/*------------------------------------------------------------------------- * * nodeValuesscan.c * Support routines for scanning Values lists * ("VALUES (...), (...), ..." in rangetable). * * Portions Copyright (c) 1996-2016, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * * IDENTIFICATION * src/backend/executor/nodeValuesscan.c * *------------------------------------------------------------------------- */ /* * INTERFACE ROUTINES * ExecValuesScan scans a values list. * ExecValuesNext retrieve next tuple in sequential order. * ExecInitValuesScan creates and initializes a valuesscan node. * ExecEndValuesScan releases any storage allocated. * ExecReScanValuesScan rescans the values list */ #include "postgres.h" #include "executor/executor.h" #include "executor/nodeValuesscan.h" static TupleTableSlot *ValuesNext(ValuesScanState *node); /* ---------------------------------------------------------------- * Scan Support * ---------------------------------------------------------------- */ /* ---------------------------------------------------------------- * ValuesNext * * This is a workhorse for ExecValuesScan * ---------------------------------------------------------------- */ static TupleTableSlot * ValuesNext(ValuesScanState *node) { TupleTableSlot *slot; EState *estate; ExprContext *econtext; ScanDirection direction; List *exprlist; /* * get information from the estate and scan state */ estate = node->ss.ps.state; direction = estate->es_direction; slot = node->ss.ss_ScanTupleSlot; econtext = node->rowcontext; /* * Get the next tuple. Return NULL if no more tuples. */ if (ScanDirectionIsForward(direction)) { if (node->curr_idx < node->array_len) node->curr_idx++; if (node->curr_idx < node->array_len) exprlist = node->exprlists[node->curr_idx]; else exprlist = NIL; } else { if (node->curr_idx >= 0) node->curr_idx--; if (node->curr_idx >= 0) exprlist = node->exprlists[node->curr_idx]; else exprlist = NIL; } /* * Always clear the result slot; this is appropriate if we are at the end * of the data, and if we're not, we still need it as the first step of * the store-virtual-tuple protocol. It seems wise to clear the slot * before we reset the context it might have pointers into. */ ExecClearTuple(slot); if (exprlist) { MemoryContext oldContext; List *exprstatelist; Datum *values; bool *isnull; ListCell *lc; int resind; /* * Get rid of any prior cycle's leftovers. We use ReScanExprContext * not just ResetExprContext because we want any registered shutdown * callbacks to be called. */ ReScanExprContext(econtext); /* * Build the expression eval state in the econtext's per-tuple memory. * This is a tad unusual, but we want to delete the eval state again * when we move to the next row, to avoid growth of memory * requirements over a long values list. */ oldContext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory); /* * Pass NULL, not my plan node, because we don't want anything in this * transient state linking into permanent state. The only possibility * is a SubPlan, and there shouldn't be any (any subselects in the * VALUES list should be InitPlans). */ exprstatelist = (List *) ExecInitExpr((Expr *) exprlist, NULL); /* parser should have checked all sublists are the same length */ Assert(list_length(exprstatelist) == slot->tts_tupleDescriptor->natts); /* * Compute the expressions and build a virtual result tuple. We * already did ExecClearTuple(slot). */ values = slot->tts_values; isnull = slot->tts_isnull; resind = 0; foreach(lc, exprstatelist) { ExprState *estate = (ExprState *) lfirst(lc); values[resind] = ExecEvalExpr(estate, econtext, &isnull[resind], NULL); resind++; } MemoryContextSwitchTo(oldContext); /* * And return the virtual tuple. */ ExecStoreVirtualTuple(slot); } return slot; } /* * ValuesRecheck -- access method routine to recheck a tuple in EvalPlanQual */ static bool ValuesRecheck(ValuesScanState *node, TupleTableSlot *slot) { /* nothing to check */ return true; } /* ---------------------------------------------------------------- * ExecValuesScan(node) * * Scans the values lists sequentially and returns the next qualifying * tuple. * We call the ExecScan() routine and pass it the appropriate * access method functions. * ---------------------------------------------------------------- */ TupleTableSlot * ExecValuesScan(ValuesScanState *node) { return ExecScan(&node->ss, (ExecScanAccessMtd) ValuesNext, (ExecScanRecheckMtd) ValuesRecheck); } /* ---------------------------------------------------------------- * ExecInitValuesScan * ---------------------------------------------------------------- */ ValuesScanState * ExecInitValuesScan(ValuesScan *node, EState *estate, int eflags) { ValuesScanState *scanstate; TupleDesc tupdesc; ListCell *vtl; int i; PlanState *planstate; /* * ValuesScan should not have any children. */ Assert(outerPlan(node) == NULL); Assert(innerPlan(node) == NULL); /* * create new ScanState for node */ scanstate = makeNode(ValuesScanState); scanstate->ss.ps.plan = (Plan *) node; scanstate->ss.ps.state = estate; /* * Miscellaneous initialization */ planstate = &scanstate->ss.ps; /* * Create expression contexts. We need two, one for per-sublist * processing and one for execScan.c to use for quals and projections. We * cheat a little by using ExecAssignExprContext() to build both. */ ExecAssignExprContext(estate, planstate); scanstate->rowcontext = planstate->ps_ExprContext; ExecAssignExprContext(estate, planstate); /* * tuple table initialization */ ExecInitResultTupleSlot(estate, &scanstate->ss.ps); ExecInitScanTupleSlot(estate, &scanstate->ss); /* * initialize child expressions */ scanstate->ss.ps.targetlist = (List *) ExecInitExpr((Expr *) node->scan.plan.targetlist, (PlanState *) scanstate); scanstate->ss.ps.qual = (List *) ExecInitExpr((Expr *) node->scan.plan.qual, (PlanState *) scanstate); /* * get info about values list */ tupdesc = ExecTypeFromExprList((List *) linitial(node->values_lists)); ExecAssignScanType(&scanstate->ss, tupdesc); /* * Other node-specific setup */ scanstate->curr_idx = -1; scanstate->array_len = list_length(node->values_lists); /* convert list of sublists into array of sublists for easy addressing */ scanstate->exprlists = (List **) palloc(scanstate->array_len * sizeof(List *)); i = 0; foreach(vtl, node->values_lists) { scanstate->exprlists[i++] = (List *) lfirst(vtl); } scanstate->ss.ps.ps_TupFromTlist = false; /* * Initialize result tuple type and projection info. */ ExecAssignResultTypeFromTL(&scanstate->ss.ps); ExecAssignScanProjectionInfo(&scanstate->ss); return scanstate; } /* ---------------------------------------------------------------- * ExecEndValuesScan * * frees any storage allocated through C routines. * ---------------------------------------------------------------- */ void ExecEndValuesScan(ValuesScanState *node) { /* * Free both exprcontexts */ ExecFreeExprContext(&node->ss.ps); node->ss.ps.ps_ExprContext = node->rowcontext; ExecFreeExprContext(&node->ss.ps); /* * clean out the tuple table */ ExecClearTuple(node->ss.ps.ps_ResultTupleSlot); ExecClearTuple(node->ss.ss_ScanTupleSlot); } /* ---------------------------------------------------------------- * ExecReScanValuesScan * * Rescans the relation. * ---------------------------------------------------------------- */ void ExecReScanValuesScan(ValuesScanState *node) { ExecClearTuple(node->ss.ps.ps_ResultTupleSlot); ExecScanReScan(&node->ss); node->curr_idx = -1; }