/*------------------------------------------------------------------------- * * createplan.c * Routines to create the desired plan for processing a query. * Planning is complete, we just need to convert the selected * Path into a Plan. * * Portions Copyright (c) 1996-2005, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * * IDENTIFICATION * $PostgreSQL: pgsql/src/backend/optimizer/plan/createplan.c,v 1.191 2005/06/05 22:32:55 tgl Exp $ * *------------------------------------------------------------------------- */ #include "postgres.h" #include #include "nodes/makefuncs.h" #include "nodes/nodeFuncs.h" #include "optimizer/clauses.h" #include "optimizer/cost.h" #include "optimizer/paths.h" #include "optimizer/plancat.h" #include "optimizer/planmain.h" #include "optimizer/restrictinfo.h" #include "optimizer/tlist.h" #include "optimizer/var.h" #include "parser/parsetree.h" #include "parser/parse_clause.h" #include "parser/parse_expr.h" #include "utils/lsyscache.h" #include "utils/syscache.h" static Scan *create_scan_plan(PlannerInfo *root, Path *best_path); static List *build_relation_tlist(RelOptInfo *rel); static bool use_physical_tlist(RelOptInfo *rel); static void disuse_physical_tlist(Plan *plan, Path *path); static Join *create_join_plan(PlannerInfo *root, JoinPath *best_path); static Append *create_append_plan(PlannerInfo *root, AppendPath *best_path); static Result *create_result_plan(PlannerInfo *root, ResultPath *best_path); static Material *create_material_plan(PlannerInfo *root, MaterialPath *best_path); static Plan *create_unique_plan(PlannerInfo *root, UniquePath *best_path); static SeqScan *create_seqscan_plan(PlannerInfo *root, Path *best_path, List *tlist, List *scan_clauses); static IndexScan *create_indexscan_plan(PlannerInfo *root, IndexPath *best_path, List *tlist, List *scan_clauses, List **nonlossy_clauses); static BitmapHeapScan *create_bitmap_scan_plan(PlannerInfo *root, BitmapHeapPath *best_path, List *tlist, List *scan_clauses); static Plan *create_bitmap_subplan(PlannerInfo *root, Path *bitmapqual, List **qual, List **indexqual); static TidScan *create_tidscan_plan(PlannerInfo *root, TidPath *best_path, List *tlist, List *scan_clauses); static SubqueryScan *create_subqueryscan_plan(PlannerInfo *root, Path *best_path, List *tlist, List *scan_clauses); static FunctionScan *create_functionscan_plan(PlannerInfo *root, Path *best_path, List *tlist, List *scan_clauses); static NestLoop *create_nestloop_plan(PlannerInfo *root, NestPath *best_path, Plan *outer_plan, Plan *inner_plan); static MergeJoin *create_mergejoin_plan(PlannerInfo *root, MergePath *best_path, Plan *outer_plan, Plan *inner_plan); static HashJoin *create_hashjoin_plan(PlannerInfo *root, HashPath *best_path, Plan *outer_plan, Plan *inner_plan); static void fix_indexqual_references(List *indexquals, IndexPath *index_path, List **fixed_indexquals, List **nonlossy_indexquals, List **indexstrategy, List **indexsubtype); static Node *fix_indexqual_operand(Node *node, IndexOptInfo *index, Oid *opclass); static List *get_switched_clauses(List *clauses, Relids outerrelids); static void copy_path_costsize(Plan *dest, Path *src); static void copy_plan_costsize(Plan *dest, Plan *src); static SeqScan *make_seqscan(List *qptlist, List *qpqual, Index scanrelid); static IndexScan *make_indexscan(List *qptlist, List *qpqual, Index scanrelid, Oid indexid, List *indexqual, List *indexqualorig, List *indexstrategy, List *indexsubtype, ScanDirection indexscandir); static BitmapIndexScan *make_bitmap_indexscan(Index scanrelid, Oid indexid, List *indexqual, List *indexqualorig, List *indexstrategy, List *indexsubtype); static BitmapHeapScan *make_bitmap_heapscan(List *qptlist, List *qpqual, Plan *lefttree, List *bitmapqualorig, Index scanrelid); static TidScan *make_tidscan(List *qptlist, List *qpqual, Index scanrelid, List *tideval); static FunctionScan *make_functionscan(List *qptlist, List *qpqual, Index scanrelid); static BitmapAnd *make_bitmap_and(List *bitmapplans); static BitmapOr *make_bitmap_or(List *bitmapplans); static NestLoop *make_nestloop(List *tlist, List *joinclauses, List *otherclauses, Plan *lefttree, Plan *righttree, JoinType jointype); static HashJoin *make_hashjoin(List *tlist, List *joinclauses, List *otherclauses, List *hashclauses, Plan *lefttree, Plan *righttree, JoinType jointype); static Hash *make_hash(Plan *lefttree); static MergeJoin *make_mergejoin(List *tlist, List *joinclauses, List *otherclauses, List *mergeclauses, Plan *lefttree, Plan *righttree, JoinType jointype); static Sort *make_sort(PlannerInfo *root, Plan *lefttree, int numCols, AttrNumber *sortColIdx, Oid *sortOperators); static Sort *make_sort_from_pathkeys(PlannerInfo *root, Plan *lefttree, List *pathkeys); /* * create_plan * Creates the access plan for a query by tracing backwards through the * desired chain of pathnodes, starting at the node 'best_path'. For * every pathnode found: * (1) Create a corresponding plan node containing appropriate id, * target list, and qualification information. * (2) Modify qual clauses of join nodes so that subplan attributes are * referenced using relative values. * (3) Target lists are not modified, but will be in setrefs.c. * * best_path is the best access path * * Returns a Plan tree. */ Plan * create_plan(PlannerInfo *root, Path *best_path) { Plan *plan; switch (best_path->pathtype) { case T_SeqScan: case T_IndexScan: case T_BitmapHeapScan: case T_TidScan: case T_SubqueryScan: case T_FunctionScan: plan = (Plan *) create_scan_plan(root, best_path); break; case T_HashJoin: case T_MergeJoin: case T_NestLoop: plan = (Plan *) create_join_plan(root, (JoinPath *) best_path); break; case T_Append: plan = (Plan *) create_append_plan(root, (AppendPath *) best_path); break; case T_Result: plan = (Plan *) create_result_plan(root, (ResultPath *) best_path); break; case T_Material: plan = (Plan *) create_material_plan(root, (MaterialPath *) best_path); break; case T_Unique: plan = (Plan *) create_unique_plan(root, (UniquePath *) best_path); break; default: elog(ERROR, "unrecognized node type: %d", (int) best_path->pathtype); plan = NULL; /* keep compiler quiet */ break; } return plan; } /* * create_scan_plan * Create a scan plan for the parent relation of 'best_path'. * * Returns a Plan node. */ static Scan * create_scan_plan(PlannerInfo *root, Path *best_path) { RelOptInfo *rel = best_path->parent; List *tlist; List *scan_clauses; Scan *plan; /* * For table scans, rather than using the relation targetlist (which * is only those Vars actually needed by the query), we prefer to * generate a tlist containing all Vars in order. This will allow the * executor to optimize away projection of the table tuples, if * possible. (Note that planner.c may replace the tlist we generate * here, forcing projection to occur.) */ if (use_physical_tlist(rel)) { tlist = build_physical_tlist(root, rel); /* if fail because of dropped cols, use regular method */ if (tlist == NIL) tlist = build_relation_tlist(rel); } else tlist = build_relation_tlist(rel); /* * Extract the relevant restriction clauses from the parent relation; * the executor must apply all these restrictions during the scan. */ scan_clauses = rel->baserestrictinfo; switch (best_path->pathtype) { case T_SeqScan: plan = (Scan *) create_seqscan_plan(root, best_path, tlist, scan_clauses); break; case T_IndexScan: plan = (Scan *) create_indexscan_plan(root, (IndexPath *) best_path, tlist, scan_clauses, NULL); break; case T_BitmapHeapScan: plan = (Scan *) create_bitmap_scan_plan(root, (BitmapHeapPath *) best_path, tlist, scan_clauses); break; case T_TidScan: plan = (Scan *) create_tidscan_plan(root, (TidPath *) best_path, tlist, scan_clauses); break; case T_SubqueryScan: plan = (Scan *) create_subqueryscan_plan(root, best_path, tlist, scan_clauses); break; case T_FunctionScan: plan = (Scan *) create_functionscan_plan(root, best_path, tlist, scan_clauses); break; default: elog(ERROR, "unrecognized node type: %d", (int) best_path->pathtype); plan = NULL; /* keep compiler quiet */ break; } return plan; } /* * Build a target list (ie, a list of TargetEntry) for a relation. */ static List * build_relation_tlist(RelOptInfo *rel) { List *tlist = NIL; int resno = 1; ListCell *v; foreach(v, rel->reltargetlist) { /* Do we really need to copy here? Not sure */ Var *var = (Var *) copyObject(lfirst(v)); tlist = lappend(tlist, makeTargetEntry((Expr *) var, resno, NULL, false)); resno++; } return tlist; } /* * use_physical_tlist * Decide whether to use a tlist matching relation structure, * rather than only those Vars actually referenced. */ static bool use_physical_tlist(RelOptInfo *rel) { int i; /* * OK for subquery and function scans; otherwise, can't do it for * anything except real relations. */ if (rel->rtekind != RTE_RELATION) { if (rel->rtekind == RTE_SUBQUERY) return true; if (rel->rtekind == RTE_FUNCTION) return true; return false; } /* * Can't do it with inheritance cases either (mainly because Append * doesn't project). */ if (rel->reloptkind != RELOPT_BASEREL) return false; /* * Can't do it if any system columns are requested, either. (This * could possibly be fixed but would take some fragile assumptions in * setrefs.c, I think.) */ for (i = rel->min_attr; i <= 0; i++) { if (!bms_is_empty(rel->attr_needed[i - rel->min_attr])) return false; } return true; } /* * disuse_physical_tlist * Switch a plan node back to emitting only Vars actually referenced. * * If the plan node immediately above a scan would prefer to get only * needed Vars and not a physical tlist, it must call this routine to * undo the decision made by use_physical_tlist(). Currently, Hash, Sort, * and Material nodes want this, so they don't have to store useless columns. */ static void disuse_physical_tlist(Plan *plan, Path *path) { /* Only need to undo it for path types handled by create_scan_plan() */ switch (path->pathtype) { case T_SeqScan: case T_IndexScan: case T_BitmapHeapScan: case T_TidScan: case T_SubqueryScan: case T_FunctionScan: plan->targetlist = build_relation_tlist(path->parent); break; default: break; } } /* * create_join_plan * Create a join plan for 'best_path' and (recursively) plans for its * inner and outer paths. * * Returns a Plan node. */ static Join * create_join_plan(PlannerInfo *root, JoinPath *best_path) { Plan *outer_plan; Plan *inner_plan; Join *plan; outer_plan = create_plan(root, best_path->outerjoinpath); inner_plan = create_plan(root, best_path->innerjoinpath); switch (best_path->path.pathtype) { case T_MergeJoin: plan = (Join *) create_mergejoin_plan(root, (MergePath *) best_path, outer_plan, inner_plan); break; case T_HashJoin: plan = (Join *) create_hashjoin_plan(root, (HashPath *) best_path, outer_plan, inner_plan); break; case T_NestLoop: plan = (Join *) create_nestloop_plan(root, (NestPath *) best_path, outer_plan, inner_plan); break; default: elog(ERROR, "unrecognized node type: %d", (int) best_path->path.pathtype); plan = NULL; /* keep compiler quiet */ break; } #ifdef NOT_USED /* * * Expensive function pullups may have pulled local predicates * * into this path node. Put them in the qpqual of the plan node. * * JMH, 6/15/92 */ if (get_loc_restrictinfo(best_path) != NIL) set_qpqual((Plan) plan, list_concat(get_qpqual((Plan) plan), get_actual_clauses(get_loc_restrictinfo(best_path)))); #endif return plan; } /* * create_append_plan * Create an Append plan for 'best_path' and (recursively) plans * for its subpaths. * * Returns a Plan node. */ static Append * create_append_plan(PlannerInfo *root, AppendPath *best_path) { Append *plan; List *tlist = build_relation_tlist(best_path->path.parent); List *subplans = NIL; ListCell *subpaths; foreach(subpaths, best_path->subpaths) { Path *subpath = (Path *) lfirst(subpaths); subplans = lappend(subplans, create_plan(root, subpath)); } plan = make_append(subplans, false, tlist); return plan; } /* * create_result_plan * Create a Result plan for 'best_path' and (recursively) plans * for its subpaths. * * Returns a Plan node. */ static Result * create_result_plan(PlannerInfo *root, ResultPath *best_path) { Result *plan; List *tlist; List *constclauses; Plan *subplan; if (best_path->path.parent) tlist = build_relation_tlist(best_path->path.parent); else tlist = NIL; /* will be filled in later */ if (best_path->subpath) subplan = create_plan(root, best_path->subpath); else subplan = NULL; constclauses = order_qual_clauses(root, best_path->constantqual); plan = make_result(tlist, (Node *) constclauses, subplan); return plan; } /* * create_material_plan * Create a Material plan for 'best_path' and (recursively) plans * for its subpaths. * * Returns a Plan node. */ static Material * create_material_plan(PlannerInfo *root, MaterialPath *best_path) { Material *plan; Plan *subplan; subplan = create_plan(root, best_path->subpath); /* We don't want any excess columns in the materialized tuples */ disuse_physical_tlist(subplan, best_path->subpath); plan = make_material(subplan); copy_path_costsize(&plan->plan, (Path *) best_path); return plan; } /* * create_unique_plan * Create a Unique plan for 'best_path' and (recursively) plans * for its subpaths. * * Returns a Plan node. */ static Plan * create_unique_plan(PlannerInfo *root, UniquePath *best_path) { Plan *plan; Plan *subplan; List *uniq_exprs; int numGroupCols; AttrNumber *groupColIdx; int groupColPos; List *newtlist; int nextresno; bool newitems; ListCell *l; subplan = create_plan(root, best_path->subpath); /*---------- * As constructed, the subplan has a "flat" tlist containing just the * Vars needed here and at upper levels. The values we are supposed * to unique-ify may be expressions in these variables. We have to * add any such expressions to the subplan's tlist. We then build * control information showing which subplan output columns are to be * examined by the grouping step. (Since we do not remove any * existing subplan outputs, not all the output columns may be used * for grouping.) * * Note: the reason we don't remove any subplan outputs is that there * are scenarios where a Var is needed at higher levels even though * it is not one of the nominal outputs of an IN clause. Consider * WHERE x IN (SELECT y FROM t1,t2 WHERE y = z) * Implied equality deduction will generate an "x = z" clause, which may * get used instead of "x = y" in the upper join step. Therefore the * sub-select had better deliver both y and z in its targetlist. * It is sufficient to unique-ify on y, however. * * To find the correct list of values to unique-ify, we look in the * information saved for IN expressions. If this code is ever used in * other scenarios, some other way of finding what to unique-ify will * be needed. *---------- */ uniq_exprs = NIL; /* just to keep compiler quiet */ foreach(l, root->in_info_list) { InClauseInfo *ininfo = (InClauseInfo *) lfirst(l); if (bms_equal(ininfo->righthand, best_path->path.parent->relids)) { uniq_exprs = ininfo->sub_targetlist; break; } } if (l == NULL) /* fell out of loop? */ elog(ERROR, "could not find UniquePath in in_info_list"); /* set up to record positions of unique columns */ numGroupCols = list_length(uniq_exprs); groupColIdx = (AttrNumber *) palloc(numGroupCols * sizeof(AttrNumber)); groupColPos = 0; /* not sure if tlist might be shared with other nodes, so copy */ newtlist = copyObject(subplan->targetlist); nextresno = list_length(newtlist) + 1; newitems = false; foreach(l, uniq_exprs) { Node *uniqexpr = lfirst(l); TargetEntry *tle; tle = tlist_member(uniqexpr, newtlist); if (!tle) { tle = makeTargetEntry((Expr *) uniqexpr, nextresno, NULL, false); newtlist = lappend(newtlist, tle); nextresno++; newitems = true; } groupColIdx[groupColPos++] = tle->resno; } if (newitems) { /* * If the top plan node can't do projections, we need to add a * Result node to help it along. */ if (!is_projection_capable_plan(subplan)) subplan = (Plan *) make_result(newtlist, NULL, subplan); else subplan->targetlist = newtlist; } /* Done if we don't need to do any actual unique-ifying */ if (best_path->umethod == UNIQUE_PATH_NOOP) return subplan; if (best_path->umethod == UNIQUE_PATH_HASH) { long numGroups; numGroups = (long) Min(best_path->rows, (double) LONG_MAX); plan = (Plan *) make_agg(root, copyObject(subplan->targetlist), NIL, AGG_HASHED, numGroupCols, groupColIdx, numGroups, 0, subplan); } else { List *sortList = NIL; for (groupColPos = 0; groupColPos < numGroupCols; groupColPos++) { TargetEntry *tle; tle = get_tle_by_resno(subplan->targetlist, groupColIdx[groupColPos]); Assert(tle != NULL); sortList = addTargetToSortList(NULL, tle, sortList, subplan->targetlist, SORTBY_ASC, NIL, false); } plan = (Plan *) make_sort_from_sortclauses(root, sortList, subplan); plan = (Plan *) make_unique(plan, sortList); } /* Adjust output size estimate (other fields should be OK already) */ plan->plan_rows = best_path->rows; return plan; } /***************************************************************************** * * BASE-RELATION SCAN METHODS * *****************************************************************************/ /* * create_seqscan_plan * Returns a seqscan plan for the base relation scanned by 'best_path' * with restriction clauses 'scan_clauses' and targetlist 'tlist'. */ static SeqScan * create_seqscan_plan(PlannerInfo *root, Path *best_path, List *tlist, List *scan_clauses) { SeqScan *scan_plan; Index scan_relid = best_path->parent->relid; /* it should be a base rel... */ Assert(scan_relid > 0); Assert(best_path->parent->rtekind == RTE_RELATION); /* Reduce RestrictInfo list to bare expressions */ scan_clauses = get_actual_clauses(scan_clauses); /* Sort clauses into best execution order */ scan_clauses = order_qual_clauses(root, scan_clauses); scan_plan = make_seqscan(tlist, scan_clauses, scan_relid); copy_path_costsize(&scan_plan->plan, best_path); return scan_plan; } /* * create_indexscan_plan * Returns an indexscan plan for the base relation scanned by 'best_path' * with restriction clauses 'scan_clauses' and targetlist 'tlist'. * * The indexquals list of the path contains implicitly-ANDed qual conditions. * The list can be empty --- then no index restrictions will be applied during * the scan. * * If nonlossy_clauses isn't NULL, *nonlossy_clauses receives a list of the * nonlossy indexquals. */ static IndexScan * create_indexscan_plan(PlannerInfo *root, IndexPath *best_path, List *tlist, List *scan_clauses, List **nonlossy_clauses) { List *indexquals = best_path->indexquals; Index baserelid = best_path->path.parent->relid; Oid indexoid = best_path->indexinfo->indexoid; List *qpqual; List *stripped_indexquals; List *fixed_indexquals; List *nonlossy_indexquals; List *indexstrategy; List *indexsubtype; ListCell *l; IndexScan *scan_plan; /* it should be a base rel... */ Assert(baserelid > 0); Assert(best_path->path.parent->rtekind == RTE_RELATION); /* * Build "stripped" indexquals structure (no RestrictInfos) to pass to * executor as indexqualorig */ stripped_indexquals = get_actual_clauses(indexquals); /* * The executor needs a copy with the indexkey on the left of each * clause and with index attr numbers substituted for table ones. This * pass also gets strategy info and looks for "lossy" operators. */ fix_indexqual_references(indexquals, best_path, &fixed_indexquals, &nonlossy_indexquals, &indexstrategy, &indexsubtype); /* pass back nonlossy quals if caller wants 'em */ if (nonlossy_clauses) *nonlossy_clauses = nonlossy_indexquals; /* * If this is an innerjoin scan, the indexclauses will contain join * clauses that are not present in scan_clauses (since the passed-in * value is just the rel's baserestrictinfo list). We must add these * clauses to scan_clauses to ensure they get checked. In most cases * we will remove the join clauses again below, but if a join clause * contains a special operator, we need to make sure it gets into the * scan_clauses. * * Note: pointer comparison should be enough to determine RestrictInfo * matches. */ if (best_path->isjoininner) scan_clauses = list_union_ptr(scan_clauses, best_path->indexclauses); /* * The qpqual list must contain all restrictions not automatically * handled by the index. All the predicates in the indexquals will be * checked (either by the index itself, or by nodeIndexscan.c), but if * there are any "special" operators involved then they must be included * in qpqual. Also, any lossy index operators must be rechecked in * the qpqual. The upshot is that qpqual must contain scan_clauses * minus whatever appears in nonlossy_indexquals. * * In normal cases simple pointer equality checks will be enough to * spot duplicate RestrictInfos, so we try that first. In some situations * (particularly with OR'd index conditions) we may have scan_clauses * that are not equal to, but are logically implied by, the index quals; * so we also try a pred_test() check to see if we can discard quals * that way. * * While at it, we strip off the RestrictInfos to produce a list of * plain expressions. */ qpqual = NIL; foreach(l, scan_clauses) { RestrictInfo *rinfo = (RestrictInfo *) lfirst(l); Assert(IsA(rinfo, RestrictInfo)); if (list_member_ptr(nonlossy_indexquals, rinfo)) continue; if (pred_test(list_make1(rinfo->clause), nonlossy_indexquals)) continue; qpqual = lappend(qpqual, rinfo->clause); } /* Sort clauses into best execution order */ qpqual = order_qual_clauses(root, qpqual); /* Finally ready to build the plan node */ scan_plan = make_indexscan(tlist, qpqual, baserelid, indexoid, fixed_indexquals, stripped_indexquals, indexstrategy, indexsubtype, best_path->indexscandir); copy_path_costsize(&scan_plan->scan.plan, &best_path->path); /* use the indexscan-specific rows estimate, not the parent rel's */ scan_plan->scan.plan.plan_rows = best_path->rows; return scan_plan; } /* * create_bitmap_scan_plan * Returns a bitmap scan plan for the base relation scanned by 'best_path' * with restriction clauses 'scan_clauses' and targetlist 'tlist'. */ static BitmapHeapScan * create_bitmap_scan_plan(PlannerInfo *root, BitmapHeapPath *best_path, List *tlist, List *scan_clauses) { Index baserelid = best_path->path.parent->relid; Plan *bitmapqualplan; List *bitmapqualorig; List *indexquals; List *qpqual; ListCell *l; BitmapHeapScan *scan_plan; /* it should be a base rel... */ Assert(baserelid > 0); Assert(best_path->path.parent->rtekind == RTE_RELATION); /* Process the bitmapqual tree into a Plan tree and qual lists */ bitmapqualplan = create_bitmap_subplan(root, best_path->bitmapqual, &bitmapqualorig, &indexquals); /* Reduce RestrictInfo list to bare expressions */ scan_clauses = get_actual_clauses(scan_clauses); /* * If this is a innerjoin scan, the indexclauses will contain join * clauses that are not present in scan_clauses (since the passed-in * value is just the rel's baserestrictinfo list). We must add these * clauses to scan_clauses to ensure they get checked. In most cases * we will remove the join clauses again below, but if a join clause * contains a special operator, we need to make sure it gets into the * scan_clauses. */ if (best_path->isjoininner) { scan_clauses = list_union(scan_clauses, bitmapqualorig); } /* * The qpqual list must contain all restrictions not automatically * handled by the index. All the predicates in the indexquals will be * checked (either by the index itself, or by nodeBitmapHeapscan.c), * but if there are any "special" or lossy operators involved then they * must be added to qpqual. The upshot is that qpquals must contain * scan_clauses minus whatever appears in indexquals. * * In normal cases simple equal() checks will be enough to spot duplicate * clauses, so we try that first. In some situations (particularly with * OR'd index conditions) we may have scan_clauses that are not equal to, * but are logically implied by, the index quals; so we also try a * pred_test() check to see if we can discard quals that way. */ qpqual = NIL; foreach(l, scan_clauses) { Node *clause = (Node *) lfirst(l); if (list_member(indexquals, clause)) continue; if (pred_test(list_make1(clause), indexquals)) continue; qpqual = lappend(qpqual, clause); } /* Sort clauses into best execution order */ qpqual = order_qual_clauses(root, qpqual); /* * When dealing with special or lossy operators, we will at this point * have duplicate clauses in qpqual and bitmapqualorig. We may as well * drop 'em from bitmapqualorig, since there's no point in making the * tests twice. */ bitmapqualorig = list_difference_ptr(bitmapqualorig, qpqual); /* Finally ready to build the plan node */ scan_plan = make_bitmap_heapscan(tlist, qpqual, bitmapqualplan, bitmapqualorig, baserelid); copy_path_costsize(&scan_plan->scan.plan, &best_path->path); /* use the indexscan-specific rows estimate, not the parent rel's */ scan_plan->scan.plan.plan_rows = best_path->rows; return scan_plan; } /* * Given a bitmapqual tree, generate the Plan tree that implements it * * As byproducts, we also return in *qual and *indexqual the qual lists * (in implicit-AND form, without RestrictInfos) describing the original index * conditions and the generated indexqual conditions. The latter is made to * exclude lossy index operators. */ static Plan * create_bitmap_subplan(PlannerInfo *root, Path *bitmapqual, List **qual, List **indexqual) { Plan *plan; if (IsA(bitmapqual, BitmapAndPath)) { BitmapAndPath *apath = (BitmapAndPath *) bitmapqual; List *subplans = NIL; List *subquals = NIL; List *subindexquals = NIL; ListCell *l; foreach(l, apath->bitmapquals) { Plan *subplan; List *subqual; List *subindexqual; subplan = create_bitmap_subplan(root, (Path *) lfirst(l), &subqual, &subindexqual); subplans = lappend(subplans, subplan); subquals = list_concat(subquals, subqual); subindexquals = list_concat(subindexquals, subindexqual); } plan = (Plan *) make_bitmap_and(subplans); plan->startup_cost = apath->path.startup_cost; plan->total_cost = apath->path.total_cost; plan->plan_rows = clamp_row_est(apath->bitmapselectivity * apath->path.parent->tuples); plan->plan_width = 0; /* meaningless */ *qual = subquals; *indexqual = subindexquals; } else if (IsA(bitmapqual, BitmapOrPath)) { BitmapOrPath *opath = (BitmapOrPath *) bitmapqual; List *subplans = NIL; List *subquals = NIL; List *subindexquals = NIL; ListCell *l; foreach(l, opath->bitmapquals) { Plan *subplan; List *subqual; List *subindexqual; subplan = create_bitmap_subplan(root, (Path *) lfirst(l), &subqual, &subindexqual); subplans = lappend(subplans, subplan); subquals = lappend(subquals, make_ands_explicit(subqual)); subindexquals = lappend(subindexquals, make_ands_explicit(subindexqual)); } plan = (Plan *) make_bitmap_or(subplans); plan->startup_cost = opath->path.startup_cost; plan->total_cost = opath->path.total_cost; plan->plan_rows = clamp_row_est(opath->bitmapselectivity * opath->path.parent->tuples); plan->plan_width = 0; /* meaningless */ *qual = list_make1(make_orclause(subquals)); *indexqual = list_make1(make_orclause(subindexquals)); } else if (IsA(bitmapqual, IndexPath)) { IndexPath *ipath = (IndexPath *) bitmapqual; IndexScan *iscan; List *nonlossy_clauses; /* Use the regular indexscan plan build machinery... */ iscan = create_indexscan_plan(root, ipath, NIL, NIL, &nonlossy_clauses); /* then convert to a bitmap indexscan */ plan = (Plan *) make_bitmap_indexscan(iscan->scan.scanrelid, iscan->indexid, iscan->indexqual, iscan->indexqualorig, iscan->indexstrategy, iscan->indexsubtype); plan->startup_cost = 0.0; plan->total_cost = ipath->indextotalcost; plan->plan_rows = clamp_row_est(ipath->indexselectivity * ipath->path.parent->tuples); plan->plan_width = 0; /* meaningless */ *qual = get_actual_clauses(ipath->indexclauses); *indexqual = get_actual_clauses(nonlossy_clauses); } else { elog(ERROR, "unrecognized node type: %d", nodeTag(bitmapqual)); plan = NULL; /* keep compiler quiet */ } return plan; } /* * create_tidscan_plan * Returns a tidscan plan for the base relation scanned by 'best_path' * with restriction clauses 'scan_clauses' and targetlist 'tlist'. */ static TidScan * create_tidscan_plan(PlannerInfo *root, TidPath *best_path, List *tlist, List *scan_clauses) { TidScan *scan_plan; Index scan_relid = best_path->path.parent->relid; /* it should be a base rel... */ Assert(scan_relid > 0); Assert(best_path->path.parent->rtekind == RTE_RELATION); /* Reduce RestrictInfo list to bare expressions */ scan_clauses = get_actual_clauses(scan_clauses); /* Sort clauses into best execution order */ scan_clauses = order_qual_clauses(root, scan_clauses); scan_plan = make_tidscan(tlist, scan_clauses, scan_relid, best_path->tideval); copy_path_costsize(&scan_plan->scan.plan, &best_path->path); return scan_plan; } /* * create_subqueryscan_plan * Returns a subqueryscan plan for the base relation scanned by 'best_path' * with restriction clauses 'scan_clauses' and targetlist 'tlist'. */ static SubqueryScan * create_subqueryscan_plan(PlannerInfo *root, Path *best_path, List *tlist, List *scan_clauses) { SubqueryScan *scan_plan; Index scan_relid = best_path->parent->relid; /* it should be a subquery base rel... */ Assert(scan_relid > 0); Assert(best_path->parent->rtekind == RTE_SUBQUERY); /* Reduce RestrictInfo list to bare expressions */ scan_clauses = get_actual_clauses(scan_clauses); /* Sort clauses into best execution order */ scan_clauses = order_qual_clauses(root, scan_clauses); scan_plan = make_subqueryscan(tlist, scan_clauses, scan_relid, best_path->parent->subplan); copy_path_costsize(&scan_plan->scan.plan, best_path); return scan_plan; } /* * create_functionscan_plan * Returns a functionscan plan for the base relation scanned by 'best_path' * with restriction clauses 'scan_clauses' and targetlist 'tlist'. */ static FunctionScan * create_functionscan_plan(PlannerInfo *root, Path *best_path, List *tlist, List *scan_clauses) { FunctionScan *scan_plan; Index scan_relid = best_path->parent->relid; /* it should be a function base rel... */ Assert(scan_relid > 0); Assert(best_path->parent->rtekind == RTE_FUNCTION); /* Reduce RestrictInfo list to bare expressions */ scan_clauses = get_actual_clauses(scan_clauses); /* Sort clauses into best execution order */ scan_clauses = order_qual_clauses(root, scan_clauses); scan_plan = make_functionscan(tlist, scan_clauses, scan_relid); copy_path_costsize(&scan_plan->scan.plan, best_path); return scan_plan; } /***************************************************************************** * * JOIN METHODS * *****************************************************************************/ static NestLoop * create_nestloop_plan(PlannerInfo *root, NestPath *best_path, Plan *outer_plan, Plan *inner_plan) { List *tlist = build_relation_tlist(best_path->path.parent); List *joinrestrictclauses = best_path->joinrestrictinfo; List *joinclauses; List *otherclauses; NestLoop *join_plan; if (IsA(best_path->innerjoinpath, IndexPath)) { /* * An index is being used to reduce the number of tuples scanned * in the inner relation. If there are join clauses being used * with the index, we may remove those join clauses from the list * of clauses that have to be checked as qpquals at the join node. * * We can also remove any join clauses that are redundant with those * being used in the index scan; prior redundancy checks will not * have caught this case because the join clauses would never have * been put in the same joininfo list. * * We can skip this if the index path is an ordinary indexpath and * not a special innerjoin path. */ IndexPath *innerpath = (IndexPath *) best_path->innerjoinpath; if (innerpath->isjoininner) { joinrestrictclauses = select_nonredundant_join_clauses(root, joinrestrictclauses, innerpath->indexclauses, IS_OUTER_JOIN(best_path->jointype)); } } else if (IsA(best_path->innerjoinpath, BitmapHeapPath)) { /* * Same deal for bitmapped index scans. */ BitmapHeapPath *innerpath = (BitmapHeapPath *) best_path->innerjoinpath; if (innerpath->isjoininner) { List *bitmapclauses; bitmapclauses = make_restrictinfo_from_bitmapqual(innerpath->bitmapqual, true, true); joinrestrictclauses = select_nonredundant_join_clauses(root, joinrestrictclauses, bitmapclauses, IS_OUTER_JOIN(best_path->jointype)); } } /* Get the join qual clauses (in plain expression form) */ if (IS_OUTER_JOIN(best_path->jointype)) { get_actual_join_clauses(joinrestrictclauses, &joinclauses, &otherclauses); } else { /* We can treat all clauses alike for an inner join */ joinclauses = get_actual_clauses(joinrestrictclauses); otherclauses = NIL; } /* Sort clauses into best execution order */ joinclauses = order_qual_clauses(root, joinclauses); otherclauses = order_qual_clauses(root, otherclauses); join_plan = make_nestloop(tlist, joinclauses, otherclauses, outer_plan, inner_plan, best_path->jointype); copy_path_costsize(&join_plan->join.plan, &best_path->path); return join_plan; } static MergeJoin * create_mergejoin_plan(PlannerInfo *root, MergePath *best_path, Plan *outer_plan, Plan *inner_plan) { List *tlist = build_relation_tlist(best_path->jpath.path.parent); List *joinclauses; List *otherclauses; List *mergeclauses; MergeJoin *join_plan; /* Get the join qual clauses (in plain expression form) */ if (IS_OUTER_JOIN(best_path->jpath.jointype)) { get_actual_join_clauses(best_path->jpath.joinrestrictinfo, &joinclauses, &otherclauses); } else { /* We can treat all clauses alike for an inner join */ joinclauses = get_actual_clauses(best_path->jpath.joinrestrictinfo); otherclauses = NIL; } /* * Remove the mergeclauses from the list of join qual clauses, leaving * the list of quals that must be checked as qpquals. */ mergeclauses = get_actual_clauses(best_path->path_mergeclauses); joinclauses = list_difference(joinclauses, mergeclauses); /* * Rearrange mergeclauses, if needed, so that the outer variable is * always on the left. */ mergeclauses = get_switched_clauses(best_path->path_mergeclauses, best_path->jpath.outerjoinpath->parent->relids); /* Sort clauses into best execution order */ /* NB: do NOT reorder the mergeclauses */ joinclauses = order_qual_clauses(root, joinclauses); otherclauses = order_qual_clauses(root, otherclauses); /* * Create explicit sort nodes for the outer and inner join paths if * necessary. The sort cost was already accounted for in the path. * Make sure there are no excess columns in the inputs if sorting. */ if (best_path->outersortkeys) { disuse_physical_tlist(outer_plan, best_path->jpath.outerjoinpath); outer_plan = (Plan *) make_sort_from_pathkeys(root, outer_plan, best_path->outersortkeys); } if (best_path->innersortkeys) { disuse_physical_tlist(inner_plan, best_path->jpath.innerjoinpath); inner_plan = (Plan *) make_sort_from_pathkeys(root, inner_plan, best_path->innersortkeys); } /* * Now we can build the mergejoin node. */ join_plan = make_mergejoin(tlist, joinclauses, otherclauses, mergeclauses, outer_plan, inner_plan, best_path->jpath.jointype); copy_path_costsize(&join_plan->join.plan, &best_path->jpath.path); return join_plan; } static HashJoin * create_hashjoin_plan(PlannerInfo *root, HashPath *best_path, Plan *outer_plan, Plan *inner_plan) { List *tlist = build_relation_tlist(best_path->jpath.path.parent); List *joinclauses; List *otherclauses; List *hashclauses; HashJoin *join_plan; Hash *hash_plan; /* Get the join qual clauses (in plain expression form) */ if (IS_OUTER_JOIN(best_path->jpath.jointype)) { get_actual_join_clauses(best_path->jpath.joinrestrictinfo, &joinclauses, &otherclauses); } else { /* We can treat all clauses alike for an inner join */ joinclauses = get_actual_clauses(best_path->jpath.joinrestrictinfo); otherclauses = NIL; } /* * Remove the hashclauses from the list of join qual clauses, leaving * the list of quals that must be checked as qpquals. */ hashclauses = get_actual_clauses(best_path->path_hashclauses); joinclauses = list_difference(joinclauses, hashclauses); /* * Rearrange hashclauses, if needed, so that the outer variable is * always on the left. */ hashclauses = get_switched_clauses(best_path->path_hashclauses, best_path->jpath.outerjoinpath->parent->relids); /* Sort clauses into best execution order */ joinclauses = order_qual_clauses(root, joinclauses); otherclauses = order_qual_clauses(root, otherclauses); hashclauses = order_qual_clauses(root, hashclauses); /* We don't want any excess columns in the hashed tuples */ disuse_physical_tlist(inner_plan, best_path->jpath.innerjoinpath); /* * Build the hash node and hash join node. */ hash_plan = make_hash(inner_plan); join_plan = make_hashjoin(tlist, joinclauses, otherclauses, hashclauses, outer_plan, (Plan *) hash_plan, best_path->jpath.jointype); copy_path_costsize(&join_plan->join.plan, &best_path->jpath.path); return join_plan; } /***************************************************************************** * * SUPPORTING ROUTINES * *****************************************************************************/ /* * fix_indexqual_references * Adjust indexqual clauses to the form the executor's indexqual * machinery needs, and check for recheckable (lossy) index conditions. * * We have five tasks here: * * Remove RestrictInfo nodes from the input clauses. * * Index keys must be represented by Var nodes with varattno set to the * index's attribute number, not the attribute number in the original rel. * * If the index key is on the right, commute the clause to put it on the * left. * * We must construct lists of operator strategy numbers and subtypes * for the top-level operators of each index clause. * * We must detect any lossy index operators. The API is that we return * a list of the input clauses whose operators are NOT lossy. * * fixed_indexquals receives a modified copy of the indexquals list --- the * original is not changed. Note also that the copy shares no substructure * with the original; this is needed in case there is a subplan in it (we need * two separate copies of the subplan tree, or things will go awry). * * nonlossy_indexquals receives a list of the original input clauses (with * RestrictInfos) that contain non-lossy operators. * * indexstrategy receives an integer list of strategy numbers. * indexsubtype receives an OID list of strategy subtypes. */ static void fix_indexqual_references(List *indexquals, IndexPath *index_path, List **fixed_indexquals, List **nonlossy_indexquals, List **indexstrategy, List **indexsubtype) { IndexOptInfo *index = index_path->indexinfo; ListCell *l; *fixed_indexquals = NIL; *nonlossy_indexquals = NIL; *indexstrategy = NIL; *indexsubtype = NIL; /* * For each qual clause, commute if needed to put the indexkey operand on * the left, and then fix its varattno. (We do not need to change the * other side of the clause.) Then determine the operator's strategy * number and subtype number, and check for lossy index behavior. */ foreach(l, indexquals) { RestrictInfo *rinfo = (RestrictInfo *) lfirst(l); OpExpr *clause; OpExpr *newclause; Oid opclass; int stratno; Oid stratsubtype; bool recheck; Assert(IsA(rinfo, RestrictInfo)); clause = (OpExpr *) rinfo->clause; if (!IsA(clause, OpExpr) || list_length(clause->args) != 2) elog(ERROR, "indexqual clause is not binary opclause"); /* * Make a copy that will become the fixed clause. * * We used to try to do a shallow copy here, but that fails if there * is a subplan in the arguments of the opclause. So just do a * full copy. */ newclause = (OpExpr *) copyObject((Node *) clause); /* * Check to see if the indexkey is on the right; if so, commute * the clause. The indexkey should be the side that refers to * (only) the base relation. */ if (!bms_equal(rinfo->left_relids, index->rel->relids)) CommuteClause(newclause); /* * Now, determine which index attribute this is, change the * indexkey operand as needed, and get the index opclass. */ linitial(newclause->args) = fix_indexqual_operand(linitial(newclause->args), index, &opclass); *fixed_indexquals = lappend(*fixed_indexquals, newclause); /* * Look up the (possibly commuted) operator in the operator class * to get its strategy numbers and the recheck indicator. This * also double-checks that we found an operator matching the * index. */ get_op_opclass_properties(newclause->opno, opclass, &stratno, &stratsubtype, &recheck); *indexstrategy = lappend_int(*indexstrategy, stratno); *indexsubtype = lappend_oid(*indexsubtype, stratsubtype); /* If it's not lossy, add to nonlossy_indexquals */ if (!recheck) *nonlossy_indexquals = lappend(*nonlossy_indexquals, rinfo); } } static Node * fix_indexqual_operand(Node *node, IndexOptInfo *index, Oid *opclass) { /* * We represent index keys by Var nodes having the varno of the base * table but varattno equal to the index's attribute number (index * column position). This is a bit hokey ... would be cleaner to use * a special-purpose node type that could not be mistaken for a * regular Var. But it will do for now. */ Var *result; int pos; ListCell *indexpr_item; /* * Remove any binary-compatible relabeling of the indexkey */ if (IsA(node, RelabelType)) node = (Node *) ((RelabelType *) node)->arg; if (IsA(node, Var) && ((Var *) node)->varno == index->rel->relid) { /* Try to match against simple index columns */ int varatt = ((Var *) node)->varattno; if (varatt != 0) { for (pos = 0; pos < index->ncolumns; pos++) { if (index->indexkeys[pos] == varatt) { result = (Var *) copyObject(node); result->varattno = pos + 1; /* return the correct opclass, too */ *opclass = index->classlist[pos]; return (Node *) result; } } } } /* Try to match against index expressions */ indexpr_item = list_head(index->indexprs); for (pos = 0; pos < index->ncolumns; pos++) { if (index->indexkeys[pos] == 0) { Node *indexkey; if (indexpr_item == NULL) elog(ERROR, "too few entries in indexprs list"); indexkey = (Node *) lfirst(indexpr_item); if (indexkey && IsA(indexkey, RelabelType)) indexkey = (Node *) ((RelabelType *) indexkey)->arg; if (equal(node, indexkey)) { /* Found a match */ result = makeVar(index->rel->relid, pos + 1, exprType(lfirst(indexpr_item)), -1, 0); /* return the correct opclass, too */ *opclass = index->classlist[pos]; return (Node *) result; } indexpr_item = lnext(indexpr_item); } } /* Ooops... */ elog(ERROR, "node is not an index attribute"); return NULL; /* keep compiler quiet */ } /* * get_switched_clauses * Given a list of merge or hash joinclauses (as RestrictInfo nodes), * extract the bare clauses, and rearrange the elements within the * clauses, if needed, so the outer join variable is on the left and * the inner is on the right. The original data structure is not touched; * a modified list is returned. */ static List * get_switched_clauses(List *clauses, Relids outerrelids) { List *t_list = NIL; ListCell *l; foreach(l, clauses) { RestrictInfo *restrictinfo = (RestrictInfo *) lfirst(l); OpExpr *clause = (OpExpr *) restrictinfo->clause; Assert(is_opclause(clause)); if (bms_is_subset(restrictinfo->right_relids, outerrelids)) { /* * Duplicate just enough of the structure to allow commuting * the clause without changing the original list. Could use * copyObject, but a complete deep copy is overkill. */ OpExpr *temp = makeNode(OpExpr); temp->opno = clause->opno; temp->opfuncid = InvalidOid; temp->opresulttype = clause->opresulttype; temp->opretset = clause->opretset; temp->args = list_copy(clause->args); /* Commute it --- note this modifies the temp node in-place. */ CommuteClause(temp); t_list = lappend(t_list, temp); } else t_list = lappend(t_list, clause); } return t_list; } /* * order_qual_clauses * Given a list of qual clauses that will all be evaluated at the same * plan node, sort the list into the order we want to check the quals * in at runtime. * * Ideally the order should be driven by a combination of execution cost and * selectivity, but unfortunately we have so little information about * execution cost of operators that it's really hard to do anything smart. * For now, we just move any quals that contain SubPlan references (but not * InitPlan references) to the end of the list. */ List * order_qual_clauses(PlannerInfo *root, List *clauses) { List *nosubplans; List *withsubplans; ListCell *l; /* No need to work hard if the query is subselect-free */ if (!root->parse->hasSubLinks) return clauses; nosubplans = NIL; withsubplans = NIL; foreach(l, clauses) { Node *clause = (Node *) lfirst(l); if (contain_subplans(clause)) withsubplans = lappend(withsubplans, clause); else nosubplans = lappend(nosubplans, clause); } return list_concat(nosubplans, withsubplans); } /* * Copy cost and size info from a Path node to the Plan node created from it. * The executor won't use this info, but it's needed by EXPLAIN. */ static void copy_path_costsize(Plan *dest, Path *src) { if (src) { dest->startup_cost = src->startup_cost; dest->total_cost = src->total_cost; dest->plan_rows = src->parent->rows; dest->plan_width = src->parent->width; } else { dest->startup_cost = 0; dest->total_cost = 0; dest->plan_rows = 0; dest->plan_width = 0; } } /* * Copy cost and size info from a lower plan node to an inserted node. * This is not critical, since the decisions have already been made, * but it helps produce more reasonable-looking EXPLAIN output. * (Some callers alter the info after copying it.) */ static void copy_plan_costsize(Plan *dest, Plan *src) { if (src) { dest->startup_cost = src->startup_cost; dest->total_cost = src->total_cost; dest->plan_rows = src->plan_rows; dest->plan_width = src->plan_width; } else { dest->startup_cost = 0; dest->total_cost = 0; dest->plan_rows = 0; dest->plan_width = 0; } } /***************************************************************************** * * PLAN NODE BUILDING ROUTINES * * Some of these are exported because they are called to build plan nodes * in contexts where we're not deriving the plan node from a path node. * *****************************************************************************/ static SeqScan * make_seqscan(List *qptlist, List *qpqual, Index scanrelid) { SeqScan *node = makeNode(SeqScan); Plan *plan = &node->plan; /* cost should be inserted by caller */ plan->targetlist = qptlist; plan->qual = qpqual; plan->lefttree = NULL; plan->righttree = NULL; node->scanrelid = scanrelid; return node; } static IndexScan * make_indexscan(List *qptlist, List *qpqual, Index scanrelid, Oid indexid, List *indexqual, List *indexqualorig, List *indexstrategy, List *indexsubtype, ScanDirection indexscandir) { IndexScan *node = makeNode(IndexScan); Plan *plan = &node->scan.plan; /* cost should be inserted by caller */ plan->targetlist = qptlist; plan->qual = qpqual; plan->lefttree = NULL; plan->righttree = NULL; node->scan.scanrelid = scanrelid; node->indexid = indexid; node->indexqual = indexqual; node->indexqualorig = indexqualorig; node->indexstrategy = indexstrategy; node->indexsubtype = indexsubtype; node->indexorderdir = indexscandir; return node; } static BitmapIndexScan * make_bitmap_indexscan(Index scanrelid, Oid indexid, List *indexqual, List *indexqualorig, List *indexstrategy, List *indexsubtype) { BitmapIndexScan *node = makeNode(BitmapIndexScan); Plan *plan = &node->scan.plan; /* cost should be inserted by caller */ plan->targetlist = NIL; /* not used */ plan->qual = NIL; /* not used */ plan->lefttree = NULL; plan->righttree = NULL; node->scan.scanrelid = scanrelid; node->indexid = indexid; node->indexqual = indexqual; node->indexqualorig = indexqualorig; node->indexstrategy = indexstrategy; node->indexsubtype = indexsubtype; return node; } static BitmapHeapScan * make_bitmap_heapscan(List *qptlist, List *qpqual, Plan *lefttree, List *bitmapqualorig, Index scanrelid) { BitmapHeapScan *node = makeNode(BitmapHeapScan); Plan *plan = &node->scan.plan; /* cost should be inserted by caller */ plan->targetlist = qptlist; plan->qual = qpqual; plan->lefttree = lefttree; plan->righttree = NULL; node->scan.scanrelid = scanrelid; node->bitmapqualorig = bitmapqualorig; return node; } static TidScan * make_tidscan(List *qptlist, List *qpqual, Index scanrelid, List *tideval) { TidScan *node = makeNode(TidScan); Plan *plan = &node->scan.plan; /* cost should be inserted by caller */ plan->targetlist = qptlist; plan->qual = qpqual; plan->lefttree = NULL; plan->righttree = NULL; node->scan.scanrelid = scanrelid; node->tideval = tideval; return node; } SubqueryScan * make_subqueryscan(List *qptlist, List *qpqual, Index scanrelid, Plan *subplan) { SubqueryScan *node = makeNode(SubqueryScan); Plan *plan = &node->scan.plan; /* * Cost is figured here for the convenience of prepunion.c. Note this * is only correct for the case where qpqual is empty; otherwise * caller should overwrite cost with a better estimate. */ copy_plan_costsize(plan, subplan); plan->total_cost += cpu_tuple_cost * subplan->plan_rows; plan->targetlist = qptlist; plan->qual = qpqual; plan->lefttree = NULL; plan->righttree = NULL; node->scan.scanrelid = scanrelid; node->subplan = subplan; return node; } static FunctionScan * make_functionscan(List *qptlist, List *qpqual, Index scanrelid) { FunctionScan *node = makeNode(FunctionScan); Plan *plan = &node->scan.plan; /* cost should be inserted by caller */ plan->targetlist = qptlist; plan->qual = qpqual; plan->lefttree = NULL; plan->righttree = NULL; node->scan.scanrelid = scanrelid; return node; } Append * make_append(List *appendplans, bool isTarget, List *tlist) { Append *node = makeNode(Append); Plan *plan = &node->plan; ListCell *subnode; /* * Compute cost as sum of subplan costs. We charge nothing extra for * the Append itself, which perhaps is too optimistic, but since it * doesn't do any selection or projection, it is a pretty cheap node. */ plan->startup_cost = 0; plan->total_cost = 0; plan->plan_rows = 0; plan->plan_width = 0; foreach(subnode, appendplans) { Plan *subplan = (Plan *) lfirst(subnode); if (subnode == list_head(appendplans)) /* first node? */ plan->startup_cost = subplan->startup_cost; plan->total_cost += subplan->total_cost; plan->plan_rows += subplan->plan_rows; if (plan->plan_width < subplan->plan_width) plan->plan_width = subplan->plan_width; } plan->targetlist = tlist; plan->qual = NIL; plan->lefttree = NULL; plan->righttree = NULL; node->appendplans = appendplans; node->isTarget = isTarget; return node; } static BitmapAnd * make_bitmap_and(List *bitmapplans) { BitmapAnd *node = makeNode(BitmapAnd); Plan *plan = &node->plan; /* cost should be inserted by caller */ plan->targetlist = NIL; plan->qual = NIL; plan->lefttree = NULL; plan->righttree = NULL; node->bitmapplans = bitmapplans; return node; } static BitmapOr * make_bitmap_or(List *bitmapplans) { BitmapOr *node = makeNode(BitmapOr); Plan *plan = &node->plan; /* cost should be inserted by caller */ plan->targetlist = NIL; plan->qual = NIL; plan->lefttree = NULL; plan->righttree = NULL; node->bitmapplans = bitmapplans; return node; } static NestLoop * make_nestloop(List *tlist, List *joinclauses, List *otherclauses, Plan *lefttree, Plan *righttree, JoinType jointype) { NestLoop *node = makeNode(NestLoop); Plan *plan = &node->join.plan; /* cost should be inserted by caller */ plan->targetlist = tlist; plan->qual = otherclauses; plan->lefttree = lefttree; plan->righttree = righttree; node->join.jointype = jointype; node->join.joinqual = joinclauses; return node; } static HashJoin * make_hashjoin(List *tlist, List *joinclauses, List *otherclauses, List *hashclauses, Plan *lefttree, Plan *righttree, JoinType jointype) { HashJoin *node = makeNode(HashJoin); Plan *plan = &node->join.plan; /* cost should be inserted by caller */ plan->targetlist = tlist; plan->qual = otherclauses; plan->lefttree = lefttree; plan->righttree = righttree; node->hashclauses = hashclauses; node->join.jointype = jointype; node->join.joinqual = joinclauses; return node; } static Hash * make_hash(Plan *lefttree) { Hash *node = makeNode(Hash); Plan *plan = &node->plan; copy_plan_costsize(plan, lefttree); /* * For plausibility, make startup & total costs equal total cost of * input plan; this only affects EXPLAIN display not decisions. */ plan->startup_cost = plan->total_cost; plan->targetlist = copyObject(lefttree->targetlist); plan->qual = NIL; plan->lefttree = lefttree; plan->righttree = NULL; return node; } static MergeJoin * make_mergejoin(List *tlist, List *joinclauses, List *otherclauses, List *mergeclauses, Plan *lefttree, Plan *righttree, JoinType jointype) { MergeJoin *node = makeNode(MergeJoin); Plan *plan = &node->join.plan; /* cost should be inserted by caller */ plan->targetlist = tlist; plan->qual = otherclauses; plan->lefttree = lefttree; plan->righttree = righttree; node->mergeclauses = mergeclauses; node->join.jointype = jointype; node->join.joinqual = joinclauses; return node; } /* * make_sort --- basic routine to build a Sort plan node * * Caller must have built the sortColIdx and sortOperators arrays already. */ static Sort * make_sort(PlannerInfo *root, Plan *lefttree, int numCols, AttrNumber *sortColIdx, Oid *sortOperators) { Sort *node = makeNode(Sort); Plan *plan = &node->plan; Path sort_path; /* dummy for result of cost_sort */ copy_plan_costsize(plan, lefttree); /* only care about copying size */ cost_sort(&sort_path, root, NIL, lefttree->total_cost, lefttree->plan_rows, lefttree->plan_width); plan->startup_cost = sort_path.startup_cost; plan->total_cost = sort_path.total_cost; plan->targetlist = copyObject(lefttree->targetlist); plan->qual = NIL; plan->lefttree = lefttree; plan->righttree = NULL; node->numCols = numCols; node->sortColIdx = sortColIdx; node->sortOperators = sortOperators; return node; } /* * add_sort_column --- utility subroutine for building sort info arrays * * We need this routine because the same column might be selected more than * once as a sort key column; if so, the extra mentions are redundant. * * Caller is assumed to have allocated the arrays large enough for the * max possible number of columns. Return value is the new column count. */ static int add_sort_column(AttrNumber colIdx, Oid sortOp, int numCols, AttrNumber *sortColIdx, Oid *sortOperators) { int i; for (i = 0; i < numCols; i++) { if (sortColIdx[i] == colIdx) { /* Already sorting by this col, so extra sort key is useless */ return numCols; } } /* Add the column */ sortColIdx[numCols] = colIdx; sortOperators[numCols] = sortOp; return numCols + 1; } /* * make_sort_from_pathkeys * Create sort plan to sort according to given pathkeys * * 'lefttree' is the node which yields input tuples * 'pathkeys' is the list of pathkeys by which the result is to be sorted * * We must convert the pathkey information into arrays of sort key column * numbers and sort operator OIDs. * * If the pathkeys include expressions that aren't simple Vars, we will * usually need to add resjunk items to the input plan's targetlist to * compute these expressions (since the Sort node itself won't do it). * If the input plan type isn't one that can do projections, this means * adding a Result node just to do the projection. */ static Sort * make_sort_from_pathkeys(PlannerInfo *root, Plan *lefttree, List *pathkeys) { List *tlist = lefttree->targetlist; ListCell *i; int numsortkeys; AttrNumber *sortColIdx; Oid *sortOperators; /* * We will need at most list_length(pathkeys) sort columns; possibly * less */ numsortkeys = list_length(pathkeys); sortColIdx = (AttrNumber *) palloc(numsortkeys * sizeof(AttrNumber)); sortOperators = (Oid *) palloc(numsortkeys * sizeof(Oid)); numsortkeys = 0; foreach(i, pathkeys) { List *keysublist = (List *) lfirst(i); PathKeyItem *pathkey = NULL; TargetEntry *tle = NULL; ListCell *j; /* * We can sort by any one of the sort key items listed in this * sublist. For now, we take the first one that corresponds to an * available Var in the tlist. If there isn't any, use the first * one that is an expression in the input's vars. * * XXX if we have a choice, is there any way of figuring out which * might be cheapest to execute? (For example, int4lt is likely * much cheaper to execute than numericlt, but both might appear * in the same pathkey sublist...) Not clear that we ever will * have a choice in practice, so it may not matter. */ foreach(j, keysublist) { pathkey = (PathKeyItem *) lfirst(j); Assert(IsA(pathkey, PathKeyItem)); tle = tlist_member(pathkey->key, tlist); if (tle) break; } if (!tle) { /* No matching Var; look for a computable expression */ foreach(j, keysublist) { List *exprvars; ListCell *k; pathkey = (PathKeyItem *) lfirst(j); exprvars = pull_var_clause(pathkey->key, false); foreach(k, exprvars) { if (!tlist_member(lfirst(k), tlist)) break; } list_free(exprvars); if (!k) break; /* found usable expression */ } if (!j) elog(ERROR, "could not find pathkey item to sort"); /* * Do we need to insert a Result node? */ if (!is_projection_capable_plan(lefttree)) { tlist = copyObject(tlist); lefttree = (Plan *) make_result(tlist, NULL, lefttree); } /* * Add resjunk entry to input's tlist */ tle = makeTargetEntry((Expr *) pathkey->key, list_length(tlist) + 1, NULL, true); tlist = lappend(tlist, tle); lefttree->targetlist = tlist; /* just in case NIL before */ } /* * The column might already be selected as a sort key, if the * pathkeys contain duplicate entries. (This can happen in * scenarios where multiple mergejoinable clauses mention the same * var, for example.) So enter it only once in the sort arrays. */ numsortkeys = add_sort_column(tle->resno, pathkey->sortop, numsortkeys, sortColIdx, sortOperators); } Assert(numsortkeys > 0); return make_sort(root, lefttree, numsortkeys, sortColIdx, sortOperators); } /* * make_sort_from_sortclauses * Create sort plan to sort according to given sortclauses * * 'sortcls' is a list of SortClauses * 'lefttree' is the node which yields input tuples */ Sort * make_sort_from_sortclauses(PlannerInfo *root, List *sortcls, Plan *lefttree) { List *sub_tlist = lefttree->targetlist; ListCell *l; int numsortkeys; AttrNumber *sortColIdx; Oid *sortOperators; /* * We will need at most list_length(sortcls) sort columns; possibly * less */ numsortkeys = list_length(sortcls); sortColIdx = (AttrNumber *) palloc(numsortkeys * sizeof(AttrNumber)); sortOperators = (Oid *) palloc(numsortkeys * sizeof(Oid)); numsortkeys = 0; foreach(l, sortcls) { SortClause *sortcl = (SortClause *) lfirst(l); TargetEntry *tle = get_sortgroupclause_tle(sortcl, sub_tlist); /* * Check for the possibility of duplicate order-by clauses --- the * parser should have removed 'em, but no point in sorting * redundantly. */ numsortkeys = add_sort_column(tle->resno, sortcl->sortop, numsortkeys, sortColIdx, sortOperators); } Assert(numsortkeys > 0); return make_sort(root, lefttree, numsortkeys, sortColIdx, sortOperators); } /* * make_sort_from_groupcols * Create sort plan to sort based on grouping columns * * 'groupcls' is the list of GroupClauses * 'grpColIdx' gives the column numbers to use * * This might look like it could be merged with make_sort_from_sortclauses, * but presently we *must* use the grpColIdx[] array to locate sort columns, * because the child plan's tlist is not marked with ressortgroupref info * appropriate to the grouping node. So, only the sortop is used from the * GroupClause entries. */ Sort * make_sort_from_groupcols(PlannerInfo *root, List *groupcls, AttrNumber *grpColIdx, Plan *lefttree) { List *sub_tlist = lefttree->targetlist; int grpno = 0; ListCell *l; int numsortkeys; AttrNumber *sortColIdx; Oid *sortOperators; /* * We will need at most list_length(groupcls) sort columns; possibly * less */ numsortkeys = list_length(groupcls); sortColIdx = (AttrNumber *) palloc(numsortkeys * sizeof(AttrNumber)); sortOperators = (Oid *) palloc(numsortkeys * sizeof(Oid)); numsortkeys = 0; foreach(l, groupcls) { GroupClause *grpcl = (GroupClause *) lfirst(l); TargetEntry *tle = get_tle_by_resno(sub_tlist, grpColIdx[grpno]); /* * Check for the possibility of duplicate group-by clauses --- the * parser should have removed 'em, but no point in sorting * redundantly. */ numsortkeys = add_sort_column(tle->resno, grpcl->sortop, numsortkeys, sortColIdx, sortOperators); grpno++; } Assert(numsortkeys > 0); return make_sort(root, lefttree, numsortkeys, sortColIdx, sortOperators); } Material * make_material(Plan *lefttree) { Material *node = makeNode(Material); Plan *plan = &node->plan; /* cost should be inserted by caller */ plan->targetlist = copyObject(lefttree->targetlist); plan->qual = NIL; plan->lefttree = lefttree; plan->righttree = NULL; return node; } /* * materialize_finished_plan: stick a Material node atop a completed plan * * There are a couple of places where we want to attach a Material node * after completion of subquery_planner(). This currently requires hackery. * Since subquery_planner has already run SS_finalize_plan on the subplan * tree, we have to kluge up parameter lists for the Material node. * Possibly this could be fixed by postponing SS_finalize_plan processing * until setrefs.c is run? */ Plan * materialize_finished_plan(Plan *subplan) { Plan *matplan; Path matpath; /* dummy for result of cost_material */ matplan = (Plan *) make_material(subplan); /* Set cost data */ cost_material(&matpath, subplan->total_cost, subplan->plan_rows, subplan->plan_width); matplan->startup_cost = matpath.startup_cost; matplan->total_cost = matpath.total_cost; matplan->plan_rows = subplan->plan_rows; matplan->plan_width = subplan->plan_width; /* parameter kluge --- see comments above */ matplan->extParam = bms_copy(subplan->extParam); matplan->allParam = bms_copy(subplan->allParam); return matplan; } Agg * make_agg(PlannerInfo *root, List *tlist, List *qual, AggStrategy aggstrategy, int numGroupCols, AttrNumber *grpColIdx, long numGroups, int numAggs, Plan *lefttree) { Agg *node = makeNode(Agg); Plan *plan = &node->plan; Path agg_path; /* dummy for result of cost_agg */ QualCost qual_cost; node->aggstrategy = aggstrategy; node->numCols = numGroupCols; node->grpColIdx = grpColIdx; node->numGroups = numGroups; copy_plan_costsize(plan, lefttree); /* only care about copying size */ cost_agg(&agg_path, root, aggstrategy, numAggs, numGroupCols, numGroups, lefttree->startup_cost, lefttree->total_cost, lefttree->plan_rows); plan->startup_cost = agg_path.startup_cost; plan->total_cost = agg_path.total_cost; /* * We will produce a single output tuple if not grouping, and a tuple * per group otherwise. */ if (aggstrategy == AGG_PLAIN) plan->plan_rows = 1; else plan->plan_rows = numGroups; /* * We also need to account for the cost of evaluation of the qual (ie, * the HAVING clause) and the tlist. Note that cost_qual_eval doesn't * charge anything for Aggref nodes; this is okay since they are * really comparable to Vars. * * See notes in grouping_planner about why this routine and make_group * are the only ones in this file that worry about tlist eval cost. */ if (qual) { cost_qual_eval(&qual_cost, qual); plan->startup_cost += qual_cost.startup; plan->total_cost += qual_cost.startup; plan->total_cost += qual_cost.per_tuple * plan->plan_rows; } cost_qual_eval(&qual_cost, tlist); plan->startup_cost += qual_cost.startup; plan->total_cost += qual_cost.startup; plan->total_cost += qual_cost.per_tuple * plan->plan_rows; plan->qual = qual; plan->targetlist = tlist; plan->lefttree = lefttree; plan->righttree = NULL; return node; } Group * make_group(PlannerInfo *root, List *tlist, List *qual, int numGroupCols, AttrNumber *grpColIdx, double numGroups, Plan *lefttree) { Group *node = makeNode(Group); Plan *plan = &node->plan; Path group_path; /* dummy for result of cost_group */ QualCost qual_cost; node->numCols = numGroupCols; node->grpColIdx = grpColIdx; copy_plan_costsize(plan, lefttree); /* only care about copying size */ cost_group(&group_path, root, numGroupCols, numGroups, lefttree->startup_cost, lefttree->total_cost, lefttree->plan_rows); plan->startup_cost = group_path.startup_cost; plan->total_cost = group_path.total_cost; /* One output tuple per estimated result group */ plan->plan_rows = numGroups; /* * We also need to account for the cost of evaluation of the qual (ie, * the HAVING clause) and the tlist. * * XXX this double-counts the cost of evaluation of any expressions used * for grouping, since in reality those will have been evaluated at a * lower plan level and will only be copied by the Group node. Worth * fixing? * * See notes in grouping_planner about why this routine and make_agg are * the only ones in this file that worry about tlist eval cost. */ if (qual) { cost_qual_eval(&qual_cost, qual); plan->startup_cost += qual_cost.startup; plan->total_cost += qual_cost.startup; plan->total_cost += qual_cost.per_tuple * plan->plan_rows; } cost_qual_eval(&qual_cost, tlist); plan->startup_cost += qual_cost.startup; plan->total_cost += qual_cost.startup; plan->total_cost += qual_cost.per_tuple * plan->plan_rows; plan->qual = qual; plan->targetlist = tlist; plan->lefttree = lefttree; plan->righttree = NULL; return node; } /* * distinctList is a list of SortClauses, identifying the targetlist items * that should be considered by the Unique filter. */ Unique * make_unique(Plan *lefttree, List *distinctList) { Unique *node = makeNode(Unique); Plan *plan = &node->plan; int numCols = list_length(distinctList); int keyno = 0; AttrNumber *uniqColIdx; ListCell *slitem; copy_plan_costsize(plan, lefttree); /* * Charge one cpu_operator_cost per comparison per input tuple. We * assume all columns get compared at most of the tuples. (XXX * probably this is an overestimate.) */ plan->total_cost += cpu_operator_cost * plan->plan_rows * numCols; /* * plan->plan_rows is left as a copy of the input subplan's plan_rows; * ie, we assume the filter removes nothing. The caller must alter * this if he has a better idea. */ plan->targetlist = copyObject(lefttree->targetlist); plan->qual = NIL; plan->lefttree = lefttree; plan->righttree = NULL; /* * convert SortClause list into array of attr indexes, as wanted by * exec */ Assert(numCols > 0); uniqColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols); foreach(slitem, distinctList) { SortClause *sortcl = (SortClause *) lfirst(slitem); TargetEntry *tle = get_sortgroupclause_tle(sortcl, plan->targetlist); uniqColIdx[keyno++] = tle->resno; } node->numCols = numCols; node->uniqColIdx = uniqColIdx; return node; } /* * distinctList is a list of SortClauses, identifying the targetlist items * that should be considered by the SetOp filter. */ SetOp * make_setop(SetOpCmd cmd, Plan *lefttree, List *distinctList, AttrNumber flagColIdx) { SetOp *node = makeNode(SetOp); Plan *plan = &node->plan; int numCols = list_length(distinctList); int keyno = 0; AttrNumber *dupColIdx; ListCell *slitem; copy_plan_costsize(plan, lefttree); /* * Charge one cpu_operator_cost per comparison per input tuple. We * assume all columns get compared at most of the tuples. */ plan->total_cost += cpu_operator_cost * plan->plan_rows * numCols; /* * We make the unsupported assumption that there will be 10% as many * tuples out as in. Any way to do better? */ plan->plan_rows *= 0.1; if (plan->plan_rows < 1) plan->plan_rows = 1; plan->targetlist = copyObject(lefttree->targetlist); plan->qual = NIL; plan->lefttree = lefttree; plan->righttree = NULL; /* * convert SortClause list into array of attr indexes, as wanted by * exec */ Assert(numCols > 0); dupColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols); foreach(slitem, distinctList) { SortClause *sortcl = (SortClause *) lfirst(slitem); TargetEntry *tle = get_sortgroupclause_tle(sortcl, plan->targetlist); dupColIdx[keyno++] = tle->resno; } node->cmd = cmd; node->numCols = numCols; node->dupColIdx = dupColIdx; node->flagColIdx = flagColIdx; return node; } Limit * make_limit(Plan *lefttree, Node *limitOffset, Node *limitCount) { Limit *node = makeNode(Limit); Plan *plan = &node->plan; copy_plan_costsize(plan, lefttree); /* * If offset/count are constants, adjust the output rows count and * costs accordingly. This is only a cosmetic issue if we are at top * level, but if we are building a subquery then it's important to * report correct info to the outer planner. */ if (limitOffset && IsA(limitOffset, Const)) { Const *limito = (Const *) limitOffset; int32 offset = DatumGetInt32(limito->constvalue); if (!limito->constisnull && offset > 0) { if (offset > plan->plan_rows) offset = (int32) plan->plan_rows; if (plan->plan_rows > 0) plan->startup_cost += (plan->total_cost - plan->startup_cost) * ((double) offset) / plan->plan_rows; plan->plan_rows -= offset; if (plan->plan_rows < 1) plan->plan_rows = 1; } } if (limitCount && IsA(limitCount, Const)) { Const *limitc = (Const *) limitCount; int32 count = DatumGetInt32(limitc->constvalue); if (!limitc->constisnull && count >= 0) { if (count > plan->plan_rows) count = (int32) plan->plan_rows; if (plan->plan_rows > 0) plan->total_cost = plan->startup_cost + (plan->total_cost - plan->startup_cost) * ((double) count) / plan->plan_rows; plan->plan_rows = count; if (plan->plan_rows < 1) plan->plan_rows = 1; } } plan->targetlist = copyObject(lefttree->targetlist); plan->qual = NIL; plan->lefttree = lefttree; plan->righttree = NULL; node->limitOffset = limitOffset; node->limitCount = limitCount; return node; } Result * make_result(List *tlist, Node *resconstantqual, Plan *subplan) { Result *node = makeNode(Result); Plan *plan = &node->plan; if (subplan) copy_plan_costsize(plan, subplan); else { plan->startup_cost = 0; plan->total_cost = cpu_tuple_cost; plan->plan_rows = 1; /* wrong if we have a set-valued function? */ plan->plan_width = 0; /* XXX try to be smarter? */ } if (resconstantqual) { QualCost qual_cost; cost_qual_eval(&qual_cost, (List *) resconstantqual); /* resconstantqual is evaluated once at startup */ plan->startup_cost += qual_cost.startup + qual_cost.per_tuple; plan->total_cost += qual_cost.startup + qual_cost.per_tuple; } plan->targetlist = tlist; plan->qual = NIL; plan->lefttree = subplan; plan->righttree = NULL; node->resconstantqual = resconstantqual; return node; } /* * is_projection_capable_plan * Check whether a given Plan node is able to do projection. */ bool is_projection_capable_plan(Plan *plan) { /* Most plan types can project, so just list the ones that can't */ switch (nodeTag(plan)) { case T_Hash: case T_Material: case T_Sort: case T_Unique: case T_SetOp: case T_Limit: case T_Append: return false; default: break; } return true; }