k-way merge) and replay the changes in lsn * order. */ void ReorderBufferCommit(ReorderBuffer *rb, TransactionId xid, XLogRecPtr commit_lsn, XLogRecPtr end_lsn, TimestampTz commit_time, RepOriginId origin_id, XLogRecPtr origin_lsn) { ReorderBufferTXN *txn; volatile Snapshot snapshot_now; volatile CommandId command_id = FirstCommandId; bool using_subtxn; ReorderBufferIterTXNState *volatile iterstate = NULL; txn = ReorderBufferTXNByXid(rb, xid, false, NULL, InvalidXLogRecPtr, false); /* unknown transaction, nothing to replay */ if (txn == NULL) return; txn->final_lsn = commit_lsn; txn->end_lsn = end_lsn; txn->commit_time = commit_time; txn->origin_id = origin_id; txn->origin_lsn = origin_lsn; /* * If this transaction has no snapshot, it didn't make any changes to the * database, so there's nothing to decode. Note that * ReorderBufferCommitChild will have transferred any snapshots from * subtransactions if there were any. */ if (txn->base_snapshot == NULL) { Assert(txn->ninvalidations == 0); ReorderBufferCleanupTXN(rb, txn); return; } snapshot_now = txn->base_snapshot; /* build data to be able to lookup the CommandIds of catalog tuples */ ReorderBufferBuildTupleCidHash(rb, txn); /* setup the initial snapshot */ SetupHistoricSnapshot(snapshot_now, txn->tuplecid_hash); /* * Decoding needs access to syscaches et al., which in turn use * heavyweight locks and such. Thus we need to have enough state around to * keep track of those. The easiest way is to simply use a transaction * internally. That also allows us to easily enforce that nothing writes * to the database by checking for xid assignments. * * When we're called via the SQL SRF there's already a transaction * started, so start an explicit subtransaction there. */ using_subtxn = IsTransactionOrTransactionBlock(); PG_TRY(); { ReorderBufferChange *change; ReorderBufferChange *specinsert = NULL; if (using_subtxn) BeginInternalSubTransaction("replay"); else StartTransactionCommand(); rb->begin(rb, txn); iterstate = ReorderBufferIterTXNInit(rb, txn); while ((change = ReorderBufferIterTXNNext(rb, iterstate)) != NULL) { Relation relation = NULL; Oid reloid; switch (change->action) { case REORDER_BUFFER_CHANGE_INTERNAL_SPEC_CONFIRM: /* * Confirmation for speculative insertion arrived. Simply * use as a normal record. It'll be cleaned up at the end * of INSERT processing. */ if (specinsert == NULL) elog(ERROR, "invalid ordering of speculative insertion changes"); Assert(specinsert->data.tp.oldtuple == NULL); change = specinsert; change->action = REORDER_BUFFER_CHANGE_INSERT; /* intentionally fall through */ case REORDER_BUFFER_CHANGE_INSERT: case REORDER_BUFFER_CHANGE_UPDATE: case REORDER_BUFFER_CHANGE_DELETE: Assert(snapshot_now); reloid = RelidByRelfilenode(change->data.tp.relnode.spcNode, change->data.tp.relnode.relNode); /* * Mapped catalog tuple without data, emitted while * catalog table was in the process of being rewritten. We * can fail to look up the relfilenode, because the * relmapper has no "historic" view, in contrast to normal * the normal catalog during decoding. Thus repeated * rewrites can cause a lookup failure. That's OK because * we do not decode catalog changes anyway. Normally such * tuples would be skipped over below, but we can't * identify whether the table should be logically logged * without mapping the relfilenode to the oid. */ if (reloid == InvalidOid && change->data.tp.newtuple == NULL && change->data.tp.oldtuple == NULL) goto change_done; else if (reloid == InvalidOid) elog(ERROR, "could not map filenode \"%s\" to relation OID", relpathperm(change->data.tp.relnode, MAIN_FORKNUM)); relation = RelationIdGetRelation(reloid); if (!RelationIsValid(relation)) elog(ERROR, "could not open relation with OID %u (for filenode \"%s\")", reloid, relpathperm(change->data.tp.relnode, MAIN_FORKNUM)); if (!RelationIsLogicallyLogged(relation)) goto change_done; /* * Ignore temporary heaps created during DDL unless the * plugin has asked for them. */ if (relation->rd_rel->relrewrite && !rb->output_rewrites) goto change_done; /* * For now ignore sequence changes entirely. Most of the * time they don't log changes using records we * understand, so it doesn't make sense to handle the few * cases we do. */ if (relation->rd_rel->relkind == RELKIND_SEQUENCE) goto change_done; /* user-triggered change */ if (!IsToastRelation(relation)) { ReorderBufferToastReplace(rb, txn, relation, change); rb->apply_change(rb, txn, relation, change); /* * Only clear reassembled toast chunks if we're sure * they're not required anymore. The creator of the * tuple tells us. */ if (change->data.tp.clear_toast_afterwards) ReorderBufferToastReset(rb, txn); } /* we're not interested in toast deletions */ else if (change->action == REORDER_BUFFER_CHANGE_INSERT) { /* * Need to reassemble the full toasted Datum in * memory, to ensure the chunks don't get reused till * we're done remove it from the list of this * transaction's changes. Otherwise it will get * freed/reused while restoring spooled data from * disk. */ Assert(change->data.tp.newtuple != NULL); dlist_delete(&change->node); ReorderBufferToastAppendChunk(rb, txn, relation, change); } change_done: /* * Either speculative insertion was confirmed, or it was * unsuccessful and the record isn't needed anymore. */ if (specinsert != NULL) { ReorderBufferReturnChange(rb, specinsert); specinsert = NULL; } if (relation != NULL) { RelationClose(relation); relation = NULL; } break; case REORDER_BUFFER_CHANGE_INTERNAL_SPEC_INSERT: /* * Speculative insertions are dealt with by delaying the * processing of the insert until the confirmation record * arrives. For that we simply unlink the record from the * chain, so it does not get freed/reused while restoring * spooled data from disk. * * This is safe in the face of concurrent catalog changes * because the relevant relation can't be changed between * speculative insertion and confirmation due to * CheckTableNotInUse() and locking. */ /* clear out a pending (and thus failed) speculation */ if (specinsert != NULL) { ReorderBufferReturnChange(rb, specinsert); specinsert = NULL; } /* and memorize the pending insertion */ dlist_delete(&change->node); specinsert = change; break; case REORDER_BUFFER_CHANGE_TRUNCATE: { int i; int nrelids = change->data.truncate.nrelids; int nrelations = 0; Relation *relations; relations = palloc0(nrelids * sizeof(Relation)); for (i = 0; i < nrelids; i++) { Oid relid = change->data.truncate.relids[i]; Relation relation; relation = RelationIdGetRelation(relid); if (!RelationIsValid(relation)) elog(ERROR, "could not open relation with OID %u", relid); if (!RelationIsLogicallyLogged(relation)) continue; relations[nrelations++] = relation; } rb->apply_truncate(rb, txn, nrelations, relations, change); for (i = 0; i < nrelations; i++) RelationClose(relations[i]); break; } case REORDER_BUFFER_CHANGE_MESSAGE: rb->message(rb, txn, change->lsn, true, change->data.msg.prefix, change->data.msg.message_size, change->data.msg.message); break; case REORDER_BUFFER_CHANGE_INTERNAL_SNAPSHOT: /* get rid of the old */ TeardownHistoricSnapshot(false); if (snapshot_now->copied) { ReorderBufferFreeSnap(rb, snapshot_now); snapshot_now = ReorderBufferCopySnap(rb, change->data.snapshot, txn, command_id); } /* * Restored from disk, need to be careful not to double * free. We could introduce refcounting for that, but for * now this seems infrequent enough not to care. */ else if (change->data.snapshot->copied) { snapshot_now = ReorderBufferCopySnap(rb, change->data.snapshot, txn, command_id); } else { snapshot_now = change->data.snapshot; } /* and continue with the new one */ SetupHistoricSnapshot(snapshot_now, txn->tuplecid_hash); break; case REORDER_BUFFER_CHANGE_INTERNAL_COMMAND_ID: Assert(change->data.command_id != InvalidCommandId); if (command_id < change->data.command_id) { command_id = change->data.command_id; if (!snapshot_now->copied) { /* we don't use the global one anymore */ snapshot_now = ReorderBufferCopySnap(rb, snapshot_now, txn, command_id); } snapshot_now->curcid = command_id; TeardownHistoricSnapshot(false); SetupHistoricSnapshot(snapshot_now, txn->tuplecid_hash); /* * Every time the CommandId is incremented, we could * see new catalog contents, so execute all * invalidations. */ ReorderBufferExecuteInvalidations(rb, txn); } break; case REORDER_BUFFER_CHANGE_INTERNAL_TUPLECID: elog(ERROR, "tuplecid value in changequeue"); break; } } /* * There's a speculative insertion remaining, just clean in up, it * can't have been successful, otherwise we'd gotten a confirmation * record. */ if (specinsert) { ReorderBufferReturnChange(rb, specinsert); specinsert = NULL; } /* clean up the iterator */ ReorderBufferIterTXNFinish(rb, iterstate); iterstate = NULL; /* call commit callback */ rb->commit(rb, txn, commit_lsn); /* this is just a sanity check against bad output plugin behaviour */ if (GetCurrentTransactionIdIfAny() != InvalidTransactionId) elog(ERROR, "output plugin used XID %u", GetCurrentTransactionId()); /* cleanup */ TeardownHistoricSnapshot(false); /* * Aborting the current (sub-)transaction as a whole has the right * semantics. We want all locks acquired in here to be released, not * reassigned to the parent and we do not want any database access * have persistent effects. */ AbortCurrentTransaction(); /* make sure there's no cache pollution */ ReorderBufferExecuteInvalidations(rb, txn); if (using_subtxn) RollbackAndReleaseCurrentSubTransaction(); if (snapshot_now->copied) ReorderBufferFreeSnap(rb, snapshot_now); /* remove potential on-disk data, and deallocate */ ReorderBufferCleanupTXN(rb, txn); } PG_CATCH(); { /* TODO: Encapsulate cleanup from the PG_TRY and PG_CATCH blocks */ if (iterstate) ReorderBufferIterTXNFinish(rb, iterstate); TeardownHistoricSnapshot(true); /* * Force cache invalidation to happen outside of a valid transaction * to prevent catalog access as we just caught an error. */ AbortCurrentTransaction(); /* make sure there's no cache pollution */ ReorderBufferExecuteInvalidations(rb, txn); if (using_subtxn) RollbackAndReleaseCurrentSubTransaction(); if (snapshot_now->copied) ReorderBufferFreeSnap(rb, snapshot_now); /* remove potential on-disk data, and deallocate */ ReorderBufferCleanupTXN(rb, txn); PG_RE_THROW(); } PG_END_TRY(); } /* * Abort a transaction that possibly has previous changes. Needs to be first * called for subtransactions and then for the toplevel xid. * * NB: Transactions handled here have to have actively aborted (i.e. have * produced an abort record). Implicitly aborted transactions are handled via * ReorderBufferAbortOld(); transactions we're just not interested in, but * which have committed are handled in ReorderBufferForget(). * * This function purges this transaction and its contents from memory and * disk. */ void ReorderBufferAbort(ReorderBuffer *rb, TransactionId xid, XLogRecPtr lsn) { ReorderBufferTXN *txn; txn = ReorderBufferTXNByXid(rb, xid, false, NULL, InvalidXLogRecPtr, false); /* unknown, nothing to remove */ if (txn == NULL) return; /* cosmetic... */ txn->final_lsn = lsn; /* remove potential on-disk data, and deallocate */ ReorderBufferCleanupTXN(rb, txn); } /* * Abort all transactions that aren't actually running anymore because the * server restarted. * * NB: These really have to be transactions that have aborted due to a server * crash/immediate restart, as we don't deal with invalidations here. */ void ReorderBufferAbortOld(ReorderBuffer *rb, TransactionId oldestRunningXid) { dlist_mutable_iter it; /* * Iterate through all (potential) toplevel TXNs and abort all that are * older than what possibly can be running. Once we've found the first * that is alive we stop, there might be some that acquired an xid earlier * but started writing later, but it's unlikely and they will be cleaned * up in a later call to this function. */ dlist_foreach_modify(it, &rb->toplevel_by_lsn) { ReorderBufferTXN *txn; txn = dlist_container(ReorderBufferTXN, node, it.cur); if (TransactionIdPrecedes(txn->xid, oldestRunningXid)) { /* * We set final_lsn on a transaction when we decode its commit or * abort record, but we never see those records for crashed * transactions. To ensure cleanup of these transactions, set * final_lsn to that of their last change; this causes * ReorderBufferRestoreCleanup to do the right thing. */ if (txn->serialized && txn->final_lsn == 0) { ReorderBufferChange *last = dlist_tail_element(ReorderBufferChange, node, &txn->changes); txn->final_lsn = last->lsn; } elog(DEBUG2, "aborting old transaction %u", txn->xid); /* remove potential on-disk data, and deallocate this tx */ ReorderBufferCleanupTXN(rb, txn); } else return; } } /* * Forget the contents of a transaction if we aren't interested in its * contents. Needs to be first called for subtransactions and then for the * toplevel xid. * * This is significantly different to ReorderBufferAbort() because * transactions that have committed need to be treated differently from aborted * ones since they may have modified the catalog. * * Note that this is only allowed to be called in the moment a transaction * commit has just been read, not earlier; otherwise later records referring * to this xid might re-create the transaction incompletely. */ void ReorderBufferForget(ReorderBuffer *rb, TransactionId xid, XLogRecPtr lsn) { ReorderBufferTXN *txn; txn = ReorderBufferTXNByXid(rb, xid, false, NULL, InvalidXLogRecPtr, false); /* unknown, nothing to forget */ if (txn == NULL) return; /* cosmetic... */ txn->final_lsn = lsn; /* * Process cache invalidation messages if there are any. Even if we're not * interested in the transaction's contents, it could have manipulated the * catalog and we need to update the caches according to that. */ if (txn->base_snapshot != NULL && txn->ninvalidations > 0) ReorderBufferImmediateInvalidation(rb, txn->ninvalidations, txn->invalidations); else Assert(txn->ninvalidations == 0); /* remove potential on-disk data, and deallocate */ ReorderBufferCleanupTXN(rb, txn); } /* * Execute invalidations happening outside the context of a decoded * transaction. That currently happens either for xid-less commits * (cf. RecordTransactionCommit()) or for invalidations in uninteresting * transactions (via ReorderBufferForget()). */ void ReorderBufferImmediateInvalidation(ReorderBuffer *rb, uint32 ninvalidations, SharedInvalidationMessage *invalidations) { bool use_subtxn = IsTransactionOrTransactionBlock(); int i; if (use_subtxn) BeginInternalSubTransaction("replay"); /* * Force invalidations to happen outside of a valid transaction - that way * entries will just be marked as invalid without accessing the catalog. * That's advantageous because we don't need to setup the full state * necessary for catalog access. */ if (use_subtxn) AbortCurrentTransaction(); for (i = 0; i < ninvalidations; i++) LocalExecuteInvalidationMessage(&invalidations[i]); if (use_subtxn) RollbackAndReleaseCurrentSubTransaction(); } /* * Tell reorderbuffer about an xid seen in the WAL stream. Has to be called at * least once for every xid in XLogRecord->xl_xid (other places in records * may, but do not have to be passed through here). * * Reorderbuffer keeps some datastructures about transactions in LSN order, * for efficiency. To do that it has to know about when transactions are seen * first in the WAL. As many types of records are not actually interesting for * logical decoding, they do not necessarily pass though here. */ void ReorderBufferProcessXid(ReorderBuffer *rb, TransactionId xid, XLogRecPtr lsn) { /* many records won't have an xid assigned, centralize check here */ if (xid != InvalidTransactionId) ReorderBufferTXNByXid(rb, xid, true, NULL, lsn, true); } /* * Add a new snapshot to this transaction that may only used after lsn 'lsn' * because the previous snapshot doesn't describe the catalog correctly for * following rows. */ void ReorderBufferAddSnapshot(ReorderBuffer *rb, TransactionId xid, XLogRecPtr lsn, Snapshot snap) { ReorderBufferChange *change = ReorderBufferGetChange(rb); change->data.snapshot = snap; change->action = REORDER_BUFFER_CHANGE_INTERNAL_SNAPSHOT; ReorderBufferQueueChange(rb, xid, lsn, change); } /* * Set up the transaction's base snapshot. * * If we know that xid is a subtransaction, set the base snapshot on the * top-level transaction instead. */ void ReorderBufferSetBaseSnapshot(ReorderBuffer *rb, TransactionId xid, XLogRecPtr lsn, Snapshot snap) { ReorderBufferTXN *txn; bool is_new; AssertArg(snap != NULL); /* * Fetch the transaction to operate on. If we know it's a subtransaction, * operate on its top-level transaction instead. */ txn = ReorderBufferTXNByXid(rb, xid, true, &is_new, lsn, true); if (txn->is_known_as_subxact) txn = ReorderBufferTXNByXid(rb, txn->toplevel_xid, false, NULL, InvalidXLogRecPtr, false); Assert(txn->base_snapshot == NULL); txn->base_snapshot = snap; txn->base_snapshot_lsn = lsn; dlist_push_tail(&rb->txns_by_base_snapshot_lsn, &txn->base_snapshot_node); AssertTXNLsnOrder(rb); } /* * Access the catalog with this CommandId at this point in the changestream. * * May only be called for command ids > 1 */ void ReorderBufferAddNewCommandId(ReorderBuffer *rb, TransactionId xid, XLogRecPtr lsn, CommandId cid) { ReorderBufferChange *change = ReorderBufferGetChange(rb); change->data.command_id = cid; change->action = REORDER_BUFFER_CHANGE_INTERNAL_COMMAND_ID; ReorderBufferQueueChange(rb, xid, lsn, change); } /* * Add new (relfilenode, tid) -> (cmin, cmax) mappings. */ void ReorderBufferAddNewTupleCids(ReorderBuffer *rb, TransactionId xid, XLogRecPtr lsn, RelFileNode node, ItemPointerData tid, CommandId cmin, CommandId cmax, CommandId combocid) { ReorderBufferChange *change = ReorderBufferGetChange(rb); ReorderBufferTXN *txn; txn = ReorderBufferTXNByXid(rb, xid, true, NULL, lsn, true); change->data.tuplecid.node = node; change->data.tuplecid.tid = tid; change->data.tuplecid.cmin = cmin; change->data.tuplecid.cmax = cmax; change->data.tuplecid.combocid = combocid; change->lsn = lsn; change->action = REORDER_BUFFER_CHANGE_INTERNAL_TUPLECID; dlist_push_tail(&txn->tuplecids, &change->node); txn->ntuplecids++; } /* * Setup the invalidation of the toplevel transaction. * * This needs to be done before ReorderBufferCommit is called! */ void ReorderBufferAddInvalidations(ReorderBuffer *rb, TransactionId xid, XLogRecPtr lsn, Size nmsgs, SharedInvalidationMessage *msgs) { ReorderBufferTXN *txn; txn = ReorderBufferTXNByXid(rb, xid, true, NULL, lsn, true); if (txn->ninvalidations != 0) elog(ERROR, "only ever add one set of invalidations"); Assert(nmsgs > 0); txn->ninvalidations = nmsgs; txn->invalidations = (SharedInvalidationMessage *) MemoryContextAlloc(rb->context, sizeof(SharedInvalidationMessage) * nmsgs); memcpy(txn->invalidations, msgs, sizeof(SharedInvalidationMessage) * nmsgs); } /* * Apply all invalidations we know. Possibly we only need parts at this point * in the changestream but we don't know which those are. */ static void ReorderBufferExecuteInvalidations(ReorderBuffer *rb, ReorderBufferTXN *txn) { int i; for (i = 0; i < txn->ninvalidations; i++) LocalExecuteInvalidationMessage(&txn->invalidations[i]); } /* * Mark a transaction as containing catalog changes */ void ReorderBufferXidSetCatalogChanges(ReorderBuffer *rb, TransactionId xid, XLogRecPtr lsn) { ReorderBufferTXN *txn; txn = ReorderBufferTXNByXid(rb, xid, true, NULL, lsn, true); txn->has_catalog_changes = true; } /* * Query whether a transaction is already *known* to contain catalog * changes. This can be wrong until directly before the commit! */ bool ReorderBufferXidHasCatalogChanges(ReorderBuffer *rb, TransactionId xid) { ReorderBufferTXN *txn; txn = ReorderBufferTXNByXid(rb, xid, false, NULL, InvalidXLogRecPtr, false); if (txn == NULL) return false; return txn->has_catalog_changes; } /* * ReorderBufferXidHasBaseSnapshot * Have we already set the base snapshot for the given txn/subtxn? */ bool ReorderBufferXidHasBaseSnapshot(ReorderBuffer *rb, TransactionId xid) { ReorderBufferTXN *txn; txn = ReorderBufferTXNByXid(rb, xid, false, NULL, InvalidXLogRecPtr, false); /* transaction isn't known yet, ergo no snapshot */ if (txn == NULL) return false; /* a known subtxn? operate on top-level txn instead */ if (txn->is_known_as_subxact) txn = ReorderBufferTXNByXid(rb, txn->toplevel_xid, false, NULL, InvalidXLogRecPtr, false); return txn->base_snapshot != NULL; } /* * --------------------------------------- * Disk serialization support * --------------------------------------- */ /* * Ensure the IO buffer is >= sz. */ static void ReorderBufferSerializeReserve(ReorderBuffer *rb, Size sz) { if (!rb->outbufsize) { rb->outbuf = MemoryContextAlloc(rb->context, sz); rb->outbufsize = sz; } else if (rb->outbufsize < sz) { rb->outbuf = repalloc(rb->outbuf, sz); rb->outbufsize = sz; } } /* * Check whether the transaction tx should spill its data to disk. */ static void ReorderBufferCheckSerializeTXN(ReorderBuffer *rb, ReorderBufferTXN *txn) { /* * TODO: improve accounting so we cheaply can take subtransactions into * account here. */ if (txn->nentries_mem >= max_changes_in_memory) { ReorderBufferSerializeTXN(rb, txn); Assert(txn->nentries_mem == 0); } } /* * Spill data of a large transaction (and its subtransactions) to disk. */ static void ReorderBufferSerializeTXN(ReorderBuffer *rb, ReorderBufferTXN *txn) { dlist_iter subtxn_i; dlist_mutable_iter change_i; int fd = -1; XLogSegNo curOpenSegNo = 0; Size spilled = 0; elog(DEBUG2, "spill %u changes in XID %u to disk", (uint32) txn->nentries_mem, txn->xid); /* do the same to all child TXs */ dlist_foreach(subtxn_i, &txn->subtxns) { ReorderBufferTXN *subtxn; subtxn = dlist_container(ReorderBufferTXN, node, subtxn_i.cur); ReorderBufferSerializeTXN(rb, subtxn); } /* serialize changestream */ dlist_foreach_modify(change_i, &txn->changes) { ReorderBufferChange *change; change = dlist_container(ReorderBufferChange, node, change_i.cur); /* * store in segment in which it belongs by start lsn, don't split over * multiple segments tho */ if (fd == -1 || !XLByteInSeg(change->lsn, curOpenSegNo, wal_segment_size)) { char path[MAXPGPATH]; if (fd != -1) CloseTransientFile(fd); XLByteToSeg(change->lsn, curOpenSegNo, wal_segment_size); /* * No need to care about TLIs here, only used during a single run, * so each LSN only maps to a specific WAL record. */ ReorderBufferSerializedPath(path, MyReplicationSlot, txn->xid, curOpenSegNo); /* open segment, create it if necessary */ fd = OpenTransientFile(path, O_CREAT | O_WRONLY | O_APPEND | PG_BINARY); if (fd < 0) ereport(ERROR, (errcode_for_file_access(), errmsg("could not open file \"%s\": %m", path))); } ReorderBufferSerializeChange(rb, txn, fd, change); dlist_delete(&change->node); ReorderBufferReturnChange(rb, change); spilled++; } Assert(spilled == txn->nentries_mem); Assert(dlist_is_empty(&txn->changes)); txn->nentries_mem = 0; txn->serialized = true; if (fd != -1) CloseTransientFile(fd); } /* * Serialize individual change to disk. */ static void ReorderBufferSerializeChange(ReorderBuffer *rb, ReorderBufferTXN *txn, int fd, ReorderBufferChange *change) { ReorderBufferDiskChange *ondisk; Size sz = sizeof(ReorderBufferDiskChange); ReorderBufferSerializeReserve(rb, sz); ondisk = (ReorderBufferDiskChange *) rb->outbuf; memcpy(&ondisk->change, change, sizeof(ReorderBufferChange)); switch (change->action) { /* fall through these, they're all similar enough */ case REORDER_BUFFER_CHANGE_INSERT: case REORDER_BUFFER_CHANGE_UPDATE: case REORDER_BUFFER_CHANGE_DELETE: case REORDER_BUFFER_CHANGE_INTERNAL_SPEC_INSERT: { char *data; ReorderBufferTupleBuf *oldtup, *newtup; Size oldlen = 0; Size newlen = 0; oldtup = change->data.tp.oldtuple; newtup = change->data.tp.newtuple; if (oldtup) { sz += sizeof(HeapTupleData); oldlen = oldtup->tuple.t_len; sz += oldlen; } if (newtup) { sz += sizeof(HeapTupleData); newlen = newtup->tuple.t_len; sz += newlen; } /* make sure we have enough space */ ReorderBufferSerializeReserve(rb, sz); data = ((char *) rb->outbuf) + sizeof(ReorderBufferDiskChange); /* might have been reallocated above */ ondisk = (ReorderBufferDiskChange *) rb->outbuf; if (oldlen) { memcpy(data, &oldtup->tuple, sizeof(HeapTupleData)); data += sizeof(HeapTupleData); memcpy(data, oldtup->tuple.t_data, oldlen); data += oldlen; } if (newlen) { memcpy(data, &newtup->tuple, sizeof(HeapTupleData)); data += sizeof(HeapTupleData); memcpy(data, newtup->tuple.t_data, newlen); data += newlen; } break; } case REORDER_BUFFER_CHANGE_MESSAGE: { char *data; Size prefix_size = strlen(change->data.msg.prefix) + 1; sz += prefix_size + change->data.msg.message_size + sizeof(Size) + sizeof(Size); ReorderBufferSerializeReserve(rb, sz); data = ((char *) rb->outbuf) + sizeof(ReorderBufferDiskChange); /* might have been reallocated above */ ondisk = (ReorderBufferDiskChange *) rb->outbuf; /* write the prefix including the size */ memcpy(data, &prefix_size, sizeof(Size)); data += sizeof(Size); memcpy(data, change->data.msg.prefix, prefix_size); data += prefix_size; /* write the message including the size */ memcpy(data, &change->data.msg.message_size, sizeof(Size)); data += sizeof(Size); memcpy(data, change->data.msg.message, change->data.msg.message_size); data += change->data.msg.message_size; break; } case REORDER_BUFFER_CHANGE_INTERNAL_SNAPSHOT: { Snapshot snap; char *data; snap = change->data.snapshot; sz += sizeof(SnapshotData) + sizeof(TransactionId) * snap->xcnt + sizeof(TransactionId) * snap->subxcnt ; /* make sure we have enough space */ ReorderBufferSerializeReserve(rb, sz); data = ((char *) rb->outbuf) + sizeof(ReorderBufferDiskChange); /* might have been reallocated above */ ondisk = (ReorderBufferDiskChange *) rb->outbuf; memcpy(data, snap, sizeof(SnapshotData)); data += sizeof(SnapshotData); if (snap->xcnt) { memcpy(data, snap->xip, sizeof(TransactionId) * snap->xcnt); data += sizeof(TransactionId) * snap->xcnt; } if (snap->subxcnt) { memcpy(data, snap->subxip, sizeof(TransactionId) * snap->subxcnt); data += sizeof(TransactionId) * snap->subxcnt; } break; } case REORDER_BUFFER_CHANGE_TRUNCATE: { Size size; char *data; /* account for the OIDs of truncated relations */ size = sizeof(Oid) * change->data.truncate.nrelids; sz += size; /* make sure we have enough space */ ReorderBufferSerializeReserve(rb, sz); data = ((char *) rb->outbuf) + sizeof(ReorderBufferDiskChange); /* might have been reallocated above */ ondisk = (ReorderBufferDiskChange *) rb->outbuf; memcpy(data, change->data.truncate.relids, size); data += size; break; } case REORDER_BUFFER_CHANGE_INTERNAL_SPEC_CONFIRM: case REORDER_BUFFER_CHANGE_INTERNAL_COMMAND_ID: case REORDER_BUFFER_CHANGE_INTERNAL_TUPLECID: /* ReorderBufferChange contains everything important */ break; } ondisk->size = sz; errno = 0; pgstat_report_wait_start(WAIT_EVENT_REORDER_BUFFER_WRITE); if (write(fd, rb->outbuf, ondisk->size) != ondisk->size) { int save_errno = errno; CloseTransientFile(fd); /* if write didn't set errno, assume problem is no disk space */ errno = save_errno ? save_errno : ENOSPC; ereport(ERROR, (errcode_for_file_access(), errmsg("could not write to data file for XID %u: %m", txn->xid))); } pgstat_report_wait_end(); Assert(ondisk->change.action == change->action); } /* * Restore a number of changes spilled to disk back into memory. */ static Size ReorderBufferRestoreChanges(ReorderBuffer *rb, ReorderBufferTXN *txn, int *fd, XLogSegNo *segno) { Size restored = 0; XLogSegNo last_segno; dlist_mutable_iter cleanup_iter; Assert(txn->first_lsn != InvalidXLogRecPtr); Assert(txn->final_lsn != InvalidXLogRecPtr); /* free current entries, so we have memory for more */ dlist_foreach_modify(cleanup_iter, &txn->changes) { ReorderBufferChange *cleanup = dlist_container(ReorderBufferChange, node, cleanup_iter.cur); dlist_delete(&cleanup->node); ReorderBufferReturnChange(rb, cleanup); } txn->nentries_mem = 0; Assert(dlist_is_empty(&txn->changes)); XLByteToSeg(txn->final_lsn, last_segno, wal_segment_size); while (restored < max_changes_in_memory && *segno <= last_segno) { int readBytes; ReorderBufferDiskChange *ondisk; if (*fd == -1) { char path[MAXPGPATH]; /* first time in */ if (*segno == 0) XLByteToSeg(txn->first_lsn, *segno, wal_segment_size); Assert(*segno != 0 || dlist_is_empty(&txn->changes)); /* * No need to care about TLIs here, only used during a single run, * so each LSN only maps to a specific WAL record. */ ReorderBufferSerializedPath(path, MyReplicationSlot, txn->xid, *segno); *fd = OpenTransientFile(path, O_RDONLY | PG_BINARY); if (*fd < 0 && errno == ENOENT) { *fd = -1; (*segno)++; continue; } else if (*fd < 0) ereport(ERROR, (errcode_for_file_access(), errmsg("could not open file \"%s\": %m", path))); } /* * Read the statically sized part of a change which has information * about the total size. If we couldn't read a record, we're at the * end of this file. */ ReorderBufferSerializeReserve(rb, sizeof(ReorderBufferDiskChange)); pgstat_report_wait_start(WAIT_EVENT_REORDER_BUFFER_READ); readBytes = read(*fd, rb->outbuf, sizeof(ReorderBufferDiskChange)); pgstat_report_wait_end(); /* eof */ if (readBytes == 0) { CloseTransientFile(*fd); *fd = -1; (*segno)++; continue; } else if (readBytes < 0) ereport(ERROR, (errcode_for_file_access(), errmsg("could not read from reorderbuffer spill file: %m"))); else if (readBytes != sizeof(ReorderBufferDiskChange)) ereport(ERROR, (errcode_for_file_access(), errmsg("could not read from reorderbuffer spill file: read %d instead of %u bytes", readBytes, (uint32) sizeof(ReorderBufferDiskChange)))); ondisk = (ReorderBufferDiskChange *) rb->outbuf; ReorderBufferSerializeReserve(rb, sizeof(ReorderBufferDiskChange) + ondisk->size); ondisk = (ReorderBufferDiskChange *) rb->outbuf; pgstat_report_wait_start(WAIT_EVENT_REORDER_BUFFER_READ); readBytes = read(*fd, rb->outbuf + sizeof(ReorderBufferDiskChange), ondisk->size - sizeof(ReorderBufferDiskChange)); pgstat_report_wait_end(); if (readBytes < 0) ereport(ERROR, (errcode_for_file_access(), errmsg("could not read from reorderbuffer spill file: %m"))); else if (readBytes != ondisk->size - sizeof(ReorderBufferDiskChange)) ereport(ERROR, (errcode_for_file_access(), errmsg("could not read from reorderbuffer spill file: read %d instead of %u bytes", readBytes, (uint32) (ondisk->size - sizeof(ReorderBufferDiskChange))))); /* * ok, read a full change from disk, now restore it into proper * in-memory format */ ReorderBufferRestoreChange(rb, txn, rb->outbuf); restored++; } return restored; } /* * Convert change from its on-disk format to in-memory format and queue it onto * the TXN's ->changes list. * * Note: although "data" is declared char*, at entry it points to a * maxalign'd buffer, making it safe in most of this function to assume * that the pointed-to data is suitably aligned for direct access. */ static void ReorderBufferRestoreChange(ReorderBuffer *rb, ReorderBufferTXN *txn, char *data) { ReorderBufferDiskChange *ondisk; ReorderBufferChange *change; ondisk = (ReorderBufferDiskChange *) data; change = ReorderBufferGetChange(rb); /* copy static part */ memcpy(change, &ondisk->change, sizeof(ReorderBufferChange)); data += sizeof(ReorderBufferDiskChange); /* restore individual stuff */ switch (change->action) { /* fall through these, they're all similar enough */ case REORDER_BUFFER_CHANGE_INSERT: case REORDER_BUFFER_CHANGE_UPDATE: case REORDER_BUFFER_CHANGE_DELETE: case REORDER_BUFFER_CHANGE_INTERNAL_SPEC_INSERT: if (change->data.tp.oldtuple) { uint32 tuplelen = ((HeapTuple) data)->t_len; change->data.tp.oldtuple = ReorderBufferGetTupleBuf(rb, tuplelen - SizeofHeapTupleHeader); /* restore ->tuple */ memcpy(&change->data.tp.oldtuple->tuple, data, sizeof(HeapTupleData)); data += sizeof(HeapTupleData); /* reset t_data pointer into the new tuplebuf */ change->data.tp.oldtuple->tuple.t_data = ReorderBufferTupleBufData(change->data.tp.oldtuple); /* restore tuple data itself */ memcpy(change->data.tp.oldtuple->tuple.t_data, data, tuplelen); data += tuplelen; } if (change->data.tp.newtuple) { /* here, data might not be suitably aligned! */ uint32 tuplelen; memcpy(&tuplelen, data + offsetof(HeapTupleData, t_len), sizeof(uint32)); change->data.tp.newtuple = ReorderBufferGetTupleBuf(rb, tuplelen - SizeofHeapTupleHeader); /* restore ->tuple */ memcpy(&change->data.tp.newtuple->tuple, data, sizeof(HeapTupleData)); data += sizeof(HeapTupleData); /* reset t_data pointer into the new tuplebuf */ change->data.tp.newtuple->tuple.t_data = ReorderBufferTupleBufData(change->data.tp.newtuple); /* restore tuple data itself */ memcpy(change->data.tp.newtuple->tuple.t_data, data, tuplelen); data += tuplelen; } break; case REORDER_BUFFER_CHANGE_MESSAGE: { Size prefix_size; /* read prefix */ memcpy(&prefix_size, data, sizeof(Size)); data += sizeof(Size); change->data.msg.prefix = MemoryContextAlloc(rb->context, prefix_size); memcpy(change->data.msg.prefix, data, prefix_size); Assert(change->data.msg.prefix[prefix_size - 1] == '\0'); data += prefix_size; /* read the message */ memcpy(&change->data.msg.message_size, data, sizeof(Size)); data += sizeof(Size); change->data.msg.message = MemoryContextAlloc(rb->context, change->data.msg.message_size); memcpy(change->data.msg.message, data, change->data.msg.message_size); data += change->data.msg.message_size; break; } case REORDER_BUFFER_CHANGE_INTERNAL_SNAPSHOT: { Snapshot oldsnap; Snapshot newsnap; Size size; oldsnap = (Snapshot) data; size = sizeof(SnapshotData) + sizeof(TransactionId) * oldsnap->xcnt + sizeof(TransactionId) * (oldsnap->subxcnt + 0); change->data.snapshot = MemoryContextAllocZero(rb->context, size); newsnap = change->data.snapshot; memcpy(newsnap, data, size); newsnap->xip = (TransactionId *) (((char *) newsnap) + sizeof(SnapshotData)); newsnap->subxip = newsnap->xip + newsnap->xcnt; newsnap->copied = true; break; } /* the base struct contains all the data, easy peasy */ case REORDER_BUFFER_CHANGE_TRUNCATE: { Oid *relids; relids = ReorderBufferGetRelids(rb, change->data.truncate.nrelids); memcpy(relids, data, change->data.truncate.nrelids * sizeof(Oid)); change->data.truncate.relids = relids; break; } case REORDER_BUFFER_CHANGE_INTERNAL_SPEC_CONFIRM: case REORDER_BUFFER_CHANGE_INTERNAL_COMMAND_ID: case REORDER_BUFFER_CHANGE_INTERNAL_TUPLECID: break; } dlist_push_tail(&txn->changes, &change->node); txn->nentries_mem++; } /* * Remove all on-disk stored for the passed in transaction. */ static void ReorderBufferRestoreCleanup(ReorderBuffer *rb, ReorderBufferTXN *txn) { XLogSegNo first; XLogSegNo cur; XLogSegNo last; Assert(txn->first_lsn != InvalidXLogRecPtr); Assert(txn->final_lsn != InvalidXLogRecPtr); XLByteToSeg(txn->first_lsn, first, wal_segment_size); XLByteToSeg(txn->final_lsn, last, wal_segment_size); /* iterate over all possible filenames, and delete them */ for (cur = first; cur <= last; cur++) { char path[MAXPGPATH]; ReorderBufferSerializedPath(path, MyReplicationSlot, txn->xid, cur); if (unlink(path) != 0 && errno != ENOENT) ereport(ERROR, (errcode_for_file_access(), errmsg("could not remove file \"%s\": %m", path))); } } /* * Remove any leftover serialized reorder buffers from a slot directory after a * prior crash or decoding session exit. */ static void ReorderBufferCleanupSerializedTXNs(const char *slotname) { DIR *spill_dir; struct dirent *spill_de; struct stat statbuf; char path[MAXPGPATH * 2 + 12]; sprintf(path, "pg_replslot/%s", slotname); /* we're only handling directories here, skip if it's not ours */ if (lstat(path, &statbuf) == 0 && !S_ISDIR(statbuf.st_mode)) return; spill_dir = AllocateDir(path); while ((spill_de = ReadDirExtended(spill_dir, path, INFO)) != NULL) { /* only look at names that can be ours */ if (strncmp(spill_de->d_name, "xid", 3) == 0) { snprintf(path, sizeof(path), "pg_replslot/%s/%s", slotname, spill_de->d_name); if (unlink(path) != 0) ereport(ERROR, (errcode_for_file_access(), errmsg("could not remove file \"%s\" during removal of pg_replslot/%s/xid*: %m", path, slotname))); } } FreeDir(spill_dir); } /* * Given a replication slot, transaction ID and segment number, fill in the * corresponding spill file into 'path', which is a caller-owned buffer of size * at least MAXPGPATH. */ static void ReorderBufferSerializedPath(char *path, ReplicationSlot *slot, TransactionId xid, XLogSegNo segno) { XLogRecPtr recptr; XLogSegNoOffsetToRecPtr(segno, 0, wal_segment_size, recptr); snprintf(path, MAXPGPATH, "pg_replslot/%s/xid-%u-lsn-%X-%X.spill", NameStr(MyReplicationSlot->data.name), xid, (uint32) (recptr >> 32), (uint32) recptr); } /* * Delete all data spilled to disk after we've restarted/crashed. It will be * recreated when the respective slots are reused. */ void StartupReorderBuffer(void) { DIR *logical_dir; struct dirent *logical_de; logical_dir = AllocateDir("pg_replslot"); while ((logical_de = ReadDir(logical_dir, "pg_replslot")) != NULL) { if (strcmp(logical_de->d_name, ".") == 0 || strcmp(logical_de->d_name, "..") == 0) continue; /* if it cannot be a slot, skip the directory */ if (!ReplicationSlotValidateName(logical_de->d_name, DEBUG2)) continue; /* * ok, has to be a surviving logical slot, iterate and delete * everything starting with xid-* */ ReorderBufferCleanupSerializedTXNs(logical_de->d_name); } FreeDir(logical_dir); } /* --------------------------------------- * toast reassembly support * --------------------------------------- */ /* * Initialize per tuple toast reconstruction support. */ static void ReorderBufferToastInitHash(ReorderBuffer *rb, ReorderBufferTXN *txn) { HASHCTL hash_ctl; Assert(txn->toast_hash == NULL); memset(&hash_ctl, 0, sizeof(hash_ctl)); hash_ctl.keysize = sizeof(Oid); hash_ctl.entrysize = sizeof(ReorderBufferToastEnt); hash_ctl.hcxt = rb->context; txn->toast_hash = hash_create("ReorderBufferToastHash", 5, &hash_ctl, HASH_ELEM | HASH_BLOBS | HASH_CONTEXT); } /* * Per toast-chunk handling for toast reconstruction * * Appends a toast chunk so we can reconstruct it when the tuple "owning" the * toasted Datum comes along. */ static void ReorderBufferToastAppendChunk(ReorderBuffer *rb, ReorderBufferTXN *txn, Relation relation, ReorderBufferChange *change) { ReorderBufferToastEnt *ent; ReorderBufferTupleBuf *newtup; bool found; int32 chunksize; bool isnull; Pointer chunk; TupleDesc desc = RelationGetDescr(relation); Oid chunk_id; int32 chunk_seq; if (txn->toast_hash == NULL) ReorderBufferToastInitHash(rb, txn); Assert(IsToastRelation(relation)); newtup = change->data.tp.newtuple; chunk_id = DatumGetObjectId(fastgetattr(&newtup->tuple, 1, desc, &isnull)); Assert(!isnull); chunk_seq = DatumGetInt32(fastgetattr(&newtup->tuple, 2, desc, &isnull)); Assert(!isnull); ent = (ReorderBufferToastEnt *) hash_search(txn->toast_hash, (void *) &chunk_id, HASH_ENTER, &found); if (!found) { Assert(ent->chunk_id == chunk_id); ent->num_chunks = 0; ent->last_chunk_seq = 0; ent->size = 0; ent->reconstructed = NULL; dlist_init(&ent->chunks); if (chunk_seq != 0) elog(ERROR, "got sequence entry %d for toast chunk %u instead of seq 0", chunk_seq, chunk_id); } else if (found && chunk_seq != ent->last_chunk_seq + 1) elog(ERROR, "got sequence entry %d for toast chunk %u instead of seq %d", chunk_seq, chunk_id, ent->last_chunk_seq + 1); chunk = DatumGetPointer(fastgetattr(&newtup->tuple, 3, desc, &isnull)); Assert(!isnull); /* calculate size so we can allocate the right size at once later */ if (!VARATT_IS_EXTENDED(chunk)) chunksize = VARSIZE(chunk) - VARHDRSZ; else if (VARATT_IS_SHORT(chunk)) /* could happen due to heap_form_tuple doing its thing */ chunksize = VARSIZE_SHORT(chunk) - VARHDRSZ_SHORT; else elog(ERROR, "unexpected type of toast chunk"); ent->size += chunksize; ent->last_chunk_seq = chunk_seq; ent->num_chunks++; dlist_push_tail(&ent->chunks, &change->node); } /* * Rejigger change->newtuple to point to in-memory toast tuples instead to * on-disk toast tuples that may not longer exist (think DROP TABLE or VACUUM). * * We cannot replace unchanged toast tuples though, so those will still point * to on-disk toast data. */ static void ReorderBufferToastReplace(ReorderBuffer *rb, ReorderBufferTXN *txn, Relation relation, ReorderBufferChange *change) { TupleDesc desc; int natt; Datum *attrs; bool *isnull; bool *free; HeapTuple tmphtup; Relation toast_rel; TupleDesc toast_desc; MemoryContext oldcontext; ReorderBufferTupleBuf *newtup; /* no toast tuples changed */ if (txn->toast_hash == NULL) return; oldcontext = MemoryContextSwitchTo(rb->context); /* we should only have toast tuples in an INSERT or UPDATE */ Assert(change->data.tp.newtuple); desc = RelationGetDescr(relation); toast_rel = RelationIdGetRelation(relation->rd_rel->reltoastrelid); if (!RelationIsValid(toast_rel)) elog(ERROR, "could not open relation with OID %u", relation->rd_rel->reltoastrelid); toast_desc = RelationGetDescr(toast_rel); /* should we allocate from stack instead? */ attrs = palloc0(sizeof(Datum) * desc->natts); isnull = palloc0(sizeof(bool) * desc->natts); free = palloc0(sizeof(bool) * desc->natts); newtup = change->data.tp.newtuple; heap_deform_tuple(&newtup->tuple, desc, attrs, isnull); for (natt = 0; natt < desc->natts; natt++) { Form_pg_attribute attr = TupleDescAttr(desc, natt); ReorderBufferToastEnt *ent; struct varlena *varlena; /* va_rawsize is the size of the original datum -- including header */ struct varatt_external toast_pointer; struct varatt_indirect redirect_pointer; struct varlena *new_datum = NULL; struct varlena *reconstructed; dlist_iter it; Size data_done = 0; /* system columns aren't toasted */ if (attr->attnum < 0) continue; if (attr->attisdropped) continue; /* not a varlena datatype */ if (attr->attlen != -1) continue; /* no data */ if (isnull[natt]) continue; /* ok, we know we have a toast datum */ varlena = (struct varlena *) DatumGetPointer(attrs[natt]); /* no need to do anything if the tuple isn't external */ if (!VARATT_IS_EXTERNAL(varlena)) continue; VARATT_EXTERNAL_GET_POINTER(toast_pointer, varlena); /* * Check whether the toast tuple changed, replace if so. */ ent = (ReorderBufferToastEnt *) hash_search(txn->toast_hash, (void *) &toast_pointer.va_valueid, HASH_FIND, NULL); if (ent == NULL) continue; new_datum = (struct varlena *) palloc0(INDIRECT_POINTER_SIZE); free[natt] = true; reconstructed = palloc0(toast_pointer.va_rawsize); ent->reconstructed = reconstructed; /* stitch toast tuple back together from its parts */ dlist_foreach(it, &ent->chunks) { bool isnull; ReorderBufferChange *cchange; ReorderBufferTupleBuf *ctup; Pointer chunk; cchange = dlist_container(ReorderBufferChange, node, it.cur); ctup = cchange->data.tp.newtuple; chunk = DatumGetPointer( fastgetattr(&ctup->tuple, 3, toast_desc, &isnull)); Assert(!isnull); Assert(!VARATT_IS_EXTERNAL(chunk)); Assert(!VARATT_IS_SHORT(chunk)); memcpy(VARDATA(reconstructed) + data_done, VARDATA(chunk), VARSIZE(chunk) - VARHDRSZ); data_done += VARSIZE(chunk) - VARHDRSZ; } Assert(data_done == toast_pointer.va_extsize); /* make sure its marked as compressed or not */ if (VARATT_EXTERNAL_IS_COMPRESSED(toast_pointer)) SET_VARSIZE_COMPRESSED(reconstructed, data_done + VARHDRSZ); else SET_VARSIZE(reconstructed, data_done + VARHDRSZ); memset(&redirect_pointer, 0, sizeof(redirect_pointer)); redirect_pointer.pointer = reconstructed; SET_VARTAG_EXTERNAL(new_datum, VARTAG_INDIRECT); memcpy(VARDATA_EXTERNAL(new_datum), &redirect_pointer, sizeof(redirect_pointer)); attrs[natt] = PointerGetDatum(new_datum); } /* * Build tuple in separate memory & copy tuple back into the tuplebuf * passed to the output plugin. We can't directly heap_fill_tuple() into * the tuplebuf because attrs[] will point back into the current content. */ tmphtup = heap_form_tuple(desc, attrs, isnull); Assert(newtup->tuple.t_len <= MaxHeapTupleSize); Assert(ReorderBufferTupleBufData(newtup) == newtup->tuple.t_data); memcpy(newtup->tuple.t_data, tmphtup->t_data, tmphtup->t_len); newtup->tuple.t_len = tmphtup->t_len; /* * free resources we won't further need, more persistent stuff will be * free'd in ReorderBufferToastReset(). */ RelationClose(toast_rel); pfree(tmphtup); for (natt = 0; natt < desc->natts; natt++) { if (free[natt]) pfree(DatumGetPointer(attrs[natt])); } pfree(attrs); pfree(free); pfree(isnull); MemoryContextSwitchTo(oldcontext); } /* * Free all resources allocated for toast reconstruction. */ static void ReorderBufferToastReset(ReorderBuffer *rb, ReorderBufferTXN *txn) { HASH_SEQ_STATUS hstat; ReorderBufferToastEnt *ent; if (txn->toast_hash == NULL) return; /* sequentially walk over the hash and free everything */ hash_seq_init(&hstat, txn->toast_hash); while ((ent = (ReorderBufferToastEnt *) hash_seq_search(&hstat)) != NULL) { dlist_mutable_iter it; if (ent->reconstructed != NULL) pfree(ent->reconstructed); dlist_foreach_modify(it, &ent->chunks) { ReorderBufferChange *change = dlist_container(ReorderBufferChange, node, it.cur); dlist_delete(&change->node); ReorderBufferReturnChange(rb, change); } } hash_destroy(txn->toast_hash); txn->toast_hash = NULL; } /* --------------------------------------- * Visibility support for logical decoding * * * Lookup actual cmin/cmax values when using decoding snapshot. We can't * always rely on stored cmin/cmax values because of two scenarios: * * * A tuple got changed multiple times during a single transaction and thus * has got a combocid. Combocid's are only valid for the duration of a * single transaction. * * A tuple with a cmin but no cmax (and thus no combocid) got * deleted/updated in another transaction than the one which created it * which we are looking at right now. As only one of cmin, cmax or combocid * is actually stored in the heap we don't have access to the value we * need anymore. * * To resolve those problems we have a per-transaction hash of (cmin, * cmax) tuples keyed by (relfilenode, ctid) which contains the actual * (cmin, cmax) values. That also takes care of combocids by simply * not caring about them at all. As we have the real cmin/cmax values * combocids aren't interesting. * * As we only care about catalog tuples here the overhead of this * hashtable should be acceptable. * * Heap rewrites complicate this a bit, check rewriteheap.c for * details. * ------------------------------------------------------------------------- */ /* struct for sorting mapping files by LSN efficiently */ typedef struct RewriteMappingFile { XLogRecPtr lsn; char fname[MAXPGPATH]; } RewriteMappingFile; #ifdef NOT_USED static void DisplayMapping(HTAB *tuplecid_data) { HASH_SEQ_STATUS hstat; ReorderBufferTupleCidEnt *ent; hash_seq_init(&hstat, tuplecid_data); while ((ent = (ReorderBufferTupleCidEnt *) hash_seq_search(&hstat)) != NULL) { elog(DEBUG3, "mapping: node: %u/%u/%u tid: %u/%u cmin: %u, cmax: %u", ent->key.relnode.dbNode, ent->key.relnode.spcNode, ent->key.relnode.relNode, ItemPointerGetBlockNumber(&ent->key.tid), ItemPointerGetOffsetNumber(&ent->key.tid), ent->cmin, ent->cmax ); } } #endif /* * Apply a single mapping file to tuplecid_data. * * The mapping file has to have been verified to be a) committed b) for our * transaction c) applied in LSN order. */ static void ApplyLogicalMappingFile(HTAB *tuplecid_data, Oid relid, const char *fname) { char path[MAXPGPATH]; int fd; int readBytes; LogicalRewriteMappingData map; sprintf(path, "pg_logical/mappings/%s", fname); fd = OpenTransientFile(path, O_RDONLY | PG_BINARY); if (fd < 0) ereport(ERROR, (errcode_for_file_access(), errmsg("could not open file \"%s\": %m", path))); while (true) { ReorderBufferTupleCidKey key; ReorderBufferTupleCidEnt *ent; ReorderBufferTupleCidEnt *new_ent; bool found; /* be careful about padding */ memset(&key, 0, sizeof(ReorderBufferTupleCidKey)); /* read all mappings till the end of the file */ pgstat_report_wait_start(WAIT_EVENT_REORDER_LOGICAL_MAPPING_READ); readBytes = read(fd, &map, sizeof(LogicalRewriteMappingData)); pgstat_report_wait_end(); if (readBytes < 0) ereport(ERROR, (errcode_for_file_access(), errmsg("could not read file \"%s\": %m", path))); else if (readBytes == 0) /* EOF */ break; else if (readBytes != sizeof(LogicalRewriteMappingData)) ereport(ERROR, (errcode_for_file_access(), errmsg("could not read from file \"%s\": read %d instead of %d bytes", path, readBytes, (int32) sizeof(LogicalRewriteMappingData)))); key.relnode = map.old_node; ItemPointerCopy(&map.old_tid, &key.tid); ent = (ReorderBufferTupleCidEnt *) hash_search(tuplecid_data, (void *) &key, HASH_FIND, NULL); /* no existing mapping, no need to update */ if (!ent) continue; key.relnode = map.new_node; ItemPointerCopy(&map.new_tid, &key.tid); new_ent = (ReorderBufferTupleCidEnt *) hash_search(tuplecid_data, (void *) &key, HASH_ENTER, &found); if (found) { /* * Make sure the existing mapping makes sense. We sometime update * old records that did not yet have a cmax (e.g. pg_class' own * entry while rewriting it) during rewrites, so allow that. */ Assert(ent->cmin == InvalidCommandId || ent->cmin == new_ent->cmin); Assert(ent->cmax == InvalidCommandId || ent->cmax == new_ent->cmax); } else { /* update mapping */ new_ent->cmin = ent->cmin; new_ent->cmax = ent->cmax; new_ent->combocid = ent->combocid; } } if (CloseTransientFile(fd) != 0) ereport(ERROR, (errcode_for_file_access(), errmsg("could not close file \"%s\": %m", path))); } /* * Check whether the TransactionId 'xid' is in the pre-sorted array 'xip'. */ static bool TransactionIdInArray(TransactionId xid, TransactionId *xip, Size num) { return bsearch(&xid, xip, num, sizeof(TransactionId), xidComparator) != NULL; } /* * list_sort() comparator for sorting RewriteMappingFiles in LSN order. */ static int file_sort_by_lsn(const ListCell *a_p, const ListCell *b_p) { RewriteMappingFile *a = (RewriteMappingFile *) lfirst(a_p); RewriteMappingFile *b = (RewriteMappingFile *) lfirst(b_p); if (a->lsn < b->lsn) return -1; else if (a->lsn > b->lsn) return 1; return 0; } /* * Apply any existing logical remapping files if there are any targeted at our * transaction for relid. */ static void UpdateLogicalMappings(HTAB *tuplecid_data, Oid relid, Snapshot snapshot) { DIR *mapping_dir; struct dirent *mapping_de; List *files = NIL; ListCell *file; Oid dboid = IsSharedRelation(relid) ? InvalidOid : MyDatabaseId; mapping_dir = AllocateDir("pg_logical/mappings"); while ((mapping_de = ReadDir(mapping_dir, "pg_logical/mappings")) != NULL) { Oid f_dboid; Oid f_relid; TransactionId f_mapped_xid; TransactionId f_create_xid; XLogRecPtr f_lsn; uint32 f_hi, f_lo; RewriteMappingFile *f; if (strcmp(mapping_de->d_name, ".") == 0 || strcmp(mapping_de->d_name, "..") == 0) continue; /* Ignore files that aren't ours */ if (strncmp(mapping_de->d_name, "map-", 4) != 0) continue; if (sscanf(mapping_de->d_name, LOGICAL_REWRITE_FORMAT, &f_dboid, &f_relid, &f_hi, &f_lo, &f_mapped_xid, &f_create_xid) != 6) elog(ERROR, "could not parse filename \"%s\"", mapping_de->d_name); f_lsn = ((uint64) f_hi) << 32 | f_lo; /* mapping for another database */ if (f_dboid != dboid) continue; /* mapping for another relation */ if (f_relid != relid) continue; /* did the creating transaction abort? */ if (!TransactionIdDidCommit(f_create_xid)) continue; /* not for our transaction */ if (!TransactionIdInArray(f_mapped_xid, snapshot->subxip, snapshot->subxcnt)) continue; /* ok, relevant, queue for apply */ f = palloc(sizeof(RewriteMappingFile)); f->lsn = f_lsn; strcpy(f->fname, mapping_de->d_name); files = lappend(files, f); } FreeDir(mapping_dir); /* sort files so we apply them in LSN order */ list_sort(files, file_sort_by_lsn); foreach(file, files) { RewriteMappingFile *f = (RewriteMappingFile *) lfirst(file); elog(DEBUG1, "applying mapping: \"%s\" in %u", f->fname, snapshot->subxip[0]); ApplyLogicalMappingFile(tuplecid_data, relid, f->fname); pfree(f); } } /* * Lookup cmin/cmax of a tuple, during logical decoding where we can't rely on * combocids. */ bool ResolveCminCmaxDuringDecoding(HTAB *tuplecid_data, Snapshot snapshot, HeapTuple htup, Buffer buffer, CommandId *cmin, CommandId *cmax) { ReorderBufferTupleCidKey key; ReorderBufferTupleCidEnt *ent; ForkNumber forkno; BlockNumber blockno; bool updated_mapping = false; /* be careful about padding */ memset(&key, 0, sizeof(key)); Assert(!BufferIsLocal(buffer)); /* * get relfilenode from the buffer, no convenient way to access it other * than that. */ BufferGetTag(buffer, &key.relnode, &forkno, &blockno); /* tuples can only be in the main fork */ Assert(forkno == MAIN_FORKNUM); Assert(blockno == ItemPointerGetBlockNumber(&htup->t_self)); ItemPointerCopy(&htup->t_self, &key.tid); restart: ent = (ReorderBufferTupleCidEnt *) hash_search(tuplecid_data, (void *) &key, HASH_FIND, NULL); /* * failed to find a mapping, check whether the table was rewritten and * apply mapping if so, but only do that once - there can be no new * mappings while we are in here since we have to hold a lock on the * relation. */ if (ent == NULL && !updated_mapping) { UpdateLogicalMappings(tuplecid_data, htup->t_tableOid, snapshot); /* now check but don't update for a mapping again */ updated_mapping = true; goto restart; } else if (ent == NULL) return false; if (cmin) *cmin = ent->cmin; if (cmax) *cmax = ent->cmax; return true; }