/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % PPPP AAA IIIII N N TTTTT % % P P A A I NN N T % % PPPP AAAAA I N N N T % % P A A I N NN T % % P A A IIIII N N T % % % % % % Methods to Paint on an Image % % % % Software Design % % John Cristy % % July 1998 % % % % % % Copyright 1999-2011 ImageMagick Studio LLC, a non-profit organization % % dedicated to making software imaging solutions freely available. % % % % You may not use this file except in compliance with the License. You may % % obtain a copy of the License at % % % % http://www.imagemagick.org/script/license.php % % % % Unless required by applicable law or agreed to in writing, software % % distributed under the License is distributed on an "AS IS" BASIS, % % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % % See the License for the specific language governing permissions and % % limitations under the License. % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % */ /* Include declarations. */ #include "magick/studio.h" #include "magick/color.h" #include "magick/color-private.h" #include "magick/colorspace-private.h" #include "magick/composite.h" #include "magick/composite-private.h" #include "magick/draw.h" #include "magick/draw-private.h" #include "magick/exception.h" #include "magick/exception-private.h" #include "magick/gem.h" #include "magick/monitor.h" #include "magick/monitor-private.h" #include "magick/paint.h" #include "magick/pixel-private.h" #include "magick/string_.h" #include "magick/thread-private.h" /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % F l o o d f i l l P a i n t I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % FloodfillPaintImage() changes the color value of any pixel that matches % target and is an immediate neighbor. If the method FillToBorderMethod is % specified, the color value is changed for any neighbor pixel that does not % match the bordercolor member of image. % % By default target must match a particular pixel color exactly. % However, in many cases two colors may differ by a small amount. The % fuzz member of image defines how much tolerance is acceptable to % consider two colors as the same. For example, set fuzz to 10 and the % color red at intensities of 100 and 102 respectively are now % interpreted as the same color for the purposes of the floodfill. % % The format of the FloodfillPaintImage method is: % % MagickBooleanType FloodfillPaintImage(Image *image, % const ChannelType channel,const DrawInfo *draw_info, % const MagickPixelPacket target,const ssize_t x_offset, % const ssize_t y_offset,const MagickBooleanType invert) % % A description of each parameter follows: % % o image: the image. % % o channel: the channel(s). % % o draw_info: the draw info. % % o target: the RGB value of the target color. % % o x_offset,y_offset: the starting location of the operation. % % o invert: paint any pixel that does not match the target color. % */ MagickExport MagickBooleanType FloodfillPaintImage(Image *image, const ChannelType channel,const DrawInfo *draw_info, const MagickPixelPacket *target,const ssize_t x_offset,const ssize_t y_offset, const MagickBooleanType invert) { #define MaxStacksize (1UL << 15) #define PushSegmentStack(up,left,right,delta) \ { \ if (s >= (segment_stack+MaxStacksize)) \ ThrowBinaryException(DrawError,"SegmentStackOverflow",image->filename) \ else \ { \ if ((((up)+(delta)) >= 0) && (((up)+(delta)) < (ssize_t) image->rows)) \ { \ s->x1=(double) (left); \ s->y1=(double) (up); \ s->x2=(double) (right); \ s->y2=(double) (delta); \ s++; \ } \ } \ } CacheView *floodplane_view, *image_view; ExceptionInfo *exception; Image *floodplane_image; MagickBooleanType skip; MagickPixelPacket fill, pixel; PixelPacket fill_color; register SegmentInfo *s; SegmentInfo *segment_stack; ssize_t offset, start, x, x1, x2, y; /* Check boundary conditions. */ assert(image != (Image *) NULL); assert(image->signature == MagickSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(draw_info != (DrawInfo *) NULL); assert(draw_info->signature == MagickSignature); if ((x_offset < 0) || (x_offset >= (ssize_t) image->columns)) return(MagickFalse); if ((y_offset < 0) || (y_offset >= (ssize_t) image->rows)) return(MagickFalse); if (SetImageStorageClass(image,DirectClass) == MagickFalse) return(MagickFalse); if (image->matte == MagickFalse) (void) SetImageAlphaChannel(image,OpaqueAlphaChannel); /* Set floodfill state. */ floodplane_image=CloneImage(image,0,0,MagickTrue,&image->exception); if (floodplane_image == (Image *) NULL) return(MagickFalse); (void) SetImageAlphaChannel(floodplane_image,OpaqueAlphaChannel); segment_stack=(SegmentInfo *) AcquireQuantumMemory(MaxStacksize, sizeof(*segment_stack)); if (segment_stack == (SegmentInfo *) NULL) { floodplane_image=DestroyImage(floodplane_image); ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed", image->filename); } /* Push initial segment on stack. */ exception=(&image->exception); x=x_offset; y=y_offset; start=0; s=segment_stack; PushSegmentStack(y,x,x,1); PushSegmentStack(y+1,x,x,-1); GetMagickPixelPacket(image,&fill); GetMagickPixelPacket(image,&pixel); image_view=AcquireCacheView(image); floodplane_view=AcquireCacheView(floodplane_image); while (s > segment_stack) { register const IndexPacket *restrict indexes; register const PixelPacket *restrict p; register ssize_t x; register PixelPacket *restrict q; /* Pop segment off stack. */ s--; x1=(ssize_t) s->x1; x2=(ssize_t) s->x2; offset=(ssize_t) s->y2; y=(ssize_t) s->y1+offset; /* Recolor neighboring pixels. */ p=GetCacheViewVirtualPixels(image_view,0,y,(size_t) (x1+1),1,exception); q=GetCacheViewAuthenticPixels(floodplane_view,0,y,(size_t) (x1+1),1, exception); if ((p == (const PixelPacket *) NULL) || (q == (PixelPacket *) NULL)) break; indexes=GetCacheViewVirtualIndexQueue(image_view); p+=x1; q+=x1; for (x=x1; x >= 0; x--) { if (q->opacity == (Quantum) TransparentOpacity) break; SetMagickPixelPacket(image,p,indexes+x,&pixel); if (IsMagickColorSimilar(&pixel,target) == invert) break; q->opacity=(Quantum) TransparentOpacity; p--; q--; } if (SyncCacheViewAuthenticPixels(floodplane_view,exception) == MagickFalse) break; skip=x >= x1 ? MagickTrue : MagickFalse; if (skip == MagickFalse) { start=x+1; if (start < x1) PushSegmentStack(y,start,x1-1,-offset); x=x1+1; } do { if (skip == MagickFalse) { if (x < (ssize_t) image->columns) { p=GetCacheViewVirtualPixels(image_view,x,y,image->columns-x,1, exception); q=GetCacheViewAuthenticPixels(floodplane_view,x,y, image->columns-x,1,exception); if ((p == (const PixelPacket *) NULL) || (q == (PixelPacket *) NULL)) break; indexes=GetCacheViewVirtualIndexQueue(image_view); for ( ; x < (ssize_t) image->columns; x++) { if (q->opacity == (Quantum) TransparentOpacity) break; SetMagickPixelPacket(image,p,indexes+x,&pixel); if (IsMagickColorSimilar(&pixel,target) == invert) break; q->opacity=(Quantum) TransparentOpacity; p++; q++; } if (SyncCacheViewAuthenticPixels(floodplane_view,exception) == MagickFalse) break; } PushSegmentStack(y,start,x-1,offset); if (x > (x2+1)) PushSegmentStack(y,x2+1,x-1,-offset); } skip=MagickFalse; x++; if (x <= x2) { p=GetCacheViewVirtualPixels(image_view,x,y,(size_t) (x2-x+1),1, exception); q=GetCacheViewAuthenticPixels(floodplane_view,x,y,(size_t) (x2-x+1),1, exception); if ((p == (const PixelPacket *) NULL) || (q == (PixelPacket *) NULL)) break; indexes=GetCacheViewVirtualIndexQueue(image_view); for ( ; x <= x2; x++) { if (q->opacity == (Quantum) TransparentOpacity) break; SetMagickPixelPacket(image,p,indexes+x,&pixel); if (IsMagickColorSimilar(&pixel,target) != invert) break; p++; q++; } } start=x; } while (x <= x2); } for (y=0; y < (ssize_t) image->rows; y++) { register const PixelPacket *restrict p; register IndexPacket *restrict indexes; register ssize_t x; register PixelPacket *restrict q; /* Tile fill color onto floodplane. */ p=GetCacheViewVirtualPixels(floodplane_view,0,y,image->columns,1, exception); q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception); if ((p == (const PixelPacket *) NULL) || (q == (PixelPacket *) NULL)) break; indexes=GetCacheViewAuthenticIndexQueue(image_view); for (x=0; x < (ssize_t) image->columns; x++) { if (GetOpacityPixelComponent(p) != OpaqueOpacity) { (void) GetFillColor(draw_info,x,y,&fill_color); SetMagickPixelPacket(image,&fill_color,(IndexPacket *) NULL,&fill); if (image->colorspace == CMYKColorspace) ConvertRGBToCMYK(&fill); if ((channel & RedChannel) != 0) SetRedPixelComponent(q,ClampToQuantum(fill.red)); if ((channel & GreenChannel) != 0) SetGreenPixelComponent(q,ClampToQuantum(fill.green)); if ((channel & BlueChannel) != 0) SetBluePixelComponent(q,ClampToQuantum(fill.blue)); if ((channel & OpacityChannel) != 0) SetOpacityPixelComponent(q,ClampToQuantum(fill.opacity)); if (((channel & IndexChannel) != 0) && (image->colorspace == CMYKColorspace)) SetIndexPixelComponent(indexes+x,ClampToQuantum(fill.index)); } p++; q++; } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) break; } floodplane_view=DestroyCacheView(floodplane_view); image_view=DestroyCacheView(image_view); segment_stack=(SegmentInfo *) RelinquishMagickMemory(segment_stack); floodplane_image=DestroyImage(floodplane_image); return(y == (ssize_t) image->rows ? MagickTrue : MagickFalse); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % + G r a d i e n t I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % GradientImage() applies a continuously smooth color transitions along a % vector from one color to another. % % Note, the interface of this method will change in the future to support % more than one transistion. % % The format of the GradientImage method is: % % MagickBooleanType GradientImage(Image *image,const GradientType type, % const SpreadMethod method,const PixelPacket *start_color, % const PixelPacket *stop_color) % % A description of each parameter follows: % % o image: the image. % % o type: the gradient type: linear or radial. % % o spread: the gradient spread meathod: pad, reflect, or repeat. % % o start_color: the start color. % % o stop_color: the stop color. % % This provides a good example of making use of the DrawGradientImage % function and the gradient structure in draw_info. */ static inline double MagickMax(const double x,const double y) { return(x > y ? x : y); } MagickExport MagickBooleanType GradientImage(Image *image, const GradientType type,const SpreadMethod method, const PixelPacket *start_color,const PixelPacket *stop_color) { DrawInfo *draw_info; GradientInfo *gradient; MagickBooleanType status; register ssize_t i; /* Set gradient start-stop end points. */ assert(image != (const Image *) NULL); assert(image->signature == MagickSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(start_color != (const PixelPacket *) NULL); assert(stop_color != (const PixelPacket *) NULL); draw_info=AcquireDrawInfo(); gradient=(&draw_info->gradient); gradient->type=type; gradient->bounding_box.width=image->columns; gradient->bounding_box.height=image->rows; gradient->gradient_vector.x2=(double) image->columns-1.0; gradient->gradient_vector.y2=(double) image->rows-1.0; if ((type == LinearGradient) && (gradient->gradient_vector.y2 != 0.0)) gradient->gradient_vector.x2=0.0; gradient->center.x=(double) gradient->gradient_vector.x2/2.0; gradient->center.y=(double) gradient->gradient_vector.y2/2.0; gradient->radius=MagickMax(gradient->center.x,gradient->center.y); gradient->spread=method; /* Define the gradient to fill between the stops. */ gradient->number_stops=2; gradient->stops=(StopInfo *) AcquireQuantumMemory(gradient->number_stops, sizeof(*gradient->stops)); if (gradient->stops == (StopInfo *) NULL) ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed", image->filename); (void) ResetMagickMemory(gradient->stops,0,gradient->number_stops* sizeof(*gradient->stops)); for (i=0; i < (ssize_t) gradient->number_stops; i++) GetMagickPixelPacket(image,&gradient->stops[i].color); SetMagickPixelPacket(image,start_color,(IndexPacket *) NULL, &gradient->stops[0].color); gradient->stops[0].offset=0.0; SetMagickPixelPacket(image,stop_color,(IndexPacket *) NULL, &gradient->stops[1].color); gradient->stops[1].offset=1.0; /* Draw a gradient on the image. */ status=DrawGradientImage(image,draw_info); draw_info=DestroyDrawInfo(draw_info); if ((start_color->opacity == OpaqueOpacity) && (stop_color->opacity == OpaqueOpacity)) image->matte=MagickFalse; if ((IsGrayPixel(start_color) != MagickFalse) && (IsGrayPixel(stop_color) != MagickFalse)) image->type=GrayscaleType; return(status); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % O i l P a i n t I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % OilPaintImage() applies a special effect filter that simulates an oil % painting. Each pixel is replaced by the most frequent color occurring % in a circular region defined by radius. % % The format of the OilPaintImage method is: % % Image *OilPaintImage(const Image *image,const double radius, % ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o radius: the radius of the circular neighborhood. % % o exception: return any errors or warnings in this structure. % */ static size_t **DestroyHistogramThreadSet(size_t **histogram) { register ssize_t i; assert(histogram != (size_t **) NULL); for (i=0; i < (ssize_t) GetOpenMPMaximumThreads(); i++) if (histogram[i] != (size_t *) NULL) histogram[i]=(size_t *) RelinquishMagickMemory(histogram[i]); histogram=(size_t **) RelinquishMagickMemory(histogram); return(histogram); } static size_t **AcquireHistogramThreadSet(const size_t count) { register ssize_t i; size_t **histogram, number_threads; number_threads=GetOpenMPMaximumThreads(); histogram=(size_t **) AcquireQuantumMemory(number_threads, sizeof(*histogram)); if (histogram == (size_t **) NULL) return((size_t **) NULL); (void) ResetMagickMemory(histogram,0,number_threads*sizeof(*histogram)); for (i=0; i < (ssize_t) number_threads; i++) { histogram[i]=(size_t *) AcquireQuantumMemory(count, sizeof(**histogram)); if (histogram[i] == (size_t *) NULL) return(DestroyHistogramThreadSet(histogram)); } return(histogram); } MagickExport Image *OilPaintImage(const Image *image,const double radius, ExceptionInfo *exception) { #define NumberPaintBins 256 #define OilPaintImageTag "OilPaint/Image" CacheView *image_view, *paint_view; Image *paint_image; MagickBooleanType status; MagickOffsetType progress; size_t **restrict histograms, width; ssize_t y; /* Initialize painted image attributes. */ assert(image != (const Image *) NULL); assert(image->signature == MagickSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickSignature); width=GetOptimalKernelWidth2D(radius,0.5); paint_image=CloneImage(image,image->columns,image->rows,MagickTrue,exception); if (paint_image == (Image *) NULL) return((Image *) NULL); if (SetImageStorageClass(paint_image,DirectClass) == MagickFalse) { InheritException(exception,&paint_image->exception); paint_image=DestroyImage(paint_image); return((Image *) NULL); } histograms=AcquireHistogramThreadSet(NumberPaintBins); if (histograms == (size_t **) NULL) { paint_image=DestroyImage(paint_image); ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); } /* Oil paint image. */ status=MagickTrue; progress=0; image_view=AcquireCacheView(image); paint_view=AcquireCacheView(paint_image); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(dynamic,4) shared(progress,status) #endif for (y=0; y < (ssize_t) image->rows; y++) { register const IndexPacket *restrict indexes; register const PixelPacket *restrict p; register IndexPacket *restrict paint_indexes; register ssize_t x; register PixelPacket *restrict q; register size_t *histogram; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(image_view,-((ssize_t) width/2L),y-(ssize_t) (width/2L),image->columns+width,width,exception); q=QueueCacheViewAuthenticPixels(paint_view,0,y,paint_image->columns,1, exception); if ((p == (const PixelPacket *) NULL) || (q == (PixelPacket *) NULL)) { status=MagickFalse; continue; } indexes=GetCacheViewVirtualIndexQueue(image_view); paint_indexes=GetCacheViewAuthenticIndexQueue(paint_view); histogram=histograms[GetOpenMPThreadId()]; for (x=0; x < (ssize_t) image->columns; x++) { register ssize_t i, u; size_t count; ssize_t j, k, v; /* Assign most frequent color. */ i=0; j=0; count=0; (void) ResetMagickMemory(histogram,0,NumberPaintBins*sizeof(*histogram)); for (v=0; v < (ssize_t) width; v++) { for (u=0; u < (ssize_t) width; u++) { k=(ssize_t) ScaleQuantumToChar(PixelIntensityToQuantum(p+u+i)); histogram[k]++; if (histogram[k] > count) { j=i+u; count=histogram[k]; } } i+=(ssize_t) (image->columns+width); } *q=(*(p+j)); if (image->colorspace == CMYKColorspace) SetIndexPixelComponent(paint_indexes+x,GetIndexPixelComponent( indexes+x+j)); p++; q++; } if (SyncCacheViewAuthenticPixels(paint_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_OilPaintImage) #endif proceed=SetImageProgress(image,OilPaintImageTag,progress++,image->rows); if (proceed == MagickFalse) status=MagickFalse; } } paint_view=DestroyCacheView(paint_view); image_view=DestroyCacheView(image_view); histograms=DestroyHistogramThreadSet(histograms); if (status == MagickFalse) paint_image=DestroyImage(paint_image); return(paint_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % O p a q u e P a i n t I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % OpaquePaintImage() changes any pixel that matches color with the color % defined by fill. % % By default color must match a particular pixel color exactly. However, % in many cases two colors may differ by a small amount. Fuzz defines % how much tolerance is acceptable to consider two colors as the same. % For example, set fuzz to 10 and the color red at intensities of 100 and % 102 respectively are now interpreted as the same color. % % The format of the OpaquePaintImage method is: % % MagickBooleanType OpaquePaintImage(Image *image, % const PixelPacket *target,const PixelPacket *fill, % const MagickBooleanType invert) % MagickBooleanType OpaquePaintImageChannel(Image *image, % const ChannelType channel,const PixelPacket *target, % const PixelPacket *fill,const MagickBooleanType invert) % % A description of each parameter follows: % % o image: the image. % % o channel: the channel(s). % % o target: the RGB value of the target color. % % o fill: the replacement color. % % o invert: paint any pixel that does not match the target color. % */ MagickExport MagickBooleanType OpaquePaintImage(Image *image, const MagickPixelPacket *target,const MagickPixelPacket *fill, const MagickBooleanType invert) { return(OpaquePaintImageChannel(image,CompositeChannels,target,fill,invert)); } MagickExport MagickBooleanType OpaquePaintImageChannel(Image *image, const ChannelType channel,const MagickPixelPacket *target, const MagickPixelPacket *fill,const MagickBooleanType invert) { #define OpaquePaintImageTag "Opaque/Image" CacheView *image_view; ExceptionInfo *exception; MagickBooleanType status; MagickOffsetType progress; MagickPixelPacket zero; ssize_t y; assert(image != (Image *) NULL); assert(image->signature == MagickSignature); assert(target != (MagickPixelPacket *) NULL); assert(fill != (MagickPixelPacket *) NULL); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); if (SetImageStorageClass(image,DirectClass) == MagickFalse) return(MagickFalse); /* Make image color opaque. */ status=MagickTrue; progress=0; exception=(&image->exception); GetMagickPixelPacket(image,&zero); image_view=AcquireCacheView(image); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(dynamic,4) shared(progress,status) #endif for (y=0; y < (ssize_t) image->rows; y++) { MagickPixelPacket pixel; register IndexPacket *restrict indexes; register ssize_t x; register PixelPacket *restrict q; if (status == MagickFalse) continue; q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception); if (q == (PixelPacket *) NULL) { status=MagickFalse; continue; } indexes=GetCacheViewAuthenticIndexQueue(image_view); pixel=zero; for (x=0; x < (ssize_t) image->columns; x++) { SetMagickPixelPacket(image,q,indexes+x,&pixel); if (IsMagickColorSimilar(&pixel,target) != invert) { if ((channel & RedChannel) != 0) SetRedPixelComponent(q,ClampToQuantum(fill->red)); if ((channel & GreenChannel) != 0) SetGreenPixelComponent(q,ClampToQuantum(fill->green)); if ((channel & BlueChannel) != 0) SetBluePixelComponent(q,ClampToQuantum(fill->blue)); if ((channel & OpacityChannel) != 0) SetOpacityPixelComponent(q,ClampToQuantum(fill->opacity)); if (((channel & IndexChannel) != 0) && (image->colorspace == CMYKColorspace)) SetIndexPixelComponent(indexes+x,ClampToQuantum(fill->index)); } q++; } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_OpaquePaintImageChannel) #endif proceed=SetImageProgress(image,OpaquePaintImageTag,progress++, image->rows); if (proceed == MagickFalse) status=MagickFalse; } } image_view=DestroyCacheView(image_view); return(status); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % T r a n s p a r e n t P a i n t I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % TransparentPaintImage() changes the opacity value associated with any pixel % that matches color to the value defined by opacity. % % By default color must match a particular pixel color exactly. However, % in many cases two colors may differ by a small amount. Fuzz defines % how much tolerance is acceptable to consider two colors as the same. % For example, set fuzz to 10 and the color red at intensities of 100 and % 102 respectively are now interpreted as the same color. % % The format of the TransparentPaintImage method is: % % MagickBooleanType TransparentPaintImage(Image *image, % const MagickPixelPacket *target,const Quantum opacity, % const MagickBooleanType invert) % % A description of each parameter follows: % % o image: the image. % % o target: the target color. % % o opacity: the replacement opacity value. % % o invert: paint any pixel that does not match the target color. % */ MagickExport MagickBooleanType TransparentPaintImage(Image *image, const MagickPixelPacket *target,const Quantum opacity, const MagickBooleanType invert) { #define TransparentPaintImageTag "Transparent/Image" CacheView *image_view; ExceptionInfo *exception; MagickBooleanType status; MagickOffsetType progress; MagickPixelPacket zero; ssize_t y; assert(image != (Image *) NULL); assert(image->signature == MagickSignature); assert(target != (MagickPixelPacket *) NULL); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); if (SetImageStorageClass(image,DirectClass) == MagickFalse) return(MagickFalse); if (image->matte == MagickFalse) (void) SetImageAlphaChannel(image,OpaqueAlphaChannel); /* Make image color transparent. */ status=MagickTrue; progress=0; exception=(&image->exception); GetMagickPixelPacket(image,&zero); image_view=AcquireCacheView(image); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(dynamic,4) shared(progress,status) #endif for (y=0; y < (ssize_t) image->rows; y++) { MagickPixelPacket pixel; register IndexPacket *restrict indexes; register ssize_t x; register PixelPacket *restrict q; if (status == MagickFalse) continue; q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception); if (q == (PixelPacket *) NULL) { status=MagickFalse; continue; } indexes=GetCacheViewAuthenticIndexQueue(image_view); pixel=zero; for (x=0; x < (ssize_t) image->columns; x++) { SetMagickPixelPacket(image,q,indexes+x,&pixel); if (IsMagickColorSimilar(&pixel,target) != invert) q->opacity=opacity; q++; } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_TransparentPaintImage) #endif proceed=SetImageProgress(image,TransparentPaintImageTag,progress++, image->rows); if (proceed == MagickFalse) status=MagickFalse; } } image_view=DestroyCacheView(image_view); return(status); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % T r a n s p a r e n t P a i n t I m a g e C h r o m a % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % TransparentPaintImageChroma() changes the opacity value associated with any % pixel that matches color to the value defined by opacity. % % As there is one fuzz value for the all the channels, the % TransparentPaintImage() API is not suitable for the operations like chroma, % where the tolerance for similarity of two color component (RGB) can be % different, Thus we define this method take two target pixels (one % low and one hight) and all the pixels of an image which are lying between % these two pixels are made transparent. % % The format of the TransparentPaintImage method is: % % MagickBooleanType TransparentPaintImage(Image *image, % const MagickPixelPacket *low,const MagickPixelPacket *hight, % const Quantum opacity,const MagickBooleanType invert) % % A description of each parameter follows: % % o image: the image. % % o low: the low target color. % % o high: the high target color. % % o opacity: the replacement opacity value. % % o invert: paint any pixel that does not match the target color. % */ MagickExport MagickBooleanType TransparentPaintImageChroma(Image *image, const MagickPixelPacket *low,const MagickPixelPacket *high, const Quantum opacity,const MagickBooleanType invert) { #define TransparentPaintImageTag "Transparent/Image" CacheView *image_view; ExceptionInfo *exception; MagickBooleanType status; MagickOffsetType progress; ssize_t y; assert(image != (Image *) NULL); assert(image->signature == MagickSignature); assert(high != (MagickPixelPacket *) NULL); assert(low != (MagickPixelPacket *) NULL); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); if (SetImageStorageClass(image,DirectClass) == MagickFalse) return(MagickFalse); if (image->matte == MagickFalse) (void) SetImageAlphaChannel(image,ResetAlphaChannel); /* Make image color transparent. */ status=MagickTrue; progress=0; exception=(&image->exception); image_view=AcquireCacheView(image); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(dynamic,4) shared(progress,status) #endif for (y=0; y < (ssize_t) image->rows; y++) { MagickBooleanType match; MagickPixelPacket pixel; register IndexPacket *restrict indexes; register ssize_t x; register PixelPacket *restrict q; if (status == MagickFalse) continue; q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception); if (q == (PixelPacket *) NULL) { status=MagickFalse; continue; } indexes=GetCacheViewAuthenticIndexQueue(image_view); GetMagickPixelPacket(image,&pixel); for (x=0; x < (ssize_t) image->columns; x++) { SetMagickPixelPacket(image,q,indexes+x,&pixel); match=((pixel.red >= low->red) && (pixel.red <= high->red) && (pixel.green >= low->green) && (pixel.green <= high->green) && (pixel.blue >= low->blue) && (pixel.blue <= high->blue)) ? MagickTrue : MagickFalse; if (match != invert) q->opacity=opacity; q++; } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_TransparentPaintImageChroma) #endif proceed=SetImageProgress(image,TransparentPaintImageTag,progress++, image->rows); if (proceed == MagickFalse) status=MagickFalse; } } image_view=DestroyCacheView(image_view); return(status); }