/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % M M OOO RRRR PPPP H H OOO L OOO GGGG Y Y % % MM MM O O R R P P H H O O L O O G Y Y % % M M M O O RRRR PPPP HHHHH O O L O O G GGG Y % % M M O O R R P H H O O L O O G G Y % % M M OOO R R P H H OOO LLLLL OOO GGG Y % % % % % % MagickCore Morphology Methods % % % % Software Design % % Anthony Thyssen % % January 2010 % % % % % % Copyright 1999-2010 ImageMagick Studio LLC, a non-profit organization % % dedicated to making software imaging solutions freely available. % % % % You may not use this file except in compliance with the License. You may % % obtain a copy of the License at % % % % http://www.imagemagick.org/script/license.php % % % % Unless required by applicable law or agreed to in writing, software % % distributed under the License is distributed on an "AS IS" BASIS, % % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % % See the License for the specific language governing permissions and % % limitations under the License. % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Morpology is the the application of various kernels, of any size and even % shape, to a image in various ways (typically binary, but not always). % % Convolution (weighted sum or average) is just one specific type of % morphology. Just one that is very common for image bluring and sharpening % effects. Not only 2D Gaussian blurring, but also 2-pass 1D Blurring. % % This module provides not only a general morphology function, and the ability % to apply more advanced or iterative morphologies, but also functions for the % generation of many different types of kernel arrays from user supplied % arguments. Prehaps even the generation of a kernel from a small image. */ /* Include declarations. */ #include "magick/studio.h" #include "magick/artifact.h" #include "magick/cache-view.h" #include "magick/color-private.h" #include "magick/enhance.h" #include "magick/exception.h" #include "magick/exception-private.h" #include "magick/gem.h" #include "magick/hashmap.h" #include "magick/image.h" #include "magick/image-private.h" #include "magick/list.h" #include "magick/magick.h" #include "magick/memory_.h" #include "magick/monitor-private.h" #include "magick/morphology.h" #include "magick/morphology-private.h" #include "magick/option.h" #include "magick/pixel-private.h" #include "magick/prepress.h" #include "magick/quantize.h" #include "magick/registry.h" #include "magick/semaphore.h" #include "magick/splay-tree.h" #include "magick/statistic.h" #include "magick/string_.h" #include "magick/string-private.h" #include "magick/token.h" /* ** The following test is for special floating point numbers of value NaN (not ** a number), that may be used within a Kernel Definition. NaN's are defined ** as part of the IEEE standard for floating point number representation. ** ** These are used as a Kernel value to mean that this kernel position is not ** part of the kernel neighbourhood for convolution or morphology processing, ** and thus should be ignored. This allows the use of 'shaped' kernels. ** ** The special properity that two NaN's are never equal, even if they are from ** the same variable allow you to test if a value is special NaN value. ** ** This macro IsNaN() is thus is only true if the value given is NaN. */ #define IsNan(a) ((a)!=(a)) /* Other global definitions used by module. */ static inline double MagickMin(const double x,const double y) { return( x < y ? x : y); } static inline double MagickMax(const double x,const double y) { return( x > y ? x : y); } #define Minimize(assign,value) assign=MagickMin(assign,value) #define Maximize(assign,value) assign=MagickMax(assign,value) /* Currently these are only internal to this module */ static void CalcKernelMetaData(KernelInfo *), ExpandKernelInfo(KernelInfo *, const double), RotateKernelInfo(KernelInfo *, double); /* Quick function to find last kernel in a kernel list */ static inline KernelInfo *LastKernelInfo(KernelInfo *kernel) { while (kernel->next != (KernelInfo *) NULL) kernel = kernel->next; return(kernel); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % A c q u i r e K e r n e l I n f o % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % AcquireKernelInfo() takes the given string (generally supplied by the % user) and converts it into a Morphology/Convolution Kernel. This allows % users to specify a kernel from a number of pre-defined kernels, or to fully % specify their own kernel for a specific Convolution or Morphology % Operation. % % The kernel so generated can be any rectangular array of floating point % values (doubles) with the 'control point' or 'pixel being affected' % anywhere within that array of values. % % Previously IM was restricted to a square of odd size using the exact % center as origin, this is no ssize_ter the case, and any rectangular kernel % with any value being declared the origin. This in turn allows the use of % highly asymmetrical kernels. % % The floating point values in the kernel can also include a special value % known as 'nan' or 'not a number' to indicate that this value is not part % of the kernel array. This allows you to shaped the kernel within its % rectangular area. That is 'nan' values provide a 'mask' for the kernel % shape. However at least one non-nan value must be provided for correct % working of a kernel. % % The returned kernel should be freed using the DestroyKernelInfo() when you % are finished with it. Do not free this memory yourself. % % Input kernel defintion strings can consist of any of three types. % % "name:args" % Select from one of the built in kernels, using the name and % geometry arguments supplied. See AcquireKernelBuiltIn() % % "WxH[+X+Y][^@]:num, num, num ..." % a kernel of size W by H, with W*H floating point numbers following. % the 'center' can be optionally be defined at +X+Y (such that +0+0 % is top left corner). If not defined the pixel in the center, for % odd sizes, or to the immediate top or left of center for even sizes % is automatically selected. % % If a '^' is included the kernel expanded with 90-degree rotations, % While a '@' will allow you to expand a 3x3 kernel using 45-degree % circular rotates. % % "num, num, num, num, ..." % list of floating point numbers defining an 'old style' odd sized % square kernel. At least 9 values should be provided for a 3x3 % square kernel, 25 for a 5x5 square kernel, 49 for 7x7, etc. % Values can be space or comma separated. This is not recommended. % % You can define a 'list of kernels' which can be used by some morphology % operators A list is defined as a semi-colon seperated list kernels. % % " kernel ; kernel ; kernel ; " % % Any extra ';' characters, at start, end or between kernel defintions are % simply ignored. % % Note that 'name' kernels will start with an alphabetic character while the % new kernel specification has a ':' character in its specification string. % If neither is the case, it is assumed an old style of a simple list of % numbers generating a odd-sized square kernel has been given. % % The format of the AcquireKernal method is: % % KernelInfo *AcquireKernelInfo(const char *kernel_string) % % A description of each parameter follows: % % o kernel_string: the Morphology/Convolution kernel wanted. % */ /* This was separated so that it could be used as a separate ** array input handling function, such as for -color-matrix */ static KernelInfo *ParseKernelArray(const char *kernel_string) { KernelInfo *kernel; char token[MaxTextExtent]; const char *p, *end; register ssize_t i; double nan = sqrt((double)-1.0); /* Special Value : Not A Number */ MagickStatusType flags; GeometryInfo args; kernel=(KernelInfo *) AcquireMagickMemory(sizeof(*kernel)); if (kernel == (KernelInfo *)NULL) return(kernel); (void) ResetMagickMemory(kernel,0,sizeof(*kernel)); kernel->minimum = kernel->maximum = kernel->angle = 0.0; kernel->negative_range = kernel->positive_range = 0.0; kernel->type = UserDefinedKernel; kernel->next = (KernelInfo *) NULL; kernel->signature = MagickSignature; /* find end of this specific kernel definition string */ end = strchr(kernel_string, ';'); if ( end == (char *) NULL ) end = strchr(kernel_string, '\0'); /* clear flags - for Expanding kernal lists thorugh rotations */ flags = NoValue; /* Has a ':' in argument - New user kernel specification */ p = strchr(kernel_string, ':'); if ( p != (char *) NULL && p < end) { /* ParseGeometry() needs the geometry separated! -- Arrgghh */ memcpy(token, kernel_string, (size_t) (p-kernel_string)); token[p-kernel_string] = '\0'; SetGeometryInfo(&args); flags = ParseGeometry(token, &args); /* Size handling and checks of geometry settings */ if ( (flags & WidthValue) == 0 ) /* if no width then */ args.rho = args.sigma; /* then width = height */ if ( args.rho < 1.0 ) /* if width too small */ args.rho = 1.0; /* then width = 1 */ if ( args.sigma < 1.0 ) /* if height too small */ args.sigma = args.rho; /* then height = width */ kernel->width = (size_t)args.rho; kernel->height = (size_t)args.sigma; /* Offset Handling and Checks */ if ( args.xi < 0.0 || args.psi < 0.0 ) return(DestroyKernelInfo(kernel)); kernel->x = ((flags & XValue)!=0) ? (ssize_t)args.xi : (ssize_t) (kernel->width-1)/2; kernel->y = ((flags & YValue)!=0) ? (ssize_t)args.psi : (ssize_t) (kernel->height-1)/2; if ( kernel->x >= (ssize_t) kernel->width || kernel->y >= (ssize_t) kernel->height ) return(DestroyKernelInfo(kernel)); p++; /* advance beyond the ':' */ } else { /* ELSE - Old old specification, forming odd-square kernel */ /* count up number of values given */ p=(const char *) kernel_string; while ((isspace((int) ((unsigned char) *p)) != 0) || (*p == '\'')) p++; /* ignore "'" chars for convolve filter usage - Cristy */ for (i=0; p < end; i++) { GetMagickToken(p,&p,token); if (*token == ',') GetMagickToken(p,&p,token); } /* set the size of the kernel - old sized square */ kernel->width = kernel->height= (size_t) sqrt((double) i+1.0); kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; p=(const char *) kernel_string; while ((isspace((int) ((unsigned char) *p)) != 0) || (*p == '\'')) p++; /* ignore "'" chars for convolve filter usage - Cristy */ } /* Read in the kernel values from rest of input string argument */ kernel->values=(double *) AcquireQuantumMemory(kernel->width, kernel->height*sizeof(double)); if (kernel->values == (double *) NULL) return(DestroyKernelInfo(kernel)); kernel->minimum = +MagickHuge; kernel->maximum = -MagickHuge; kernel->negative_range = kernel->positive_range = 0.0; for (i=0; (i < (ssize_t) (kernel->width*kernel->height)) && (p < end); i++) { GetMagickToken(p,&p,token); if (*token == ',') GetMagickToken(p,&p,token); if ( LocaleCompare("nan",token) == 0 || LocaleCompare("-",token) == 0 ) { kernel->values[i] = nan; /* do not include this value in kernel */ } else { kernel->values[i] = StringToDouble(token); ( kernel->values[i] < 0) ? ( kernel->negative_range += kernel->values[i] ) : ( kernel->positive_range += kernel->values[i] ); Minimize(kernel->minimum, kernel->values[i]); Maximize(kernel->maximum, kernel->values[i]); } } /* sanity check -- no more values in kernel definition */ GetMagickToken(p,&p,token); if ( *token != '\0' && *token != ';' && *token != '\'' ) return(DestroyKernelInfo(kernel)); #if 0 /* this was the old method of handling a incomplete kernel */ if ( i < (ssize_t) (kernel->width*kernel->height) ) { Minimize(kernel->minimum, kernel->values[i]); Maximize(kernel->maximum, kernel->values[i]); for ( ; i < (ssize_t) (kernel->width*kernel->height); i++) kernel->values[i]=0.0; } #else /* Number of values for kernel was not enough - Report Error */ if ( i < (ssize_t) (kernel->width*kernel->height) ) return(DestroyKernelInfo(kernel)); #endif /* check that we recieved at least one real (non-nan) value! */ if ( kernel->minimum == MagickHuge ) return(DestroyKernelInfo(kernel)); if ( (flags & AreaValue) != 0 ) /* '@' symbol in kernel size */ ExpandKernelInfo(kernel, 45.0); else if ( (flags & MinimumValue) != 0 ) /* '^' symbol in kernel size */ ExpandKernelInfo(kernel, 90.0); return(kernel); } static KernelInfo *ParseKernelName(const char *kernel_string) { KernelInfo *kernel; char token[MaxTextExtent]; ssize_t type; const char *p, *end; MagickStatusType flags; GeometryInfo args; /* Parse special 'named' kernel */ GetMagickToken(kernel_string,&p,token); type=ParseMagickOption(MagickKernelOptions,MagickFalse,token); if ( type < 0 || type == UserDefinedKernel ) return((KernelInfo *)NULL); /* not a valid named kernel */ while (((isspace((int) ((unsigned char) *p)) != 0) || (*p == ',') || (*p == ':' )) && (*p != '\0') && (*p != ';')) p++; end = strchr(p, ';'); /* end of this kernel defintion */ if ( end == (char *) NULL ) end = strchr(p, '\0'); /* ParseGeometry() needs the geometry separated! -- Arrgghh */ memcpy(token, p, (size_t) (end-p)); token[end-p] = '\0'; SetGeometryInfo(&args); flags = ParseGeometry(token, &args); #if 0 /* For Debugging Geometry Input */ fprintf(stderr, "Geometry = 0x%04X : %lg x %lg %+lg %+lg\n", flags, args.rho, args.sigma, args.xi, args.psi ); #endif /* special handling of missing values in input string */ switch( type ) { case RectangleKernel: if ( (flags & WidthValue) == 0 ) /* if no width then */ args.rho = args.sigma; /* then width = height */ if ( args.rho < 1.0 ) /* if width too small */ args.rho = 3; /* then width = 3 */ if ( args.sigma < 1.0 ) /* if height too small */ args.sigma = args.rho; /* then height = width */ if ( (flags & XValue) == 0 ) /* center offset if not defined */ args.xi = (double)(((ssize_t)args.rho-1)/2); if ( (flags & YValue) == 0 ) args.psi = (double)(((ssize_t)args.sigma-1)/2); break; case SquareKernel: case DiamondKernel: case DiskKernel: case PlusKernel: case CrossKernel: /* If no scale given (a 0 scale is valid! - set it to 1.0 */ if ( (flags & HeightValue) == 0 ) args.sigma = 1.0; break; case RingKernel: if ( (flags & XValue) == 0 ) args.xi = 1.0; break; case ChebyshevKernel: case ManhattenKernel: case EuclideanKernel: if ( (flags & HeightValue) == 0 ) /* no distance scale */ args.sigma = 100.0; /* default distance scaling */ else if ( (flags & AspectValue ) != 0 ) /* '!' flag */ args.sigma = QuantumRange/(args.sigma+1); /* maximum pixel distance */ else if ( (flags & PercentValue ) != 0 ) /* '%' flag */ args.sigma *= QuantumRange/100.0; /* percentage of color range */ break; default: break; } kernel = AcquireKernelBuiltIn((KernelInfoType)type, &args); /* global expand to rotated kernel list - only for single kernels */ if ( kernel->next == (KernelInfo *) NULL ) { if ( (flags & AreaValue) != 0 ) /* '@' symbol in kernel args */ ExpandKernelInfo(kernel, 45.0); else if ( (flags & MinimumValue) != 0 ) /* '^' symbol in kernel args */ ExpandKernelInfo(kernel, 90.0); } return(kernel); } MagickExport KernelInfo *AcquireKernelInfo(const char *kernel_string) { KernelInfo *kernel, *new_kernel; char token[MaxTextExtent]; const char *p; size_t kernel_number; p = kernel_string; kernel = NULL; kernel_number = 0; while ( GetMagickToken(p,NULL,token), *token != '\0' ) { /* ignore extra or multiple ';' kernel seperators */ if ( *token != ';' ) { /* tokens starting with alpha is a Named kernel */ if (isalpha((int) *token) != 0) new_kernel = ParseKernelName(p); else /* otherwise a user defined kernel array */ new_kernel = ParseKernelArray(p); /* Error handling -- this is not proper error handling! */ if ( new_kernel == (KernelInfo *) NULL ) { fprintf(stderr, "Failed to parse kernel number #%lu\n", kernel_number); if ( kernel != (KernelInfo *) NULL ) kernel=DestroyKernelInfo(kernel); return((KernelInfo *) NULL); } /* initialise or append the kernel list */ if ( kernel == (KernelInfo *) NULL ) kernel = new_kernel; else LastKernelInfo(kernel)->next = new_kernel; } /* look for the next kernel in list */ p = strchr(p, ';'); if ( p == (char *) NULL ) break; p++; } return(kernel); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % A c q u i r e K e r n e l B u i l t I n % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % AcquireKernelBuiltIn() returned one of the 'named' built-in types of % kernels used for special purposes such as gaussian blurring, skeleton % pruning, and edge distance determination. % % They take a KernelType, and a set of geometry style arguments, which were % typically decoded from a user supplied string, or from a more complex % Morphology Method that was requested. % % The format of the AcquireKernalBuiltIn method is: % % KernelInfo *AcquireKernelBuiltIn(const KernelInfoType type, % const GeometryInfo args) % % A description of each parameter follows: % % o type: the pre-defined type of kernel wanted % % o args: arguments defining or modifying the kernel % % Convolution Kernels % % Unity % the No-Op kernel, also requivelent to Gaussian of sigma zero. % Basically a 3x3 kernel of a 1 surrounded by zeros. % % Gaussian:{radius},{sigma} % Generate a two-dimentional gaussian kernel, as used by -gaussian. % The sigma for the curve is required. The resulting kernel is % normalized, % % If 'sigma' is zero, you get a single pixel on a field of zeros. % % NOTE: that the 'radius' is optional, but if provided can limit (clip) % the final size of the resulting kernel to a square 2*radius+1 in size. % The radius should be at least 2 times that of the sigma value, or % sever clipping and aliasing may result. If not given or set to 0 the % radius will be determined so as to produce the best minimal error % result, which is usally much larger than is normally needed. % % DOG:{radius},{sigma1},{sigma2} % "Difference of Gaussians" Kernel. % As "Gaussian" but with a gaussian produced by 'sigma2' subtracted % from the gaussian produced by 'sigma1'. Typically sigma2 > sigma1. % The result is a zero-summing kernel. % % LOG:{radius},{sigma} % "Laplacian of a Gaussian" or "Mexician Hat" Kernel. % The supposed ideal edge detection, zero-summing kernel. % % An alturnative to this kernel is to use a "DOG" with a sigma ratio of % approx 1.6, which can also be applied as a 2 pass "DOB" (see below). % % Blur:{radius},{sigma}[,{angle}] % Generates a 1 dimensional or linear gaussian blur, at the angle given % (current restricted to orthogonal angles). If a 'radius' is given the % kernel is clipped to a width of 2*radius+1. Kernel can be rotated % by a 90 degree angle. % % If 'sigma' is zero, you get a single pixel on a field of zeros. % % Note that two convolutions with two "Blur" kernels perpendicular to % each other, is equivelent to a far larger "Gaussian" kernel with the % same sigma value, However it is much faster to apply. This is how the % "-blur" operator actually works. % % DOB:{radius},{sigma1},{sigma2}[,{angle}] % "Difference of Blurs" Kernel. % As "Blur" but with the 1D gaussian produced by 'sigma2' subtracted % from thethe 1D gaussian produced by 'sigma1'. % The result is a zero-summing kernel. % % This can be used to generate a faster "DOG" convolution, in the same % way "Blur" can. % % Comet:{width},{sigma},{angle} % Blur in one direction only, much like how a bright object leaves % a comet like trail. The Kernel is actually half a gaussian curve, % Adding two such blurs in opposite directions produces a Blur Kernel. % Angle can be rotated in multiples of 90 degrees. % % Note that the first argument is the width of the kernel and not the % radius of the kernel. % % # Still to be implemented... % # % # Filter2D % # Filter1D % # Set kernel values using a resize filter, and given scale (sigma) % # Cylindrical or Linear. Is this posible with an image? % # % % Named Constant Convolution Kernels % % All these are unscaled, zero-summing kernels by default. As such for % non-HDRI version of ImageMagick some form of normalization, user scaling, % and biasing the results is recommended, to prevent the resulting image % being 'clipped'. % % The 3x3 kernels (most of these) can be circularly rotated in multiples of % 45 degrees to generate the 8 angled varients of each of the kernels. % % Laplacian:{type} % Discrete Lapacian Kernels, (without normalization) % Type 0 : 3x3 with center:8 surounded by -1 (8 neighbourhood) % Type 1 : 3x3 with center:4 edge:-1 corner:0 (4 neighbourhood) % Type 2 : 3x3 with center:4 edge:1 corner:-2 % Type 3 : 3x3 with center:4 edge:-2 corner:1 % Type 5 : 5x5 laplacian % Type 7 : 7x7 laplacian % Type 15 : 5x5 LOG (sigma approx 1.4) % Type 19 : 9x9 LOG (sigma approx 1.4) % % Sobel:{angle} % Sobel 'Edge' convolution kernel (3x3) % -1, 0, 1 % -2, 0,-2 % -1, 0, 1 % % Roberts:{angle} % Roberts convolution kernel (3x3) % 0, 0, 0 % -1, 1, 0 % 0, 0, 0 % Prewitt:{angle} % Prewitt Edge convolution kernel (3x3) % -1, 0, 1 % -1, 0, 1 % -1, 0, 1 % Compass:{angle} % Prewitt's "Compass" convolution kernel (3x3) % -1, 1, 1 % -1,-2, 1 % -1, 1, 1 % Kirsch:{angle} % Kirsch's "Compass" convolution kernel (3x3) % -3,-3, 5 % -3, 0, 5 % -3,-3, 5 % % FreiChen:{type},{angle} % Frei-Chen Edge Detector is a set of 9 unique convolution kernels that % are specially weighted. % % Type 0: | -1, 0, 1 | % | -sqrt(2), 0, sqrt(2) | % | -1, 0, 1 | % % This is basically the unnormalized discrete kernel that can be used % instead ot a Sobel kernel. % % The next 9 kernel types are specially pre-weighted. They should not % be normalized. After applying each to the original image, the results % is then added together. The square root of the resulting image is % the cosine of the edge, and the direction of the feature detection. % % Type 1: | 1, sqrt(2), 1 | % | 0, 0, 0 | / 2*sqrt(2) % | -1, -sqrt(2), -1 | % % Type 2: | 1, 0, 1 | % | sqrt(2), 0, sqrt(2) | / 2*sqrt(2) % | 1, 0, 1 | % % Type 3: | 0, -1, sqrt(2) | % | 1, 0, -1 | / 2*sqrt(2) % | -sqrt(2), 1, 0 | % % Type 4: | sqrt(2), -1, 0 | % | -1, 0, 1 | / 2*sqrt(2) % | 0, 1, -sqrt(2) | % % Type 5: | 0, 1, 0 | % | -1, 0, -1 | / 2 % | 0, 1, 0 | % % Type 6: | -1, 0, 1 | % | 0, 0, 0 | / 2 % | 1, 0, -1 | % % Type 7: | 1, -2, 1 | % | -2, 4, -2 | / 6 % | 1, -2, 1 | % % Type 8: | -2, 1, -2 | % | 1, 4, 1 | / 6 % | -2, 1, -2 | % % Type 9: | 1, 1, 1 | % | 1, 1, 1 | / 3 % | 1, 1, 1 | % % The first 4 are for edge detection, the next 4 are for line detection % and the last is to add a average component to the results. % % Using a special type of '-1' will return all 9 pre-weighted kernels % as a multi-kernel list, so that you can use them directly (without % normalization) with the special "-set option:morphology:compose Plus" % setting to apply the full FreiChen Edge Detection Technique. % % If 'type' is large it will be taken to be an actual rotation angle for % the default FreiChen (type 0) kernel. As such FreiChen:45 will look % like a Sobel:45 but with 'sqrt(2)' instead of '2' values. % % % Boolean Kernels % % Diamond:[{radius}[,{scale}]] % Generate a diamond shaped kernel with given radius to the points. % Kernel size will again be radius*2+1 square and defaults to radius 1, % generating a 3x3 kernel that is slightly larger than a square. % % Square:[{radius}[,{scale}]] % Generate a square shaped kernel of size radius*2+1, and defaulting % to a 3x3 (radius 1). % % Note that using a larger radius for the "Square" or the "Diamond" is % also equivelent to iterating the basic morphological method that many % times. However iterating with the smaller radius is actually faster % than using a larger kernel radius. % % Rectangle:{geometry} % Simply generate a rectangle of 1's with the size given. You can also % specify the location of the 'control point', otherwise the closest % pixel to the center of the rectangle is selected. % % Properly centered and odd sized rectangles work the best. % % Disk:[{radius}[,{scale}]] % Generate a binary disk of the radius given, radius may be a float. % Kernel size will be ceil(radius)*2+1 square. % NOTE: Here are some disk shapes of specific interest % "Disk:1" => "diamond" or "cross:1" % "Disk:1.5" => "square" % "Disk:2" => "diamond:2" % "Disk:2.5" => a general disk shape of radius 2 % "Disk:2.9" => "square:2" % "Disk:3.5" => default - octagonal/disk shape of radius 3 % "Disk:4.2" => roughly octagonal shape of radius 4 % "Disk:4.3" => a general disk shape of radius 4 % After this all the kernel shape becomes more and more circular. % % Because a "disk" is more circular when using a larger radius, using a % larger radius is preferred over iterating the morphological operation. % % Symbol Dilation Kernels % % These kernel is not a good general morphological kernel, but is used % more for highlighting and marking any single pixels in an image using, % a "Dilate" method as appropriate. % % For the same reasons iterating these kernels does not produce the % same result as using a larger radius for the symbol. % % Plus:[{radius}[,{scale}]] % Cross:[{radius}[,{scale}]] % Generate a kernel in the shape of a 'plus' or a 'cross' with % a each arm the length of the given radius (default 2). % % NOTE: "plus:1" is equivelent to a "Diamond" kernel. % % Ring:{radius1},{radius2}[,{scale}] % A ring of the values given that falls between the two radii. % Defaults to a ring of approximataly 3 radius in a 7x7 kernel. % This is the 'edge' pixels of the default "Disk" kernel, % More specifically, "Ring" -> "Ring:2.5,3.5,1.0" % % Hit and Miss Kernels % % Peak:radius1,radius2 % Find any peak larger than the pixels the fall between the two radii. % The default ring of pixels is as per "Ring". % Edges % Find edges of a binary shape % Corners % Find corners of a binary shape % Ridges % Find single pixel ridges or thin lines % Ridges2 % Find 2 pixel thick ridges or lines % Ridges3 % Find 2 pixel thick diagonal ridges (experimental) % LineEnds % Find end points of lines (for pruning a skeletion) % LineJunctions % Find three line junctions (within a skeletion) % ConvexHull % Octagonal thicken kernel, to generate convex hulls of 45 degrees % Skeleton % Thinning kernel, which leaves behind a skeletion of a shape % % Distance Measuring Kernels % % Different types of distance measuring methods, which are used with the % a 'Distance' morphology method for generating a gradient based on % distance from an edge of a binary shape, though there is a technique % for handling a anti-aliased shape. % % See the 'Distance' Morphological Method, for information of how it is % applied. % % Chebyshev:[{radius}][x{scale}[%!]] % Chebyshev Distance (also known as Tchebychev Distance) is a value of % one to any neighbour, orthogonal or diagonal. One why of thinking of % it is the number of squares a 'King' or 'Queen' in chess needs to % traverse reach any other position on a chess board. It results in a % 'square' like distance function, but one where diagonals are closer % than expected. % % Manhatten:[{radius}][x{scale}[%!]] % Manhatten Distance (also known as Rectilinear Distance, or the Taxi % Cab metric), is the distance needed when you can only travel in % orthogonal (horizontal or vertical) only. It is the distance a 'Rook' % in chess would travel. It results in a diamond like distances, where % diagonals are further than expected. % % Euclidean:[{radius}][x{scale}[%!]] % Euclidean Distance is the 'direct' or 'as the crow flys distance. % However by default the kernel size only has a radius of 1, which % limits the distance to 'Knight' like moves, with only orthogonal and % diagonal measurements being correct. As such for the default kernel % you will get octagonal like distance function, which is reasonally % accurate. % % However if you use a larger radius such as "Euclidean:4" you will % get a much smoother distance gradient from the edge of the shape. % Of course a larger kernel is slower to use, and generally not needed. % % To allow the use of fractional distances that you get with diagonals % the actual distance is scaled by a fixed value which the user can % provide. This is not actually nessary for either ""Chebyshev" or % "Manhatten" distance kernels, but is done for all three distance % kernels. If no scale is provided it is set to a value of 100, % allowing for a maximum distance measurement of 655 pixels using a Q16 % version of IM, from any edge. However for small images this can % result in quite a dark gradient. % */ MagickExport KernelInfo *AcquireKernelBuiltIn(const KernelInfoType type, const GeometryInfo *args) { KernelInfo *kernel; register ssize_t i; register ssize_t u, v; double nan = sqrt((double)-1.0); /* Special Value : Not A Number */ /* Generate a new empty kernel if needed */ kernel=(KernelInfo *) NULL; switch(type) { case UndefinedKernel: /* These should not call this function */ case UserDefinedKernel: case TestKernel: break; case UnityKernel: /* Named Descrete Convolution Kernels */ case LaplacianKernel: case SobelKernel: case RobertsKernel: case PrewittKernel: case CompassKernel: case KirschKernel: case FreiChenKernel: case CornersKernel: /* Hit and Miss kernels */ case LineEndsKernel: case LineJunctionsKernel: case EdgesKernel: case RidgesKernel: case Ridges2Kernel: case ConvexHullKernel: case SkeletonKernel: case MatKernel: /* A pre-generated kernel is not needed */ break; #if 0 /* set to 1 to do a compile-time check that we haven't missed anything */ case GaussianKernel: case DOGKernel: case LOGKernel: case BlurKernel: case DOBKernel: case CometKernel: case DiamondKernel: case SquareKernel: case RectangleKernel: case DiskKernel: case PlusKernel: case CrossKernel: case RingKernel: case PeaksKernel: case ChebyshevKernel: case ManhattenKernel: case EuclideanKernel: #else default: #endif /* Generate the base Kernel Structure */ kernel=(KernelInfo *) AcquireMagickMemory(sizeof(*kernel)); if (kernel == (KernelInfo *) NULL) return(kernel); (void) ResetMagickMemory(kernel,0,sizeof(*kernel)); kernel->minimum = kernel->maximum = kernel->angle = 0.0; kernel->negative_range = kernel->positive_range = 0.0; kernel->type = type; kernel->next = (KernelInfo *) NULL; kernel->signature = MagickSignature; break; } switch(type) { /* Convolution Kernels */ case GaussianKernel: case DOGKernel: case LOGKernel: { double sigma = fabs(args->sigma), sigma2 = fabs(args->xi), A, B, R; if ( args->rho >= 1.0 ) kernel->width = (size_t)args->rho*2+1; else if ( (type != DOGKernel) || (sigma >= sigma2) ) kernel->width = GetOptimalKernelWidth2D(args->rho,sigma); else kernel->width = GetOptimalKernelWidth2D(args->rho,sigma2); kernel->height = kernel->width; kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; kernel->values=(double *) AcquireQuantumMemory(kernel->width, kernel->height*sizeof(double)); if (kernel->values == (double *) NULL) return(DestroyKernelInfo(kernel)); /* WARNING: The following generates a 'sampled gaussian' kernel. * What we really want is a 'discrete gaussian' kernel. * * How to do this is currently not known, but appears to be * basied on the Error Function 'erf()' (intergral of a gaussian) */ if ( type == GaussianKernel || type == DOGKernel ) { /* Calculate a Gaussian, OR positive half of a DOG */ if ( sigma > MagickEpsilon ) { A = 1.0/(2.0*sigma*sigma); /* simplify loop expressions */ B = 1.0/(Magick2PI*sigma*sigma); for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) kernel->values[i] = exp(-((double)(u*u+v*v))*A)*B; } else /* limiting case - a unity (normalized Dirac) kernel */ { (void) ResetMagickMemory(kernel->values,0, (size_t) kernel->width*kernel->height*sizeof(double)); kernel->values[kernel->x+kernel->y*kernel->width] = 1.0; } } if ( type == DOGKernel ) { /* Subtract a Negative Gaussian for "Difference of Gaussian" */ if ( sigma2 > MagickEpsilon ) { sigma = sigma2; /* simplify loop expressions */ A = 1.0/(2.0*sigma*sigma); B = 1.0/(Magick2PI*sigma*sigma); for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) kernel->values[i] -= exp(-((double)(u*u+v*v))*A)*B; } else /* limiting case - a unity (normalized Dirac) kernel */ kernel->values[kernel->x+kernel->y*kernel->width] -= 1.0; } if ( type == LOGKernel ) { /* Calculate a Laplacian of a Gaussian - Or Mexician Hat */ if ( sigma > MagickEpsilon ) { A = 1.0/(2.0*sigma*sigma); /* simplify loop expressions */ B = 1.0/(MagickPI*sigma*sigma*sigma*sigma); for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) { R = ((double)(u*u+v*v))*A; kernel->values[i] = (1-R)*exp(-R)*B; } } else /* special case - generate a unity kernel */ { (void) ResetMagickMemory(kernel->values,0, (size_t) kernel->width*kernel->height*sizeof(double)); kernel->values[kernel->x+kernel->y*kernel->width] = 1.0; } } /* Note the above kernels may have been 'clipped' by a user defined ** radius, producing a smaller (darker) kernel. Also for very small ** sigma's (> 0.1) the central value becomes larger than one, and thus ** producing a very bright kernel. ** ** Normalization will still be needed. */ /* Normalize the 2D Gaussian Kernel ** ** NB: a CorrelateNormalize performs a normal Normalize if ** there are no negative values. */ CalcKernelMetaData(kernel); /* the other kernel meta-data */ ScaleKernelInfo(kernel, 1.0, CorrelateNormalizeValue); break; } case BlurKernel: case DOBKernel: { double sigma = fabs(args->sigma), sigma2 = fabs(args->xi), A, B; if ( args->rho >= 1.0 ) kernel->width = (size_t)args->rho*2+1; else if ( (type == BlurKernel) || (sigma >= sigma2) ) kernel->width = GetOptimalKernelWidth1D(args->rho,sigma); else kernel->width = GetOptimalKernelWidth1D(args->rho,sigma2); kernel->height = 1; kernel->x = (ssize_t) (kernel->width-1)/2; kernel->y = 0; kernel->negative_range = kernel->positive_range = 0.0; kernel->values=(double *) AcquireQuantumMemory(kernel->width, kernel->height*sizeof(double)); if (kernel->values == (double *) NULL) return(DestroyKernelInfo(kernel)); #if 1 #define KernelRank 3 /* Formula derived from GetBlurKernel() in "effect.c" (plus bug fix). ** It generates a gaussian 3 times the width, and compresses it into ** the expected range. This produces a closer normalization of the ** resulting kernel, especially for very low sigma values. ** As such while wierd it is prefered. ** ** I am told this method originally came from Photoshop. ** ** A properly normalized curve is generated (apart from edge clipping) ** even though we later normalize the result (for edge clipping) ** to allow the correct generation of a "Difference of Blurs". */ /* initialize */ v = (ssize_t) (kernel->width*KernelRank-1)/2; /* start/end points to fit range */ (void) ResetMagickMemory(kernel->values,0, (size_t) kernel->width*kernel->height*sizeof(double)); /* Calculate a Positive 1D Gaussian */ if ( sigma > MagickEpsilon ) { sigma *= KernelRank; /* simplify loop expressions */ A = 1.0/(2.0*sigma*sigma); B = 1.0/(MagickSQ2PI*sigma ); for ( u=-v; u <= v; u++) { kernel->values[(u+v)/KernelRank] += exp(-((double)(u*u))*A)*B; } } else /* special case - generate a unity kernel */ kernel->values[kernel->x+kernel->y*kernel->width] = 1.0; /* Subtract a Second 1D Gaussian for "Difference of Blur" */ if ( type == DOBKernel ) { if ( sigma2 > MagickEpsilon ) { sigma = sigma2*KernelRank; /* simplify loop expressions */ A = 1.0/(2.0*sigma*sigma); B = 1.0/(MagickSQ2PI*sigma); for ( u=-v; u <= v; u++) kernel->values[(u+v)/KernelRank] -= exp(-((double)(u*u))*A)*B; } else /* limiting case - a unity (normalized Dirac) kernel */ kernel->values[kernel->x+kernel->y*kernel->width] -= 1.0; } #else /* Direct calculation without curve averaging */ /* Calculate a Positive Gaussian */ if ( sigma > MagickEpsilon ) { A = 1.0/(2.0*sigma*sigma); /* simplify loop expressions */ B = 1.0/(MagickSQ2PI*sigma); for ( i=0, u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) kernel->values[i] = exp(-((double)(u*u))*A)*B; } else /* special case - generate a unity kernel */ { (void) ResetMagickMemory(kernel->values,0, (size_t) kernel->width*kernel->height*sizeof(double)); kernel->values[kernel->x+kernel->y*kernel->width] = 1.0; } /* Subtract a Second 1D Gaussian for "Difference of Blur" */ if ( type == DOBKernel ) { if ( sigma2 > MagickEpsilon ) { sigma = sigma2; /* simplify loop expressions */ A = 1.0/(2.0*sigma*sigma); B = 1.0/(MagickSQ2PI*sigma); for ( i=0, u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) kernel->values[i] -= exp(-((double)(u*u))*A)*B; } else /* limiting case - a unity (normalized Dirac) kernel */ kernel->values[kernel->x+kernel->y*kernel->width] -= 1.0; } #endif /* Note the above kernel may have been 'clipped' by a user defined ** radius, producing a smaller (darker) kernel. Also for very small ** sigma's (> 0.1) the central value becomes larger than one, and thus ** producing a very bright kernel. ** ** Normalization will still be needed. */ /* Normalize the 1D Gaussian Kernel ** ** NB: a CorrelateNormalize performs a normal Normalize if ** there are no negative values. */ CalcKernelMetaData(kernel); /* the other kernel meta-data */ ScaleKernelInfo(kernel, 1.0, CorrelateNormalizeValue); /* rotate the 1D kernel by given angle */ RotateKernelInfo(kernel, (type == BlurKernel) ? args->xi : args->psi ); break; } case CometKernel: { double sigma = fabs(args->sigma), A; if ( args->rho < 1.0 ) kernel->width = (GetOptimalKernelWidth1D(args->rho,sigma)-1)/2+1; else kernel->width = (size_t)args->rho; kernel->x = kernel->y = 0; kernel->height = 1; kernel->negative_range = kernel->positive_range = 0.0; kernel->values=(double *) AcquireQuantumMemory(kernel->width, kernel->height*sizeof(double)); if (kernel->values == (double *) NULL) return(DestroyKernelInfo(kernel)); /* A comet blur is half a 1D gaussian curve, so that the object is ** blurred in one direction only. This may not be quite the right ** curve to use so may change in the future. The function must be ** normalised after generation, which also resolves any clipping. ** ** As we are normalizing and not subtracting gaussians, ** there is no need for a divisor in the gaussian formula ** ** It is less comples */ if ( sigma > MagickEpsilon ) { #if 1 #define KernelRank 3 v = (ssize_t) kernel->width*KernelRank; /* start/end points */ (void) ResetMagickMemory(kernel->values,0, (size_t) kernel->width*sizeof(double)); sigma *= KernelRank; /* simplify the loop expression */ A = 1.0/(2.0*sigma*sigma); /* B = 1.0/(MagickSQ2PI*sigma); */ for ( u=0; u < v; u++) { kernel->values[u/KernelRank] += exp(-((double)(u*u))*A); /* exp(-((double)(i*i))/2.0*sigma*sigma)/(MagickSQ2PI*sigma); */ } for (i=0; i < (ssize_t) kernel->width; i++) kernel->positive_range += kernel->values[i]; #else A = 1.0/(2.0*sigma*sigma); /* simplify the loop expression */ /* B = 1.0/(MagickSQ2PI*sigma); */ for ( i=0; i < (ssize_t) kernel->width; i++) kernel->positive_range += kernel->values[i] = exp(-((double)(i*i))*A); /* exp(-((double)(i*i))/2.0*sigma*sigma)/(MagickSQ2PI*sigma); */ #endif } else /* special case - generate a unity kernel */ { (void) ResetMagickMemory(kernel->values,0, (size_t) kernel->width*kernel->height*sizeof(double)); kernel->values[kernel->x+kernel->y*kernel->width] = 1.0; kernel->positive_range = 1.0; } kernel->minimum = 0.0; kernel->maximum = kernel->values[0]; kernel->negative_range = 0.0; ScaleKernelInfo(kernel, 1.0, NormalizeValue); /* Normalize */ RotateKernelInfo(kernel, args->xi); /* Rotate by angle */ break; } /* Convolution Kernels - Well Known Constants */ case LaplacianKernel: { switch ( (int) args->rho ) { case 0: default: /* laplacian square filter -- default */ kernel=ParseKernelArray("3: -1,-1,-1 -1,8,-1 -1,-1,-1"); break; case 1: /* laplacian diamond filter */ kernel=ParseKernelArray("3: 0,-1,0 -1,4,-1 0,-1,0"); break; case 2: kernel=ParseKernelArray("3: -2,1,-2 1,4,1 -2,1,-2"); break; case 3: kernel=ParseKernelArray("3: 1,-2,1 -2,4,-2 1,-2,1"); break; case 5: /* a 5x5 laplacian */ kernel=ParseKernelArray( "5: -4,-1,0,-1,-4 -1,2,3,2,-1 0,3,4,3,0 -1,2,3,2,-1 -4,-1,0,-1,-4"); break; case 7: /* a 7x7 laplacian */ kernel=ParseKernelArray( "7:-10,-5,-2,-1,-2,-5,-10 -5,0,3,4,3,0,-5 -2,3,6,7,6,3,-2 -1,4,7,8,7,4,-1 -2,3,6,7,6,3,-2 -5,0,3,4,3,0,-5 -10,-5,-2,-1,-2,-5,-10" ); break; case 15: /* a 5x5 LOG (sigma approx 1.4) */ kernel=ParseKernelArray( "5: 0,0,-1,0,0 0,-1,-2,-1,0 -1,-2,16,-2,-1 0,-1,-2,-1,0 0,0,-1,0,0"); break; case 19: /* a 9x9 LOG (sigma approx 1.4) */ /* http://www.cscjournals.org/csc/manuscript/Journals/IJIP/volume3/Issue1/IJIP-15.pdf */ kernel=ParseKernelArray( "9: 0,-1,-1,-2,-2,-2,-1,-1,0 -1,-2,-4,-5,-5,-5,-4,-2,-1 -1,-4,-5,-3,-0,-3,-5,-4,-1 -2,-5,-3,@12,@24,@12,-3,-5,-2 -2,-5,-0,@24,@40,@24,-0,-5,-2 -2,-5,-3,@12,@24,@12,-3,-5,-2 -1,-4,-5,-3,-0,-3,-5,-4,-1 -1,-2,-4,-5,-5,-5,-4,-2,-1 0,-1,-1,-2,-2,-2,-1,-1,0"); break; } if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; break; } case SobelKernel: { kernel=ParseKernelArray("3: -1,0,1 -2,0,2 -1,0,1"); if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; RotateKernelInfo(kernel, args->rho); /* Rotate by angle */ break; } case RobertsKernel: { kernel=ParseKernelArray("3: 0,0,0 -1,1,0 0,0,0"); if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; RotateKernelInfo(kernel, args->rho); break; } case PrewittKernel: { kernel=ParseKernelArray("3: -1,1,1 0,0,0 -1,1,1"); if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; RotateKernelInfo(kernel, args->rho); break; } case CompassKernel: { kernel=ParseKernelArray("3: -1,1,1 -1,-2,1 -1,1,1"); if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; RotateKernelInfo(kernel, args->rho); break; } case KirschKernel: { kernel=ParseKernelArray("3: -3,-3,5 -3,0,5 -3,-3,5"); if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; RotateKernelInfo(kernel, args->rho); break; } case FreiChenKernel: /* http://www.math.tau.ac.il/~turkel/notes/edge_detectors.pdf */ /* http://ltswww.epfl.ch/~courstiv/exos_labos/sol3.pdf */ { switch ( (int) args->rho ) { default: case 0: kernel=ParseKernelArray("3: -1,0,1 -2,0,2 -1,0,1"); if (kernel == (KernelInfo *) NULL) return(kernel); kernel->values[3] = -MagickSQ2; kernel->values[5] = +MagickSQ2; CalcKernelMetaData(kernel); /* recalculate meta-data */ break; case 1: kernel=ParseKernelArray("3: 1,2,1 0,0,0 -1,2,-1"); if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; kernel->values[1] = +MagickSQ2; kernel->values[7] = -MagickSQ2; CalcKernelMetaData(kernel); /* recalculate meta-data */ ScaleKernelInfo(kernel, 1.0/2.0*MagickSQ2, NoValue); break; case 2: kernel=ParseKernelArray("3: 1,0,1 2,0,2 1,0,1"); if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; kernel->values[3] = +MagickSQ2; kernel->values[5] = +MagickSQ2; CalcKernelMetaData(kernel); ScaleKernelInfo(kernel, 1.0/2.0*MagickSQ2, NoValue); break; case 3: kernel=ParseKernelArray("3: 0,-1,2 1,0,-1 -2,1,0"); if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; kernel->values[2] = +MagickSQ2; kernel->values[6] = -MagickSQ2; CalcKernelMetaData(kernel); ScaleKernelInfo(kernel, 1.0/2.0*MagickSQ2, NoValue); break; case 4: kernel=ParseKernelArray("3: 2,-1,0 -1,0,1 0,1,-2"); if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; kernel->values[0] = +MagickSQ2; kernel->values[8] = -MagickSQ2; CalcKernelMetaData(kernel); ScaleKernelInfo(kernel, 1.0/2.0*MagickSQ2, NoValue); break; case 5: kernel=ParseKernelArray("3: 0,1,0 -1,0,-1 0,1,0"); if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; ScaleKernelInfo(kernel, 1.0/2.0, NoValue); break; case 6: kernel=ParseKernelArray("3: -1,0,1 0,0,0 1,0,-1"); if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; ScaleKernelInfo(kernel, 1.0/2.0, NoValue); break; case 7: kernel=ParseKernelArray("3: 1,-2,1 -2,4,-2 1,-2,1"); if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; ScaleKernelInfo(kernel, 1.0/6.0, NoValue); break; case 8: kernel=ParseKernelArray("3: -2,1,-2 1,4,1 -2,1,-2"); if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; ScaleKernelInfo(kernel, 1.0/6.0, NoValue); break; case 9: kernel=ParseKernelArray("3: 1,1,1 1,1,1 1,1,1"); if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; ScaleKernelInfo(kernel, 1.0/3.0, NoValue); break; case -1: kernel=AcquireKernelInfo("FreiChen:1;FreiChen:2;FreiChen:3;FreiChen:4;FreiChen:5;FreiChen:6;FreiChen:7;FreiChen:8;FreiChen:9"); if (kernel == (KernelInfo *) NULL) return(kernel); break; } if ( fabs(args->sigma) > MagickEpsilon ) /* Rotate by correctly supplied 'angle' */ RotateKernelInfo(kernel, args->sigma); else if ( args->rho > 30.0 || args->rho < -30.0 ) /* Rotate by out of bounds 'type' */ RotateKernelInfo(kernel, args->rho); break; } /* Boolean Kernels */ case DiamondKernel: { if (args->rho < 1.0) kernel->width = kernel->height = 3; /* default radius = 1 */ else kernel->width = kernel->height = ((size_t)args->rho)*2+1; kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; kernel->values=(double *) AcquireQuantumMemory(kernel->width, kernel->height*sizeof(double)); if (kernel->values == (double *) NULL) return(DestroyKernelInfo(kernel)); /* set all kernel values within diamond area to scale given */ for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) if ((labs(u)+labs(v)) <= (ssize_t)kernel->x) kernel->positive_range += kernel->values[i] = args->sigma; else kernel->values[i] = nan; kernel->minimum = kernel->maximum = args->sigma; /* a flat shape */ break; } case SquareKernel: case RectangleKernel: { double scale; if ( type == SquareKernel ) { if (args->rho < 1.0) kernel->width = kernel->height = 3; /* default radius = 1 */ else kernel->width = kernel->height = (size_t) (2*args->rho+1); kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; scale = args->sigma; } else { /* NOTE: user defaults set in "AcquireKernelInfo()" */ if ( args->rho < 1.0 || args->sigma < 1.0 ) return(DestroyKernelInfo(kernel)); /* invalid args given */ kernel->width = (size_t)args->rho; kernel->height = (size_t)args->sigma; if ( args->xi < 0.0 || args->xi > (double)kernel->width || args->psi < 0.0 || args->psi > (double)kernel->height ) return(DestroyKernelInfo(kernel)); /* invalid args given */ kernel->x = (ssize_t) args->xi; kernel->y = (ssize_t) args->psi; scale = 1.0; } kernel->values=(double *) AcquireQuantumMemory(kernel->width, kernel->height*sizeof(double)); if (kernel->values == (double *) NULL) return(DestroyKernelInfo(kernel)); /* set all kernel values to scale given */ u=(ssize_t) kernel->width*kernel->height; for ( i=0; i < u; i++) kernel->values[i] = scale; kernel->minimum = kernel->maximum = scale; /* a flat shape */ kernel->positive_range = scale*u; break; } case DiskKernel: { ssize_t limit = (ssize_t)(args->rho*args->rho); if (args->rho < 0.1) /* default radius approx 3.5 */ kernel->width = kernel->height = 7L, limit = 10L; else kernel->width = kernel->height = ((size_t)args->rho)*2+1; kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; kernel->values=(double *) AcquireQuantumMemory(kernel->width, kernel->height*sizeof(double)); if (kernel->values == (double *) NULL) return(DestroyKernelInfo(kernel)); /* set all kernel values within disk area to scale given */ for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) if ((u*u+v*v) <= limit) kernel->positive_range += kernel->values[i] = args->sigma; else kernel->values[i] = nan; kernel->minimum = kernel->maximum = args->sigma; /* a flat shape */ break; } case PlusKernel: { if (args->rho < 1.0) kernel->width = kernel->height = 5; /* default radius 2 */ else kernel->width = kernel->height = ((size_t)args->rho)*2+1; kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; kernel->values=(double *) AcquireQuantumMemory(kernel->width, kernel->height*sizeof(double)); if (kernel->values == (double *) NULL) return(DestroyKernelInfo(kernel)); /* set all kernel values along axises to given scale */ for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) kernel->values[i] = (u == 0 || v == 0) ? args->sigma : nan; kernel->minimum = kernel->maximum = args->sigma; /* a flat shape */ kernel->positive_range = args->sigma*(kernel->width*2.0 - 1.0); break; } case CrossKernel: { if (args->rho < 1.0) kernel->width = kernel->height = 5; /* default radius 2 */ else kernel->width = kernel->height = ((size_t)args->rho)*2+1; kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; kernel->values=(double *) AcquireQuantumMemory(kernel->width, kernel->height*sizeof(double)); if (kernel->values == (double *) NULL) return(DestroyKernelInfo(kernel)); /* set all kernel values along axises to given scale */ for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) kernel->values[i] = (u == v || u == -v) ? args->sigma : nan; kernel->minimum = kernel->maximum = args->sigma; /* a flat shape */ kernel->positive_range = args->sigma*(kernel->width*2.0 - 1.0); break; } /* HitAndMiss Kernels */ case RingKernel: case PeaksKernel: { ssize_t limit1, limit2, scale; if (args->rho < args->sigma) { kernel->width = ((size_t)args->sigma)*2+1; limit1 = (ssize_t)args->rho*args->rho; limit2 = (ssize_t)args->sigma*args->sigma; } else { kernel->width = ((size_t)args->rho)*2+1; limit1 = (ssize_t)args->sigma*args->sigma; limit2 = (ssize_t)args->rho*args->rho; } if ( limit2 <= 0 ) kernel->width = 7L, limit1 = 7L, limit2 = 11L; kernel->height = kernel->width; kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; kernel->values=(double *) AcquireQuantumMemory(kernel->width, kernel->height*sizeof(double)); if (kernel->values == (double *) NULL) return(DestroyKernelInfo(kernel)); /* set a ring of points of 'scale' ( 0.0 for PeaksKernel ) */ scale = (ssize_t) (( type == PeaksKernel) ? 0.0 : args->xi); for ( i=0, v= -kernel->y; v <= (ssize_t)kernel->y; v++) for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) { ssize_t radius=u*u+v*v; if (limit1 < radius && radius <= limit2) kernel->positive_range += kernel->values[i] = (double) scale; else kernel->values[i] = nan; } kernel->minimum = kernel->minimum = (double) scale; if ( type == PeaksKernel ) { /* set the central point in the middle */ kernel->values[kernel->x+kernel->y*kernel->width] = 1.0; kernel->positive_range = 1.0; kernel->maximum = 1.0; } break; } case EdgesKernel: { kernel=ParseKernelArray("3: 0,0,0 -,1,- 1,1,1"); if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; ExpandKernelInfo(kernel, 90.0); /* Create a list of 4 rotated kernels */ break; } case CornersKernel: { kernel=ParseKernelArray("3: 0,0,- 0,1,1 -,1,-"); if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; ExpandKernelInfo(kernel, 90.0); /* Create a list of 4 rotated kernels */ break; } case RidgesKernel: { kernel=ParseKernelArray("3x1:0,1,0"); if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; ExpandKernelInfo(kernel, 90.0); /* 2 rotated kernels (symmetrical) */ break; } case Ridges2Kernel: { KernelInfo *new_kernel; kernel=ParseKernelArray("4x1:0,1,1,0"); if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; ExpandKernelInfo(kernel, 90.0); /* 4 rotated kernels */ #if 0 /* 2 pixel diagonaly thick - 4 rotates - not needed? */ new_kernel=ParseKernelArray("4x4^:0,-,-,- -,1,-,- -,-,1,- -,-,-,0'"); if (new_kernel == (KernelInfo *) NULL) return(DestroyKernelInfo(kernel)); new_kernel->type = type; ExpandKernelInfo(new_kernel, 90.0); /* 4 rotated kernels */ LastKernelInfo(kernel)->next = new_kernel; #endif /* kernels to find a stepped 'thick' line - 4 rotates * mirror */ /* Unfortunatally we can not yet rotate a non-square kernel */ /* But then we can't flip a non-symetrical kernel either */ new_kernel=ParseKernelArray("4x3+1+1:0,1,1,- -,1,1,- -,1,1,0"); if (new_kernel == (KernelInfo *) NULL) return(DestroyKernelInfo(kernel)); new_kernel->type = type; LastKernelInfo(kernel)->next = new_kernel; new_kernel=ParseKernelArray("4x3+2+1:0,1,1,- -,1,1,- -,1,1,0"); if (new_kernel == (KernelInfo *) NULL) return(DestroyKernelInfo(kernel)); new_kernel->type = type; LastKernelInfo(kernel)->next = new_kernel; new_kernel=ParseKernelArray("4x3+1+1:-,1,1,0 -,1,1,- 0,1,1,-"); if (new_kernel == (KernelInfo *) NULL) return(DestroyKernelInfo(kernel)); new_kernel->type = type; LastKernelInfo(kernel)->next = new_kernel; new_kernel=ParseKernelArray("4x3+2+1:-,1,1,0 -,1,1,- 0,1,1,-"); if (new_kernel == (KernelInfo *) NULL) return(DestroyKernelInfo(kernel)); new_kernel->type = type; LastKernelInfo(kernel)->next = new_kernel; new_kernel=ParseKernelArray("3x4+1+1:0,-,- 1,1,1 1,1,1 -,-,0"); if (new_kernel == (KernelInfo *) NULL) return(DestroyKernelInfo(kernel)); new_kernel->type = type; LastKernelInfo(kernel)->next = new_kernel; new_kernel=ParseKernelArray("3x4+1+2:0,-,- 1,1,1 1,1,1 -,-,0"); if (new_kernel == (KernelInfo *) NULL) return(DestroyKernelInfo(kernel)); new_kernel->type = type; LastKernelInfo(kernel)->next = new_kernel; new_kernel=ParseKernelArray("3x4+1+1:-,-,0 1,1,1 1,1,1 0,-,-"); if (new_kernel == (KernelInfo *) NULL) return(DestroyKernelInfo(kernel)); new_kernel->type = type; LastKernelInfo(kernel)->next = new_kernel; new_kernel=ParseKernelArray("3x4+1+2:-,-,0 1,1,1 1,1,1 0,-,-"); if (new_kernel == (KernelInfo *) NULL) return(DestroyKernelInfo(kernel)); new_kernel->type = type; LastKernelInfo(kernel)->next = new_kernel; break; } case LineEndsKernel: { KernelInfo *new_kernel; kernel=ParseKernelArray("3: 0,0,0 0,1,0 -,1,-"); if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; ExpandKernelInfo(kernel, 90.0); /* append second set of 4 kernels */ new_kernel=ParseKernelArray("3: 0,0,0 0,1,0 0,0,1"); if (new_kernel == (KernelInfo *) NULL) return(DestroyKernelInfo(kernel)); new_kernel->type = type; ExpandKernelInfo(new_kernel, 90.0); LastKernelInfo(kernel)->next = new_kernel; break; } case LineJunctionsKernel: { KernelInfo *new_kernel; /* first set of 4 kernels */ kernel=ParseKernelArray("3: -,1,- -,1,- 1,-,1"); if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; ExpandKernelInfo(kernel, 45.0); /* append second set of 4 kernels */ new_kernel=ParseKernelArray("3: 1,-,- -,1,- 1,-,1"); if (new_kernel == (KernelInfo *) NULL) return(DestroyKernelInfo(kernel)); new_kernel->type = type; ExpandKernelInfo(new_kernel, 90.0); LastKernelInfo(kernel)->next = new_kernel; break; } case ConvexHullKernel: { KernelInfo *new_kernel; /* first set of 8 kernels */ kernel=ParseKernelArray("3: 1,1,- 1,0,- 1,-,0"); if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; ExpandKernelInfo(kernel, 45.0); /* append the mirror versions too */ new_kernel=ParseKernelArray("3: 1,1,1 1,0,- -,-,0"); if (new_kernel == (KernelInfo *) NULL) return(DestroyKernelInfo(kernel)); new_kernel->type = type; ExpandKernelInfo(new_kernel, 45.0); LastKernelInfo(kernel)->next = new_kernel; break; } case SkeletonKernel: { /* what is the best form for skeletonization by thinning? */ #if 0 # if 0 kernel=AcquireKernelInfo("Corners;Edges"); # else kernel=AcquireKernelInfo("Edges;Corners"); # endif #else kernel=ParseKernelArray("3: 0,0,- 0,1,1 -,1,1"); if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; ExpandKernelInfo(kernel, 45); break; #endif break; } case MatKernel: /* experimental - MAT from a Distance Gradient */ { KernelInfo *new_kernel; /* Ridge Kernel but without the diagonal */ kernel=ParseKernelArray("3x1: 0,1,0"); if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = RidgesKernel; ExpandKernelInfo(kernel, 90.0); /* 2 rotated kernels (symmetrical) */ /* Plus the 2 pixel ridges kernel - no diagonal */ new_kernel=AcquireKernelBuiltIn(Ridges2Kernel,args); if (new_kernel == (KernelInfo *) NULL) return(kernel); LastKernelInfo(kernel)->next = new_kernel; break; } /* Distance Measuring Kernels */ case ChebyshevKernel: { if (args->rho < 1.0) kernel->width = kernel->height = 3; /* default radius = 1 */ else kernel->width = kernel->height = ((size_t)args->rho)*2+1; kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; kernel->values=(double *) AcquireQuantumMemory(kernel->width, kernel->height*sizeof(double)); if (kernel->values == (double *) NULL) return(DestroyKernelInfo(kernel)); for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) kernel->positive_range += ( kernel->values[i] = args->sigma*((labs(u)>labs(v)) ? labs(u) : labs(v)) ); kernel->maximum = kernel->values[0]; break; } case ManhattenKernel: { if (args->rho < 1.0) kernel->width = kernel->height = 3; /* default radius = 1 */ else kernel->width = kernel->height = ((size_t)args->rho)*2+1; kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; kernel->values=(double *) AcquireQuantumMemory(kernel->width, kernel->height*sizeof(double)); if (kernel->values == (double *) NULL) return(DestroyKernelInfo(kernel)); for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) kernel->positive_range += ( kernel->values[i] = args->sigma*(labs(u)+labs(v)) ); kernel->maximum = kernel->values[0]; break; } case EuclideanKernel: { if (args->rho < 1.0) kernel->width = kernel->height = 3; /* default radius = 1 */ else kernel->width = kernel->height = ((size_t)args->rho)*2+1; kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; kernel->values=(double *) AcquireQuantumMemory(kernel->width, kernel->height*sizeof(double)); if (kernel->values == (double *) NULL) return(DestroyKernelInfo(kernel)); for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) kernel->positive_range += ( kernel->values[i] = args->sigma*sqrt((double)(u*u+v*v)) ); kernel->maximum = kernel->values[0]; break; } case UnityKernel: default: { /* Unity or No-Op Kernel - 3x3 with 1 in center */ kernel=ParseKernelArray("3:0,0,0,0,1,0,0,0,0"); if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = ( type == UnityKernel ) ? UnityKernel : UndefinedKernel; break; } break; } return(kernel); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % C l o n e K e r n e l I n f o % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % CloneKernelInfo() creates a new clone of the given Kernel List so that its % can be modified without effecting the original. The cloned kernel should % be destroyed using DestoryKernelInfo() when no ssize_ter needed. % % The format of the CloneKernelInfo method is: % % KernelInfo *CloneKernelInfo(const KernelInfo *kernel) % % A description of each parameter follows: % % o kernel: the Morphology/Convolution kernel to be cloned % */ MagickExport KernelInfo *CloneKernelInfo(const KernelInfo *kernel) { register ssize_t i; KernelInfo *new_kernel; assert(kernel != (KernelInfo *) NULL); new_kernel=(KernelInfo *) AcquireMagickMemory(sizeof(*kernel)); if (new_kernel == (KernelInfo *) NULL) return(new_kernel); *new_kernel=(*kernel); /* copy values in structure */ /* replace the values with a copy of the values */ new_kernel->values=(double *) AcquireQuantumMemory(kernel->width, kernel->height*sizeof(double)); if (new_kernel->values == (double *) NULL) return(DestroyKernelInfo(new_kernel)); for (i=0; i < (ssize_t) (kernel->width*kernel->height); i++) new_kernel->values[i]=kernel->values[i]; /* Also clone the next kernel in the kernel list */ if ( kernel->next != (KernelInfo *) NULL ) { new_kernel->next = CloneKernelInfo(kernel->next); if ( new_kernel->next == (KernelInfo *) NULL ) return(DestroyKernelInfo(new_kernel)); } return(new_kernel); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % D e s t r o y K e r n e l I n f o % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DestroyKernelInfo() frees the memory used by a Convolution/Morphology % kernel. % % The format of the DestroyKernelInfo method is: % % KernelInfo *DestroyKernelInfo(KernelInfo *kernel) % % A description of each parameter follows: % % o kernel: the Morphology/Convolution kernel to be destroyed % */ MagickExport KernelInfo *DestroyKernelInfo(KernelInfo *kernel) { assert(kernel != (KernelInfo *) NULL); if ( kernel->next != (KernelInfo *) NULL ) kernel->next = DestroyKernelInfo(kernel->next); kernel->values = (double *)RelinquishMagickMemory(kernel->values); kernel = (KernelInfo *) RelinquishMagickMemory(kernel); return(kernel); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % E x p a n d K e r n e l I n f o % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % ExpandKernelInfo() takes a single kernel, and expands it into a list % of kernels each incrementally rotated the angle given. % % WARNING: 45 degree rotations only works for 3x3 kernels. % While 90 degree roatations only works for linear and square kernels % % The format of the RotateKernelInfo method is: % % void ExpandKernelInfo(KernelInfo *kernel, double angle) % % A description of each parameter follows: % % o kernel: the Morphology/Convolution kernel % % o angle: angle to rotate in degrees % % This function is only internel to this module, as it is not finalized, % especially with regard to non-orthogonal angles, and rotation of larger % 2D kernels. */ /* Internal Routine - Return true if two kernels are the same */ static MagickBooleanType SameKernelInfo(const KernelInfo *kernel1, const KernelInfo *kernel2) { register size_t i; /* check size and origin location */ if ( kernel1->width != kernel2->width || kernel1->height != kernel2->height || kernel1->x != kernel2->x || kernel1->y != kernel2->y ) return MagickFalse; /* check actual kernel values */ for (i=0; i < (kernel1->width*kernel1->height); i++) { /* Test for Nan equivelence */ if ( IsNan(kernel1->values[i]) && !IsNan(kernel2->values[i]) ) return MagickFalse; if ( IsNan(kernel2->values[i]) && !IsNan(kernel1->values[i]) ) return MagickFalse; /* Test actual values are equivelent */ if ( fabs(kernel1->values[i] - kernel2->values[i]) > MagickEpsilon ) return MagickFalse; } return MagickTrue; } static void ExpandKernelInfo(KernelInfo *kernel, const double angle) { KernelInfo *clone, *last; last = kernel; while(1) { clone = CloneKernelInfo(last); RotateKernelInfo(clone, angle); if ( SameKernelInfo(kernel, clone) == MagickTrue ) break; last->next = clone; last = clone; } clone = DestroyKernelInfo(clone); /* This was the same as the first - junk */ return; } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % + C a l c M e t a K e r n a l I n f o % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % CalcKernelMetaData() recalculate the KernelInfo meta-data of this kernel only, % using the kernel values. This should only ne used if it is not posible to % calculate that meta-data in some easier way. % % It is important that the meta-data is correct before ScaleKernelInfo() is % used to perform kernel normalization. % % The format of the CalcKernelMetaData method is: % % void CalcKernelMetaData(KernelInfo *kernel, const double scale ) % % A description of each parameter follows: % % o kernel: the Morphology/Convolution kernel to modify % % WARNING: Minimum and Maximum values are assumed to include zero, even if % zero is not part of the kernel (as in Gaussian Derived kernels). This % however is not true for flat-shaped morphological kernels. % % WARNING: Only the specific kernel pointed to is modified, not a list of % multiple kernels. % % This is an internal function and not expected to be useful outside this % module. This could change however. */ static void CalcKernelMetaData(KernelInfo *kernel) { register size_t i; kernel->minimum = kernel->maximum = 0.0; kernel->negative_range = kernel->positive_range = 0.0; for (i=0; i < (kernel->width*kernel->height); i++) { if ( fabs(kernel->values[i]) < MagickEpsilon ) kernel->values[i] = 0.0; ( kernel->values[i] < 0) ? ( kernel->negative_range += kernel->values[i] ) : ( kernel->positive_range += kernel->values[i] ); Minimize(kernel->minimum, kernel->values[i]); Maximize(kernel->maximum, kernel->values[i]); } return; } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % M o r p h o l o g y A p p l y % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % MorphologyApply() applies a morphological method, multiple times using % a list of multiple kernels. % % It is basically equivelent to as MorphologyImageChannel() (see below) but % without user controls, that that function extracts and applies to kernels % and morphology methods. % % More specifically kernels are not normalized/scaled/blended by the % 'convolve:scale' Image Artifact (-set setting), and the convolve bias % (-bias setting or image->bias) is passed directly to this function, % and not extracted from an image. % % The format of the MorphologyApply method is: % % Image *MorphologyApply(const Image *image,MorphologyMethod method, % const ssize_t iterations,const KernelInfo *kernel, % const CompositeMethod compose, const double bias, % ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o method: the morphology method to be applied. % % o iterations: apply the operation this many times (or no change). % A value of -1 means loop until no change found. % How this is applied may depend on the morphology method. % Typically this is a value of 1. % % o channel: the channel type. % % o kernel: An array of double representing the morphology kernel. % Warning: kernel may be normalized for the Convolve method. % % o compose: How to handle or merge multi-kernel results. % If 'Undefined' use default of the Morphology method. % If 'No' force image to be re-iterated by each kernel. % Otherwise merge the results using the mathematical compose % method given. % % o bias: Convolution Output Bias. % % o exception: return any errors or warnings in this structure. % */ /* Apply a Morphology Primative to an image using the given kernel. ** Two pre-created images must be provided, no image is created. ** Returning the number of pixels that changed. */ static size_t MorphologyPrimitive(const Image *image, Image *result_image, const MorphologyMethod method, const ChannelType channel, const KernelInfo *kernel,const double bias,ExceptionInfo *exception) { #define MorphologyTag "Morphology/Image" CacheView *p_view, *q_view; ssize_t y, offx, offy, changed; MagickBooleanType status; MagickOffsetType progress; status=MagickTrue; changed=0; progress=0; p_view=AcquireCacheView(image); q_view=AcquireCacheView(result_image); /* Some methods (including convolve) needs use a reflected kernel. * Adjust 'origin' offsets to loop though kernel as a reflection. */ offx = kernel->x; offy = kernel->y; switch(method) { case ConvolveMorphology: case DilateMorphology: case DilateIntensityMorphology: case DistanceMorphology: /* kernel needs to used with reflection about origin */ offx = (ssize_t) kernel->width-offx-1; offy = (ssize_t) kernel->height-offy-1; break; case ErodeMorphology: case ErodeIntensityMorphology: case HitAndMissMorphology: case ThinningMorphology: case ThickenMorphology: /* kernel is user as is, without reflection */ break; default: assert("Not a Primitive Morphology Method" != (char *) NULL); break; } #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(dynamic,4) shared(progress,status) #endif for (y=0; y < (ssize_t) image->rows; y++) { MagickBooleanType sync; register const PixelPacket *restrict p; register const IndexPacket *restrict p_indexes; register PixelPacket *restrict q; register IndexPacket *restrict q_indexes; register ssize_t x; size_t r; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(p_view, -offx, y-offy, image->columns+kernel->width, kernel->height, exception); q=GetCacheViewAuthenticPixels(q_view,0,y,result_image->columns,1, exception); if ((p == (const PixelPacket *) NULL) || (q == (PixelPacket *) NULL)) { status=MagickFalse; continue; } p_indexes=GetCacheViewVirtualIndexQueue(p_view); q_indexes=GetCacheViewAuthenticIndexQueue(q_view); r = (image->columns+kernel->width)*offy+offx; /* constant */ for (x=0; x < (ssize_t) image->columns; x++) { ssize_t v; register ssize_t u; register const double *restrict k; register const PixelPacket *restrict k_pixels; register const IndexPacket *restrict k_indexes; MagickPixelPacket result, min, max; /* Copy input to ouput image for unused channels * This removes need for 'cloning' a new image every iteration */ *q = p[r]; if (image->colorspace == CMYKColorspace) q_indexes[x] = p_indexes[r]; /* Defaults */ min.red = min.green = min.blue = min.opacity = min.index = (MagickRealType) QuantumRange; max.red = max.green = max.blue = max.opacity = max.index = (MagickRealType) 0; /* default result is the original pixel value */ result.red = (MagickRealType) p[r].red; result.green = (MagickRealType) p[r].green; result.blue = (MagickRealType) p[r].blue; result.opacity = QuantumRange - (MagickRealType) p[r].opacity; result.index = 0.0; if ( image->colorspace == CMYKColorspace) result.index = (MagickRealType) p_indexes[r]; switch (method) { case ConvolveMorphology: /* Set the user defined bias of the weighted average output */ result.red = result.green = result.blue = result.opacity = result.index = bias; break; case DilateIntensityMorphology: case ErodeIntensityMorphology: /* use a boolean flag indicating when first match found */ result.red = 0.0; /* result is not used otherwise */ break; default: break; } switch ( method ) { case ConvolveMorphology: /* Weighted Average of pixels using reflected kernel ** ** NOTE for correct working of this operation for asymetrical ** kernels, the kernel needs to be applied in its reflected form. ** That is its values needs to be reversed. ** ** Correlation is actually the same as this but without reflecting ** the kernel, and thus 'lower-level' that Convolution. However ** as Convolution is the more common method used, and it does not ** really cost us much in terms of processing to use a reflected ** kernel, so it is Convolution that is implemented. ** ** Correlation will have its kernel reflected before calling ** this function to do a Convolve. ** ** For more details of Correlation vs Convolution see ** http://www.cs.umd.edu/~djacobs/CMSC426/Convolution.pdf */ if (((channel & SyncChannels) != 0 ) && (image->matte == MagickTrue)) { /* Channel has a 'Sync' Flag, and Alpha Channel enabled. ** Weight the color channels with Alpha Channel so that ** transparent pixels are not part of the results. */ MagickRealType alpha, /* color channel weighting : kernel*alpha */ gamma; /* divisor, sum of weighting values */ gamma=0.0; k = &kernel->values[ kernel->width*kernel->height-1 ]; k_pixels = p; k_indexes = p_indexes; for (v=0; v < (ssize_t) kernel->height; v++) { for (u=0; u < (ssize_t) kernel->width; u++, k--) { if ( IsNan(*k) ) continue; alpha=(*k)*(QuantumScale*(QuantumRange- k_pixels[u].opacity)); gamma += alpha; result.red += alpha*k_pixels[u].red; result.green += alpha*k_pixels[u].green; result.blue += alpha*k_pixels[u].blue; result.opacity += (*k)*(QuantumRange-k_pixels[u].opacity); if ( image->colorspace == CMYKColorspace) result.index += alpha*k_indexes[u]; } k_pixels += image->columns+kernel->width; k_indexes += image->columns+kernel->width; } gamma=1.0/(fabs((double) gamma) <= MagickEpsilon ? 1.0 : gamma); result.red *= gamma; result.green *= gamma; result.blue *= gamma; result.opacity *= gamma; result.index *= gamma; } else { /* No 'Sync' flag, or no Alpha involved. ** Convolution is simple individual channel weigthed sum. */ k = &kernel->values[ kernel->width*kernel->height-1 ]; k_pixels = p; k_indexes = p_indexes; for (v=0; v < (ssize_t) kernel->height; v++) { for (u=0; u < (ssize_t) kernel->width; u++, k--) { if ( IsNan(*k) ) continue; result.red += (*k)*k_pixels[u].red; result.green += (*k)*k_pixels[u].green; result.blue += (*k)*k_pixels[u].blue; result.opacity += (*k)*(QuantumRange-k_pixels[u].opacity); if ( image->colorspace == CMYKColorspace) result.index += (*k)*k_indexes[u]; } k_pixels += image->columns+kernel->width; k_indexes += image->columns+kernel->width; } } break; case ErodeMorphology: /* Minimum Value within kernel neighbourhood ** ** NOTE that the kernel is not reflected for this operation! ** ** NOTE: in normal Greyscale Morphology, the kernel value should ** be added to the real value, this is currently not done, due to ** the nature of the boolean kernels being used. */ k = kernel->values; k_pixels = p; k_indexes = p_indexes; for (v=0; v < (ssize_t) kernel->height; v++) { for (u=0; u < (ssize_t) kernel->width; u++, k++) { if ( IsNan(*k) || (*k) < 0.5 ) continue; Minimize(min.red, (double) k_pixels[u].red); Minimize(min.green, (double) k_pixels[u].green); Minimize(min.blue, (double) k_pixels[u].blue); Minimize(min.opacity, QuantumRange-(double) k_pixels[u].opacity); if ( image->colorspace == CMYKColorspace) Minimize(min.index, (double) k_indexes[u]); } k_pixels += image->columns+kernel->width; k_indexes += image->columns+kernel->width; } break; case DilateMorphology: /* Maximum Value within kernel neighbourhood ** ** NOTE for correct working of this operation for asymetrical ** kernels, the kernel needs to be applied in its reflected form. ** That is its values needs to be reversed. ** ** NOTE: in normal Greyscale Morphology, the kernel value should ** be added to the real value, this is currently not done, due to ** the nature of the boolean kernels being used. ** */ k = &kernel->values[ kernel->width*kernel->height-1 ]; k_pixels = p; k_indexes = p_indexes; for (v=0; v < (ssize_t) kernel->height; v++) { for (u=0; u < (ssize_t) kernel->width; u++, k--) { if ( IsNan(*k) || (*k) < 0.5 ) continue; Maximize(max.red, (double) k_pixels[u].red); Maximize(max.green, (double) k_pixels[u].green); Maximize(max.blue, (double) k_pixels[u].blue); Maximize(max.opacity, QuantumRange-(double) k_pixels[u].opacity); if ( image->colorspace == CMYKColorspace) Maximize(max.index, (double) k_indexes[u]); } k_pixels += image->columns+kernel->width; k_indexes += image->columns+kernel->width; } break; case HitAndMissMorphology: case ThinningMorphology: case ThickenMorphology: /* Minimum of Foreground Pixel minus Maxumum of Background Pixels ** ** NOTE that the kernel is not reflected for this operation, ** and consists of both foreground and background pixel ** neighbourhoods, 0.0 for background, and 1.0 for foreground ** with either Nan or 0.5 values for don't care. ** ** Note that this can produce negative results, though really ** only a positive match has any real value. */ k = kernel->values; k_pixels = p; k_indexes = p_indexes; for (v=0; v < (ssize_t) kernel->height; v++) { for (u=0; u < (ssize_t) kernel->width; u++, k++) { if ( IsNan(*k) ) continue; if ( (*k) > 0.7 ) { /* minimim of foreground pixels */ Minimize(min.red, (double) k_pixels[u].red); Minimize(min.green, (double) k_pixels[u].green); Minimize(min.blue, (double) k_pixels[u].blue); Minimize(min.opacity, QuantumRange-(double) k_pixels[u].opacity); if ( image->colorspace == CMYKColorspace) Minimize(min.index, (double) k_indexes[u]); } else if ( (*k) < 0.3 ) { /* maximum of background pixels */ Maximize(max.red, (double) k_pixels[u].red); Maximize(max.green, (double) k_pixels[u].green); Maximize(max.blue, (double) k_pixels[u].blue); Maximize(max.opacity, QuantumRange-(double) k_pixels[u].opacity); if ( image->colorspace == CMYKColorspace) Maximize(max.index, (double) k_indexes[u]); } } k_pixels += image->columns+kernel->width; k_indexes += image->columns+kernel->width; } /* Pattern Match only if min fg larger than min bg pixels */ min.red -= max.red; Maximize( min.red, 0.0 ); min.green -= max.green; Maximize( min.green, 0.0 ); min.blue -= max.blue; Maximize( min.blue, 0.0 ); min.opacity -= max.opacity; Maximize( min.opacity, 0.0 ); min.index -= max.index; Maximize( min.index, 0.0 ); break; case ErodeIntensityMorphology: /* Select Pixel with Minimum Intensity within kernel neighbourhood ** ** WARNING: the intensity test fails for CMYK and does not ** take into account the moderating effect of teh alpha channel ** on the intensity. ** ** NOTE that the kernel is not reflected for this operation! */ k = kernel->values; k_pixels = p; k_indexes = p_indexes; for (v=0; v < (ssize_t) kernel->height; v++) { for (u=0; u < (ssize_t) kernel->width; u++, k++) { if ( IsNan(*k) || (*k) < 0.5 ) continue; if ( result.red == 0.0 || PixelIntensity(&(k_pixels[u])) < PixelIntensity(q) ) { /* copy the whole pixel - no channel selection */ *q = k_pixels[u]; if ( result.red > 0.0 ) changed++; result.red = 1.0; } } k_pixels += image->columns+kernel->width; k_indexes += image->columns+kernel->width; } break; case DilateIntensityMorphology: /* Select Pixel with Maximum Intensity within kernel neighbourhood ** ** WARNING: the intensity test fails for CMYK and does not ** take into account the moderating effect of the alpha channel ** on the intensity (yet). ** ** NOTE for correct working of this operation for asymetrical ** kernels, the kernel needs to be applied in its reflected form. ** That is its values needs to be reversed. */ k = &kernel->values[ kernel->width*kernel->height-1 ]; k_pixels = p; k_indexes = p_indexes; for (v=0; v < (ssize_t) kernel->height; v++) { for (u=0; u < (ssize_t) kernel->width; u++, k--) { if ( IsNan(*k) || (*k) < 0.5 ) continue; /* boolean kernel */ if ( result.red == 0.0 || PixelIntensity(&(k_pixels[u])) > PixelIntensity(q) ) { /* copy the whole pixel - no channel selection */ *q = k_pixels[u]; if ( result.red > 0.0 ) changed++; result.red = 1.0; } } k_pixels += image->columns+kernel->width; k_indexes += image->columns+kernel->width; } break; case DistanceMorphology: /* Add kernel Value and select the minimum value found. ** The result is a iterative distance from edge of image shape. ** ** All Distance Kernels are symetrical, but that may not always ** be the case. For example how about a distance from left edges? ** To work correctly with asymetrical kernels the reflected kernel ** needs to be applied. ** ** Actually this is really a GreyErode with a negative kernel! ** */ k = &kernel->values[ kernel->width*kernel->height-1 ]; k_pixels = p; k_indexes = p_indexes; for (v=0; v < (ssize_t) kernel->height; v++) { for (u=0; u < (ssize_t) kernel->width; u++, k--) { if ( IsNan(*k) ) continue; Minimize(result.red, (*k)+k_pixels[u].red); Minimize(result.green, (*k)+k_pixels[u].green); Minimize(result.blue, (*k)+k_pixels[u].blue); Minimize(result.opacity, (*k)+QuantumRange-k_pixels[u].opacity); if ( image->colorspace == CMYKColorspace) Minimize(result.index, (*k)+k_indexes[u]); } k_pixels += image->columns+kernel->width; k_indexes += image->columns+kernel->width; } break; case UndefinedMorphology: default: break; /* Do nothing */ } /* Final mathematics of results (combine with original image?) ** ** NOTE: Difference Morphology operators Edge* and *Hat could also ** be done here but works better with iteration as a image difference ** in the controling function (below). Thicken and Thinning however ** should be done here so thay can be iterated correctly. */ switch ( method ) { case HitAndMissMorphology: case ErodeMorphology: result = min; /* minimum of neighbourhood */ break; case DilateMorphology: result = max; /* maximum of neighbourhood */ break; case ThinningMorphology: /* subtract pattern match from original */ result.red -= min.red; result.green -= min.green; result.blue -= min.blue; result.opacity -= min.opacity; result.index -= min.index; break; case ThickenMorphology: /* Union with original image (maximize) - or should this be + */ Maximize( result.red, min.red ); Maximize( result.green, min.green ); Maximize( result.blue, min.blue ); Maximize( result.opacity, min.opacity ); Maximize( result.index, min.index ); break; default: /* result directly calculated or assigned */ break; } /* Assign the resulting pixel values - Clamping Result */ switch ( method ) { case UndefinedMorphology: case DilateIntensityMorphology: case ErodeIntensityMorphology: break; /* full pixel was directly assigned - not a channel method */ default: if ((channel & RedChannel) != 0) q->red = ClampToQuantum(result.red); if ((channel & GreenChannel) != 0) q->green = ClampToQuantum(result.green); if ((channel & BlueChannel) != 0) q->blue = ClampToQuantum(result.blue); if ((channel & OpacityChannel) != 0 && image->matte == MagickTrue ) q->opacity = ClampToQuantum(QuantumRange-result.opacity); if ((channel & IndexChannel) != 0 && image->colorspace == CMYKColorspace) q_indexes[x] = ClampToQuantum(result.index); break; } /* Count up changed pixels */ if ( ( p[r].red != q->red ) || ( p[r].green != q->green ) || ( p[r].blue != q->blue ) || ( p[r].opacity != q->opacity ) || ( image->colorspace == CMYKColorspace && p_indexes[r] != q_indexes[x] ) ) changed++; /* The pixel had some value changed! */ p++; q++; } /* x */ sync=SyncCacheViewAuthenticPixels(q_view,exception); if (sync == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_MorphologyImage) #endif proceed=SetImageProgress(image,MorphologyTag,progress++,image->rows); if (proceed == MagickFalse) status=MagickFalse; } } /* y */ result_image->type=image->type; q_view=DestroyCacheView(q_view); p_view=DestroyCacheView(p_view); return(status ? (size_t) changed : 0); } MagickExport Image *MorphologyApply(const Image *image, const ChannelType channel,const MorphologyMethod method, const ssize_t iterations, const KernelInfo *kernel, const CompositeOperator compose, const double bias, ExceptionInfo *exception) { Image *curr_image, /* Image we are working with or iterating */ *work_image, /* secondary image for primative iteration */ *save_image, /* saved image - for 'edge' method only */ *rslt_image; /* resultant image - after multi-kernel handling */ KernelInfo *reflected_kernel, /* A reflected copy of the kernel (if needed) */ *norm_kernel, /* the current normal un-reflected kernel */ *rflt_kernel, /* the current reflected kernel (if needed) */ *this_kernel; /* the kernel being applied */ MorphologyMethod primative; /* the current morphology primative being applied */ CompositeOperator rslt_compose; /* multi-kernel compose method for results to use */ MagickBooleanType verbose; /* verbose output of results */ size_t method_loop, /* Loop 1: number of compound method iterations */ method_limit, /* maximum number of compound method iterations */ kernel_number, /* Loop 2: the kernel number being applied */ stage_loop, /* Loop 3: primative loop for compound morphology */ stage_limit, /* how many primatives in this compound */ kernel_loop, /* Loop 4: iterate the kernel (basic morphology) */ kernel_limit, /* number of times to iterate kernel */ count, /* total count of primative steps applied */ changed, /* number pixels changed by last primative operation */ kernel_changed, /* total count of changed using iterated kernel */ method_changed; /* total count of changed over method iteration */ char v_info[80]; assert(image != (Image *) NULL); assert(image->signature == MagickSignature); assert(kernel != (KernelInfo *) NULL); assert(kernel->signature == MagickSignature); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickSignature); count = 0; /* number of low-level morphology primatives performed */ if ( iterations == 0 ) return((Image *)NULL); /* null operation - nothing to do! */ kernel_limit = (size_t) iterations; if ( iterations < 0 ) /* negative interations = infinite (well alomst) */ kernel_limit = image->columns > image->rows ? image->columns : image->rows; verbose = ( GetImageArtifact(image,"verbose") != (const char *) NULL ) ? MagickTrue : MagickFalse; /* initialise for cleanup */ curr_image = (Image *) image; work_image = save_image = rslt_image = (Image *) NULL; reflected_kernel = (KernelInfo *) NULL; /* Initialize specific methods * + which loop should use the given iteratations * + how many primatives make up the compound morphology * + multi-kernel compose method to use (by default) */ method_limit = 1; /* just do method once, unless otherwise set */ stage_limit = 1; /* assume method is not a compount */ rslt_compose = compose; /* and we are composing multi-kernels as given */ switch( method ) { case SmoothMorphology: /* 4 primative compound morphology */ stage_limit = 4; break; case OpenMorphology: /* 2 primative compound morphology */ case OpenIntensityMorphology: case TopHatMorphology: case CloseMorphology: case CloseIntensityMorphology: case BottomHatMorphology: case EdgeMorphology: stage_limit = 2; break; case HitAndMissMorphology: kernel_limit = 1; /* no method or kernel iteration */ rslt_compose = LightenCompositeOp; /* Union of multi-kernel results */ break; case ThinningMorphology: case ThickenMorphology: case DistanceMorphology: method_limit = kernel_limit; /* iterate method with each kernel */ kernel_limit = 1; /* do not do kernel iteration */ rslt_compose = NoCompositeOp; /* Re-iterate with multiple kernels */ break; default: break; } /* Handle user (caller) specified multi-kernel composition method */ if ( compose != UndefinedCompositeOp ) rslt_compose = compose; /* override default composition for method */ if ( rslt_compose == UndefinedCompositeOp ) rslt_compose = NoCompositeOp; /* still not defined! Then re-iterate */ /* Some methods require a reflected kernel to use with primatives. * Create the reflected kernel for those methods. */ switch ( method ) { case CorrelateMorphology: case CloseMorphology: case CloseIntensityMorphology: case BottomHatMorphology: case SmoothMorphology: reflected_kernel = CloneKernelInfo(kernel); if (reflected_kernel == (KernelInfo *) NULL) goto error_cleanup; RotateKernelInfo(reflected_kernel,180); break; default: break; } /* Loop 1: iterate the compound method */ method_loop = 0; method_changed = 1; while ( method_loop < method_limit && method_changed > 0 ) { method_loop++; method_changed = 0; /* Loop 2: iterate over each kernel in a multi-kernel list */ norm_kernel = (KernelInfo *) kernel; rflt_kernel = reflected_kernel; kernel_number = 0; while ( norm_kernel != NULL ) { /* Loop 3: Compound Morphology Staging - Select Primative to apply */ stage_loop = 0; /* the compound morphology stage number */ while ( stage_loop < stage_limit ) { stage_loop++; /* The stage of the compound morphology */ /* Select primative morphology for this stage of compound method */ this_kernel = norm_kernel; /* default use unreflected kernel */ primative = method; /* Assume method is a primative */ switch( method ) { case ErodeMorphology: /* just erode */ case EdgeInMorphology: /* erode and image difference */ primative = ErodeMorphology; break; case DilateMorphology: /* just dilate */ case EdgeOutMorphology: /* dilate and image difference */ primative = DilateMorphology; break; case OpenMorphology: /* erode then dialate */ case TopHatMorphology: /* open and image difference */ primative = ErodeMorphology; if ( stage_loop == 2 ) primative = DilateMorphology; break; case OpenIntensityMorphology: primative = ErodeIntensityMorphology; if ( stage_loop == 2 ) primative = DilateIntensityMorphology; case CloseMorphology: /* dilate, then erode */ case BottomHatMorphology: /* close and image difference */ this_kernel = rflt_kernel; /* use the reflected kernel */ primative = DilateMorphology; if ( stage_loop == 2 ) primative = ErodeMorphology; break; case CloseIntensityMorphology: this_kernel = rflt_kernel; /* use the reflected kernel */ primative = DilateIntensityMorphology; if ( stage_loop == 2 ) primative = ErodeIntensityMorphology; break; case SmoothMorphology: /* open, close */ switch ( stage_loop ) { case 1: /* start an open method, which starts with Erode */ primative = ErodeMorphology; break; case 2: /* now Dilate the Erode */ primative = DilateMorphology; break; case 3: /* Reflect kernel a close */ this_kernel = rflt_kernel; /* use the reflected kernel */ primative = DilateMorphology; break; case 4: /* Finish the Close */ this_kernel = rflt_kernel; /* use the reflected kernel */ primative = ErodeMorphology; break; } break; case EdgeMorphology: /* dilate and erode difference */ primative = DilateMorphology; if ( stage_loop == 2 ) { save_image = curr_image; /* save the image difference */ curr_image = (Image *) image; primative = ErodeMorphology; } break; case CorrelateMorphology: /* A Correlation is a Convolution with a reflected kernel. ** However a Convolution is a weighted sum using a reflected ** kernel. It may seem stange to convert a Correlation into a ** Convolution as the Correlation is the simplier method, but ** Convolution is much more commonly used, and it makes sense to ** implement it directly so as to avoid the need to duplicate the ** kernel when it is not required (which is typically the ** default). */ this_kernel = rflt_kernel; /* use the reflected kernel */ primative = ConvolveMorphology; break; default: break; } /* Extra information for debugging compound operations */ if ( verbose == MagickTrue ) { if ( stage_limit > 1 ) (void) FormatMagickString(v_info, MaxTextExtent, "%s:%lu.%lu -> ", MagickOptionToMnemonic(MagickMorphologyOptions, method), method_loop, stage_loop ); else if ( primative != method ) (void) FormatMagickString(v_info, MaxTextExtent, "%s:%lu -> ", MagickOptionToMnemonic(MagickMorphologyOptions, method), method_loop ); else v_info[0] = '\0'; } /* Loop 4: Iterate the kernel with primative */ kernel_loop = 0; kernel_changed = 0; changed = 1; while ( kernel_loop < kernel_limit && changed > 0 ) { kernel_loop++; /* the iteration of this kernel */ /* Create a destination image, if not yet defined */ if ( work_image == (Image *) NULL ) { work_image=CloneImage(image,0,0,MagickTrue,exception); if (work_image == (Image *) NULL) goto error_cleanup; if (SetImageStorageClass(work_image,DirectClass) == MagickFalse) { InheritException(exception,&work_image->exception); goto error_cleanup; } } /* APPLY THE MORPHOLOGICAL PRIMITIVE (curr -> work) */ count++; changed = MorphologyPrimitive(curr_image, work_image, primative, channel, this_kernel, bias, exception); kernel_changed += changed; method_changed += changed; if ( verbose == MagickTrue ) { if ( kernel_loop > 1 ) fprintf(stderr, "\n"); /* add end-of-line from previous */ fprintf(stderr, "%s%s%s:%lu.%lu #%lu => Changed %lu", v_info, MagickOptionToMnemonic(MagickMorphologyOptions, primative), ( this_kernel == rflt_kernel ) ? "*" : "", method_loop+kernel_loop-1, kernel_number, count, changed); } /* prepare next loop */ { Image *tmp = work_image; /* swap images for iteration */ work_image = curr_image; curr_image = tmp; } if ( work_image == image ) work_image = (Image *) NULL; /* replace input 'image' */ } /* End Loop 4: Iterate the kernel with primative */ if ( verbose == MagickTrue && kernel_changed != changed ) fprintf(stderr, " Total %lu", kernel_changed); if ( verbose == MagickTrue && stage_loop < stage_limit ) fprintf(stderr, "\n"); /* add end-of-line before looping */ #if 0 fprintf(stderr, "--E-- image=0x%lx\n", (size_t)image); fprintf(stderr, " curr =0x%lx\n", (size_t)curr_image); fprintf(stderr, " work =0x%lx\n", (size_t)work_image); fprintf(stderr, " save =0x%lx\n", (size_t)save_image); fprintf(stderr, " union=0x%lx\n", (size_t)rslt_image); #endif } /* End Loop 3: Primative (staging) Loop for Coumpound Methods */ /* Final Post-processing for some Compound Methods ** ** The removal of any 'Sync' channel flag in the Image Compositon ** below ensures the methematical compose method is applied in a ** purely mathematical way, and only to the selected channels. ** Turn off SVG composition 'alpha blending'. */ switch( method ) { case EdgeOutMorphology: case EdgeInMorphology: case TopHatMorphology: case BottomHatMorphology: if ( verbose == MagickTrue ) fprintf(stderr, "\n%s: Difference with original image", MagickOptionToMnemonic(MagickMorphologyOptions, method) ); (void) CompositeImageChannel(curr_image, (ChannelType) (channel & ~SyncChannels), DifferenceCompositeOp, image, 0, 0); break; case EdgeMorphology: if ( verbose == MagickTrue ) fprintf(stderr, "\n%s: Difference of Dilate and Erode", MagickOptionToMnemonic(MagickMorphologyOptions, method) ); (void) CompositeImageChannel(curr_image, (ChannelType) (channel & ~SyncChannels), DifferenceCompositeOp, save_image, 0, 0); save_image = DestroyImage(save_image); /* finished with save image */ break; default: break; } /* multi-kernel handling: re-iterate, or compose results */ if ( kernel->next == (KernelInfo *) NULL ) rslt_image = curr_image; /* just return the resulting image */ else if ( rslt_compose == NoCompositeOp ) { if ( verbose == MagickTrue ) { if ( this_kernel->next != (KernelInfo *) NULL ) fprintf(stderr, " (re-iterate)"); else fprintf(stderr, " (done)"); } rslt_image = curr_image; /* return result, and re-iterate */ } else if ( rslt_image == (Image *) NULL) { if ( verbose == MagickTrue ) fprintf(stderr, " (save for compose)"); rslt_image = curr_image; curr_image = (Image *) image; /* continue with original image */ } else { /* add the new 'current' result to the composition ** ** The removal of any 'Sync' channel flag in the Image Compositon ** below ensures the methematical compose method is applied in a ** purely mathematical way, and only to the selected channels. ** Turn off SVG composition 'alpha blending'. */ if ( verbose == MagickTrue ) fprintf(stderr, " (compose \"%s\")", MagickOptionToMnemonic(MagickComposeOptions, rslt_compose) ); (void) CompositeImageChannel(rslt_image, (ChannelType) (channel & ~SyncChannels), rslt_compose, curr_image, 0, 0); curr_image = (Image *) image; /* continue with original image */ } if ( verbose == MagickTrue ) fprintf(stderr, "\n"); /* loop to the next kernel in a multi-kernel list */ norm_kernel = norm_kernel->next; if ( rflt_kernel != (KernelInfo *) NULL ) rflt_kernel = rflt_kernel->next; kernel_number++; } /* End Loop 2: Loop over each kernel */ } /* End Loop 1: compound method interation */ goto exit_cleanup; /* Yes goto's are bad, but it makes cleanup lot more efficient */ error_cleanup: if ( curr_image != (Image *) NULL && curr_image != rslt_image && curr_image != image ) curr_image = DestroyImage(curr_image); if ( rslt_image != (Image *) NULL ) rslt_image = DestroyImage(rslt_image); exit_cleanup: if ( curr_image != (Image *) NULL && curr_image != rslt_image && curr_image != image ) curr_image = DestroyImage(curr_image); if ( work_image != (Image *) NULL ) work_image = DestroyImage(work_image); if ( save_image != (Image *) NULL ) save_image = DestroyImage(save_image); if ( reflected_kernel != (KernelInfo *) NULL ) reflected_kernel = DestroyKernelInfo(reflected_kernel); return(rslt_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % M o r p h o l o g y I m a g e C h a n n e l % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % MorphologyImageChannel() applies a user supplied kernel to the image % according to the given mophology method. % % This function applies any and all user defined settings before calling % the above internal function MorphologyApply(). % % User defined settings include... % * Output Bias for Convolution and correlation ("-bias") % * Kernel Scale/normalize settings ("-set 'option:convolve:scale'") % This can also includes the addition of a scaled unity kernel. % * Show Kernel being applied ("-set option:showkernel 1") % % The format of the MorphologyImage method is: % % Image *MorphologyImage(const Image *image,MorphologyMethod method, % const ssize_t iterations,KernelInfo *kernel,ExceptionInfo *exception) % % Image *MorphologyImageChannel(const Image *image, const ChannelType % channel,MorphologyMethod method,const ssize_t iterations, % KernelInfo *kernel,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o method: the morphology method to be applied. % % o iterations: apply the operation this many times (or no change). % A value of -1 means loop until no change found. % How this is applied may depend on the morphology method. % Typically this is a value of 1. % % o channel: the channel type. % % o kernel: An array of double representing the morphology kernel. % Warning: kernel may be normalized for the Convolve method. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *MorphologyImageChannel(const Image *image, const ChannelType channel,const MorphologyMethod method, const ssize_t iterations,const KernelInfo *kernel,ExceptionInfo *exception) { const char *artifact; KernelInfo *curr_kernel; CompositeOperator compose; Image *morphology_image; /* Apply Convolve/Correlate Normalization and Scaling Factors. * This is done BEFORE the ShowKernelInfo() function is called so that * users can see the results of the 'option:convolve:scale' option. */ curr_kernel = (KernelInfo *) kernel; if ( method == ConvolveMorphology || method == CorrelateMorphology ) { artifact = GetImageArtifact(image,"convolve:scale"); if ( artifact != (char *)NULL ) { if ( curr_kernel == kernel ) curr_kernel = CloneKernelInfo(kernel); if (curr_kernel == (KernelInfo *) NULL) { curr_kernel=DestroyKernelInfo(curr_kernel); return((Image *) NULL); } ScaleGeometryKernelInfo(curr_kernel, artifact); } } /* display the (normalized) kernel via stderr */ artifact = GetImageArtifact(image,"showkernel"); if ( artifact == (const char *) NULL) artifact = GetImageArtifact(image,"convolve:showkernel"); if ( artifact == (const char *) NULL) artifact = GetImageArtifact(image,"morphology:showkernel"); if ( artifact != (const char *) NULL) ShowKernelInfo(curr_kernel); /* override the default handling of multi-kernel morphology results * if 'Undefined' use the default method * if 'None' (default for 'Convolve') re-iterate previous result * otherwise merge resulting images using compose method given */ compose = UndefinedCompositeOp; /* use default for method */ artifact = GetImageArtifact(image,"morphology:compose"); if ( artifact != (const char *) NULL) compose = (CompositeOperator) ParseMagickOption( MagickComposeOptions,MagickFalse,artifact); /* Apply the Morphology */ morphology_image = MorphologyApply(image, channel, method, iterations, curr_kernel, compose, image->bias, exception); /* Cleanup and Exit */ if ( curr_kernel != kernel ) curr_kernel=DestroyKernelInfo(curr_kernel); return(morphology_image); } MagickExport Image *MorphologyImage(const Image *image, const MorphologyMethod method, const ssize_t iterations,const KernelInfo *kernel, ExceptionInfo *exception) { Image *morphology_image; morphology_image=MorphologyImageChannel(image,DefaultChannels,method, iterations,kernel,exception); return(morphology_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % + R o t a t e K e r n e l I n f o % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % RotateKernelInfo() rotates the kernel by the angle given. % % Currently it is restricted to 90 degree angles, of either 1D kernels % or square kernels. And 'circular' rotations of 45 degrees for 3x3 kernels. % It will ignore usless rotations for specific 'named' built-in kernels. % % The format of the RotateKernelInfo method is: % % void RotateKernelInfo(KernelInfo *kernel, double angle) % % A description of each parameter follows: % % o kernel: the Morphology/Convolution kernel % % o angle: angle to rotate in degrees % % This function is currently internal to this module only, but can be exported % to other modules if needed. */ static void RotateKernelInfo(KernelInfo *kernel, double angle) { /* angle the lower kernels first */ if ( kernel->next != (KernelInfo *) NULL) RotateKernelInfo(kernel->next, angle); /* WARNING: Currently assumes the kernel (rightly) is horizontally symetrical ** ** TODO: expand beyond simple 90 degree rotates, flips and flops */ /* Modulus the angle */ angle = fmod(angle, 360.0); if ( angle < 0 ) angle += 360.0; if ( 337.5 < angle || angle <= 22.5 ) return; /* Near zero angle - no change! - At least not at this time */ /* Handle special cases */ switch (kernel->type) { /* These built-in kernels are cylindrical kernels, rotating is useless */ case GaussianKernel: case DOGKernel: case DiskKernel: case PeaksKernel: case LaplacianKernel: case ChebyshevKernel: case ManhattenKernel: case EuclideanKernel: return; /* These may be rotatable at non-90 angles in the future */ /* but simply rotating them in multiples of 90 degrees is useless */ case SquareKernel: case DiamondKernel: case PlusKernel: case CrossKernel: return; /* These only allows a +/-90 degree rotation (by transpose) */ /* A 180 degree rotation is useless */ case BlurKernel: case RectangleKernel: if ( 135.0 < angle && angle <= 225.0 ) return; if ( 225.0 < angle && angle <= 315.0 ) angle -= 180; break; default: break; } /* Attempt rotations by 45 degrees */ if ( 22.5 < fmod(angle,90.0) && fmod(angle,90.0) <= 67.5 ) { if ( kernel->width == 3 && kernel->height == 3 ) { /* Rotate a 3x3 square by 45 degree angle */ MagickRealType t = kernel->values[0]; kernel->values[0] = kernel->values[3]; kernel->values[3] = kernel->values[6]; kernel->values[6] = kernel->values[7]; kernel->values[7] = kernel->values[8]; kernel->values[8] = kernel->values[5]; kernel->values[5] = kernel->values[2]; kernel->values[2] = kernel->values[1]; kernel->values[1] = t; /* rotate non-centered origin */ if ( kernel->x != 1 || kernel->y != 1 ) { ssize_t x,y; x = (ssize_t) kernel->x-1; y = (ssize_t) kernel->y-1; if ( x == y ) x = 0; else if ( x == 0 ) x = -y; else if ( x == -y ) y = 0; else if ( y == 0 ) y = x; kernel->x = (size_t) x+1; kernel->y = (size_t) y+1; } angle = fmod(angle+315.0, 360.0); /* angle reduced 45 degrees */ kernel->angle = fmod(kernel->angle+45.0, 360.0); } else perror("Unable to rotate non-3x3 kernel by 45 degrees"); } if ( 45.0 < fmod(angle, 180.0) && fmod(angle,180.0) <= 135.0 ) { if ( kernel->width == 1 || kernel->height == 1 ) { /* Do a transpose of the image, which results in a 90 ** degree rotation of a 1 dimentional kernel */ ssize_t t; t = (ssize_t) kernel->width; kernel->width = kernel->height; kernel->height = (size_t) t; t = kernel->x; kernel->x = kernel->y; kernel->y = t; if ( kernel->width == 1 ) { angle = fmod(angle+270.0, 360.0); /* angle reduced 90 degrees */ kernel->angle = fmod(kernel->angle+90.0, 360.0); } else { angle = fmod(angle+90.0, 360.0); /* angle increased 90 degrees */ kernel->angle = fmod(kernel->angle+270.0, 360.0); } } else if ( kernel->width == kernel->height ) { /* Rotate a square array of values by 90 degrees */ { register size_t i,j,x,y; register MagickRealType *k,t; k=kernel->values; for( i=0, x=kernel->width-1; i<=x; i++, x--) for( j=0, y=kernel->height-1; jwidth]; k[i+j*kernel->width] = k[j+x*kernel->width]; k[j+x*kernel->width] = k[x+y*kernel->width]; k[x+y*kernel->width] = k[y+i*kernel->width]; k[y+i*kernel->width] = t; } } /* rotate the origin - relative to center of array */ { register ssize_t x,y; x = (ssize_t) kernel->x*2-kernel->width+1; y = (ssize_t) kernel->y*2-kernel->height+1; kernel->x = (size_t) ( -y +kernel->width-1)/2; kernel->y = (size_t) ( +x +kernel->height-1)/2; } angle = fmod(angle+270.0, 360.0); /* angle reduced 90 degrees */ kernel->angle = fmod(kernel->angle+90.0, 360.0); } else perror("Unable to rotate a non-square, non-linear kernel 90 degrees"); } if ( 135.0 < angle && angle <= 225.0 ) { /* For a 180 degree rotation - also know as a reflection * This is actually a very very common operation! * Basically all that is needed is a reversal of the kernel data! * And a reflection of the origon */ size_t i,j; register double *k,t; k=kernel->values; for ( i=0, j=kernel->width*kernel->height-1; ix = (ssize_t) kernel->width - kernel->x - 1; kernel->y = (ssize_t) kernel->height - kernel->y - 1; angle = fmod(angle-180.0, 360.0); /* angle+180 degrees */ kernel->angle = fmod(kernel->angle+180.0, 360.0); } /* At this point angle should at least between -45 (315) and +45 degrees * In the future some form of non-orthogonal angled rotates could be * performed here, posibily with a linear kernel restriction. */ #if 0 { /* Do a Flop by reversing each row. */ size_t y; register ssize_t x,r; register double *k,t; for ( y=0, k=kernel->values; y < kernel->height; y++, k+=kernel->width) for ( x=0, r=kernel->width-1; xwidth/2; x++, r--) t=k[x], k[x]=k[r], k[r]=t; kernel->x = kernel->width - kernel->x - 1; angle = fmod(angle+180.0, 360.0); } #endif return; } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % S c a l e G e o m e t r y K e r n e l I n f o % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % ScaleGeometryKernelInfo() takes a geometry argument string, typically % provided as a "-set option:convolve:scale {geometry}" user setting, % and modifies the kernel according to the parsed arguments of that setting. % % The first argument (and any normalization flags) are passed to % ScaleKernelInfo() to scale/normalize the kernel. The second argument % is then passed to UnityAddKernelInfo() to add a scled unity kernel % into the scaled/normalized kernel. % % The format of the ScaleKernelInfo method is: % % void ScaleKernelInfo(KernelInfo *kernel, const double scaling_factor, % const MagickStatusType normalize_flags ) % % A description of each parameter follows: % % o kernel: the Morphology/Convolution kernel to modify % % o geometry: % The geometry string to parse, typically from the user provided % "-set option:convolve:scale {geometry}" setting. % */ MagickExport void ScaleGeometryKernelInfo (KernelInfo *kernel, const char *geometry) { GeometryFlags flags; GeometryInfo args; SetGeometryInfo(&args); flags = (GeometryFlags) ParseGeometry(geometry, &args); #if 0 /* For Debugging Geometry Input */ fprintf(stderr, "Geometry = 0x%04X : %lg x %lg %+lg %+lg\n", flags, args.rho, args.sigma, args.xi, args.psi ); #endif if ( (flags & PercentValue) != 0 ) /* Handle Percentage flag*/ args.rho *= 0.01, args.sigma *= 0.01; if ( (flags & RhoValue) == 0 ) /* Set Defaults for missing args */ args.rho = 1.0; if ( (flags & SigmaValue) == 0 ) args.sigma = 0.0; /* Scale/Normalize the input kernel */ ScaleKernelInfo(kernel, args.rho, flags); /* Add Unity Kernel, for blending with original */ if ( (flags & SigmaValue) != 0 ) UnityAddKernelInfo(kernel, args.sigma); return; } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % S c a l e K e r n e l I n f o % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % ScaleKernelInfo() scales the given kernel list by the given amount, with or % without normalization of the sum of the kernel values (as per given flags). % % By default (no flags given) the values within the kernel is scaled % directly using given scaling factor without change. % % If either of the two 'normalize_flags' are given the kernel will first be % normalized and then further scaled by the scaling factor value given. % % Kernel normalization ('normalize_flags' given) is designed to ensure that % any use of the kernel scaling factor with 'Convolve' or 'Correlate' % morphology methods will fall into -1.0 to +1.0 range. Note that for % non-HDRI versions of IM this may cause images to have any negative results % clipped, unless some 'bias' is used. % % More specifically. Kernels which only contain positive values (such as a % 'Gaussian' kernel) will be scaled so that those values sum to +1.0, % ensuring a 0.0 to +1.0 output range for non-HDRI images. % % For Kernels that contain some negative values, (such as 'Sharpen' kernels) % the kernel will be scaled by the absolute of the sum of kernel values, so % that it will generally fall within the +/- 1.0 range. % % For kernels whose values sum to zero, (such as 'Laplician' kernels) kernel % will be scaled by just the sum of the postive values, so that its output % range will again fall into the +/- 1.0 range. % % For special kernels designed for locating shapes using 'Correlate', (often % only containing +1 and -1 values, representing foreground/brackground % matching) a special normalization method is provided to scale the positive % values seperatally to those of the negative values, so the kernel will be % forced to become a zero-sum kernel better suited to such searches. % % WARNING: Correct normalization of the kernel assumes that the '*_range' % attributes within the kernel structure have been correctly set during the % kernels creation. % % NOTE: The values used for 'normalize_flags' have been selected specifically % to match the use of geometry options, so that '!' means NormalizeValue, '^' % means CorrelateNormalizeValue. All other GeometryFlags values are ignored. % % The format of the ScaleKernelInfo method is: % % void ScaleKernelInfo(KernelInfo *kernel, const double scaling_factor, % const MagickStatusType normalize_flags ) % % A description of each parameter follows: % % o kernel: the Morphology/Convolution kernel % % o scaling_factor: % multiply all values (after normalization) by this factor if not % zero. If the kernel is normalized regardless of any flags. % % o normalize_flags: % GeometryFlags defining normalization method to use. % specifically: NormalizeValue, CorrelateNormalizeValue, % and/or PercentValue % */ MagickExport void ScaleKernelInfo(KernelInfo *kernel, const double scaling_factor,const GeometryFlags normalize_flags) { register ssize_t i; register double pos_scale, neg_scale; /* do the other kernels in a multi-kernel list first */ if ( kernel->next != (KernelInfo *) NULL) ScaleKernelInfo(kernel->next, scaling_factor, normalize_flags); /* Normalization of Kernel */ pos_scale = 1.0; if ( (normalize_flags&NormalizeValue) != 0 ) { if ( fabs(kernel->positive_range + kernel->negative_range) > MagickEpsilon ) /* non-zero-summing kernel (generally positive) */ pos_scale = fabs(kernel->positive_range + kernel->negative_range); else /* zero-summing kernel */ pos_scale = kernel->positive_range; } /* Force kernel into a normalized zero-summing kernel */ if ( (normalize_flags&CorrelateNormalizeValue) != 0 ) { pos_scale = ( fabs(kernel->positive_range) > MagickEpsilon ) ? kernel->positive_range : 1.0; neg_scale = ( fabs(kernel->negative_range) > MagickEpsilon ) ? -kernel->negative_range : 1.0; } else neg_scale = pos_scale; /* finialize scaling_factor for positive and negative components */ pos_scale = scaling_factor/pos_scale; neg_scale = scaling_factor/neg_scale; for (i=0; i < (ssize_t) (kernel->width*kernel->height); i++) if ( ! IsNan(kernel->values[i]) ) kernel->values[i] *= (kernel->values[i] >= 0) ? pos_scale : neg_scale; /* convolution output range */ kernel->positive_range *= pos_scale; kernel->negative_range *= neg_scale; /* maximum and minimum values in kernel */ kernel->maximum *= (kernel->maximum >= 0.0) ? pos_scale : neg_scale; kernel->minimum *= (kernel->minimum >= 0.0) ? pos_scale : neg_scale; /* swap kernel settings if user's scaling factor is negative */ if ( scaling_factor < MagickEpsilon ) { double t; t = kernel->positive_range; kernel->positive_range = kernel->negative_range; kernel->negative_range = t; t = kernel->maximum; kernel->maximum = kernel->minimum; kernel->minimum = 1; } return; } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % S h o w K e r n e l I n f o % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % ShowKernelInfo() outputs the details of the given kernel defination to % standard error, generally due to a users 'showkernel' option request. % % The format of the ShowKernel method is: % % void ShowKernelInfo(KernelInfo *kernel) % % A description of each parameter follows: % % o kernel: the Morphology/Convolution kernel % */ MagickExport void ShowKernelInfo(KernelInfo *kernel) { KernelInfo *k; size_t c, i, u, v; for (c=0, k=kernel; k != (KernelInfo *) NULL; c++, k=k->next ) { fprintf(stderr, "Kernel"); if ( kernel->next != (KernelInfo *) NULL ) fprintf(stderr, " #%lu", c ); fprintf(stderr, " \"%s", MagickOptionToMnemonic(MagickKernelOptions, k->type) ); if ( fabs(k->angle) > MagickEpsilon ) fprintf(stderr, "@%lg", k->angle); fprintf(stderr, "\" of size %lux%lu%+ld%+ld", k->width, k->height, k->x, k->y ); fprintf(stderr, " with values from %.*lg to %.*lg\n", GetMagickPrecision(), k->minimum, GetMagickPrecision(), k->maximum); fprintf(stderr, "Forming a output range from %.*lg to %.*lg", GetMagickPrecision(), k->negative_range, GetMagickPrecision(), k->positive_range); if ( fabs(k->positive_range+k->negative_range) < MagickEpsilon ) fprintf(stderr, " (Zero-Summing)\n"); else if ( fabs(k->positive_range+k->negative_range-1.0) < MagickEpsilon ) fprintf(stderr, " (Normalized)\n"); else fprintf(stderr, " (Sum %.*lg)\n", GetMagickPrecision(), k->positive_range+k->negative_range); for (i=v=0; v < k->height; v++) { fprintf(stderr, "%2lu:", v ); for (u=0; u < k->width; u++, i++) if ( IsNan(k->values[i]) ) fprintf(stderr," %*s", GetMagickPrecision()+3, "nan"); else fprintf(stderr," %*.*lg", GetMagickPrecision()+3, GetMagickPrecision(), k->values[i]); fprintf(stderr,"\n"); } } } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % U n i t y A d d K e r n a l I n f o % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % UnityAddKernelInfo() Adds a given amount of the 'Unity' Convolution Kernel % to the given pre-scaled and normalized Kernel. This in effect adds that % amount of the original image into the resulting convolution kernel. This % value is usually provided by the user as a percentage value in the % 'convolve:scale' setting. % % The resulting effect is to either convert a 'zero-summing' edge detection % kernel (such as a "Laplacian", "DOG" or a "LOG") into a 'sharpening' % kernel. % % Alternativally by using a purely positive kernel, and using a negative % post-normalizing scaling factor, you can convert a 'blurring' kernel (such % as a "Gaussian") into a 'unsharp' kernel. % % The format of the UnityAdditionKernelInfo method is: % % void UnityAdditionKernelInfo(KernelInfo *kernel, const double scale ) % % A description of each parameter follows: % % o kernel: the Morphology/Convolution kernel % % o scale: % scaling factor for the unity kernel to be added to % the given kernel. % */ MagickExport void UnityAddKernelInfo(KernelInfo *kernel, const double scale) { /* do the other kernels in a multi-kernel list first */ if ( kernel->next != (KernelInfo *) NULL) UnityAddKernelInfo(kernel->next, scale); /* Add the scaled unity kernel to the existing kernel */ kernel->values[kernel->x+kernel->y*kernel->width] += scale; CalcKernelMetaData(kernel); /* recalculate the meta-data */ return; } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % Z e r o K e r n e l N a n s % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % ZeroKernelNans() replaces any special 'nan' value that may be present in % the kernel with a zero value. This is typically done when the kernel will % be used in special hardware (GPU) convolution processors, to simply % matters. % % The format of the ZeroKernelNans method is: % % void ZeroKernelNans (KernelInfo *kernel) % % A description of each parameter follows: % % o kernel: the Morphology/Convolution kernel % */ MagickExport void ZeroKernelNans(KernelInfo *kernel) { register size_t i; /* do the other kernels in a multi-kernel list first */ if ( kernel->next != (KernelInfo *) NULL) ZeroKernelNans(kernel->next); for (i=0; i < (kernel->width*kernel->height); i++) if ( IsNan(kernel->values[i]) ) kernel->values[i] = 0.0; return; }