/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % QQQ U U AAA N N TTTTT U U M M % % Q Q U U A A NN N T U U MM MM % % Q Q U U AAAAA N N N T U U M M M % % Q QQ U U A A N NN T U U M M % % QQQQ UUU A A N N T UUU M M % % % % IIIII M M PPPP OOO RRRR TTTTT % % I MM MM P P O O R R T % % I M M M PPPP O O RRRR T % % I M M P O O R R T % % IIIII M M P OOO R R T % % % % MagickCore Methods to Import Quantum Pixels % % % % Software Design % % John Cristy % % October 1998 % % % % % % Copyright 1999-2008 ImageMagick Studio LLC, a non-profit organization % % dedicated to making software imaging solutions freely available. % % % % You may not use this file except in compliance with the License. You may % % obtain a copy of the License at % % % % http://www.imagemagick.org/script/license.php % % % % Unless required by applicable law or agreed to in writing, software % % distributed under the License is distributed on an "AS IS" BASIS, % % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % % See the License for the specific language governing permissions and % % limitations under the License. % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % */ /* Include declarations. */ #include "magick/studio.h" #include "magick/property.h" #include "magick/blob.h" #include "magick/blob-private.h" #include "magick/color-private.h" #include "magick/exception.h" #include "magick/exception-private.h" #include "magick/cache.h" #include "magick/constitute.h" #include "magick/delegate.h" #include "magick/geometry.h" #include "magick/list.h" #include "magick/magick.h" #include "magick/memory_.h" #include "magick/monitor.h" #include "magick/option.h" #include "magick/pixel.h" #include "magick/pixel-private.h" #include "magick/quantum.h" #include "magick/quantum-private.h" #include "magick/resource_.h" #include "magick/semaphore.h" #include "magick/statistic.h" #include "magick/stream.h" #include "magick/string_.h" #include "magick/utility.h" /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % I m p o r t Q u a n t u m P i x e l s % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % ImportQuantumPixels() transfers one or more pixel components from a user % supplied buffer into the image pixel cache of an image. The pixels are % expected in network byte order. It returns MagickTrue if the pixels are % successfully transferred, otherwise MagickFalse. % % The format of the ImportQuantumPixels method is: % % size_t ImportQuantumPixels(Image *image,CacheView *image_view, % const QuantumInfo *quantum_info,const QuantumType quantum_type, % const unsigned char *pixels,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o image_view: the image cache view. % % o quantum_info: the quantum info. % % o quantum_type: Declare which pixel components to transfer (red, green, % blue, opacity, RGB, or RGBA). % % o pixels: The pixel components are transferred from this buffer. % % o exception: return any errors or warnings in this structure. % */ static inline IndexPacket PushColormapIndex(Image *image, const size_t index,MagickBooleanType *range_exception) { if (index < image->colors) return((IndexPacket) index); *range_exception=MagickTrue; return((IndexPacket) 0); } static inline const unsigned char *PushDoublePixel( const QuantumState *quantum_state,const unsigned char *pixels,double *pixel) { double *p; unsigned char quantum[8]; if (quantum_state->endian != LSBEndian) { quantum[7]=(*pixels++); quantum[6]=(*pixels++); quantum[5]=(*pixels++); quantum[5]=(*pixels++); quantum[3]=(*pixels++); quantum[2]=(*pixels++); quantum[1]=(*pixels++); quantum[0]=(*pixels++); p=(double *) quantum; *pixel=(*p); *pixel-=quantum_state->minimum; *pixel*=quantum_state->scale; return(pixels); } quantum[0]=(*pixels++); quantum[1]=(*pixels++); quantum[2]=(*pixels++); quantum[3]=(*pixels++); quantum[4]=(*pixels++); quantum[5]=(*pixels++); quantum[6]=(*pixels++); quantum[7]=(*pixels++); p=(double *) quantum; *pixel=(*p); *pixel-=quantum_state->minimum; *pixel*=quantum_state->scale; return(pixels); } static inline const unsigned char *PushFloatPixel( const QuantumState *quantum_state,const unsigned char *pixels,float *pixel) { float *p; unsigned char quantum[4]; if (quantum_state->endian != LSBEndian) { quantum[3]=(*pixels++); quantum[2]=(*pixels++); quantum[1]=(*pixels++); quantum[0]=(*pixels++); p=(float *) quantum; *pixel=(*p); *pixel-=quantum_state->minimum; *pixel*=quantum_state->scale; return(pixels); } quantum[0]=(*pixels++); quantum[1]=(*pixels++); quantum[2]=(*pixels++); quantum[3]=(*pixels++); p=(float *) quantum; *pixel=(*p); *pixel-=quantum_state->minimum; *pixel*=quantum_state->scale; return(pixels); } static inline const unsigned char *PushQuantumPixel( QuantumState *quantum_state,const size_t depth, const unsigned char *pixels,unsigned int *quantum) { register ssize_t i; register size_t quantum_bits; *quantum=(QuantumAny) 0; for (i=(ssize_t) depth; i > 0L; ) { if (quantum_state->bits == 0UL) { quantum_state->pixel=(*pixels++); quantum_state->bits=8UL; } quantum_bits=(size_t) i; if (quantum_bits > quantum_state->bits) quantum_bits=quantum_state->bits; i-=(ssize_t) quantum_bits; quantum_state->bits-=quantum_bits; *quantum=(unsigned int) ((*quantum << quantum_bits) | ((quantum_state->pixel >> quantum_state->bits) &~ ((~0UL) << quantum_bits))); } return(pixels); } static inline const unsigned char *PushQuantumLongPixel( QuantumState *quantum_state,const size_t depth, const unsigned char *pixels,unsigned int *quantum) { register ssize_t i; register size_t quantum_bits; *quantum=0UL; for (i=(ssize_t) depth; i > 0; ) { if (quantum_state->bits == 0) { pixels=PushLongPixel(quantum_state->endian,pixels, &quantum_state->pixel); quantum_state->bits=32U; } quantum_bits=(size_t) i; if (quantum_bits > quantum_state->bits) quantum_bits=quantum_state->bits; *quantum|=(((quantum_state->pixel >> (32U-quantum_state->bits)) & quantum_state->mask[quantum_bits]) << (depth-i)); i-=(ssize_t) quantum_bits; quantum_state->bits-=quantum_bits; } return(pixels); } MagickExport size_t ImportQuantumPixels(Image *image,CacheView *image_view, const QuantumInfo *quantum_info,const QuantumType quantum_type, const unsigned char *pixels,ExceptionInfo *exception) { EndianType endian; MagickSizeType number_pixels; QuantumAny range; QuantumState quantum_state; register const unsigned char *restrict p; register IndexPacket *restrict indexes; register ssize_t x; register PixelPacket *restrict q; size_t extent; ssize_t bit; unsigned int pixel; assert(image != (Image *) NULL); assert(image->signature == MagickSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(quantum_info != (QuantumInfo *) NULL); assert(quantum_info->signature == MagickSignature); if (pixels == (const unsigned char *) NULL) pixels=GetQuantumPixels(quantum_info); x=0; p=pixels; if (image_view == (CacheView *) NULL) { number_pixels=GetImageExtent(image); q=GetAuthenticPixelQueue(image); indexes=GetAuthenticIndexQueue(image); } else { number_pixels=GetCacheViewExtent(image_view); q=GetCacheViewAuthenticPixelQueue(image_view); indexes=GetCacheViewAuthenticIndexQueue(image_view); } InitializeQuantumState(quantum_info,image->endian,&quantum_state); extent=GetQuantumExtent(image,quantum_info,quantum_type); endian=quantum_state.endian; switch (quantum_type) { case IndexQuantum: { MagickBooleanType range_exception; if (image->storage_class != PseudoClass) { (void) ThrowMagickException(exception,GetMagickModule(),ImageError, "ColormappedImageRequired","`%s'",image->filename); return(extent); } range_exception=MagickFalse; switch (quantum_info->depth) { case 1: { register unsigned char pixel; for (x=0; x < ((ssize_t) number_pixels-7); x+=8) { for (bit=0; bit < 8; bit++) { if (quantum_info->min_is_white == MagickFalse) pixel=(unsigned char) (((*p) & (1 << (7-bit))) == 0 ? 0x00 : 0x01); else pixel=(unsigned char) (((*p) & (1 << (7-bit))) != 0 ? 0x00 : 0x01); SetIndexPixelComponent(indexes+x+bit,PushColormapIndex(image, pixel,&range_exception)); SetRGBOPixelComponents(q,image->colormap+(ssize_t) GetIndexPixelComponent(indexes+x+bit)); q++; } p++; } for (bit=0; bit < (ssize_t) (number_pixels % 8); bit++) { if (quantum_info->min_is_white == MagickFalse) pixel=(unsigned char) (((*p) & (1 << (7-bit))) == 0 ? 0x00 : 0x01); else pixel=(unsigned char) (((*p) & (1 << (7-bit))) != 0 ? 0x00 : 0x01); SetIndexPixelComponent(indexes+x+bit,PushColormapIndex(image,pixel, &range_exception)); SetRGBOPixelComponents(q,image->colormap+(ssize_t) GetIndexPixelComponent(indexes+x+bit)); q++; } break; } case 4: { register unsigned char pixel; for (x=0; x < ((ssize_t) number_pixels-1); x+=2) { pixel=(unsigned char) ((*p >> 4) & 0xf); SetIndexPixelComponent(indexes+x,PushColormapIndex(image,pixel, &range_exception)); SetRGBOPixelComponents(q,image->colormap+(ssize_t) GetIndexPixelComponent(indexes+x)); q++; pixel=(unsigned char) ((*p) & 0xf); SetIndexPixelComponent(indexes+x+1,PushColormapIndex(image,pixel, &range_exception)); SetRGBOPixelComponents(q,image->colormap+(ssize_t) GetIndexPixelComponent(indexes+x+1)); p++; q++; } for (bit=0; bit < (ssize_t) (number_pixels % 2); bit++) { pixel=(unsigned char) ((*p++ >> 4) & 0xf); SetIndexPixelComponent(indexes+x+bit,PushColormapIndex(image,pixel, &range_exception)); SetRGBOPixelComponents(q,image->colormap+(ssize_t) GetIndexPixelComponent(indexes+x+bit)); q++; } break; } case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetIndexPixelComponent(indexes+x,PushColormapIndex(image,pixel, &range_exception)); SetRGBOPixelComponents(q,image->colormap+(ssize_t) GetIndexPixelComponent(indexes+x)); p+=quantum_info->pad; q++; } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetIndexPixelComponent(indexes+x,PushColormapIndex(image, ClampToQuantum((MagickRealType) QuantumRange* HalfToSinglePrecision(pixel)),&range_exception)); SetRGBOPixelComponents(q,image->colormap+(ssize_t) GetIndexPixelComponent(indexes+x)); p+=quantum_info->pad; q++; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetIndexPixelComponent(indexes+x,PushColormapIndex(image,pixel, &range_exception)); SetRGBOPixelComponents(q,image->colormap+(ssize_t) GetIndexPixelComponent(indexes+x)); p+=quantum_info->pad; q++; } break; } case 32: { unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushFloatPixel(&quantum_state,p,&pixel); SetIndexPixelComponent(indexes+x,PushColormapIndex(image, ClampToQuantum(pixel),&range_exception)); SetRGBOPixelComponents(q,image->colormap+(ssize_t) GetIndexPixelComponent(indexes+x)); p+=quantum_info->pad; q++; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(endian,p,&pixel); SetIndexPixelComponent(indexes+x,PushColormapIndex(image,pixel, &range_exception)); SetRGBOPixelComponents(q,image->colormap+(ssize_t) GetIndexPixelComponent(indexes+x)); p+=quantum_info->pad; q++; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(&quantum_state,p,&pixel); SetIndexPixelComponent(indexes+x,PushColormapIndex(image, ClampToQuantum(pixel),&range_exception)); SetRGBOPixelComponents(q,image->colormap+(ssize_t) GetIndexPixelComponent(indexes+x)); p+=quantum_info->pad; q++; } break; } } default: { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetIndexPixelComponent(indexes+x,PushColormapIndex(image,pixel, &range_exception)); SetRGBOPixelComponents(q,image->colormap+(ssize_t) GetIndexPixelComponent(indexes+x)); p+=quantum_info->pad; q++; } break; } } if (range_exception != MagickFalse) (void) ThrowMagickException(exception,GetMagickModule(), CorruptImageError,"InvalidColormapIndex","`%s'",image->filename); break; } case IndexAlphaQuantum: { MagickBooleanType range_exception; if (image->storage_class != PseudoClass) { (void) ThrowMagickException(exception,GetMagickModule(), ImageError,"ColormappedImageRequired","`%s'",image->filename); return(extent); } range_exception=MagickFalse; switch (quantum_info->depth) { case 1: { register unsigned char pixel; for (x=0; x < ((ssize_t) number_pixels-3); x+=4) { for (bit=0; bit < 8; bit+=2) { if (quantum_info->min_is_white == MagickFalse) pixel=(unsigned char) (((*p) & (1 << (7-bit))) == 0 ? 0x00 : 0x01); else pixel=(unsigned char) (((*p) & (1 << (7-bit))) != 0 ? 0x00 : 0x01); SetIndexPixelComponent(indexes+x+bit/2,pixel == 0 ? 0 : 1); SetRedPixelComponent(q,pixel == 0 ? 0 : QuantumRange); SetGreenPixelComponent(q,GetRedPixelComponent(q)); SetBluePixelComponent(q,GetRedPixelComponent(q)); SetOpacityPixelComponent(q,((*p) & (1UL << (unsigned char) (6-bit))) == 0 ? TransparentOpacity : OpaqueOpacity); q++; } } for (bit=0; bit < (ssize_t) (number_pixels % 4); bit+=2) { if (quantum_info->min_is_white == MagickFalse) pixel=(unsigned char) (((*p) & (1 << (7-bit))) == 0 ? 0x00 : 0x01); else pixel=(unsigned char) (((*p) & (1 << (7-bit))) != 0 ? 0x00 : 0x01); SetIndexPixelComponent(indexes+x+bit/2,pixel == 0 ? 0 : 1); SetRedPixelComponent(q,pixel == 0 ? 0 : QuantumRange); SetGreenPixelComponent(q,GetRedPixelComponent(q)); SetBluePixelComponent(q,GetRedPixelComponent(q)); SetOpacityPixelComponent(q,((*p) & (1UL << (unsigned char) (6-bit))) == 0 ? TransparentOpacity : OpaqueOpacity); q++; } break; } case 4: { register unsigned char pixel; range=GetQuantumRange(image->depth); for (x=0; x < (ssize_t) number_pixels; x++) { pixel=(unsigned char) ((*p >> 4) & 0xf); SetIndexPixelComponent(indexes+x,PushColormapIndex(image,pixel, &range_exception)); SetRGBOPixelComponents(q,image->colormap+(ssize_t) GetIndexPixelComponent(indexes+x)); pixel=(unsigned char) ((*p) & 0xf); SetAlphaPixelComponent(q,ScaleAnyToQuantum(pixel,range)); p++; q++; } break; } case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetIndexPixelComponent(indexes+x,PushColormapIndex(image,pixel, &range_exception)); SetRGBOPixelComponents(q,image->colormap+(ssize_t) GetIndexPixelComponent(indexes+x)); p=PushCharPixel(p,&pixel); SetAlphaPixelComponent(q,ScaleCharToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetIndexPixelComponent(indexes+x,PushColormapIndex(image, ClampToQuantum((MagickRealType) QuantumRange* HalfToSinglePrecision(pixel)),&range_exception)); SetRGBOPixelComponents(q,image->colormap+(ssize_t) GetIndexPixelComponent(indexes+x)); p=PushShortPixel(endian,p,&pixel); SetAlphaPixelComponent(q,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel))); p+=quantum_info->pad; q++; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetIndexPixelComponent(indexes+x,PushColormapIndex(image,pixel, &range_exception)); SetRGBOPixelComponents(q,image->colormap+(ssize_t) GetIndexPixelComponent(indexes+x)); p=PushShortPixel(endian,p,&pixel); SetAlphaPixelComponent(q,ScaleShortToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } case 32: { unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushFloatPixel(&quantum_state,p,&pixel); SetIndexPixelComponent(indexes+x,PushColormapIndex(image, ClampToQuantum(pixel),&range_exception)); SetRGBOPixelComponents(q,image->colormap+(ssize_t) GetIndexPixelComponent(indexes+x)); p=PushFloatPixel(&quantum_state,p,&pixel); SetAlphaPixelComponent(q,ClampToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(endian,p,&pixel); SetIndexPixelComponent(indexes+x,PushColormapIndex(image,pixel, &range_exception)); SetRGBOPixelComponents(q,image->colormap+(ssize_t) GetIndexPixelComponent(indexes+x)); p=PushLongPixel(endian,p,&pixel); SetAlphaPixelComponent(q,ScaleLongToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(&quantum_state,p,&pixel); SetIndexPixelComponent(indexes+x,PushColormapIndex(image, ClampToQuantum(pixel),&range_exception)); SetRGBOPixelComponents(q,image->colormap+(ssize_t) GetIndexPixelComponent(indexes+x)); p=PushDoublePixel(&quantum_state,p,&pixel); SetAlphaPixelComponent(q,ClampToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } } default: { range=GetQuantumRange(image->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetIndexPixelComponent(indexes+x,PushColormapIndex(image,pixel, &range_exception)); SetRGBOPixelComponents(q,image->colormap+(ssize_t) GetIndexPixelComponent(indexes+x)); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetAlphaPixelComponent(q,ScaleAnyToQuantum(pixel,range)); p+=quantum_info->pad; q++; } break; } } if (range_exception != MagickFalse) (void) ThrowMagickException(exception,GetMagickModule(), CorruptImageError,"InvalidColormapIndex","`%s'",image->filename); break; } case BGRQuantum: { switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetBluePixelComponent(q,ScaleCharToQuantum(pixel)); p=PushCharPixel(p,&pixel); SetGreenPixelComponent(q,ScaleCharToQuantum(pixel)); p=PushCharPixel(p,&pixel); SetRedPixelComponent(q,ScaleCharToQuantum(pixel)); SetOpacityPixelComponent(q,OpaqueOpacity); p+=quantum_info->pad; q++; } break; } case 10: { range=GetQuantumRange(image->depth); if (quantum_info->pack == MagickFalse) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(endian,p,&pixel); SetRedPixelComponent(q,ScaleAnyToQuantum((pixel >> 22) & 0x3ff, range)); SetGreenPixelComponent(q,ScaleAnyToQuantum((pixel >> 12) & 0x3ff,range)); SetBluePixelComponent(q,ScaleAnyToQuantum((pixel >> 2) & 0x3ff, range)); p+=quantum_info->pad; q++; } break; } if (quantum_info->quantum == 32U) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumLongPixel(&quantum_state,image->depth,p,&pixel); SetBluePixelComponent(q,ScaleAnyToQuantum(pixel,range)); p=PushQuantumLongPixel(&quantum_state,image->depth,p,&pixel); SetGreenPixelComponent(q,ScaleAnyToQuantum(pixel,range)); p=PushQuantumLongPixel(&quantum_state,image->depth,p,&pixel); SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range)); q++; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetBluePixelComponent(q,ScaleAnyToQuantum(pixel,range)); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetGreenPixelComponent(q,ScaleAnyToQuantum(pixel,range)); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range)); q++; } break; } case 12: { range=GetQuantumRange(image->depth); if (quantum_info->pack == MagickFalse) { unsigned short pixel; for (x=0; x < (ssize_t) (3*number_pixels-1); x+=2) { p=PushShortPixel(endian,p,&pixel); switch (x % 3) { default: case 0: { SetRedPixelComponent(q,ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range)); break; } case 1: { SetGreenPixelComponent(q,ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range)); break; } case 2: { SetBluePixelComponent(q,ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range)); q++; break; } } p=PushShortPixel(endian,p,&pixel); switch ((x+1) % 3) { default: case 0: { SetRedPixelComponent(q,ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range)); break; } case 1: { SetGreenPixelComponent(q,ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range)); break; } case 2: { SetBluePixelComponent(q,ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range)); q++; break; } } p+=quantum_info->pad; } for (bit=0; bit < (ssize_t) (3*number_pixels % 2); bit++) { p=PushShortPixel(endian,p,&pixel); switch ((x+bit) % 3) { default: case 0: { SetRedPixelComponent(q,ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range)); break; } case 1: { SetGreenPixelComponent(q,ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range)); break; } case 2: { SetBluePixelComponent(q,ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range)); q++; break; } } p+=quantum_info->pad; } if (bit != 0) p++; break; } if (quantum_info->quantum == 32U) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumLongPixel(&quantum_state,image->depth,p,&pixel); SetBluePixelComponent(q,ScaleAnyToQuantum(pixel,range)); p=PushQuantumLongPixel(&quantum_state,image->depth,p,&pixel); SetGreenPixelComponent(q,ScaleAnyToQuantum(pixel,range)); p=PushQuantumLongPixel(&quantum_state,image->depth,p,&pixel); SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range)); q++; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetBluePixelComponent(q,ScaleAnyToQuantum(pixel,range)); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetGreenPixelComponent(q,ScaleAnyToQuantum(pixel,range)); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range)); q++; } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetRedPixelComponent(q,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel))); p=PushShortPixel(endian,p,&pixel); SetGreenPixelComponent(q,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel))); p=PushShortPixel(endian,p,&pixel); SetBluePixelComponent(q,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel))); p+=quantum_info->pad; q++; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetBluePixelComponent(q,ScaleShortToQuantum(pixel)); p=PushShortPixel(endian,p,&pixel); SetGreenPixelComponent(q,ScaleShortToQuantum(pixel)); p=PushShortPixel(endian,p,&pixel); SetRedPixelComponent(q,ScaleShortToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } case 32: { unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushFloatPixel(&quantum_state,p,&pixel); SetRedPixelComponent(q,ClampToQuantum(pixel)); p=PushFloatPixel(&quantum_state,p,&pixel); SetGreenPixelComponent(q,ClampToQuantum(pixel)); p=PushFloatPixel(&quantum_state,p,&pixel); SetBluePixelComponent(q,ClampToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(endian,p,&pixel); SetBluePixelComponent(q,ScaleLongToQuantum(pixel)); p=PushLongPixel(endian,p,&pixel); SetGreenPixelComponent(q,ScaleLongToQuantum(pixel)); p=PushLongPixel(endian,p,&pixel); SetRedPixelComponent(q,ScaleLongToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(&quantum_state,p,&pixel); SetRedPixelComponent(q,ClampToQuantum(pixel)); p=PushDoublePixel(&quantum_state,p,&pixel); SetGreenPixelComponent(q,ClampToQuantum(pixel)); p=PushDoublePixel(&quantum_state,p,&pixel); SetBluePixelComponent(q,ClampToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } } default: { range=GetQuantumRange(image->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetBluePixelComponent(q,ScaleAnyToQuantum(pixel,range)); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetGreenPixelComponent(q,ScaleAnyToQuantum(pixel,range)); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range)); q++; } break; } } break; } case BGRAQuantum: case BGROQuantum: { switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetBluePixelComponent(q,ScaleCharToQuantum(pixel)); p=PushCharPixel(p,&pixel); SetGreenPixelComponent(q,ScaleCharToQuantum(pixel)); p=PushCharPixel(p,&pixel); SetRedPixelComponent(q,ScaleCharToQuantum(pixel)); p=PushCharPixel(p,&pixel); SetAlphaPixelComponent(q,ScaleCharToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } case 10: { pixel=0; if (quantum_info->pack == MagickFalse) { register ssize_t i; size_t quantum; ssize_t n; n=0; quantum=0; for (x=0; x < (ssize_t) number_pixels; x++) { for (i=0; i < 4; i++) { switch (n % 3) { case 0: { p=PushLongPixel(endian,p,&pixel); quantum=(size_t) (ScaleShortToQuantum( (unsigned short) (((pixel >> 22) & 0x3ff) << 6))); break; } case 1: { quantum=(size_t) (ScaleShortToQuantum( (unsigned short) (((pixel >> 12) & 0x3ff) << 6))); break; } case 2: { quantum=(size_t) (ScaleShortToQuantum( (unsigned short) (((pixel >> 2) & 0x3ff) << 6))); break; } } switch (i) { case 0: SetRedPixelComponent(q,quantum); break; case 1: SetGreenPixelComponent(q,quantum); break; case 2: SetBluePixelComponent(q,quantum); break; case 3: SetAlphaPixelComponent(q,quantum); break; } n++; } p+=quantum_info->pad; q++; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetRedPixelComponent(q,ScaleShortToQuantum((unsigned short) (pixel << 6))); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetGreenPixelComponent(q,ScaleShortToQuantum((unsigned short) (pixel << 6))); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetBluePixelComponent(q,ScaleShortToQuantum((unsigned short) (pixel << 6))); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetAlphaPixelComponent(q,ScaleShortToQuantum((unsigned short) (pixel << 6))); q++; } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetRedPixelComponent(q,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel))); p=PushShortPixel(endian,p,&pixel); SetGreenPixelComponent(q,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel))); p=PushShortPixel(endian,p,&pixel); SetBluePixelComponent(q,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel))); p=PushShortPixel(endian,p,&pixel); SetAlphaPixelComponent(q,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel))); p+=quantum_info->pad; q++; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetBluePixelComponent(q,ScaleShortToQuantum(pixel)); p=PushShortPixel(endian,p,&pixel); SetGreenPixelComponent(q,ScaleShortToQuantum(pixel)); p=PushShortPixel(endian,p,&pixel); SetRedPixelComponent(q,ScaleShortToQuantum(pixel)); p=PushShortPixel(endian,p,&pixel); SetAlphaPixelComponent(q,ScaleShortToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } case 32: { unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushFloatPixel(&quantum_state,p,&pixel); SetRedPixelComponent(q,ClampToQuantum(pixel)); p=PushFloatPixel(&quantum_state,p,&pixel); SetGreenPixelComponent(q,ClampToQuantum(pixel)); p=PushFloatPixel(&quantum_state,p,&pixel); SetBluePixelComponent(q,ClampToQuantum(pixel)); p=PushFloatPixel(&quantum_state,p,&pixel); SetAlphaPixelComponent(q,ClampToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(endian,p,&pixel); SetBluePixelComponent(q,ScaleLongToQuantum(pixel)); p=PushLongPixel(endian,p,&pixel); SetGreenPixelComponent(q,ScaleLongToQuantum(pixel)); p=PushLongPixel(endian,p,&pixel); SetRedPixelComponent(q,ScaleLongToQuantum(pixel)); p=PushLongPixel(endian,p,&pixel); SetAlphaPixelComponent(q,ScaleLongToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(&quantum_state,p,&pixel); SetRedPixelComponent(q,ClampToQuantum(pixel)); p=PushDoublePixel(&quantum_state,p,&pixel); SetGreenPixelComponent(q,ClampToQuantum(pixel)); p=PushDoublePixel(&quantum_state,p,&pixel); SetBluePixelComponent(q,ClampToQuantum(pixel)); p=PushDoublePixel(&quantum_state,p,&pixel); SetAlphaPixelComponent(q,ClampToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } } default: { range=GetQuantumRange(image->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetBluePixelComponent(q,ScaleAnyToQuantum(pixel,range)); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetGreenPixelComponent(q,ScaleAnyToQuantum(pixel,range)); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range)); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetAlphaPixelComponent(q,ScaleAnyToQuantum(pixel,range)); q++; } break; } } break; } case GrayQuantum: { switch (quantum_info->depth) { case 1: { register Quantum black, white; black=0; white=(Quantum) QuantumRange; if (quantum_info->min_is_white != MagickFalse) { black=(Quantum) QuantumRange; white=0; } for (x=0; x < ((ssize_t) number_pixels-7); x+=8) { for (bit=0; bit < 8; bit++) { SetRedPixelComponent(q,((*p) & (1 << (7-bit))) == 0 ? black : white); SetGreenPixelComponent(q,GetRedPixelComponent(q)); SetBluePixelComponent(q,GetRedPixelComponent(q)); q++; } p++; } for (bit=0; bit < (ssize_t) (number_pixels % 8); bit++) { SetRedPixelComponent(q,((*p) & (0x01 << (7-bit))) == 0 ? black : white); SetGreenPixelComponent(q,GetRedPixelComponent(q)); SetBluePixelComponent(q,GetRedPixelComponent(q)); q++; } if (bit != 0) p++; break; } case 4: { register unsigned char pixel; range=GetQuantumRange(image->depth); for (x=0; x < ((ssize_t) number_pixels-1); x+=2) { pixel=(unsigned char) ((*p >> 4) & 0xf); SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range)); SetGreenPixelComponent(q,GetRedPixelComponent(q)); SetBluePixelComponent(q,GetRedPixelComponent(q)); q++; pixel=(unsigned char) ((*p) & 0xf); SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range)); SetGreenPixelComponent(q,GetRedPixelComponent(q)); SetBluePixelComponent(q,GetRedPixelComponent(q)); p++; q++; } for (bit=0; bit < (ssize_t) (number_pixels % 2); bit++) { pixel=(unsigned char) (*p++ >> 4); SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range)); SetGreenPixelComponent(q,GetRedPixelComponent(q)); SetBluePixelComponent(q,GetRedPixelComponent(q)); q++; } break; } case 8: { unsigned char pixel; if (quantum_info->min_is_white != MagickFalse) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetRedPixelComponent(q,QuantumRange-ScaleCharToQuantum(pixel)); SetGreenPixelComponent(q,GetRedPixelComponent(q)); SetBluePixelComponent(q,GetRedPixelComponent(q)); SetOpacityPixelComponent(q,OpaqueOpacity); p+=quantum_info->pad; q++; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetRedPixelComponent(q,ScaleCharToQuantum(pixel)); SetGreenPixelComponent(q,GetRedPixelComponent(q)); SetBluePixelComponent(q,GetRedPixelComponent(q)); SetOpacityPixelComponent(q,OpaqueOpacity); p+=quantum_info->pad; q++; } break; } case 10: { range=GetQuantumRange(image->depth); if (quantum_info->pack == MagickFalse) { if (image->endian != LSBEndian) { for (x=0; x < (ssize_t) (number_pixels-2); x+=3) { p=PushLongPixel(endian,p,&pixel); SetRedPixelComponent(q,ScaleAnyToQuantum((pixel >> 2) & 0x3ff,range)); SetGreenPixelComponent(q,GetRedPixelComponent(q)); SetBluePixelComponent(q,GetRedPixelComponent(q)); q++; SetRedPixelComponent(q,ScaleAnyToQuantum((pixel >> 12) & 0x3ff,range)); SetGreenPixelComponent(q,GetRedPixelComponent(q)); SetBluePixelComponent(q,GetRedPixelComponent(q)); q++; SetRedPixelComponent(q,ScaleAnyToQuantum((pixel >> 22) & 0x3ff,range)); SetGreenPixelComponent(q,GetRedPixelComponent(q)); SetBluePixelComponent(q,GetRedPixelComponent(q)); p+=quantum_info->pad; q++; } p=PushLongPixel(endian,p,&pixel); if (x++ < (ssize_t) (number_pixels-1)) { SetRedPixelComponent(q,ScaleAnyToQuantum((pixel >> 2) & 0x3ff,range)); SetGreenPixelComponent(q,GetRedPixelComponent(q)); SetBluePixelComponent(q,GetRedPixelComponent(q)); q++; } if (x++ < (ssize_t) number_pixels) { SetRedPixelComponent(q,ScaleAnyToQuantum((pixel >> 12) & 0x3ff,range)); SetGreenPixelComponent(q,GetRedPixelComponent(q)); SetBluePixelComponent(q,GetRedPixelComponent(q)); q++; } break; } for (x=0; x < (ssize_t) (number_pixels-2); x+=3) { p=PushLongPixel(endian,p,&pixel); SetRedPixelComponent(q,ScaleAnyToQuantum((pixel >> 22) & 0x3ff,range)); SetGreenPixelComponent(q,GetRedPixelComponent(q)); SetBluePixelComponent(q,GetRedPixelComponent(q)); q++; SetRedPixelComponent(q,ScaleAnyToQuantum((pixel >> 12) & 0x3ff,range)); SetGreenPixelComponent(q,GetRedPixelComponent(q)); SetBluePixelComponent(q,GetRedPixelComponent(q)); q++; SetRedPixelComponent(q,ScaleAnyToQuantum((pixel >> 2) & 0x3ff,range)); SetGreenPixelComponent(q,GetRedPixelComponent(q)); SetBluePixelComponent(q,GetRedPixelComponent(q)); p+=quantum_info->pad; q++; } p=PushLongPixel(endian,p,&pixel); if (x++ < (ssize_t) (number_pixels-1)) { SetRedPixelComponent(q,ScaleAnyToQuantum((pixel >> 22) & 0x3ff,range)); SetGreenPixelComponent(q,GetRedPixelComponent(q)); SetBluePixelComponent(q,GetRedPixelComponent(q)); q++; } if (x++ < (ssize_t) number_pixels) { SetRedPixelComponent(q,ScaleAnyToQuantum((pixel >> 12) & 0x3ff,range)); SetGreenPixelComponent(q,GetRedPixelComponent(q)); SetBluePixelComponent(q,GetRedPixelComponent(q)); q++; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range)); SetGreenPixelComponent(q,GetRedPixelComponent(q)); SetBluePixelComponent(q,GetRedPixelComponent(q)); p+=quantum_info->pad; q++; } break; } case 12: { range=GetQuantumRange(image->depth); if (quantum_info->pack == MagickFalse) { unsigned short pixel; for (x=0; x < (ssize_t) (number_pixels-1); x+=2) { p=PushShortPixel(endian,p,&pixel); SetRedPixelComponent(q,ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range)); SetGreenPixelComponent(q,GetRedPixelComponent(q)); SetBluePixelComponent(q,GetRedPixelComponent(q)); q++; p=PushShortPixel(endian,p,&pixel); SetRedPixelComponent(q,ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range)); SetGreenPixelComponent(q,GetRedPixelComponent(q)); SetBluePixelComponent(q,GetRedPixelComponent(q)); p+=quantum_info->pad; q++; } for (bit=0; bit < (ssize_t) (number_pixels % 2); bit++) { p=PushShortPixel(endian,p,&pixel); SetRedPixelComponent(q,ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range)); SetGreenPixelComponent(q,GetRedPixelComponent(q)); SetBluePixelComponent(q,GetRedPixelComponent(q)); p+=quantum_info->pad; q++; } if (bit != 0) p++; break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range)); SetGreenPixelComponent(q,GetRedPixelComponent(q)); SetBluePixelComponent(q,GetRedPixelComponent(q)); p+=quantum_info->pad; q++; } break; } case 16: { unsigned short pixel; if (quantum_info->min_is_white != MagickFalse) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetRedPixelComponent(q,QuantumRange-ScaleShortToQuantum(pixel)); SetGreenPixelComponent(q,GetRedPixelComponent(q)); SetBluePixelComponent(q,GetRedPixelComponent(q)); p+=quantum_info->pad; q++; } break; } if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetRedPixelComponent(q,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel))); SetGreenPixelComponent(q,GetRedPixelComponent(q)); SetBluePixelComponent(q,GetRedPixelComponent(q)); p+=quantum_info->pad; q++; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetRedPixelComponent(q,ScaleShortToQuantum(pixel)); SetGreenPixelComponent(q,GetRedPixelComponent(q)); SetBluePixelComponent(q,GetRedPixelComponent(q)); p+=quantum_info->pad; q++; } break; } case 32: { unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushFloatPixel(&quantum_state,p,&pixel); SetRedPixelComponent(q,ClampToQuantum(pixel)); SetGreenPixelComponent(q,GetRedPixelComponent(q)); SetBluePixelComponent(q,GetRedPixelComponent(q)); p+=quantum_info->pad; q++; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(endian,p,&pixel); SetRedPixelComponent(q,ScaleLongToQuantum(pixel)); SetGreenPixelComponent(q,GetRedPixelComponent(q)); SetBluePixelComponent(q,GetRedPixelComponent(q)); p+=quantum_info->pad; q++; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(&quantum_state,p,&pixel); SetRedPixelComponent(q,ClampToQuantum(pixel)); SetGreenPixelComponent(q,GetRedPixelComponent(q)); SetBluePixelComponent(q,GetRedPixelComponent(q)); p+=quantum_info->pad; q++; } break; } } default: { range=GetQuantumRange(image->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range)); SetGreenPixelComponent(q,GetRedPixelComponent(q)); SetBluePixelComponent(q,GetRedPixelComponent(q)); p+=quantum_info->pad; q++; } break; } } break; } case GrayAlphaQuantum: { switch (quantum_info->depth) { case 1: { register unsigned char pixel; for (x=0; x < ((ssize_t) number_pixels-3); x+=4) { for (bit=0; bit < 8; bit+=2) { pixel=(unsigned char) (((*p) & (1 << (7-bit))) != 0 ? 0x00 : 0x01); SetRedPixelComponent(q,pixel == 0 ? 0 : QuantumRange); SetGreenPixelComponent(q,GetRedPixelComponent(q)); SetBluePixelComponent(q,GetRedPixelComponent(q)); SetOpacityPixelComponent(q,((*p) & (1UL << (unsigned char) (6-bit))) == 0 ? TransparentOpacity : OpaqueOpacity); q++; } p++; } for (bit=0; bit <= (ssize_t) (number_pixels % 4); bit+=2) { pixel=(unsigned char) (((*p) & (1 << (7-bit))) != 0 ? 0x00 : 0x01); SetRedPixelComponent(q,pixel != 0 ? 0 : QuantumRange); SetGreenPixelComponent(q,GetRedPixelComponent(q)); SetBluePixelComponent(q,GetRedPixelComponent(q)); SetOpacityPixelComponent(q,((*p) & (1UL << (unsigned char) (6-bit))) == 0 ? TransparentOpacity : OpaqueOpacity); q++; } if (bit != 0) p++; break; } case 4: { register unsigned char pixel; range=GetQuantumRange(image->depth); for (x=0; x < (ssize_t) number_pixels; x++) { pixel=(unsigned char) ((*p >> 4) & 0xf); SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range)); SetGreenPixelComponent(q,GetRedPixelComponent(q)); SetBluePixelComponent(q,GetRedPixelComponent(q)); pixel=(unsigned char) ((*p) & 0xf); SetAlphaPixelComponent(q,ScaleAnyToQuantum(pixel,range)); p++; q++; } break; } case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetRedPixelComponent(q,ScaleCharToQuantum(pixel)); SetGreenPixelComponent(q,GetRedPixelComponent(q)); SetBluePixelComponent(q,GetRedPixelComponent(q)); p=PushCharPixel(p,&pixel); SetAlphaPixelComponent(q,ScaleCharToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } case 10: { range=GetQuantumRange(image->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range)); SetGreenPixelComponent(q,GetRedPixelComponent(q)); SetBluePixelComponent(q,GetRedPixelComponent(q)); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetOpacityPixelComponent(q,ScaleAnyToQuantum(pixel,range)); p+=quantum_info->pad; q++; } break; } case 12: { range=GetQuantumRange(image->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range)); SetGreenPixelComponent(q,GetRedPixelComponent(q)); SetBluePixelComponent(q,GetRedPixelComponent(q)); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetOpacityPixelComponent(q,ScaleAnyToQuantum(pixel,range)); p+=quantum_info->pad; q++; } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetRedPixelComponent(q,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel))); SetGreenPixelComponent(q,GetRedPixelComponent(q)); SetBluePixelComponent(q,GetRedPixelComponent(q)); p=PushShortPixel(endian,p,&pixel); SetAlphaPixelComponent(q,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel))); p+=quantum_info->pad; q++; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetRedPixelComponent(q,ScaleShortToQuantum(pixel)); SetGreenPixelComponent(q,GetRedPixelComponent(q)); SetBluePixelComponent(q,GetRedPixelComponent(q)); p=PushShortPixel(endian,p,&pixel); SetAlphaPixelComponent(q,ScaleShortToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } case 32: { unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushFloatPixel(&quantum_state,p,&pixel); SetRedPixelComponent(q,ClampToQuantum(pixel)); SetGreenPixelComponent(q,GetRedPixelComponent(q)); SetBluePixelComponent(q,GetRedPixelComponent(q)); p=PushFloatPixel(&quantum_state,p,&pixel); SetAlphaPixelComponent(q,ClampToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(endian,p,&pixel); SetRedPixelComponent(q,ScaleLongToQuantum(pixel)); SetGreenPixelComponent(q,GetRedPixelComponent(q)); SetBluePixelComponent(q,GetRedPixelComponent(q)); p=PushLongPixel(endian,p,&pixel); SetAlphaPixelComponent(q,ScaleLongToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(&quantum_state,p,&pixel); SetRedPixelComponent(q,ClampToQuantum(pixel)); SetGreenPixelComponent(q,GetRedPixelComponent(q)); SetBluePixelComponent(q,GetRedPixelComponent(q)); p=PushDoublePixel(&quantum_state,p,&pixel); SetAlphaPixelComponent(q,ClampToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } } default: { range=GetQuantumRange(image->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range)); SetGreenPixelComponent(q,GetRedPixelComponent(q)); SetBluePixelComponent(q,GetRedPixelComponent(q)); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetAlphaPixelComponent(q,ScaleAnyToQuantum(pixel,range)); p+=quantum_info->pad; q++; } break; } } break; } case RedQuantum: case CyanQuantum: { switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetRedPixelComponent(q,ScaleCharToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetRedPixelComponent(q,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel))); p+=quantum_info->pad; q++; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetRedPixelComponent(q,ScaleShortToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } case 32: { unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushFloatPixel(&quantum_state,p,&pixel); SetRedPixelComponent(q,ClampToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(endian,p,&pixel); SetRedPixelComponent(q,ScaleLongToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(&quantum_state,p,&pixel); SetRedPixelComponent(q,ClampToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } } default: { range=GetQuantumRange(image->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range)); p+=quantum_info->pad; q++; } break; } } break; } case GreenQuantum: case MagentaQuantum: { switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetGreenPixelComponent(q,ScaleCharToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetGreenPixelComponent(q,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel))); p+=quantum_info->pad; q++; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetGreenPixelComponent(q,ScaleShortToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } case 32: { unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushFloatPixel(&quantum_state,p,&pixel); SetGreenPixelComponent(q,ClampToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(endian,p,&pixel); SetGreenPixelComponent(q,ScaleLongToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(&quantum_state,p,&pixel); SetGreenPixelComponent(q,ClampToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } } default: { range=GetQuantumRange(image->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetGreenPixelComponent(q,ScaleAnyToQuantum(pixel,range)); p+=quantum_info->pad; q++; } break; } } break; } case BlueQuantum: case YellowQuantum: { switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetBluePixelComponent(q,ScaleCharToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetBluePixelComponent(q,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel))); p+=quantum_info->pad; q++; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetBluePixelComponent(q,ScaleShortToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } case 32: { unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushFloatPixel(&quantum_state,p,&pixel); SetBluePixelComponent(q,ClampToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(endian,p,&pixel); SetBluePixelComponent(q,ScaleLongToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(&quantum_state,p,&pixel); SetBluePixelComponent(q,ClampToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } } default: { range=GetQuantumRange(image->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetBluePixelComponent(q,ScaleAnyToQuantum(pixel,range)); p+=quantum_info->pad; q++; } break; } } break; } case AlphaQuantum: { switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetAlphaPixelComponent(q,ScaleCharToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetAlphaPixelComponent(q,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel))); p+=quantum_info->pad; q++; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetAlphaPixelComponent(q,ScaleShortToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } case 32: { unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushFloatPixel(&quantum_state,p,&pixel); SetAlphaPixelComponent(q,ClampToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(endian,p,&pixel); SetAlphaPixelComponent(q,ScaleLongToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(&quantum_state,p,&pixel); SetAlphaPixelComponent(q,ClampToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } } default: { range=GetQuantumRange(image->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetAlphaPixelComponent(q,ScaleAnyToQuantum(pixel,range)); p+=quantum_info->pad; q++; } break; } } break; } case BlackQuantum: { if (image->colorspace != CMYKColorspace) { (void) ThrowMagickException(exception,GetMagickModule(),ImageError, "ColorSeparatedImageRequired","`%s'",image->filename); return(extent); } switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetIndexPixelComponent(indexes+x,ScaleCharToQuantum(pixel)); p+=quantum_info->pad; } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetIndexPixelComponent(indexes+x,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel))); p+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetIndexPixelComponent(indexes+x,ScaleShortToQuantum(pixel)); p+=quantum_info->pad; } break; } case 32: { unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushFloatPixel(&quantum_state,p,&pixel); SetIndexPixelComponent(indexes+x,ClampToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(endian,p,&pixel); SetIndexPixelComponent(indexes+x,ScaleLongToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(&quantum_state,p,&pixel); SetIndexPixelComponent(indexes+x,ClampToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } } default: { range=GetQuantumRange(image->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetIndexPixelComponent(indexes+x,ScaleAnyToQuantum(pixel,range)); p+=quantum_info->pad; q++; } break; } } break; } case RGBQuantum: case CbYCrQuantum: { switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetRedPixelComponent(q,ScaleCharToQuantum(pixel)); p=PushCharPixel(p,&pixel); SetGreenPixelComponent(q,ScaleCharToQuantum(pixel)); p=PushCharPixel(p,&pixel); SetBluePixelComponent(q,ScaleCharToQuantum(pixel)); SetOpacityPixelComponent(q,OpaqueOpacity); p+=quantum_info->pad; q++; } break; } case 10: { range=GetQuantumRange(image->depth); if (quantum_info->pack == MagickFalse) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(endian,p,&pixel); SetRedPixelComponent(q,ScaleAnyToQuantum((pixel >> 22) & 0x3ff,range)); SetGreenPixelComponent(q,ScaleAnyToQuantum((pixel >> 12) & 0x3ff,range)); SetBluePixelComponent(q,ScaleAnyToQuantum((pixel >> 2) & 0x3ff,range)); p+=quantum_info->pad; q++; } break; } if (quantum_info->quantum == 32U) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumLongPixel(&quantum_state,image->depth,p,&pixel); SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range)); p=PushQuantumLongPixel(&quantum_state,image->depth,p,&pixel); SetGreenPixelComponent(q,ScaleAnyToQuantum(pixel,range)); p=PushQuantumLongPixel(&quantum_state,image->depth,p,&pixel); SetBluePixelComponent(q,ScaleAnyToQuantum(pixel,range)); q++; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range)); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetGreenPixelComponent(q,ScaleAnyToQuantum(pixel,range)); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetBluePixelComponent(q,ScaleAnyToQuantum(pixel,range)); q++; } break; } case 12: { range=GetQuantumRange(image->depth); if (quantum_info->pack == MagickFalse) { unsigned short pixel; for (x=0; x < (ssize_t) (3*number_pixels-1); x+=2) { p=PushShortPixel(endian,p,&pixel); switch (x % 3) { default: case 0: { SetRedPixelComponent(q,ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range)); break; } case 1: { SetGreenPixelComponent(q,ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range)); break; } case 2: { SetBluePixelComponent(q,ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range)); q++; break; } } p=PushShortPixel(endian,p,&pixel); switch ((x+1) % 3) { default: case 0: { SetRedPixelComponent(q,ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range)); break; } case 1: { SetGreenPixelComponent(q,ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range)); break; } case 2: { SetBluePixelComponent(q,ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range)); q++; break; } } p+=quantum_info->pad; } for (bit=0; bit < (ssize_t) (3*number_pixels % 2); bit++) { p=PushShortPixel(endian,p,&pixel); switch ((x+bit) % 3) { default: case 0: { SetRedPixelComponent(q,ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range)); break; } case 1: { SetGreenPixelComponent(q,ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range)); break; } case 2: { SetBluePixelComponent(q,ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range)); q++; break; } } p+=quantum_info->pad; } if (bit != 0) p++; break; } if (quantum_info->quantum == 32U) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumLongPixel(&quantum_state,image->depth,p,&pixel); SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range)); p=PushQuantumLongPixel(&quantum_state,image->depth,p,&pixel); SetGreenPixelComponent(q,ScaleAnyToQuantum(pixel,range)); p=PushQuantumLongPixel(&quantum_state,image->depth,p,&pixel); SetBluePixelComponent(q,ScaleAnyToQuantum(pixel,range)); q++; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range)); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetGreenPixelComponent(q,ScaleAnyToQuantum(pixel,range)); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetBluePixelComponent(q,ScaleAnyToQuantum(pixel,range)); q++; } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetRedPixelComponent(q,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel))); p=PushShortPixel(endian,p,&pixel); SetGreenPixelComponent(q,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel))); p=PushShortPixel(endian,p,&pixel); SetBluePixelComponent(q,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel))); p+=quantum_info->pad; q++; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetRedPixelComponent(q,ScaleShortToQuantum(pixel)); p=PushShortPixel(endian,p,&pixel); SetGreenPixelComponent(q,ScaleShortToQuantum(pixel)); p=PushShortPixel(endian,p,&pixel); SetBluePixelComponent(q,ScaleShortToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } case 32: { unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushFloatPixel(&quantum_state,p,&pixel); SetRedPixelComponent(q,ClampToQuantum(pixel)); p=PushFloatPixel(&quantum_state,p,&pixel); SetGreenPixelComponent(q,ClampToQuantum(pixel)); p=PushFloatPixel(&quantum_state,p,&pixel); SetBluePixelComponent(q,ClampToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(endian,p,&pixel); SetRedPixelComponent(q,ScaleLongToQuantum(pixel)); p=PushLongPixel(endian,p,&pixel); SetGreenPixelComponent(q,ScaleLongToQuantum(pixel)); p=PushLongPixel(endian,p,&pixel); SetBluePixelComponent(q,ScaleLongToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(&quantum_state,p,&pixel); SetRedPixelComponent(q,ClampToQuantum(pixel)); p=PushDoublePixel(&quantum_state,p,&pixel); SetGreenPixelComponent(q,ClampToQuantum(pixel)); p=PushDoublePixel(&quantum_state,p,&pixel); SetBluePixelComponent(q,ClampToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } } default: { range=GetQuantumRange(image->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range)); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetGreenPixelComponent(q,ScaleAnyToQuantum(pixel,range)); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetBluePixelComponent(q,ScaleAnyToQuantum(pixel,range)); q++; } break; } } break; } case RGBAQuantum: case RGBOQuantum: case CbYCrAQuantum: { switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetRedPixelComponent(q,ScaleCharToQuantum(pixel)); p=PushCharPixel(p,&pixel); SetGreenPixelComponent(q,ScaleCharToQuantum(pixel)); p=PushCharPixel(p,&pixel); SetBluePixelComponent(q,ScaleCharToQuantum(pixel)); p=PushCharPixel(p,&pixel); SetAlphaPixelComponent(q,ScaleCharToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } case 10: { pixel=0; if (quantum_info->pack == MagickFalse) { register ssize_t i; size_t quantum; ssize_t n; n=0; quantum=0; for (x=0; x < (ssize_t) number_pixels; x++) { for (i=0; i < 4; i++) { switch (n % 3) { case 0: { p=PushLongPixel(endian,p,&pixel); quantum=(size_t) (ScaleShortToQuantum((unsigned short) (((pixel >> 22) & 0x3ff) << 6))); break; } case 1: { quantum=(size_t) (ScaleShortToQuantum((unsigned short) (((pixel >> 12) & 0x3ff) << 6))); break; } case 2: { quantum=(size_t) (ScaleShortToQuantum((unsigned short) (((pixel >> 2) & 0x3ff) << 6))); break; } } switch (i) { case 0: SetRedPixelComponent(q,quantum); break; case 1: SetGreenPixelComponent(q,quantum); break; case 2: SetBluePixelComponent(q,quantum); break; case 3: SetAlphaPixelComponent(q,quantum); break; } n++; } p+=quantum_info->pad; q++; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetRedPixelComponent(q,ScaleShortToQuantum((unsigned short) (pixel << 6))); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetGreenPixelComponent(q,ScaleShortToQuantum((unsigned short) (pixel << 6))); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetBluePixelComponent(q,ScaleShortToQuantum((unsigned short) (pixel << 6))); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetAlphaPixelComponent(q,ScaleShortToQuantum((unsigned short) (pixel << 6))); q++; } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetRedPixelComponent(q,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel))); p=PushShortPixel(endian,p,&pixel); SetGreenPixelComponent(q,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel))); p=PushShortPixel(endian,p,&pixel); SetBluePixelComponent(q,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel))); p=PushShortPixel(endian,p,&pixel); SetAlphaPixelComponent(q,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel))); p+=quantum_info->pad; q++; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetRedPixelComponent(q,ScaleShortToQuantum(pixel)); p=PushShortPixel(endian,p,&pixel); SetGreenPixelComponent(q,ScaleShortToQuantum(pixel)); p=PushShortPixel(endian,p,&pixel); SetBluePixelComponent(q,ScaleShortToQuantum(pixel)); p=PushShortPixel(endian,p,&pixel); SetAlphaPixelComponent(q,ScaleShortToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } case 32: { unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushFloatPixel(&quantum_state,p,&pixel); SetRedPixelComponent(q,ClampToQuantum(pixel)); p=PushFloatPixel(&quantum_state,p,&pixel); SetGreenPixelComponent(q,ClampToQuantum(pixel)); p=PushFloatPixel(&quantum_state,p,&pixel); SetBluePixelComponent(q,ClampToQuantum(pixel)); p=PushFloatPixel(&quantum_state,p,&pixel); SetAlphaPixelComponent(q,ClampToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(endian,p,&pixel); SetRedPixelComponent(q,ScaleLongToQuantum(pixel)); p=PushLongPixel(endian,p,&pixel); SetGreenPixelComponent(q,ScaleLongToQuantum(pixel)); p=PushLongPixel(endian,p,&pixel); SetBluePixelComponent(q,ScaleLongToQuantum(pixel)); p=PushLongPixel(endian,p,&pixel); SetAlphaPixelComponent(q,ScaleLongToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(&quantum_state,p,&pixel); SetRedPixelComponent(q,ClampToQuantum(pixel)); p=PushDoublePixel(&quantum_state,p,&pixel); SetGreenPixelComponent(q,ClampToQuantum(pixel)); p=PushDoublePixel(&quantum_state,p,&pixel); SetBluePixelComponent(q,ClampToQuantum(pixel)); p=PushDoublePixel(&quantum_state,p,&pixel); SetAlphaPixelComponent(q,ClampToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } } default: { range=GetQuantumRange(image->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range)); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetGreenPixelComponent(q,ScaleAnyToQuantum(pixel,range)); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetBluePixelComponent(q,ScaleAnyToQuantum(pixel,range)); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetAlphaPixelComponent(q,ScaleAnyToQuantum(pixel,range)); q++; } break; } } break; } case CMYKQuantum: { if (image->colorspace != CMYKColorspace) { (void) ThrowMagickException(exception,GetMagickModule(),ImageError, "ColorSeparatedImageRequired","`%s'",image->filename); return(extent); } switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetRedPixelComponent(q,ScaleCharToQuantum(pixel)); p=PushCharPixel(p,&pixel); SetGreenPixelComponent(q,ScaleCharToQuantum(pixel)); p=PushCharPixel(p,&pixel); SetBluePixelComponent(q,ScaleCharToQuantum(pixel)); p=PushCharPixel(p,&pixel); SetIndexPixelComponent(indexes+x,ScaleCharToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetRedPixelComponent(q,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel))); p=PushShortPixel(endian,p,&pixel); SetGreenPixelComponent(q,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel))); p=PushShortPixel(endian,p,&pixel); SetBluePixelComponent(q,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel))); p=PushShortPixel(endian,p,&pixel); SetIndexPixelComponent(indexes+x,ClampToQuantum( (MagickRealType) QuantumRange*HalfToSinglePrecision(pixel))); p+=quantum_info->pad; q++; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetRedPixelComponent(q,ScaleShortToQuantum(pixel)); p=PushShortPixel(endian,p,&pixel); SetGreenPixelComponent(q,ScaleShortToQuantum(pixel)); p=PushShortPixel(endian,p,&pixel); SetBluePixelComponent(q,ScaleShortToQuantum(pixel)); p=PushShortPixel(endian,p,&pixel); SetIndexPixelComponent(indexes+x,ScaleShortToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } case 32: { unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushFloatPixel(&quantum_state,p,&pixel); SetRedPixelComponent(q,ClampToQuantum(pixel)); p=PushFloatPixel(&quantum_state,p,&pixel); SetGreenPixelComponent(q,ClampToQuantum(pixel)); p=PushFloatPixel(&quantum_state,p,&pixel); SetBluePixelComponent(q,ClampToQuantum(pixel)); p=PushFloatPixel(&quantum_state,p,&pixel); SetIndexPixelComponent(indexes+x,ClampToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(endian,p,&pixel); SetRedPixelComponent(q,ScaleLongToQuantum(pixel)); p=PushLongPixel(endian,p,&pixel); SetGreenPixelComponent(q,ScaleLongToQuantum(pixel)); p=PushLongPixel(endian,p,&pixel); SetBluePixelComponent(q,ScaleLongToQuantum(pixel)); p=PushLongPixel(endian,p,&pixel); SetIndexPixelComponent(indexes+x,ScaleLongToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(&quantum_state,p,&pixel); SetRedPixelComponent(q,ClampToQuantum(pixel)); p=PushDoublePixel(&quantum_state,p,&pixel); SetGreenPixelComponent(q,ClampToQuantum(pixel)); p=PushDoublePixel(&quantum_state,p,&pixel); SetBluePixelComponent(q,ClampToQuantum(pixel)); p=PushDoublePixel(&quantum_state,p,&pixel); SetIndexPixelComponent(indexes+x,ClampToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } } default: { range=GetQuantumRange(image->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range)); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetGreenPixelComponent(q,ScaleAnyToQuantum(pixel,range)); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetBluePixelComponent(q,ScaleAnyToQuantum(pixel,range)); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetIndexPixelComponent(indexes+x,ScaleAnyToQuantum(pixel,range)); q++; } break; } } break; } case CMYKAQuantum: case CMYKOQuantum: { if (image->colorspace != CMYKColorspace) { (void) ThrowMagickException(exception,GetMagickModule(),ImageError, "ColorSeparatedImageRequired","`%s'",image->filename); return(extent); } switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetRedPixelComponent(q,ScaleCharToQuantum(pixel)); p=PushCharPixel(p,&pixel); SetGreenPixelComponent(q,ScaleCharToQuantum(pixel)); p=PushCharPixel(p,&pixel); SetBluePixelComponent(q,ScaleCharToQuantum(pixel)); p=PushCharPixel(p,&pixel); SetIndexPixelComponent(indexes+x,ScaleCharToQuantum(pixel)); p=PushCharPixel(p,&pixel); SetAlphaPixelComponent(q,ScaleCharToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetRedPixelComponent(q,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel))); p=PushShortPixel(endian,p,&pixel); SetGreenPixelComponent(q,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel))); p=PushShortPixel(endian,p,&pixel); SetBluePixelComponent(q,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel))); p=PushShortPixel(endian,p,&pixel); SetIndexPixelComponent(indexes+x,ClampToQuantum( (MagickRealType) QuantumRange*HalfToSinglePrecision(pixel))); p=PushShortPixel(endian,p,&pixel); SetAlphaPixelComponent(q,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel))); p+=quantum_info->pad; q++; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetRedPixelComponent(q,ScaleShortToQuantum(pixel)); p=PushShortPixel(endian,p,&pixel); SetGreenPixelComponent(q,ScaleShortToQuantum(pixel)); p=PushShortPixel(endian,p,&pixel); SetBluePixelComponent(q,ScaleShortToQuantum(pixel)); p=PushShortPixel(endian,p,&pixel); SetIndexPixelComponent(indexes+x,ScaleShortToQuantum(pixel)); p=PushShortPixel(endian,p,&pixel); SetAlphaPixelComponent(q,ScaleShortToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } case 32: { unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushFloatPixel(&quantum_state,p,&pixel); SetRedPixelComponent(q,ClampToQuantum(pixel)); p=PushFloatPixel(&quantum_state,p,&pixel); SetGreenPixelComponent(q,ClampToQuantum(pixel)); p=PushFloatPixel(&quantum_state,p,&pixel); SetBluePixelComponent(q,ClampToQuantum(pixel)); p=PushFloatPixel(&quantum_state,p,&pixel); SetIndexPixelComponent(indexes+x,ClampToQuantum(pixel)); p=PushFloatPixel(&quantum_state,p,&pixel); SetAlphaPixelComponent(q,ClampToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(endian,p,&pixel); SetRedPixelComponent(q,ScaleLongToQuantum(pixel)); p=PushLongPixel(endian,p,&pixel); SetGreenPixelComponent(q,ScaleLongToQuantum(pixel)); p=PushLongPixel(endian,p,&pixel); SetBluePixelComponent(q,ScaleLongToQuantum(pixel)); p=PushLongPixel(endian,p,&pixel); SetIndexPixelComponent(indexes+x,ScaleLongToQuantum(pixel)); p=PushLongPixel(endian,p,&pixel); SetAlphaPixelComponent(q,ScaleLongToQuantum(pixel)); p+=quantum_info->pad; q++; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(&quantum_state,p,&pixel); SetRedPixelComponent(q,ClampToQuantum(pixel)); p=PushDoublePixel(&quantum_state,p,&pixel); SetGreenPixelComponent(q,ClampToQuantum(pixel)); p=PushDoublePixel(&quantum_state,p,&pixel); SetBluePixelComponent(q,ClampToQuantum(pixel)); p=PushDoublePixel(&quantum_state,p,&pixel); SetIndexPixelComponent(indexes+x,ClampToQuantum(pixel)); p=PushDoublePixel(&quantum_state,p,&pixel); SetAlphaPixelComponent(q,ClampToQuantum(pixel)); p=PushDoublePixel(&quantum_state,p,&pixel); p+=quantum_info->pad; q++; } break; } } default: { range=GetQuantumRange(image->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range)); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetGreenPixelComponent(q,ScaleAnyToQuantum(pixel,range)); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetBluePixelComponent(q,ScaleAnyToQuantum(pixel,range)); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetIndexPixelComponent(indexes+x,ScaleAnyToQuantum(pixel,range)); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetAlphaPixelComponent(q,ScaleAnyToQuantum(pixel,range)); q++; } break; } } break; } case CbYCrYQuantum: { switch (quantum_info->depth) { case 10: { Quantum cbcr[4]; pixel=0; if (quantum_info->pack == MagickFalse) { register ssize_t i; size_t quantum; ssize_t n; n=0; quantum=0; for (x=0; x < (ssize_t) number_pixels; x+=2) { for (i=0; i < 4; i++) { switch (n % 3) { case 0: { p=PushLongPixel(endian,p,&pixel); quantum=(size_t) (ScaleShortToQuantum((unsigned short) (((pixel >> 22) & 0x3ff) << 6))); break; } case 1: { quantum=(size_t) (ScaleShortToQuantum((unsigned short) (((pixel >> 12) & 0x3ff) << 6))); break; } case 2: { quantum=(size_t) (ScaleShortToQuantum((unsigned short) (((pixel >> 2) & 0x3ff) << 6))); break; } } cbcr[i]=(Quantum) (quantum); n++; } p+=quantum_info->pad; SetRedPixelComponent(q,cbcr[1]); SetGreenPixelComponent(q,cbcr[0]); SetBluePixelComponent(q,cbcr[2]); q++; SetRedPixelComponent(q,cbcr[3]); SetGreenPixelComponent(q,cbcr[0]); SetBluePixelComponent(q,cbcr[2]); q++; } break; } } default: { range=GetQuantumRange(image->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range)); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetGreenPixelComponent(q,ScaleAnyToQuantum(pixel,range)); q++; } break; } } break; } default: break; } if ((quantum_type == CbYCrQuantum) || (quantum_type == CbYCrAQuantum)) { Quantum quantum; register PixelPacket *restrict q; q=GetAuthenticPixelQueue(image); if (image_view != (CacheView *) NULL) q=GetCacheViewAuthenticPixelQueue(image_view); for (x=0; x < (ssize_t) number_pixels; x++) { quantum=GetRedPixelComponent(q); SetRedPixelComponent(q,GetGreenPixelComponent(q)); SetGreenPixelComponent(q,quantum); q++; } } if ((quantum_type == RGBOQuantum) || (quantum_type == CMYKOQuantum)) { register PixelPacket *restrict q; q=GetAuthenticPixelQueue(image); if (image_view != (CacheView *) NULL) q=GetCacheViewAuthenticPixelQueue(image_view); for (x=0; x < (ssize_t) number_pixels; x++) { SetOpacityPixelComponent(q,GetAlphaPixelComponent(q)); q++; } } if (quantum_info->alpha_type == DisassociatedQuantumAlpha) { MagickRealType alpha; register PixelPacket *restrict q; /* Disassociate alpha. */ q=GetAuthenticPixelQueue(image); if (image_view != (CacheView *) NULL) q=GetCacheViewAuthenticPixelQueue(image_view); for (x=0; x < (ssize_t) number_pixels; x++) { alpha=QuantumScale*GetAlphaPixelComponent(q); alpha=1.0/(fabs(alpha) <= MagickEpsilon ? 1.0 : alpha); SetRedPixelComponent(q,ClampToQuantum(alpha* GetRedPixelComponent(q))); SetGreenPixelComponent(q,ClampToQuantum(alpha* GetGreenPixelComponent(q))); SetBluePixelComponent(q,ClampToQuantum(alpha* GetBluePixelComponent(q))); q++; } } return(extent); }