/*------------------------------------------------------------------------- * * restrictinfo.c * RestrictInfo node manipulation routines. * * Portions Copyright (c) 1996-2003, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * * IDENTIFICATION * $PostgreSQL: pgsql/src/backend/optimizer/util/restrictinfo.c,v 1.23 2004/01/04 03:51:52 tgl Exp $ * *------------------------------------------------------------------------- */ #include "postgres.h" #include "optimizer/clauses.h" #include "optimizer/paths.h" #include "optimizer/restrictinfo.h" #include "optimizer/var.h" static Expr *make_sub_restrictinfos(Expr *clause, bool ispusheddown); static bool join_clause_is_redundant(Query *root, RestrictInfo *rinfo, List *reference_list, JoinType jointype); /* * make_restrictinfo * * Build a RestrictInfo node containing the given subexpression. * * The ispusheddown flag must be supplied by the caller. We initialize * fields that depend only on the given subexpression, leaving others that * depend on context (or may never be needed at all) to be filled later. */ RestrictInfo * make_restrictinfo(Expr *clause, bool ispusheddown) { RestrictInfo *restrictinfo = makeNode(RestrictInfo); restrictinfo->clause = clause; restrictinfo->ispusheddown = ispusheddown; restrictinfo->canjoin = false; /* may get set below */ /* * If it's a binary opclause, set up left/right relids info. * In any case set up the total clause relids info. */ if (is_opclause(clause) && length(((OpExpr *) clause)->args) == 2) { restrictinfo->left_relids = pull_varnos(get_leftop(clause)); restrictinfo->right_relids = pull_varnos(get_rightop(clause)); restrictinfo->clause_relids = bms_union(restrictinfo->left_relids, restrictinfo->right_relids); /* * Does it look like a normal join clause, i.e., a binary operator * relating expressions that come from distinct relations? If so * we might be able to use it in a join algorithm. Note that this * is a purely syntactic test that is made regardless of context. */ if (!bms_is_empty(restrictinfo->left_relids) && !bms_is_empty(restrictinfo->right_relids) && !bms_overlap(restrictinfo->left_relids, restrictinfo->right_relids)) restrictinfo->canjoin = true; } else { /* Not a binary opclause, so mark left/right relid sets as empty */ restrictinfo->left_relids = NULL; restrictinfo->right_relids = NULL; /* and get the total relid set the hard way */ restrictinfo->clause_relids = pull_varnos((Node *) clause); } /* * If it's an OR clause, set up a modified copy with RestrictInfos * inserted above each subclause of the top-level AND/OR structure. */ if (or_clause((Node *) clause)) { restrictinfo->orclause = make_sub_restrictinfos(clause, ispusheddown); } else { /* Shouldn't be an AND clause, else flatten_andors messed up */ Assert(!and_clause((Node *) clause)); restrictinfo->orclause = NULL; } /* * Fill in all the cacheable fields with "not yet set" markers. * None of these will be computed until/unless needed. Note in * particular that we don't mark a binary opclause as mergejoinable * or hashjoinable here; that happens only if it appears in the right * context (top level of a joinclause list). */ restrictinfo->eval_cost.startup = -1; restrictinfo->this_selec = -1; restrictinfo->mergejoinoperator = InvalidOid; restrictinfo->left_sortop = InvalidOid; restrictinfo->right_sortop = InvalidOid; restrictinfo->left_pathkey = NIL; restrictinfo->right_pathkey = NIL; restrictinfo->left_mergescansel = -1; restrictinfo->right_mergescansel = -1; restrictinfo->hashjoinoperator = InvalidOid; restrictinfo->left_bucketsize = -1; restrictinfo->right_bucketsize = -1; return restrictinfo; } /* * Recursively insert sub-RestrictInfo nodes into a boolean expression. */ static Expr * make_sub_restrictinfos(Expr *clause, bool ispusheddown) { if (or_clause((Node *) clause)) { List *orlist = NIL; List *temp; foreach(temp, ((BoolExpr *) clause)->args) orlist = lappend(orlist, make_sub_restrictinfos(lfirst(temp), ispusheddown)); return make_orclause(orlist); } else if (and_clause((Node *) clause)) { List *andlist = NIL; List *temp; foreach(temp, ((BoolExpr *) clause)->args) andlist = lappend(andlist, make_sub_restrictinfos(lfirst(temp), ispusheddown)); return make_andclause(andlist); } else return (Expr *) make_restrictinfo(clause, ispusheddown); } /* * restriction_is_or_clause * * Returns t iff the restrictinfo node contains an 'or' clause. */ bool restriction_is_or_clause(RestrictInfo *restrictinfo) { if (restrictinfo->orclause != NULL) return true; else return false; } /* * get_actual_clauses * * Returns a list containing the bare clauses from 'restrictinfo_list'. */ List * get_actual_clauses(List *restrictinfo_list) { List *result = NIL; List *temp; foreach(temp, restrictinfo_list) { RestrictInfo *clause = (RestrictInfo *) lfirst(temp); result = lappend(result, clause->clause); } return result; } /* * get_actual_join_clauses * * Extract clauses from 'restrictinfo_list', separating those that * syntactically match the join level from those that were pushed down. */ void get_actual_join_clauses(List *restrictinfo_list, List **joinquals, List **otherquals) { List *temp; *joinquals = NIL; *otherquals = NIL; foreach(temp, restrictinfo_list) { RestrictInfo *clause = (RestrictInfo *) lfirst(temp); if (clause->ispusheddown) *otherquals = lappend(*otherquals, clause->clause); else *joinquals = lappend(*joinquals, clause->clause); } } /* * remove_redundant_join_clauses * * Given a list of RestrictInfo clauses that are to be applied in a join, * remove any duplicate or redundant clauses. * * We must eliminate duplicates when forming the restrictlist for a joinrel, * since we will see many of the same clauses arriving from both input * relations. Also, if a clause is a mergejoinable clause, it's possible that * it is redundant with previous clauses (see optimizer/README for * discussion). We detect that case and omit the redundant clause from the * result list. * * The result is a fresh List, but it points to the same member nodes * as were in the input. */ List * remove_redundant_join_clauses(Query *root, List *restrictinfo_list, JoinType jointype) { List *result = NIL; List *item; foreach(item, restrictinfo_list) { RestrictInfo *rinfo = (RestrictInfo *) lfirst(item); /* drop it if redundant with any prior clause */ if (join_clause_is_redundant(root, rinfo, result, jointype)) continue; /* otherwise, add it to result list */ result = lappend(result, rinfo); } return result; } /* * select_nonredundant_join_clauses * * Given a list of RestrictInfo clauses that are to be applied in a join, * select the ones that are not redundant with any clause in the * reference_list. * * This is similar to remove_redundant_join_clauses, but we are looking for * redundancies with a separate list of clauses (i.e., clauses that have * already been applied below the join itself). * * Note that we assume the given restrictinfo_list has already been checked * for local redundancies, so we don't check again. */ List * select_nonredundant_join_clauses(Query *root, List *restrictinfo_list, List *reference_list, JoinType jointype) { List *result = NIL; List *item; foreach(item, restrictinfo_list) { RestrictInfo *rinfo = (RestrictInfo *) lfirst(item); /* drop it if redundant with any reference clause */ if (join_clause_is_redundant(root, rinfo, reference_list, jointype)) continue; /* otherwise, add it to result list */ result = lappend(result, rinfo); } return result; } /* * join_clause_is_redundant * Returns true if rinfo is redundant with any clause in reference_list. * * This is the guts of both remove_redundant_join_clauses and * select_nonredundant_join_clauses. See the docs above for motivation. * * We can detect redundant mergejoinable clauses very cheaply by using their * left and right pathkeys, which uniquely identify the sets of equijoined * variables in question. All the members of a pathkey set that are in the * left relation have already been forced to be equal; likewise for those in * the right relation. So, we need to have only one clause that checks * equality between any set member on the left and any member on the right; * by transitivity, all the rest are then equal. * * However, clauses that are of the form "var expr = const expr" cannot be * eliminated as redundant. This is because when there are const expressions * in a pathkey set, generate_implied_equalities() suppresses "var = var" * clauses in favor of "var = const" clauses. We cannot afford to drop any * of the latter, even though they might seem redundant by the pathkey * membership test. * * Weird special case: if we have two clauses that seem redundant * except one is pushed down into an outer join and the other isn't, * then they're not really redundant, because one constrains the * joined rows after addition of null fill rows, and the other doesn't. */ static bool join_clause_is_redundant(Query *root, RestrictInfo *rinfo, List *reference_list, JoinType jointype) { /* always consider exact duplicates redundant */ /* XXX would it be sufficient to use ptrMember here? */ if (member(rinfo, reference_list)) return true; /* check for redundant merge clauses */ if (rinfo->mergejoinoperator != InvalidOid) { bool redundant = false; List *refitem; /* do the cheap test first: is it a "var = const" clause? */ if (bms_is_empty(rinfo->left_relids) || bms_is_empty(rinfo->right_relids)) return false; /* var = const, so not redundant */ cache_mergeclause_pathkeys(root, rinfo); foreach(refitem, reference_list) { RestrictInfo *refrinfo = (RestrictInfo *) lfirst(refitem); if (refrinfo->mergejoinoperator != InvalidOid && rinfo->left_pathkey == refrinfo->left_pathkey && rinfo->right_pathkey == refrinfo->right_pathkey && (rinfo->ispusheddown == refrinfo->ispusheddown || !IS_OUTER_JOIN(jointype))) { redundant = true; break; } } if (redundant) return true; /* var = var, so redundant */ } /* otherwise, not redundant */ return false; }