/*------------------------------------------------------------------------- * * planner.c-- * The query optimizer external interface. * * Copyright (c) 1994, Regents of the University of California * * * IDENTIFICATION * $Header: /cvsroot/pgsql/src/backend/optimizer/plan/planner.c,v 1.43 1999/02/09 17:03:01 momjian Exp $ * *------------------------------------------------------------------------- */ #include #include #include "postgres.h" #include "nodes/pg_list.h" #include "nodes/plannodes.h" #include "nodes/parsenodes.h" #include "nodes/relation.h" #include "nodes/makefuncs.h" #include "catalog/pg_type.h" #include "parser/parse_expr.h" #include "utils/elog.h" #include "utils/lsyscache.h" #include "access/heapam.h" #include "optimizer/internal.h" #include "optimizer/planner.h" #include "optimizer/plancat.h" #include "optimizer/prep.h" #include "optimizer/planmain.h" #include "optimizer/subselect.h" #include "optimizer/paths.h" #include "optimizer/cost.h" /* DATA STRUCTURE CREATION/MANIPULATION ROUTINES */ #include "nodes/relation.h" #include "optimizer/restrictinfo.h" #include "optimizer/joininfo.h" #include "optimizer/keys.h" #include "optimizer/ordering.h" #include "optimizer/pathnode.h" #include "optimizer/clauses.h" #include "optimizer/tlist.h" #include "optimizer/var.h" #include "executor/executor.h" #include "utils/builtins.h" #include "utils/syscache.h" #include "access/genam.h" #include "parser/parse_oper.h" static bool need_sortplan(List *sortcls, Plan *plan); static Plan *make_sortplan(List *tlist, List *sortcls, Plan *plannode); extern Plan *make_groupPlan(List **tlist, bool tuplePerGroup, List *groupClause, Plan *subplan); /***************************************************************************** * * Query optimizer entry point * *****************************************************************************/ Plan * planner(Query *parse) { Plan *result_plan; PlannerQueryLevel = 1; PlannerVarParam = NULL; PlannerParamVar = NULL; PlannerInitPlan = NULL; PlannerPlanId = 0; transformKeySetQuery(parse); result_plan = union_planner(parse); Assert(PlannerQueryLevel == 1); if (PlannerPlanId > 0) { result_plan->initPlan = PlannerInitPlan; (void) SS_finalize_plan(result_plan); } result_plan->nParamExec = length(PlannerParamVar); return result_plan; } /* * union_planner-- * * Invokes the planner on union queries if there are any left, * recursing if necessary to get them all, then processes normal plans. * * Returns a query plan. * */ Plan * union_planner(Query *parse) { List *tlist = parse->targetList; /***S*H***/ /* copy the original tlist, we will need the original one * for the AGG node later on */ List *new_tlist = new_unsorted_tlist(tlist); List *rangetable = parse->rtable; Plan *result_plan = (Plan *) NULL; Index rt_index; if (parse->unionClause) { result_plan = (Plan *) plan_union_queries(parse); /* XXX do we need to do this? bjm 12/19/97 */ tlist = preprocess_targetlist(tlist, parse->commandType, parse->resultRelation, parse->rtable); } else if ((rt_index = first_inherit_rt_entry(rangetable)) != -1) { if (parse->rowMark != NULL) elog(ERROR, "SELECT FOR UPDATE is not supported for inherit queries"); result_plan = (Plan *) plan_inherit_queries(parse, rt_index); /* XXX do we need to do this? bjm 12/19/97 */ tlist = preprocess_targetlist(tlist, parse->commandType, parse->resultRelation, parse->rtable); } else { List **vpm = NULL; /***S*H***/ /* This is only necessary if aggregates are in use in queries like: * SELECT sid * FROM part * GROUP BY sid * HAVING MIN(pid) > 1; (pid is used but never selected for!!!) * because the function 'query_planner' creates the plan for the lefttree * of the 'GROUP' node and returns only those attributes contained in 'tlist'. * The original 'tlist' contains only 'sid' here and that's why we have to * to extend it to attributes which are not selected but are used in the * havingQual. */ /* 'check_having_qual_for_vars' takes the havingQual and the actual 'tlist' * as arguments and recursively scans the havingQual for attributes * (VAR nodes) that are not contained in 'tlist' yet. If so, it creates * a new entry and attaches it to the list 'new_tlist' (consisting of the * VAR node and the RESDOM node as usual with tlists :-) ) */ if (parse->hasAggs) { if (parse->havingQual != NULL) { new_tlist = check_having_qual_for_vars(parse->havingQual,new_tlist); } } new_tlist = preprocess_targetlist(new_tlist, parse->commandType, parse->resultRelation, parse->rtable); /* FOR UPDATE ... */ if (parse->rowMark != NULL) { List *l; TargetEntry *ctid; Resdom *resdom; Var *var; char *resname; foreach (l, parse->rowMark) { if (!(((RowMark*)lfirst(l))->info & ROW_MARK_FOR_UPDATE)) continue; resname = (char*) palloc(32); sprintf(resname, "ctid%u", ((RowMark*)lfirst(l))->rti); resdom = makeResdom(length(new_tlist) + 1, TIDOID, -1, resname, 0, 0, 1); var = makeVar(((RowMark*)lfirst(l))->rti, -1, TIDOID, -1, 0, ((RowMark*)lfirst(l))->rti, -1); ctid = makeTargetEntry(resdom, (Node *) var); new_tlist = lappend(new_tlist, ctid); } } /* Here starts the original (pre having) code */ tlist = preprocess_targetlist(tlist, parse->commandType, parse->resultRelation, parse->rtable); if (parse->rtable != NULL) { vpm = (List **) palloc(length(parse->rtable) * sizeof(List *)); memset(vpm, 0, length(parse->rtable) * sizeof(List *)); } PlannerVarParam = lcons(vpm, PlannerVarParam); result_plan = query_planner(parse, parse->commandType, new_tlist, (List *) parse->qual); PlannerVarParam = lnext(PlannerVarParam); if (vpm != NULL) pfree(vpm); } /* * If we have a GROUP BY clause, insert a group node (with the * appropriate sort node.) */ if (parse->groupClause) { bool tuplePerGroup; /* * decide whether how many tuples per group the Group node needs * to return. (Needs only one tuple per group if no aggregate is * present. Otherwise, need every tuple from the group to do the * aggregation.) */ tuplePerGroup = parse->hasAggs; /***S*H***/ /* Use 'new_tlist' instead of 'tlist' */ result_plan = make_groupPlan(&new_tlist, tuplePerGroup, parse->groupClause, result_plan); } /* * If aggregate is present, insert the agg node */ if (parse->hasAggs) { int old_length=0, new_length=0; /* Create the Agg node but use 'tlist' not 'new_tlist' as target list because we * don't want the additional attributes (only used for the havingQual, see above) * to show up in the result */ result_plan = (Plan *) make_agg(tlist, result_plan); /* * get the varno/attno entries to the appropriate references to * the result tuple of the subplans. */ ((Agg *) result_plan)->aggs = get_agg_tlist_references((Agg *) result_plan); /***S*H***/ if(parse->havingQual!=NULL) { List *clause; List **vpm = NULL; /* stuff copied from above to handle the use of attributes from outside * in subselects */ if (parse->rtable != NULL) { vpm = (List **) palloc(length(parse->rtable) * sizeof(List *)); memset(vpm, 0, length(parse->rtable) * sizeof(List *)); } PlannerVarParam = lcons(vpm, PlannerVarParam); /* convert the havingQual to conjunctive normal form (cnf) */ (List *) parse->havingQual=cnfify((Expr *)(Node *) parse->havingQual,true); /* There is a subselect in the havingQual, so we have to process it * using the same function as for a subselect in 'where' */ if (parse->hasSubLinks) { (List *) parse->havingQual = (List *) SS_process_sublinks((Node *) parse->havingQual); } /* Calculate the opfids from the opnos (=select the correct functions for * the used VAR datatypes) */ (List *) parse->havingQual=fix_opids((List *) parse->havingQual); ((Agg *) result_plan)->plan.qual=(List *) parse->havingQual; /* Check every clause of the havingQual for aggregates used and append * them to result_plan->aggs */ foreach(clause, ((Agg *) result_plan)->plan.qual) { /* Make sure there are aggregates in the havingQual * if so, the list must be longer after check_having_qual_for_aggs */ old_length=length(((Agg *) result_plan)->aggs); ((Agg *) result_plan)->aggs = nconc(((Agg *) result_plan)->aggs, check_having_qual_for_aggs((Node *) lfirst(clause), ((Agg *) result_plan)->plan.lefttree->targetlist, ((List *) parse->groupClause))); /* Have a look at the length of the returned list. If there is no * difference, no aggregates have been found and that means, that * the Qual belongs to the where clause */ if (((new_length=length(((Agg *) result_plan)->aggs)) == old_length) || (new_length == 0)) { elog(ERROR,"This could have been done in a where clause!!"); return (Plan *)NIL; } } PlannerVarParam = lnext(PlannerVarParam); if (vpm != NULL) pfree(vpm); } } /* * For now, before we hand back the plan, check to see if there is a * user-specified sort that needs to be done. Eventually, this will * be moved into the guts of the planner s.t. user specified sorts * will be considered as part of the planning process. Since we can * only make use of user-specified sorts in special cases, we can do * the optimization step later. */ if (parse->uniqueFlag) { Plan *sortplan = make_sortplan(tlist, parse->sortClause, result_plan); return ((Plan *) make_unique(tlist, sortplan, parse->uniqueFlag)); } else { if (parse->sortClause && need_sortplan(parse->sortClause, result_plan)) return (make_sortplan(tlist, parse->sortClause, result_plan)); else return ((Plan *) result_plan); } } /* * make_sortplan-- * Returns a sortplan which is basically a SORT node attached to the * top of the plan returned from the planner. It also adds the * cost of sorting into the plan. * * sortkeys: ( resdom1 resdom2 resdom3 ...) * sortops: (sortop1 sortop2 sortop3 ...) */ static Plan * make_sortplan(List *tlist, List *sortcls, Plan *plannode) { Plan *sortplan = (Plan *) NULL; List *temp_tlist = NIL; List *i = NIL; Resdom *resnode = (Resdom *) NULL; Resdom *resdom = (Resdom *) NULL; int keyno = 1; /* * First make a copy of the tlist so that we don't corrupt the the * original . */ temp_tlist = new_unsorted_tlist(tlist); foreach(i, sortcls) { SortClause *sortcl = (SortClause *) lfirst(i); resnode = sortcl->resdom; resdom = tlist_resdom(temp_tlist, resnode); /* * Order the resdom keys and replace the operator OID for each key * with the regproc OID. */ resdom->reskey = keyno; resdom->reskeyop = get_opcode(sortcl->opoid); keyno += 1; } sortplan = (Plan *) make_sort(temp_tlist, _NONAME_RELATION_ID_, (Plan *) plannode, length(sortcls)); /* * XXX Assuming that an internal sort has no. cost. This is wrong, but * given that at this point, we don't know the no. of tuples returned, * etc, we can't do better than to add a constant cost. This will be * fixed once we move the sort further into the planner, but for now * ... functionality.... */ sortplan->cost = plannode->cost; return sortplan; } /* * pg_checkretval() -- check return value of a list of sql parse * trees. * * The return value of a sql function is the value returned by * the final query in the function. We do some ad-hoc define-time * type checking here to be sure that the user is returning the * type he claims. */ void pg_checkretval(Oid rettype, QueryTreeList *queryTreeList) { Query *parse; List *tlist; List *rt; int cmd; Type typ; Resdom *resnode; Relation reln; Oid relid; Oid tletype; int relnatts; int i; /* find the final query */ parse = queryTreeList->qtrees[queryTreeList->len - 1]; /* * test 1: if the last query is a utility invocation, then there had * better not be a return value declared. */ if (parse->commandType == CMD_UTILITY) { if (rettype == InvalidOid) return; else elog(ERROR, "return type mismatch in function decl: final query is a catalog utility"); } /* okay, it's an ordinary query */ tlist = parse->targetList; rt = parse->rtable; cmd = parse->commandType; /* * test 2: if the function is declared to return no value, then the * final query had better not be a retrieve. */ if (rettype == InvalidOid) { if (cmd == CMD_SELECT) elog(ERROR, "function declared with no return type, but final query is a retrieve"); else return; } /* by here, the function is declared to return some type */ if ((typ = typeidType(rettype)) == NULL) elog(ERROR, "can't find return type %d for function\n", rettype); /* * test 3: if the function is declared to return a value, then the * final query had better be a retrieve. */ if (cmd != CMD_SELECT) elog(ERROR, "function declared to return type %s, but final query is not a retrieve", typeTypeName(typ)); /* * test 4: for base type returns, the target list should have exactly * one entry, and its type should agree with what the user declared. */ if (typeTypeRelid(typ) == InvalidOid) { if (ExecTargetListLength(tlist) > 1) elog(ERROR, "function declared to return %s returns multiple values in final retrieve", typeTypeName(typ)); resnode = (Resdom *) ((TargetEntry *) lfirst(tlist))->resdom; if (resnode->restype != rettype) elog(ERROR, "return type mismatch in function: declared to return %s, returns %s", typeTypeName(typ), typeidTypeName(resnode->restype)); /* by here, base return types match */ return; } /* * If the target list is of length 1, and the type of the varnode in * the target list is the same as the declared return type, this is * okay. This can happen, for example, where the body of the function * is 'retrieve (x = func2())', where func2 has the same return type * as the function that's calling it. */ if (ExecTargetListLength(tlist) == 1) { resnode = (Resdom *) ((TargetEntry *) lfirst(tlist))->resdom; if (resnode->restype == rettype) return; } /* * By here, the procedure returns a (set of) tuples. This part of the * typechecking is a hack. We look up the relation that is the * declared return type, and be sure that attributes 1 .. n in the * target list match the declared types. */ reln = heap_open(typeTypeRelid(typ)); if (!RelationIsValid(reln)) elog(ERROR, "cannot open relation relid %d", typeTypeRelid(typ)); relid = reln->rd_id; relnatts = reln->rd_rel->relnatts; if (ExecTargetListLength(tlist) != relnatts) elog(ERROR, "function declared to return type %s does not retrieve (%s.*)", typeTypeName(typ), typeTypeName(typ)); /* expect attributes 1 .. n in order */ for (i = 1; i <= relnatts; i++) { TargetEntry *tle = lfirst(tlist); Node *thenode = tle->expr; tlist = lnext(tlist); tletype = exprType(thenode); #if 0 /* fix me */ /* this is tedious */ if (IsA(thenode, Var)) tletype = (Oid) ((Var *) thenode)->vartype; else if (IsA(thenode, Const)) tletype = (Oid) ((Const *) thenode)->consttype; else if (IsA(thenode, Param)) tletype = (Oid) ((Param *) thenode)->paramtype; else if (IsA(thenode, Expr)) tletype = Expr; else if (IsA(thenode, LispList)) { thenode = lfirst(thenode); if (IsA(thenode, Oper)) tletype = (Oid) get_opresulttype((Oper *) thenode); else if (IsA(thenode, Func)) tletype = (Oid) get_functype((Func *) thenode); else elog(ERROR, "function declared to return type %s does not retrieve (%s.all)", typeTypeName(typ), typeTypeName(typ)); } else elog(ERROR, "function declared to return type %s does not retrieve (%s.all)", typeTypeName(typ), typeTypeName(typ)); #endif /* reach right in there, why don't you? */ if (tletype != reln->rd_att->attrs[i - 1]->atttypid) elog(ERROR, "function declared to return type %s does not retrieve (%s.all)", typeTypeName(typ), typeTypeName(typ)); } heap_close(reln); /* success */ return; } /* ---------- * Support function for need_sortplan * ---------- */ static TargetEntry * get_matching_tle(Plan *plan, Resdom *resdom) { List *i; TargetEntry *tle; foreach (i, plan->targetlist) { tle = (TargetEntry *)lfirst(i); if (tle->resdom->resno == resdom->resno) return tle; } return NULL; } /* ---------- * Check if a user requested ORDER BY is already satisfied by * the choosen index scan. * * Returns TRUE if sort is required, FALSE if can be omitted. * ---------- */ static bool need_sortplan(List *sortcls, Plan *plan) { Relation indexRel; IndexScan *indexScan; Oid indexId; List *i; HeapTuple htup; Form_pg_index index_tup; int key_no = 0; /* ---------- * Must be an IndexScan * ---------- */ if (nodeTag(plan) != T_IndexScan) { return TRUE; } indexScan = (IndexScan *)plan; /* ---------- * Should not have left- or righttree * ---------- */ if (plan->lefttree != NULL) { return TRUE; } if (plan->righttree != NULL) { return TRUE; } /* ---------- * Must be a single index scan * ---------- */ if (length(indexScan->indxid) != 1) { return TRUE; } /* ---------- * Indices can only have up to 8 attributes. So an ORDER BY using * more that 8 attributes could never be satisfied by an index. * ---------- */ if (length(sortcls) > 8) { return TRUE; } /* ---------- * The choosen Index must be a btree * ---------- */ indexId = lfirsti(indexScan->indxid); indexRel = index_open(indexId); if (strcmp(nameout(&(indexRel->rd_am->amname)), "btree") != 0) { heap_close(indexRel); return TRUE; } heap_close(indexRel); /* ---------- * Fetch the index tuple * ---------- */ htup = SearchSysCacheTuple(INDEXRELID, ObjectIdGetDatum(indexId), 0, 0, 0); if (!HeapTupleIsValid(htup)) { elog(ERROR, "cache lookup for index %d failed", indexId); } index_tup = (Form_pg_index) GETSTRUCT(htup); /* ---------- * Check if all the sort clauses match the attributes in the index * ---------- */ foreach (i, sortcls) { SortClause *sortcl; Resdom *resdom; TargetEntry *tle; Var *var; sortcl = (SortClause *) lfirst(i); resdom = sortcl->resdom; tle = get_matching_tle(plan, resdom); if (tle == NULL) { /* ---------- * Could this happen? * ---------- */ return TRUE; } if (nodeTag(tle->expr) != T_Var) { /* ---------- * The target list expression isn't a var, so it * cannot be the indexed attribute * ---------- */ return TRUE; } var = (Var *)(tle->expr); if (var->varno != indexScan->scan.scanrelid) { /* ---------- * This Var isn't from the scan relation. So it isn't * that of the index * ---------- */ return TRUE; } if (var->varattno != index_tup->indkey[key_no]) { /* ---------- * It isn't the indexed attribute. * ---------- */ return TRUE; } if (oprid(oper("<", resdom->restype, resdom->restype, FALSE)) != sortcl->opoid) { /* ---------- * Sort order isn't in ascending order. * ---------- */ return TRUE; } key_no++; } /* ---------- * Index matches ORDER BY - sort not required * ---------- */ return FALSE; }