/*------------------------------------------------------------------------- * * setrefs.c * Post-processing of a completed plan tree: fix references to subplan * vars, and compute regproc values for operators * * Portions Copyright (c) 1996-2002, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * * IDENTIFICATION * $Header: /cvsroot/pgsql/src/backend/optimizer/plan/setrefs.c,v 1.92 2003/02/16 02:30:38 tgl Exp $ * *------------------------------------------------------------------------- */ #include "postgres.h" #include "nodes/makefuncs.h" #include "nodes/nodeFuncs.h" #include "optimizer/clauses.h" #include "optimizer/planmain.h" #include "optimizer/tlist.h" #include "optimizer/var.h" #include "parser/parsetree.h" typedef struct { List *rtable; List *outer_tlist; List *inner_tlist; Index acceptable_rel; bool tlists_have_non_vars; } join_references_context; typedef struct { Index subvarno; List *subplan_targetlist; bool tlist_has_non_vars; } replace_vars_with_subplan_refs_context; static void fix_expr_references(Plan *plan, Node *node); static bool fix_expr_references_walker(Node *node, void *context); static void set_join_references(Join *join, List *rtable); static void set_uppernode_references(Plan *plan, Index subvarno); static bool targetlist_has_non_vars(List *tlist); static List *join_references(List *clauses, List *rtable, List *outer_tlist, List *inner_tlist, Index acceptable_rel, bool tlists_have_non_vars); static Node *join_references_mutator(Node *node, join_references_context *context); static Node *replace_vars_with_subplan_refs(Node *node, Index subvarno, List *subplan_targetlist, bool tlist_has_non_vars); static Node *replace_vars_with_subplan_refs_mutator(Node *node, replace_vars_with_subplan_refs_context *context); static bool fix_opfuncids_walker(Node *node, void *context); /***************************************************************************** * * SUBPLAN REFERENCES * *****************************************************************************/ /* * set_plan_references * This is the final processing pass of the planner/optimizer. The plan * tree is complete; we just have to adjust some representational details * for the convenience of the executor. We update Vars in upper plan nodes * to refer to the outputs of their subplans, and we compute regproc OIDs * for operators (ie, we look up the function that implements each op). * * set_plan_references recursively traverses the whole plan tree. * * Returns nothing of interest, but modifies internal fields of nodes. */ void set_plan_references(Plan *plan, List *rtable) { List *pl; if (plan == NULL) return; /* * Plan-type-specific fixes */ switch (nodeTag(plan)) { case T_SeqScan: fix_expr_references(plan, (Node *) plan->targetlist); fix_expr_references(plan, (Node *) plan->qual); break; case T_IndexScan: fix_expr_references(plan, (Node *) plan->targetlist); fix_expr_references(plan, (Node *) plan->qual); fix_expr_references(plan, (Node *) ((IndexScan *) plan)->indxqual); fix_expr_references(plan, (Node *) ((IndexScan *) plan)->indxqualorig); break; case T_TidScan: fix_expr_references(plan, (Node *) plan->targetlist); fix_expr_references(plan, (Node *) plan->qual); fix_expr_references(plan, (Node *) ((TidScan *) plan)->tideval); break; case T_SubqueryScan: { RangeTblEntry *rte; /* * We do not do set_uppernode_references() here, because a * SubqueryScan will always have been created with correct * references to its subplan's outputs to begin with. */ fix_expr_references(plan, (Node *) plan->targetlist); fix_expr_references(plan, (Node *) plan->qual); /* Recurse into subplan too */ rte = rt_fetch(((SubqueryScan *) plan)->scan.scanrelid, rtable); Assert(rte->rtekind == RTE_SUBQUERY); set_plan_references(((SubqueryScan *) plan)->subplan, rte->subquery->rtable); } break; case T_FunctionScan: { RangeTblEntry *rte; fix_expr_references(plan, (Node *) plan->targetlist); fix_expr_references(plan, (Node *) plan->qual); rte = rt_fetch(((FunctionScan *) plan)->scan.scanrelid, rtable); Assert(rte->rtekind == RTE_FUNCTION); fix_expr_references(plan, rte->funcexpr); } break; case T_NestLoop: set_join_references((Join *) plan, rtable); fix_expr_references(plan, (Node *) plan->targetlist); fix_expr_references(plan, (Node *) plan->qual); fix_expr_references(plan, (Node *) ((Join *) plan)->joinqual); break; case T_MergeJoin: set_join_references((Join *) plan, rtable); fix_expr_references(plan, (Node *) plan->targetlist); fix_expr_references(plan, (Node *) plan->qual); fix_expr_references(plan, (Node *) ((Join *) plan)->joinqual); fix_expr_references(plan, (Node *) ((MergeJoin *) plan)->mergeclauses); break; case T_HashJoin: set_join_references((Join *) plan, rtable); fix_expr_references(plan, (Node *) plan->targetlist); fix_expr_references(plan, (Node *) plan->qual); fix_expr_references(plan, (Node *) ((Join *) plan)->joinqual); fix_expr_references(plan, (Node *) ((HashJoin *) plan)->hashclauses); break; case T_Hash: /* * Hash does not evaluate its targetlist or quals, so don't * touch those (see comments below). But we do need to fix its * hashkeys. The hashkeys are a little bizarre because they * need to match the hashclauses of the parent HashJoin node, * so we use join_references to fix them. */ ((Hash *) plan)->hashkeys = join_references(((Hash *) plan)->hashkeys, rtable, NIL, plan->lefttree->targetlist, (Index) 0, targetlist_has_non_vars(plan->lefttree->targetlist)); fix_expr_references(plan, (Node *) ((Hash *) plan)->hashkeys); break; case T_Material: case T_Sort: case T_Unique: case T_SetOp: case T_Limit: /* * These plan types don't actually bother to evaluate their * targetlists or quals (because they just return their * unmodified input tuples). The optimizer is lazy about * creating really valid targetlists for them. Best to just * leave the targetlist alone. In particular, we do not want * to process subplans for them, since we will likely end * up reprocessing subplans that also appear in lower levels * of the plan tree! */ break; case T_Agg: case T_Group: set_uppernode_references(plan, (Index) 0); fix_expr_references(plan, (Node *) plan->targetlist); fix_expr_references(plan, (Node *) plan->qual); break; case T_Result: /* * Result may or may not have a subplan; no need to fix up * subplan references if it hasn't got one... * * XXX why does Result use a different subvarno from Agg/Group? */ if (plan->lefttree != NULL) set_uppernode_references(plan, (Index) OUTER); fix_expr_references(plan, (Node *) plan->targetlist); fix_expr_references(plan, (Node *) plan->qual); fix_expr_references(plan, ((Result *) plan)->resconstantqual); break; case T_Append: /* * Append, like Sort et al, doesn't actually evaluate its * targetlist or quals, and we haven't bothered to give it its * own tlist copy. So, don't fix targetlist/qual. But do * recurse into child plans. */ foreach(pl, ((Append *) plan)->appendplans) set_plan_references((Plan *) lfirst(pl), rtable); break; default: elog(ERROR, "set_plan_references: unknown plan type %d", nodeTag(plan)); break; } /* * Now recurse into child plans and initplans, if any * * NOTE: it is essential that we recurse into child plans AFTER we set * subplan references in this plan's tlist and quals. If we did the * reference-adjustments bottom-up, then we would fail to match this * plan's var nodes against the already-modified nodes of the * children. Fortunately, that consideration doesn't apply to SubPlan * nodes; else we'd need two passes over the expression trees. */ set_plan_references(plan->lefttree, rtable); set_plan_references(plan->righttree, rtable); foreach(pl, plan->initPlan) { SubPlan *sp = (SubPlan *) lfirst(pl); Assert(IsA(sp, SubPlan)); set_plan_references(sp->plan, sp->rtable); } } /* * fix_expr_references * Do final cleanup on expressions (targetlists or quals). * * This consists of looking up operator opcode info for OpExpr nodes * and recursively performing set_plan_references on subplans. * * The Plan argument is currently unused, but might be needed again someday. */ static void fix_expr_references(Plan *plan, Node *node) { /* This tree walk requires no special setup, so away we go... */ fix_expr_references_walker(node, NULL); } static bool fix_expr_references_walker(Node *node, void *context) { if (node == NULL) return false; if (IsA(node, OpExpr)) set_opfuncid((OpExpr *) node); else if (IsA(node, DistinctExpr)) set_opfuncid((OpExpr *) node); /* rely on struct equivalence */ else if (IsA(node, NullIfExpr)) set_opfuncid((OpExpr *) node); /* rely on struct equivalence */ else if (IsA(node, SubPlan)) { SubPlan *sp = (SubPlan *) node; set_plan_references(sp->plan, sp->rtable); } return expression_tree_walker(node, fix_expr_references_walker, context); } /* * set_join_references * Modifies the target list and quals of a join node to reference its * subplans, by setting the varnos to OUTER or INNER and setting attno * values to the result domain number of either the corresponding outer * or inner join tuple item. * * In the case of a nestloop with inner indexscan, we will also need to * apply the same transformation to any outer vars appearing in the * quals of the child indexscan. * * 'join' is a join plan node * 'rtable' is the associated range table */ static void set_join_references(Join *join, List *rtable) { Plan *outer_plan = join->plan.lefttree; Plan *inner_plan = join->plan.righttree; List *outer_tlist = outer_plan->targetlist; List *inner_tlist = inner_plan->targetlist; bool tlists_have_non_vars; tlists_have_non_vars = targetlist_has_non_vars(outer_tlist) || targetlist_has_non_vars(inner_tlist); /* All join plans have tlist, qual, and joinqual */ join->plan.targetlist = join_references(join->plan.targetlist, rtable, outer_tlist, inner_tlist, (Index) 0, tlists_have_non_vars); join->plan.qual = join_references(join->plan.qual, rtable, outer_tlist, inner_tlist, (Index) 0, tlists_have_non_vars); join->joinqual = join_references(join->joinqual, rtable, outer_tlist, inner_tlist, (Index) 0, tlists_have_non_vars); /* Now do join-type-specific stuff */ if (IsA(join, NestLoop)) { if (IsA(inner_plan, IndexScan)) { /* * An index is being used to reduce the number of tuples scanned * in the inner relation. If there are join clauses being used * with the index, we must update their outer-rel var nodes to * refer to the outer side of the join. */ IndexScan *innerscan = (IndexScan *) inner_plan; List *indxqualorig = innerscan->indxqualorig; /* No work needed if indxqual refers only to its own rel... */ if (NumRelids((Node *) indxqualorig) > 1) { Index innerrel = innerscan->scan.scanrelid; /* only refs to outer vars get changed in the inner qual */ innerscan->indxqualorig = join_references(indxqualorig, rtable, outer_tlist, NIL, innerrel, tlists_have_non_vars); innerscan->indxqual = join_references(innerscan->indxqual, rtable, outer_tlist, NIL, innerrel, tlists_have_non_vars); /* * We must fix the inner qpqual too, if it has join clauses * (this could happen if the index is lossy: some indxquals * may get rechecked as qpquals). */ if (NumRelids((Node *) inner_plan->qual) > 1) inner_plan->qual = join_references(inner_plan->qual, rtable, outer_tlist, NIL, innerrel, tlists_have_non_vars); } } else if (IsA(inner_plan, TidScan)) { TidScan *innerscan = (TidScan *) inner_plan; Index innerrel = innerscan->scan.scanrelid; innerscan->tideval = join_references(innerscan->tideval, rtable, outer_tlist, NIL, innerrel, tlists_have_non_vars); } } else if (IsA(join, MergeJoin)) { MergeJoin *mj = (MergeJoin *) join; mj->mergeclauses = join_references(mj->mergeclauses, rtable, outer_tlist, inner_tlist, (Index) 0, tlists_have_non_vars); } else if (IsA(join, HashJoin)) { HashJoin *hj = (HashJoin *) join; hj->hashclauses = join_references(hj->hashclauses, rtable, outer_tlist, inner_tlist, (Index) 0, tlists_have_non_vars); } } /* * set_uppernode_references * Update the targetlist and quals of an upper-level plan node * to refer to the tuples returned by its lefttree subplan. * * This is used for single-input plan types like Agg, Group, Result. * * In most cases, we have to match up individual Vars in the tlist and * qual expressions with elements of the subplan's tlist (which was * generated by flatten_tlist() from these selfsame expressions, so it * should have all the required variables). There is an important exception, * however: GROUP BY and ORDER BY expressions will have been pushed into the * subplan tlist unflattened. If these values are also needed in the output * then we want to reference the subplan tlist element rather than recomputing * the expression. */ static void set_uppernode_references(Plan *plan, Index subvarno) { Plan *subplan = plan->lefttree; List *subplan_targetlist, *output_targetlist, *l; bool tlist_has_non_vars; if (subplan != NULL) subplan_targetlist = subplan->targetlist; else subplan_targetlist = NIL; tlist_has_non_vars = targetlist_has_non_vars(subplan_targetlist); output_targetlist = NIL; foreach(l, plan->targetlist) { TargetEntry *tle = (TargetEntry *) lfirst(l); Node *newexpr; newexpr = replace_vars_with_subplan_refs((Node *) tle->expr, subvarno, subplan_targetlist, tlist_has_non_vars); output_targetlist = lappend(output_targetlist, makeTargetEntry(tle->resdom, (Expr *) newexpr)); } plan->targetlist = output_targetlist; plan->qual = (List *) replace_vars_with_subplan_refs((Node *) plan->qual, subvarno, subplan_targetlist, tlist_has_non_vars); } /* * targetlist_has_non_vars --- are there any non-Var entries in tlist? * * In most cases, subplan tlists will be "flat" tlists with only Vars. * Checking for this allows us to save comparisons in common cases. */ static bool targetlist_has_non_vars(List *tlist) { List *l; foreach(l, tlist) { TargetEntry *tle = (TargetEntry *) lfirst(l); if (tle->expr && !IsA(tle->expr, Var)) return true; } return false; } /* * join_references * Creates a new set of targetlist entries or join qual clauses by * changing the varno/varattno values of variables in the clauses * to reference target list values from the outer and inner join * relation target lists. * * This is used in two different scenarios: a normal join clause, where * all the Vars in the clause *must* be replaced by OUTER or INNER references; * and an indexscan being used on the inner side of a nestloop join. * In the latter case we want to replace the outer-relation Vars by OUTER * references, but not touch the Vars of the inner relation. * * For a normal join, acceptable_rel should be zero so that any failure to * match a Var will be reported as an error. For the indexscan case, * pass inner_tlist = NIL and acceptable_rel = the ID of the inner relation. * * 'clauses' is the targetlist or list of join clauses * 'rtable' is the current range table * 'outer_tlist' is the target list of the outer join relation * 'inner_tlist' is the target list of the inner join relation, or NIL * 'acceptable_rel' is either zero or the rangetable index of a relation * whose Vars may appear in the clause without provoking an error. * * Returns the new expression tree. The original clause structure is * not modified. */ static List * join_references(List *clauses, List *rtable, List *outer_tlist, List *inner_tlist, Index acceptable_rel, bool tlists_have_non_vars) { join_references_context context; context.rtable = rtable; context.outer_tlist = outer_tlist; context.inner_tlist = inner_tlist; context.acceptable_rel = acceptable_rel; context.tlists_have_non_vars = tlists_have_non_vars; return (List *) join_references_mutator((Node *) clauses, &context); } static Node * join_references_mutator(Node *node, join_references_context *context) { if (node == NULL) return NULL; if (IsA(node, Var)) { Var *var = (Var *) node; Resdom *resdom; /* First look for the var in the input tlists */ resdom = tlist_member((Node *) var, context->outer_tlist); if (resdom) { Var *newvar = (Var *) copyObject(var); newvar->varno = OUTER; newvar->varattno = resdom->resno; return (Node *) newvar; } resdom = tlist_member((Node *) var, context->inner_tlist); if (resdom) { Var *newvar = (Var *) copyObject(var); newvar->varno = INNER; newvar->varattno = resdom->resno; return (Node *) newvar; } /* Return the Var unmodified, if it's for acceptable_rel */ if (var->varno == context->acceptable_rel) return (Node *) copyObject(var); /* No referent found for Var */ elog(ERROR, "join_references: variable not in subplan target lists"); } /* Try matching more complex expressions too, if tlists have any */ if (context->tlists_have_non_vars) { Resdom *resdom; resdom = tlist_member(node, context->outer_tlist); if (resdom) { /* Found a matching subplan output expression */ Var *newvar; newvar = makeVar(OUTER, resdom->resno, resdom->restype, resdom->restypmod, 0); newvar->varnoold = 0; /* wasn't ever a plain Var */ newvar->varoattno = 0; return (Node *) newvar; } resdom = tlist_member(node, context->inner_tlist); if (resdom) { /* Found a matching subplan output expression */ Var *newvar; newvar = makeVar(INNER, resdom->resno, resdom->restype, resdom->restypmod, 0); newvar->varnoold = 0; /* wasn't ever a plain Var */ newvar->varoattno = 0; return (Node *) newvar; } } return expression_tree_mutator(node, join_references_mutator, (void *) context); } /* * replace_vars_with_subplan_refs * This routine modifies an expression tree so that all Var nodes * reference target nodes of a subplan. It is used to fix up * target and qual expressions of non-join upper-level plan nodes. * * An error is raised if no matching var can be found in the subplan tlist * --- so this routine should only be applied to nodes whose subplans' * targetlists were generated via flatten_tlist() or some such method. * * If tlist_has_non_vars is true, then we try to match whole subexpressions * against elements of the subplan tlist, so that we can avoid recomputing * expressions that were already computed by the subplan. (This is relatively * expensive, so we don't want to try it in the common case where the * subplan tlist is just a flattened list of Vars.) * * 'node': the tree to be fixed (a target item or qual) * 'subvarno': varno to be assigned to all Vars * 'subplan_targetlist': target list for subplan * 'tlist_has_non_vars': true if subplan_targetlist contains non-Var exprs * * The resulting tree is a copy of the original in which all Var nodes have * varno = subvarno, varattno = resno of corresponding subplan target. * The original tree is not modified. */ static Node * replace_vars_with_subplan_refs(Node *node, Index subvarno, List *subplan_targetlist, bool tlist_has_non_vars) { replace_vars_with_subplan_refs_context context; context.subvarno = subvarno; context.subplan_targetlist = subplan_targetlist; context.tlist_has_non_vars = tlist_has_non_vars; return replace_vars_with_subplan_refs_mutator(node, &context); } static Node * replace_vars_with_subplan_refs_mutator(Node *node, replace_vars_with_subplan_refs_context *context) { if (node == NULL) return NULL; if (IsA(node, Var)) { Var *var = (Var *) node; Resdom *resdom; Var *newvar; resdom = tlist_member((Node *) var, context->subplan_targetlist); if (!resdom) elog(ERROR, "replace_vars_with_subplan_refs: variable not in subplan target list"); newvar = (Var *) copyObject(var); newvar->varno = context->subvarno; newvar->varattno = resdom->resno; return (Node *) newvar; } /* Try matching more complex expressions too, if tlist has any */ if (context->tlist_has_non_vars) { Resdom *resdom; resdom = tlist_member(node, context->subplan_targetlist); if (resdom) { /* Found a matching subplan output expression */ Var *newvar; newvar = makeVar(context->subvarno, resdom->resno, resdom->restype, resdom->restypmod, 0); newvar->varnoold = 0; /* wasn't ever a plain Var */ newvar->varoattno = 0; return (Node *) newvar; } } return expression_tree_mutator(node, replace_vars_with_subplan_refs_mutator, (void *) context); } /***************************************************************************** * OPERATOR REGPROC LOOKUP *****************************************************************************/ /* * fix_opfuncids * Calculate opfuncid field from opno for each OpExpr node in given tree. * The given tree can be anything expression_tree_walker handles. * * The argument is modified in-place. (This is OK since we'd want the * same change for any node, even if it gets visited more than once due to * shared structure.) */ void fix_opfuncids(Node *node) { /* This tree walk requires no special setup, so away we go... */ fix_opfuncids_walker(node, NULL); } static bool fix_opfuncids_walker(Node *node, void *context) { if (node == NULL) return false; if (IsA(node, OpExpr)) set_opfuncid((OpExpr *) node); else if (IsA(node, DistinctExpr)) set_opfuncid((OpExpr *) node); /* rely on struct equivalence */ else if (IsA(node, NullIfExpr)) set_opfuncid((OpExpr *) node); /* rely on struct equivalence */ return expression_tree_walker(node, fix_opfuncids_walker, context); }