/*------------------------------------------------------------------------- * * hashovfl.c * Overflow page management code for the Postgres hash access method * * Portions Copyright (c) 1996-2015, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * * IDENTIFICATION * src/backend/access/hash/hashovfl.c * * NOTES * Overflow pages look like ordinary relation pages. * *------------------------------------------------------------------------- */ #include "postgres.h" #include "access/hash.h" #include "utils/rel.h" static Buffer _hash_getovflpage(Relation rel, Buffer metabuf); static uint32 _hash_firstfreebit(uint32 map); /* * Convert overflow page bit number (its index in the free-page bitmaps) * to block number within the index. */ static BlockNumber bitno_to_blkno(HashMetaPage metap, uint32 ovflbitnum) { uint32 splitnum = metap->hashm_ovflpoint; uint32 i; /* Convert zero-based bitnumber to 1-based page number */ ovflbitnum += 1; /* Determine the split number for this page (must be >= 1) */ for (i = 1; i < splitnum && ovflbitnum > metap->hashm_spares[i]; i++) /* loop */ ; /* * Convert to absolute page number by adding the number of bucket pages * that exist before this split point. */ return (BlockNumber) ((1 << i) + ovflbitnum); } /* * Convert overflow page block number to bit number for free-page bitmap. */ static uint32 blkno_to_bitno(HashMetaPage metap, BlockNumber ovflblkno) { uint32 splitnum = metap->hashm_ovflpoint; uint32 i; uint32 bitnum; /* Determine the split number containing this page */ for (i = 1; i <= splitnum; i++) { if (ovflblkno <= (BlockNumber) (1 << i)) break; /* oops */ bitnum = ovflblkno - (1 << i); if (bitnum <= metap->hashm_spares[i]) return bitnum - 1; /* -1 to convert 1-based to 0-based */ } elog(ERROR, "invalid overflow block number %u", ovflblkno); return 0; /* keep compiler quiet */ } /* * _hash_addovflpage * * Add an overflow page to the bucket whose last page is pointed to by 'buf'. * * On entry, the caller must hold a pin but no lock on 'buf'. The pin is * dropped before exiting (we assume the caller is not interested in 'buf' * anymore). The returned overflow page will be pinned and write-locked; * it is guaranteed to be empty. * * The caller must hold a pin, but no lock, on the metapage buffer. * That buffer is returned in the same state. * * The caller must hold at least share lock on the bucket, to ensure that * no one else tries to compact the bucket meanwhile. This guarantees that * 'buf' won't stop being part of the bucket while it's unlocked. * * NB: since this could be executed concurrently by multiple processes, * one should not assume that the returned overflow page will be the * immediate successor of the originally passed 'buf'. Additional overflow * pages might have been added to the bucket chain in between. */ Buffer _hash_addovflpage(Relation rel, Buffer metabuf, Buffer buf) { Buffer ovflbuf; Page page; Page ovflpage; HashPageOpaque pageopaque; HashPageOpaque ovflopaque; /* allocate and lock an empty overflow page */ ovflbuf = _hash_getovflpage(rel, metabuf); /* * Write-lock the tail page. It is okay to hold two buffer locks here * since there cannot be anyone else contending for access to ovflbuf. */ _hash_chgbufaccess(rel, buf, HASH_NOLOCK, HASH_WRITE); /* probably redundant... */ _hash_checkpage(rel, buf, LH_BUCKET_PAGE | LH_OVERFLOW_PAGE); /* loop to find current tail page, in case someone else inserted too */ for (;;) { BlockNumber nextblkno; page = BufferGetPage(buf); pageopaque = (HashPageOpaque) PageGetSpecialPointer(page); nextblkno = pageopaque->hasho_nextblkno; if (!BlockNumberIsValid(nextblkno)) break; /* we assume we do not need to write the unmodified page */ _hash_relbuf(rel, buf); buf = _hash_getbuf(rel, nextblkno, HASH_WRITE, LH_OVERFLOW_PAGE); } /* now that we have correct backlink, initialize new overflow page */ ovflpage = BufferGetPage(ovflbuf); ovflopaque = (HashPageOpaque) PageGetSpecialPointer(ovflpage); ovflopaque->hasho_prevblkno = BufferGetBlockNumber(buf); ovflopaque->hasho_nextblkno = InvalidBlockNumber; ovflopaque->hasho_bucket = pageopaque->hasho_bucket; ovflopaque->hasho_flag = LH_OVERFLOW_PAGE; ovflopaque->hasho_page_id = HASHO_PAGE_ID; MarkBufferDirty(ovflbuf); /* logically chain overflow page to previous page */ pageopaque->hasho_nextblkno = BufferGetBlockNumber(ovflbuf); _hash_wrtbuf(rel, buf); return ovflbuf; } /* * _hash_getovflpage() * * Find an available overflow page and return it. The returned buffer * is pinned and write-locked, and has had _hash_pageinit() applied, * but it is caller's responsibility to fill the special space. * * The caller must hold a pin, but no lock, on the metapage buffer. * That buffer is left in the same state at exit. */ static Buffer _hash_getovflpage(Relation rel, Buffer metabuf) { HashMetaPage metap; Buffer mapbuf = 0; Buffer newbuf; BlockNumber blkno; uint32 orig_firstfree; uint32 splitnum; uint32 *freep = NULL; uint32 max_ovflpg; uint32 bit; uint32 first_page; uint32 last_bit; uint32 last_page; uint32 i, j; /* Get exclusive lock on the meta page */ _hash_chgbufaccess(rel, metabuf, HASH_NOLOCK, HASH_WRITE); _hash_checkpage(rel, metabuf, LH_META_PAGE); metap = HashPageGetMeta(BufferGetPage(metabuf)); /* start search at hashm_firstfree */ orig_firstfree = metap->hashm_firstfree; first_page = orig_firstfree >> BMPG_SHIFT(metap); bit = orig_firstfree & BMPG_MASK(metap); i = first_page; j = bit / BITS_PER_MAP; bit &= ~(BITS_PER_MAP - 1); /* outer loop iterates once per bitmap page */ for (;;) { BlockNumber mapblkno; Page mappage; uint32 last_inpage; /* want to end search with the last existing overflow page */ splitnum = metap->hashm_ovflpoint; max_ovflpg = metap->hashm_spares[splitnum] - 1; last_page = max_ovflpg >> BMPG_SHIFT(metap); last_bit = max_ovflpg & BMPG_MASK(metap); if (i > last_page) break; Assert(i < metap->hashm_nmaps); mapblkno = metap->hashm_mapp[i]; if (i == last_page) last_inpage = last_bit; else last_inpage = BMPGSZ_BIT(metap) - 1; /* Release exclusive lock on metapage while reading bitmap page */ _hash_chgbufaccess(rel, metabuf, HASH_READ, HASH_NOLOCK); mapbuf = _hash_getbuf(rel, mapblkno, HASH_WRITE, LH_BITMAP_PAGE); mappage = BufferGetPage(mapbuf); freep = HashPageGetBitmap(mappage); for (; bit <= last_inpage; j++, bit += BITS_PER_MAP) { if (freep[j] != ALL_SET) goto found; } /* No free space here, try to advance to next map page */ _hash_relbuf(rel, mapbuf); i++; j = 0; /* scan from start of next map page */ bit = 0; /* Reacquire exclusive lock on the meta page */ _hash_chgbufaccess(rel, metabuf, HASH_NOLOCK, HASH_WRITE); } /* * No free pages --- have to extend the relation to add an overflow page. * First, check to see if we have to add a new bitmap page too. */ if (last_bit == (uint32) (BMPGSZ_BIT(metap) - 1)) { /* * We create the new bitmap page with all pages marked "in use". * Actually two pages in the new bitmap's range will exist * immediately: the bitmap page itself, and the following page which * is the one we return to the caller. Both of these are correctly * marked "in use". Subsequent pages do not exist yet, but it is * convenient to pre-mark them as "in use" too. */ bit = metap->hashm_spares[splitnum]; _hash_initbitmap(rel, metap, bitno_to_blkno(metap, bit), MAIN_FORKNUM); metap->hashm_spares[splitnum]++; } else { /* * Nothing to do here; since the page will be past the last used page, * we know its bitmap bit was preinitialized to "in use". */ } /* Calculate address of the new overflow page */ bit = metap->hashm_spares[splitnum]; blkno = bitno_to_blkno(metap, bit); /* * Fetch the page with _hash_getnewbuf to ensure smgr's idea of the * relation length stays in sync with ours. XXX It's annoying to do this * with metapage write lock held; would be better to use a lock that * doesn't block incoming searches. */ newbuf = _hash_getnewbuf(rel, blkno, MAIN_FORKNUM); metap->hashm_spares[splitnum]++; /* * Adjust hashm_firstfree to avoid redundant searches. But don't risk * changing it if someone moved it while we were searching bitmap pages. */ if (metap->hashm_firstfree == orig_firstfree) metap->hashm_firstfree = bit + 1; /* Write updated metapage and release lock, but not pin */ _hash_chgbufaccess(rel, metabuf, HASH_WRITE, HASH_NOLOCK); return newbuf; found: /* convert bit to bit number within page */ bit += _hash_firstfreebit(freep[j]); /* mark page "in use" in the bitmap */ SETBIT(freep, bit); _hash_wrtbuf(rel, mapbuf); /* Reacquire exclusive lock on the meta page */ _hash_chgbufaccess(rel, metabuf, HASH_NOLOCK, HASH_WRITE); /* convert bit to absolute bit number */ bit += (i << BMPG_SHIFT(metap)); /* Calculate address of the recycled overflow page */ blkno = bitno_to_blkno(metap, bit); /* * Adjust hashm_firstfree to avoid redundant searches. But don't risk * changing it if someone moved it while we were searching bitmap pages. */ if (metap->hashm_firstfree == orig_firstfree) { metap->hashm_firstfree = bit + 1; /* Write updated metapage and release lock, but not pin */ _hash_chgbufaccess(rel, metabuf, HASH_WRITE, HASH_NOLOCK); } else { /* We didn't change the metapage, so no need to write */ _hash_chgbufaccess(rel, metabuf, HASH_READ, HASH_NOLOCK); } /* Fetch, init, and return the recycled page */ return _hash_getinitbuf(rel, blkno); } /* * _hash_firstfreebit() * * Return the number of the first bit that is not set in the word 'map'. */ static uint32 _hash_firstfreebit(uint32 map) { uint32 i, mask; mask = 0x1; for (i = 0; i < BITS_PER_MAP; i++) { if (!(mask & map)) return i; mask <<= 1; } elog(ERROR, "firstfreebit found no free bit"); return 0; /* keep compiler quiet */ } /* * _hash_freeovflpage() - * * Remove this overflow page from its bucket's chain, and mark the page as * free. On entry, ovflbuf is write-locked; it is released before exiting. * * Since this function is invoked in VACUUM, we provide an access strategy * parameter that controls fetches of the bucket pages. * * Returns the block number of the page that followed the given page * in the bucket, or InvalidBlockNumber if no following page. * * NB: caller must not hold lock on metapage, nor on either page that's * adjacent in the bucket chain. The caller had better hold exclusive lock * on the bucket, too. */ BlockNumber _hash_freeovflpage(Relation rel, Buffer ovflbuf, BufferAccessStrategy bstrategy) { HashMetaPage metap; Buffer metabuf; Buffer mapbuf; BlockNumber ovflblkno; BlockNumber prevblkno; BlockNumber blkno; BlockNumber nextblkno; HashPageOpaque ovflopaque; Page ovflpage; Page mappage; uint32 *freep; uint32 ovflbitno; int32 bitmappage, bitmapbit; Bucket bucket PG_USED_FOR_ASSERTS_ONLY; /* Get information from the doomed page */ _hash_checkpage(rel, ovflbuf, LH_OVERFLOW_PAGE); ovflblkno = BufferGetBlockNumber(ovflbuf); ovflpage = BufferGetPage(ovflbuf); ovflopaque = (HashPageOpaque) PageGetSpecialPointer(ovflpage); nextblkno = ovflopaque->hasho_nextblkno; prevblkno = ovflopaque->hasho_prevblkno; bucket = ovflopaque->hasho_bucket; /* * Zero the page for debugging's sake; then write and release it. (Note: * if we failed to zero the page here, we'd have problems with the Assert * in _hash_pageinit() when the page is reused.) */ MemSet(ovflpage, 0, BufferGetPageSize(ovflbuf)); _hash_wrtbuf(rel, ovflbuf); /* * Fix up the bucket chain. this is a doubly-linked list, so we must fix * up the bucket chain members behind and ahead of the overflow page being * deleted. No concurrency issues since we hold exclusive lock on the * entire bucket. */ if (BlockNumberIsValid(prevblkno)) { Buffer prevbuf = _hash_getbuf_with_strategy(rel, prevblkno, HASH_WRITE, LH_BUCKET_PAGE | LH_OVERFLOW_PAGE, bstrategy); Page prevpage = BufferGetPage(prevbuf); HashPageOpaque prevopaque = (HashPageOpaque) PageGetSpecialPointer(prevpage); Assert(prevopaque->hasho_bucket == bucket); prevopaque->hasho_nextblkno = nextblkno; _hash_wrtbuf(rel, prevbuf); } if (BlockNumberIsValid(nextblkno)) { Buffer nextbuf = _hash_getbuf_with_strategy(rel, nextblkno, HASH_WRITE, LH_OVERFLOW_PAGE, bstrategy); Page nextpage = BufferGetPage(nextbuf); HashPageOpaque nextopaque = (HashPageOpaque) PageGetSpecialPointer(nextpage); Assert(nextopaque->hasho_bucket == bucket); nextopaque->hasho_prevblkno = prevblkno; _hash_wrtbuf(rel, nextbuf); } /* Note: bstrategy is intentionally not used for metapage and bitmap */ /* Read the metapage so we can determine which bitmap page to use */ metabuf = _hash_getbuf(rel, HASH_METAPAGE, HASH_READ, LH_META_PAGE); metap = HashPageGetMeta(BufferGetPage(metabuf)); /* Identify which bit to set */ ovflbitno = blkno_to_bitno(metap, ovflblkno); bitmappage = ovflbitno >> BMPG_SHIFT(metap); bitmapbit = ovflbitno & BMPG_MASK(metap); if (bitmappage >= metap->hashm_nmaps) elog(ERROR, "invalid overflow bit number %u", ovflbitno); blkno = metap->hashm_mapp[bitmappage]; /* Release metapage lock while we access the bitmap page */ _hash_chgbufaccess(rel, metabuf, HASH_READ, HASH_NOLOCK); /* Clear the bitmap bit to indicate that this overflow page is free */ mapbuf = _hash_getbuf(rel, blkno, HASH_WRITE, LH_BITMAP_PAGE); mappage = BufferGetPage(mapbuf); freep = HashPageGetBitmap(mappage); Assert(ISSET(freep, bitmapbit)); CLRBIT(freep, bitmapbit); _hash_wrtbuf(rel, mapbuf); /* Get write-lock on metapage to update firstfree */ _hash_chgbufaccess(rel, metabuf, HASH_NOLOCK, HASH_WRITE); /* if this is now the first free page, update hashm_firstfree */ if (ovflbitno < metap->hashm_firstfree) { metap->hashm_firstfree = ovflbitno; _hash_wrtbuf(rel, metabuf); } else { /* no need to change metapage */ _hash_relbuf(rel, metabuf); } return nextblkno; } /* * _hash_initbitmap() * * Initialize a new bitmap page. The metapage has a write-lock upon * entering the function, and must be written by caller after return. * * 'blkno' is the block number of the new bitmap page. * * All bits in the new bitmap page are set to "1", indicating "in use". */ void _hash_initbitmap(Relation rel, HashMetaPage metap, BlockNumber blkno, ForkNumber forkNum) { Buffer buf; Page pg; HashPageOpaque op; uint32 *freep; /* * It is okay to write-lock the new bitmap page while holding metapage * write lock, because no one else could be contending for the new page. * Also, the metapage lock makes it safe to extend the index using * _hash_getnewbuf. * * There is some loss of concurrency in possibly doing I/O for the new * page while holding the metapage lock, but this path is taken so seldom * that it's not worth worrying about. */ buf = _hash_getnewbuf(rel, blkno, forkNum); pg = BufferGetPage(buf); /* initialize the page's special space */ op = (HashPageOpaque) PageGetSpecialPointer(pg); op->hasho_prevblkno = InvalidBlockNumber; op->hasho_nextblkno = InvalidBlockNumber; op->hasho_bucket = -1; op->hasho_flag = LH_BITMAP_PAGE; op->hasho_page_id = HASHO_PAGE_ID; /* set all of the bits to 1 */ freep = HashPageGetBitmap(pg); MemSet(freep, 0xFF, BMPGSZ_BYTE(metap)); /* write out the new bitmap page (releasing write lock and pin) */ _hash_wrtbuf(rel, buf); /* add the new bitmap page to the metapage's list of bitmaps */ /* metapage already has a write lock */ if (metap->hashm_nmaps >= HASH_MAX_BITMAPS) ereport(ERROR, (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), errmsg("out of overflow pages in hash index \"%s\"", RelationGetRelationName(rel)))); metap->hashm_mapp[metap->hashm_nmaps] = blkno; metap->hashm_nmaps++; } /* * _hash_squeezebucket(rel, bucket) * * Try to squeeze the tuples onto pages occurring earlier in the * bucket chain in an attempt to free overflow pages. When we start * the "squeezing", the page from which we start taking tuples (the * "read" page) is the last bucket in the bucket chain and the page * onto which we start squeezing tuples (the "write" page) is the * first page in the bucket chain. The read page works backward and * the write page works forward; the procedure terminates when the * read page and write page are the same page. * * At completion of this procedure, it is guaranteed that all pages in * the bucket are nonempty, unless the bucket is totally empty (in * which case all overflow pages will be freed). The original implementation * required that to be true on entry as well, but it's a lot easier for * callers to leave empty overflow pages and let this guy clean it up. * * Caller must hold exclusive lock on the target bucket. This allows * us to safely lock multiple pages in the bucket. * * Since this function is invoked in VACUUM, we provide an access strategy * parameter that controls fetches of the bucket pages. */ void _hash_squeezebucket(Relation rel, Bucket bucket, BlockNumber bucket_blkno, BufferAccessStrategy bstrategy) { BlockNumber wblkno; BlockNumber rblkno; Buffer wbuf; Buffer rbuf; Page wpage; Page rpage; HashPageOpaque wopaque; HashPageOpaque ropaque; bool wbuf_dirty; /* * start squeezing into the base bucket page. */ wblkno = bucket_blkno; wbuf = _hash_getbuf_with_strategy(rel, wblkno, HASH_WRITE, LH_BUCKET_PAGE, bstrategy); wpage = BufferGetPage(wbuf); wopaque = (HashPageOpaque) PageGetSpecialPointer(wpage); /* * if there aren't any overflow pages, there's nothing to squeeze. */ if (!BlockNumberIsValid(wopaque->hasho_nextblkno)) { _hash_relbuf(rel, wbuf); return; } /* * Find the last page in the bucket chain by starting at the base bucket * page and working forward. Note: we assume that a hash bucket chain is * usually smaller than the buffer ring being used by VACUUM, else using * the access strategy here would be counterproductive. */ rbuf = InvalidBuffer; ropaque = wopaque; do { rblkno = ropaque->hasho_nextblkno; if (rbuf != InvalidBuffer) _hash_relbuf(rel, rbuf); rbuf = _hash_getbuf_with_strategy(rel, rblkno, HASH_WRITE, LH_OVERFLOW_PAGE, bstrategy); rpage = BufferGetPage(rbuf); ropaque = (HashPageOpaque) PageGetSpecialPointer(rpage); Assert(ropaque->hasho_bucket == bucket); } while (BlockNumberIsValid(ropaque->hasho_nextblkno)); /* * squeeze the tuples. */ wbuf_dirty = false; for (;;) { OffsetNumber roffnum; OffsetNumber maxroffnum; OffsetNumber deletable[MaxOffsetNumber]; int ndeletable = 0; /* Scan each tuple in "read" page */ maxroffnum = PageGetMaxOffsetNumber(rpage); for (roffnum = FirstOffsetNumber; roffnum <= maxroffnum; roffnum = OffsetNumberNext(roffnum)) { IndexTuple itup; Size itemsz; itup = (IndexTuple) PageGetItem(rpage, PageGetItemId(rpage, roffnum)); itemsz = IndexTupleDSize(*itup); itemsz = MAXALIGN(itemsz); /* * Walk up the bucket chain, looking for a page big enough for * this item. Exit if we reach the read page. */ while (PageGetFreeSpace(wpage) < itemsz) { Assert(!PageIsEmpty(wpage)); wblkno = wopaque->hasho_nextblkno; Assert(BlockNumberIsValid(wblkno)); if (wbuf_dirty) _hash_wrtbuf(rel, wbuf); else _hash_relbuf(rel, wbuf); /* nothing more to do if we reached the read page */ if (rblkno == wblkno) { if (ndeletable > 0) { /* Delete tuples we already moved off read page */ PageIndexMultiDelete(rpage, deletable, ndeletable); _hash_wrtbuf(rel, rbuf); } else _hash_relbuf(rel, rbuf); return; } wbuf = _hash_getbuf_with_strategy(rel, wblkno, HASH_WRITE, LH_OVERFLOW_PAGE, bstrategy); wpage = BufferGetPage(wbuf); wopaque = (HashPageOpaque) PageGetSpecialPointer(wpage); Assert(wopaque->hasho_bucket == bucket); wbuf_dirty = false; } /* * we have found room so insert on the "write" page, being careful * to preserve hashkey ordering. (If we insert many tuples into * the same "write" page it would be worth qsort'ing instead of * doing repeated _hash_pgaddtup.) */ (void) _hash_pgaddtup(rel, wbuf, itemsz, itup); wbuf_dirty = true; /* remember tuple for deletion from "read" page */ deletable[ndeletable++] = roffnum; } /* * If we reach here, there are no live tuples on the "read" page --- * it was empty when we got to it, or we moved them all. So we can * just free the page without bothering with deleting tuples * individually. Then advance to the previous "read" page. * * Tricky point here: if our read and write pages are adjacent in the * bucket chain, our write lock on wbuf will conflict with * _hash_freeovflpage's attempt to update the sibling links of the * removed page. However, in that case we are done anyway, so we can * simply drop the write lock before calling _hash_freeovflpage. */ rblkno = ropaque->hasho_prevblkno; Assert(BlockNumberIsValid(rblkno)); /* are we freeing the page adjacent to wbuf? */ if (rblkno == wblkno) { /* yes, so release wbuf lock first */ if (wbuf_dirty) _hash_wrtbuf(rel, wbuf); else _hash_relbuf(rel, wbuf); /* free this overflow page (releases rbuf) */ _hash_freeovflpage(rel, rbuf, bstrategy); /* done */ return; } /* free this overflow page, then get the previous one */ _hash_freeovflpage(rel, rbuf, bstrategy); rbuf = _hash_getbuf_with_strategy(rel, rblkno, HASH_WRITE, LH_OVERFLOW_PAGE, bstrategy); rpage = BufferGetPage(rbuf); ropaque = (HashPageOpaque) PageGetSpecialPointer(rpage); Assert(ropaque->hasho_bucket == bucket); } /* NOTREACHED */ }