/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % M M OOO RRRR PPPP H H OOO L OOO GGGG Y Y % % MM MM O O R R P P H H O O L O O G Y Y % % M M M O O RRRR PPPP HHHHH O O L O O G GGG Y % % M M O O R R P H H O O L O O G G Y % % M M OOO R R P H H OOO LLLLL OOO GGG Y % % % % % % MagickCore Morphology Methods % % % % Software Design % % Anthony Thyssen % % January 2010 % % % % % % Copyright 1999-2010 ImageMagick Studio LLC, a non-profit organization % % dedicated to making software imaging solutions freely available. % % % % You may not use this file except in compliance with the License. You may % % obtain a copy of the License at % % % % http://www.imagemagick.org/script/license.php % % % % Unless required by applicable law or agreed to in writing, software % % distributed under the License is distributed on an "AS IS" BASIS, % % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % % See the License for the specific language governing permissions and % % limitations under the License. % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Morpology is the the application of various kernals, of any size and even % shape, to a image in various ways (typically binary, but not always). % % Convolution (weighted sum or average) is just one specific type of % morphology. Just one that is very common for image bluring and sharpening % effects. Not only 2D Gaussian blurring, but also 2-pass 1D Blurring. % % This module provides not only a general morphology function, and the ability % to apply more advanced or iterative morphologies, but also functions for the % generation of many different types of kernel arrays from user supplied % arguments. Prehaps even the generation of a kernel from a small image. */ /* Include declarations. */ #include "magick/studio.h" #include "magick/artifact.h" #include "magick/cache-view.h" #include "magick/color-private.h" #include "magick/enhance.h" #include "magick/exception.h" #include "magick/exception-private.h" #include "magick/gem.h" #include "magick/hashmap.h" #include "magick/image.h" #include "magick/image-private.h" #include "magick/list.h" #include "magick/magick.h" #include "magick/memory_.h" #include "magick/monitor-private.h" #include "magick/morphology.h" #include "magick/option.h" #include "magick/pixel-private.h" #include "magick/prepress.h" #include "magick/quantize.h" #include "magick/registry.h" #include "magick/semaphore.h" #include "magick/splay-tree.h" #include "magick/statistic.h" #include "magick/string_.h" #include "magick/string-private.h" #include "magick/token.h" /* * The following test is for special floating point numbers of value NaN (not * a number), that may be used within a Kernel Definition. NaN's are defined * as part of the IEEE standard for floating point number representation. * * These are used a Kernel value of NaN means that that kernal position is not * part of the normal convolution or morphology process, and thus allowing the * use of 'shaped' kernels. * * Special Properities Two NaN's are never equal, even if they are from the * same variable That is the IsNaN() macro is only true if the value is NaN. */ #define IsNan(a) ((a)!=(a)) /* * Other global definitions used by module */ static inline double MagickMin(const double x,const double y) { return( x < y ? x : y); } static inline double MagickMax(const double x,const double y) { return( x > y ? x : y); } #define Minimize(assign,value) assign=MagickMin(assign,value) #define Maximize(assign,value) assign=MagickMax(assign,value) /* Currently these are only internal to this module */ static void RotateKernelInfo(KernelInfo *, double), ScaleKernelInfo(KernelInfo *, double); static KernelInfo *CloneKernelInfo(KernelInfo *); /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % A c q u i r e K e r n e l I n f o % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % AcquireKernelInfo() takes the given string (generally supplied by the % user) and converts it into a Morphology/Convolution Kernel. This allows % users to specify a kernel from a number of pre-defined kernels, or to fully % specify their own kernel for a specific Convolution or Morphology % Operation. % % The kernel so generated can be any rectangular array of floating point % values (doubles) with the 'control point' or 'pixel being affected' % anywhere within that array of values. % % Previously IM was restricted to a square of odd size using the exact % center as origin, this is no longer the case, and any rectangular kernel % with any value being declared the origin. This in turn allows the use of % highly asymmetrical kernels. % % The floating point values in the kernel can also include a special value % known as 'nan' or 'not a number' to indicate that this value is not part % of the kernel array. This allows you to shaped the kernel within its % rectangular area. That is 'nan' values provide a 'mask' for the kernel % shape. However at least one non-nan value must be provided for correct % working of a kernel. % % The returned kernel should be free using the DestroyKernelInfo() when you % are finished with it. % % Input kernel defintion strings can consist of any of three types. % % "name:args" % Select from one of the built in kernels, using the name and % geometry arguments supplied. See AcquireKernelBuiltIn() % % "WxH[+X+Y]:num, num, num ..." % a kernal of size W by H, with W*H floating point numbers following. % the 'center' can be optionally be defined at +X+Y (such that +0+0 % is top left corner). If not defined the pixel in the center, for % odd sizes, or to the immediate top or left of center for even sizes % is automatically selected. % % "num, num, num, num, ..." % list of floating point numbers defining an 'old style' odd sized % square kernel. At least 9 values should be provided for a 3x3 % square kernel, 25 for a 5x5 square kernel, 49 for 7x7, etc. % Values can be space or comma separated. This is not recommended. % % Note that 'name' kernels will start with an alphabetic character while the % new kernel specification has a ':' character in its specification string. % If neither is the case, it is assumed an old style of a simple list of % numbers generating a odd-sized square kernel has been given. % % The format of the AcquireKernal method is: % % KernelInfo *AcquireKernelInfo(const char *kernel_string) % % A description of each parameter follows: % % o kernel_string: the Morphology/Convolution kernel wanted. % */ MagickExport KernelInfo *AcquireKernelInfo(const char *kernel_string) { KernelInfo *kernel; char token[MaxTextExtent]; register long i; const char *p; MagickStatusType flags; GeometryInfo args; double nan = sqrt((double)-1.0); /* Special Value : Not A Number */ assert(kernel_string != (const char *) NULL); SetGeometryInfo(&args); /* does it start with an alpha - Return a builtin kernel */ GetMagickToken(kernel_string,&p,token); if ( isalpha((int)token[0]) ) { long type; type=ParseMagickOption(MagickKernelOptions,MagickFalse,token); if ( type < 0 || type == UserDefinedKernel ) return((KernelInfo *)NULL); while (((isspace((int) ((unsigned char) *p)) != 0) || (*p == ',') || (*p == ':' )) && (*p != '\0')) p++; flags = ParseGeometry(p, &args); /* special handling of missing values in input string */ switch( type ) { case RectangleKernel: if ( (flags & WidthValue) == 0 ) /* if no width then */ args.rho = args.sigma; /* then width = height */ if ( args.rho < 1.0 ) /* if width too small */ args.rho = 3; /* then width = 3 */ if ( args.sigma < 1.0 ) /* if height too small */ args.sigma = args.rho; /* then height = width */ if ( (flags & XValue) == 0 ) /* center offset if not defined */ args.xi = (double)(((long)args.rho-1)/2); if ( (flags & YValue) == 0 ) args.psi = (double)(((long)args.sigma-1)/2); break; case SquareKernel: case DiamondKernel: case DiskKernel: case PlusKernel: if ( (flags & HeightValue) == 0 ) /* if no scale */ args.sigma = 1.0; /* then scale = 1.0 */ break; default: break; } return(AcquireKernelBuiltIn((KernelInfoType)type, &args)); } kernel=(KernelInfo *) AcquireMagickMemory(sizeof(*kernel)); if (kernel == (KernelInfo *)NULL) return(kernel); (void) ResetMagickMemory(kernel,0,sizeof(*kernel)); kernel->type = UserDefinedKernel; kernel->signature = MagickSignature; /* Has a ':' in argument - New user kernel specification */ p = strchr(kernel_string, ':'); if ( p != (char *) NULL) { /* ParseGeometry() needs the geometry separated! -- Arrgghh */ memcpy(token, kernel_string, (size_t) (p-kernel_string)); token[p-kernel_string] = '\0'; flags = ParseGeometry(token, &args); /* Size handling and checks of geometry settings */ if ( (flags & WidthValue) == 0 ) /* if no width then */ args.rho = args.sigma; /* then width = height */ if ( args.rho < 1.0 ) /* if width too small */ args.rho = 1.0; /* then width = 1 */ if ( args.sigma < 1.0 ) /* if height too small */ args.sigma = args.rho; /* then height = width */ kernel->width = (unsigned long)args.rho; kernel->height = (unsigned long)args.sigma; /* Offset Handling and Checks */ if ( args.xi < 0.0 || args.psi < 0.0 ) return(DestroyKernelInfo(kernel)); kernel->x = ((flags & XValue)!=0) ? (long)args.xi : (long) (kernel->width-1)/2; kernel->y = ((flags & YValue)!=0) ? (long)args.psi : (long) (kernel->height-1)/2; if ( kernel->x >= (long) kernel->width || kernel->y >= (long) kernel->height ) return(DestroyKernelInfo(kernel)); p++; /* advance beyond the ':' */ } else { /* ELSE - Old old kernel specification, forming odd-square kernel */ /* count up number of values given */ p=(const char *) kernel_string; while ((isspace((int) ((unsigned char) *p)) != 0) || (*p == '\'')) p++; /* ignore "'" chars for convolve filter usage - Cristy */ for (i=0; *p != '\0'; i++) { GetMagickToken(p,&p,token); if (*token == ',') GetMagickToken(p,&p,token); } /* set the size of the kernel - old sized square */ kernel->width = kernel->height= (unsigned long) sqrt((double) i+1.0); kernel->x = kernel->y = (long) (kernel->width-1)/2; p=(const char *) kernel_string; while ((isspace((int) ((unsigned char) *p)) != 0) || (*p == '\'')) p++; /* ignore "'" chars for convolve filter usage - Cristy */ } /* Read in the kernel values from rest of input string argument */ kernel->values=(double *) AcquireQuantumMemory(kernel->width, kernel->height*sizeof(double)); if (kernel->values == (double *) NULL) return(DestroyKernelInfo(kernel)); kernel->minimum = +MagickHuge; kernel->maximum = -MagickHuge; kernel->negative_range = kernel->positive_range = 0.0; for (i=0; (i < (long) (kernel->width*kernel->height)) && (*p != '\0'); i++) { GetMagickToken(p,&p,token); if (*token == ',') GetMagickToken(p,&p,token); if ( LocaleCompare("nan",token) == 0 || LocaleCompare("-",token) == 0 ) { kernel->values[i] = nan; /* do not include this value in kernel */ } else { kernel->values[i] = StringToDouble(token); ( kernel->values[i] < 0) ? ( kernel->negative_range += kernel->values[i] ) : ( kernel->positive_range += kernel->values[i] ); Minimize(kernel->minimum, kernel->values[i]); Maximize(kernel->maximum, kernel->values[i]); } } /* check that we recieved at least one real (non-nan) value! */ if ( kernel->minimum == MagickHuge ) return(DestroyKernelInfo(kernel)); /* This should not be needed for a fully defined kernel * Perhaps an error should be reported instead! * Kept for backward compatibility. */ if ( i < (long) (kernel->width*kernel->height) ) { Minimize(kernel->minimum, kernel->values[i]); Maximize(kernel->maximum, kernel->values[i]); for ( ; i < (long) (kernel->width*kernel->height); i++) kernel->values[i]=0.0; } return(kernel); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % A c q u i r e K e r n e l B u i l t I n % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % AcquireKernelBuiltIn() returned one of the 'named' built-in types of % kernels used for special purposes such as gaussian blurring, skeleton % pruning, and edge distance determination. % % They take a KernelType, and a set of geometry style arguments, which were % typically decoded from a user supplied string, or from a more complex % Morphology Method that was requested. % % The format of the AcquireKernalBuiltIn method is: % % KernelInfo *AcquireKernelBuiltIn(const KernelInfoType type, % const GeometryInfo args) % % A description of each parameter follows: % % o type: the pre-defined type of kernel wanted % % o args: arguments defining or modifying the kernel % % Convolution Kernels % % Gaussian "{radius},{sigma}" % Generate a two-dimentional gaussian kernel, as used by -gaussian % A sigma is required, (with the 'x'), due to historical reasons. % % NOTE: that the 'radius' is optional, but if provided can limit (clip) % the final size of the resulting kernel to a square 2*radius+1 in size. % The radius should be at least 2 times that of the sigma value, or % sever clipping and aliasing may result. If not given or set to 0 the % radius will be determined so as to produce the best minimal error % result, which is usally much larger than is normally needed. % % Blur "{radius},{sigma},{angle}" % As per Gaussian, but generates a 1 dimensional or linear gaussian % blur, at the angle given (current restricted to orthogonal angles). % If a 'radius' is given the kernel is clipped to a width of 2*radius+1. % % NOTE that two such blurs perpendicular to each other is equivelent to % -blur and the previous gaussian, but is often 10 or more times faster. % % Comet "{width},{sigma},{angle}" % Blur in one direction only, mush like how a bright object leaves % a comet like trail. The Kernel is actually half a gaussian curve, % Adding two such blurs in oppiste directions produces a Linear Blur. % % NOTE: that the first argument is the width of the kernel and not the % radius of the kernel. % % # Still to be implemented... % # % # Sharpen "{radius},{sigma} % # Negated Gaussian (center zeroed and re-normalized), % # with a 2 unit positive peak. -- Check On line documentation % # % # Laplacian "{radius},{sigma}" % # Laplacian (a mexican hat like) Function % # % # LOG "{radius},{sigma1},{sigma2} % # Laplacian of Gaussian % # % # DOG "{radius},{sigma1},{sigma2} % # Difference of two Gaussians % # % # Filter2D % # Filter1D % # Set kernel values using a resize filter, and given scale (sigma) % # Cylindrical or Linear. Is this posible with an image? % # % % Boolean Kernels % % Rectangle "{geometry}" % Simply generate a rectangle of 1's with the size given. You can also % specify the location of the 'control point', otherwise the closest % pixel to the center of the rectangle is selected. % % Properly centered and odd sized rectangles work the best. % % Diamond "[{radius}[,{scale}]]" % Generate a diamond shaped kernal with given radius to the points. % Kernel size will again be radius*2+1 square and defaults to radius 1, % generating a 3x3 kernel that is slightly larger than a square. % % Square "[{radius}[,{scale}]]" % Generate a square shaped kernel of size radius*2+1, and defaulting % to a 3x3 (radius 1). % % Note that using a larger radius for the "Square" or the "Diamond" % is also equivelent to iterating the basic morphological method % that many times. However However iterating with the smaller radius 1 % default is actually faster than using a larger kernel radius. % % Disk "[{radius}[,{scale}]] % Generate a binary disk of the radius given, radius may be a float. % Kernel size will be ceil(radius)*2+1 square. % NOTE: Here are some disk shapes of specific interest % "disk:1" => "diamond" or "cross:1" % "disk:1.5" => "square" % "disk:2" => "diamond:2" % "disk:2.5" => a general disk shape of radius 2 % "disk:2.9" => "square:2" % "disk:3.5" => default - octagonal/disk shape of radius 3 % "disk:4.2" => roughly octagonal shape of radius 4 % "disk:4.3" => a general disk shape of radius 4 % After this all the kernel shape becomes more and more circular. % % Because a "disk" is more circular when using a larger radius, using a % larger radius is preferred over iterating the morphological operation. % % Plus "[{radius}[,{scale}]]" % Generate a kernel in the shape of a 'plus' sign. The length of each % arm is also the radius, which defaults to 2. % % This kernel is not a good general morphological kernel, but is used % more for highlighting and marking any single pixels in an image using, % a "Dilate" or "Erode" method as appropriate. % % NOTE: "plus:1" is equivelent to a "Diamond" kernel. % % Note that unlike other kernels iterating a plus does not produce the % same result as using a larger radius for the cross. % % Distance Measuring Kernels % % Chebyshev "[{radius}][x{scale}]" largest x or y distance (default r=1) % Manhatten "[{radius}][x{scale}]" square grid distance (default r=1) % Euclidean "[{radius}][x{scale}]" direct distance (default r=1) % % Different types of distance measuring methods, which are used with the % a 'Distance' morphology method for generating a gradient based on % distance from an edge of a binary shape, though there is a technique % for handling a anti-aliased shape. % % Chebyshev Distance (also known as Tchebychev Distance) is a value of % one to any neighbour, orthogonal or diagonal. One why of thinking of % it is the number of squares a 'King' or 'Queen' in chess needs to % traverse reach any other position on a chess board. It results in a % 'square' like distance function, but one where diagonals are closer % than expected. % % Manhatten Distance (also known as Rectilinear Distance, or the Taxi % Cab metric), is the distance needed when you can only travel in % orthogonal (horizontal or vertical) only. It is the distance a 'Rook' % in chess would travel. It results in a diamond like distances, where % diagonals are further than expected. % % Euclidean Distance is the 'direct' or 'as the crow flys distance. % However by default the kernel size only has a radius of 1, which % limits the distance to 'Knight' like moves, with only orthogonal and % diagonal measurements being correct. As such for the default kernel % you will get octagonal like distance function, which is reasonally % accurate. % % However if you use a larger radius such as "Euclidean:4" you will % get a much smoother distance gradient from the edge of the shape. % Of course a larger kernel is slower to use, and generally not needed. % % To allow the use of fractional distances that you get with diagonals % the actual distance is scaled by a fixed value which the user can % provide. This is not actually nessary for either ""Chebyshev" or % "Manhatten" distance kernels, but is done for all three distance % kernels. If no scale is provided it is set to a value of 100, % allowing for a maximum distance measurement of 655 pixels using a Q16 % version of IM, from any edge. However for small images this can % result in quite a dark gradient. % % See the 'Distance' Morphological Method, for information of how it is % applied. % % # Hit-n-Miss Kernel-Lists -- Still to be implemented % # % # specifically for Pruning, Thinning, Thickening % # */ MagickExport KernelInfo *AcquireKernelBuiltIn(const KernelInfoType type, const GeometryInfo *args) { KernelInfo *kernel; register long i; register long u, v; double nan = sqrt((double)-1.0); /* Special Value : Not A Number */ kernel=(KernelInfo *) AcquireMagickMemory(sizeof(*kernel)); if (kernel == (KernelInfo *) NULL) return(kernel); (void) ResetMagickMemory(kernel,0,sizeof(*kernel)); kernel->minimum = kernel->maximum = 0.0; kernel->negative_range = kernel->positive_range = 0.0; kernel->type = type; kernel->signature = MagickSignature; switch(type) { /* Convolution Kernels */ case GaussianKernel: { double sigma = fabs(args->sigma); sigma = (sigma <= MagickEpsilon) ? 1.0 : sigma; kernel->width = kernel->height = GetOptimalKernelWidth2D(args->rho,sigma); kernel->x = kernel->y = (long) (kernel->width-1)/2; kernel->negative_range = kernel->positive_range = 0.0; kernel->values=(double *) AcquireQuantumMemory(kernel->width, kernel->height*sizeof(double)); if (kernel->values == (double *) NULL) return(DestroyKernelInfo(kernel)); sigma = 2.0*sigma*sigma; /* simplify the expression */ for ( i=0, v=-kernel->y; v <= (long)kernel->y; v++) for ( u=-kernel->x; u <= (long)kernel->x; u++, i++) kernel->positive_range += ( kernel->values[i] = exp(-((double)(u*u+v*v))/sigma) /* / (MagickPI*sigma) */ ); kernel->minimum = 0; kernel->maximum = kernel->values[ kernel->y*kernel->width+kernel->x ]; ScaleKernelInfo(kernel, 0.0); /* Normalize Kernel Values */ break; } case BlurKernel: { double sigma = fabs(args->sigma); sigma = (sigma <= MagickEpsilon) ? 1.0 : sigma; kernel->width = GetOptimalKernelWidth1D(args->rho,sigma); kernel->x = (long) (kernel->width-1)/2; kernel->height = 1; kernel->y = 0; kernel->negative_range = kernel->positive_range = 0.0; kernel->values=(double *) AcquireQuantumMemory(kernel->width, kernel->height*sizeof(double)); if (kernel->values == (double *) NULL) return(DestroyKernelInfo(kernel)); #if 1 #define KernelRank 3 /* Formula derived from GetBlurKernel() in "effect.c" (plus bug fix). ** It generates a gaussian 3 times the width, and compresses it into ** the expected range. This produces a closer normalization of the ** resulting kernel, especially for very low sigma values. ** As such while wierd it is prefered. ** ** I am told this method originally came from Photoshop. */ sigma *= KernelRank; /* simplify expanded curve */ v = (long) (kernel->width*KernelRank-1)/2; /* start/end points to fit range */ (void) ResetMagickMemory(kernel->values,0, (size_t) kernel->width*sizeof(double)); for ( u=-v; u <= v; u++) { kernel->values[(u+v)/KernelRank] += exp(-((double)(u*u))/(2.0*sigma*sigma)) /* / (MagickSQ2PI*sigma/KernelRank) */ ; } for (i=0; i < (long) kernel->width; i++) kernel->positive_range += kernel->values[i]; #else for ( i=0, u=-kernel->x; i < kernel->width; i++, u++) kernel->positive_range += ( kernel->values[i] = exp(-((double)(u*u))/(2.0*sigma*sigma)) /* / (MagickSQ2PI*sigma) */ ); #endif kernel->minimum = 0; kernel->maximum = kernel->values[ kernel->x ]; /* Note that neither methods above generate a normalized kernel, ** though it gets close. The kernel may be 'clipped' by a user defined ** radius, producing a smaller (darker) kernel. Also for very small ** sigma's (> 0.1) the central value becomes larger than one, and thus ** producing a very bright kernel. */ /* Normalize the 1D Gaussian Kernel ** ** Because of this the divisor in the above kernel generator is ** not needed, so is not done above. */ ScaleKernelInfo(kernel, 0.0); /* Normalize Kernel Values */ /* rotate the kernel by given angle */ RotateKernelInfo(kernel, args->xi); break; } case CometKernel: { double sigma = fabs(args->sigma); sigma = (sigma <= MagickEpsilon) ? 1.0 : sigma; if ( args->rho < 1.0 ) kernel->width = GetOptimalKernelWidth1D(args->rho,sigma); else kernel->width = (unsigned long)args->rho; kernel->x = kernel->y = 0; kernel->height = 1; kernel->negative_range = kernel->positive_range = 0.0; kernel->values=(double *) AcquireQuantumMemory(kernel->width, kernel->height*sizeof(double)); if (kernel->values == (double *) NULL) return(DestroyKernelInfo(kernel)); /* A comet blur is half a gaussian curve, so that the object is ** blurred in one direction only. This may not be quite the right ** curve so may change in the future. The function must be normalised. */ #if 1 #define KernelRank 3 sigma *= KernelRank; /* simplify expanded curve */ v = (long) kernel->width*KernelRank; /* start/end points to fit range */ (void) ResetMagickMemory(kernel->values,0, (size_t) kernel->width*sizeof(double)); for ( u=0; u < v; u++) { kernel->values[u/KernelRank] += exp(-((double)(u*u))/(2.0*sigma*sigma)) /* / (MagickSQ2PI*sigma/KernelRank) */ ; } for (i=0; i < (long) kernel->width; i++) kernel->positive_range += kernel->values[i]; #else for ( i=0; i < (long) kernel->width; i++) kernel->positive_range += ( kernel->values[i] = exp(-((double)(i*i))/(2.0*sigma*sigma)) /* / (MagickSQ2PI*sigma) */ ); #endif kernel->minimum = 0; kernel->maximum = kernel->values[0]; ScaleKernelInfo(kernel, 0.0); /* Normalize Kernel Values */ RotateKernelInfo(kernel, args->xi); break; } /* Boolean Kernels */ case RectangleKernel: case SquareKernel: { double scale; if ( type == SquareKernel ) { if (args->rho < 1.0) kernel->width = kernel->height = 3; /* default radius = 1 */ else kernel->width = kernel->height = (unsigned long) (2*args->rho+1); kernel->x = kernel->y = (long) (kernel->width-1)/2; scale = args->sigma; } else { /* NOTE: user defaults set in "AcquireKernelInfo()" */ if ( args->rho < 1.0 || args->sigma < 1.0 ) return(DestroyKernelInfo(kernel)); /* invalid args given */ kernel->width = (unsigned long)args->rho; kernel->height = (unsigned long)args->sigma; if ( args->xi < 0.0 || args->xi > (double)kernel->width || args->psi < 0.0 || args->psi > (double)kernel->height ) return(DestroyKernelInfo(kernel)); /* invalid args given */ kernel->x = (long) args->xi; kernel->y = (long) args->psi; scale = 1.0; } kernel->values=(double *) AcquireQuantumMemory(kernel->width, kernel->height*sizeof(double)); if (kernel->values == (double *) NULL) return(DestroyKernelInfo(kernel)); /* set all kernel values to 1.0 */ u=(long) kernel->width*kernel->height; for ( i=0; i < u; i++) kernel->values[i] = scale; kernel->minimum = kernel->maximum = scale; /* a flat shape */ kernel->positive_range = scale*u; break; } case DiamondKernel: { if (args->rho < 1.0) kernel->width = kernel->height = 3; /* default radius = 1 */ else kernel->width = kernel->height = ((unsigned long)args->rho)*2+1; kernel->x = kernel->y = (long) (kernel->width-1)/2; kernel->values=(double *) AcquireQuantumMemory(kernel->width, kernel->height*sizeof(double)); if (kernel->values == (double *) NULL) return(DestroyKernelInfo(kernel)); /* set all kernel values within diamond area to scale given */ for ( i=0, v=-kernel->y; v <= (long)kernel->y; v++) for ( u=-kernel->x; u <= (long)kernel->x; u++, i++) if ((labs(u)+labs(v)) <= (long)kernel->x) kernel->positive_range += kernel->values[i] = args->sigma; else kernel->values[i] = nan; kernel->minimum = kernel->maximum = args->sigma; /* a flat shape */ break; } case DiskKernel: { long limit; limit = (long)(args->rho*args->rho); if (args->rho < 0.1) /* default radius approx 3.5 */ kernel->width = kernel->height = 7L, limit = 10L; else kernel->width = kernel->height = ((unsigned long)args->rho)*2+1; kernel->x = kernel->y = (long) (kernel->width-1)/2; kernel->values=(double *) AcquireQuantumMemory(kernel->width, kernel->height*sizeof(double)); if (kernel->values == (double *) NULL) return(DestroyKernelInfo(kernel)); /* set all kernel values within disk area to 1.0 */ for ( i=0, v= -kernel->y; v <= (long)kernel->y; v++) for ( u=-kernel->x; u <= (long)kernel->x; u++, i++) if ((u*u+v*v) <= limit) kernel->positive_range += kernel->values[i] = args->sigma; else kernel->values[i] = nan; kernel->minimum = kernel->maximum = args->sigma; /* a flat shape */ break; } case PlusKernel: { if (args->rho < 1.0) kernel->width = kernel->height = 5; /* default radius 2 */ else kernel->width = kernel->height = ((unsigned long)args->rho)*2+1; kernel->x = kernel->y = (long) (kernel->width-1)/2; kernel->values=(double *) AcquireQuantumMemory(kernel->width, kernel->height*sizeof(double)); if (kernel->values == (double *) NULL) return(DestroyKernelInfo(kernel)); /* set all kernel values along axises to 1.0 */ for ( i=0, v=-kernel->y; v <= (long)kernel->y; v++) for ( u=-kernel->x; u <= (long)kernel->x; u++, i++) kernel->values[i] = (u == 0 || v == 0) ? args->sigma : nan; kernel->minimum = kernel->maximum = args->sigma; /* a flat shape */ kernel->positive_range = args->sigma*(kernel->width*2.0 - 1.0); break; } /* Distance Measuring Kernels */ case ChebyshevKernel: { double scale; if (args->rho < 1.0) kernel->width = kernel->height = 3; /* default radius = 1 */ else kernel->width = kernel->height = ((unsigned long)args->rho)*2+1; kernel->x = kernel->y = (long) (kernel->width-1)/2; kernel->values=(double *) AcquireQuantumMemory(kernel->width, kernel->height*sizeof(double)); if (kernel->values == (double *) NULL) return(DestroyKernelInfo(kernel)); scale = (args->sigma < 1.0) ? 100.0 : args->sigma; for ( i=0, v=-kernel->y; v <= (long)kernel->y; v++) for ( u=-kernel->x; u <= (long)kernel->x; u++, i++) kernel->positive_range += ( kernel->values[i] = scale*((labs(u)>labs(v)) ? labs(u) : labs(v)) ); kernel->maximum = kernel->values[0]; break; } case ManhattenKernel: { double scale; if (args->rho < 1.0) kernel->width = kernel->height = 3; /* default radius = 1 */ else kernel->width = kernel->height = ((unsigned long)args->rho)*2+1; kernel->x = kernel->y = (long) (kernel->width-1)/2; kernel->values=(double *) AcquireQuantumMemory(kernel->width, kernel->height*sizeof(double)); if (kernel->values == (double *) NULL) return(DestroyKernelInfo(kernel)); scale = (args->sigma < 1.0) ? 100.0 : args->sigma; for ( i=0, v=-kernel->y; v <= (long)kernel->y; v++) for ( u=-kernel->x; u <= (long)kernel->x; u++, i++) kernel->positive_range += ( kernel->values[i] = scale*(labs(u)+labs(v)) ); kernel->maximum = kernel->values[0]; break; } case EuclideanKernel: { double scale; if (args->rho < 1.0) kernel->width = kernel->height = 3; /* default radius = 1 */ else kernel->width = kernel->height = ((unsigned long)args->rho)*2+1; kernel->x = kernel->y = (long) (kernel->width-1)/2; kernel->values=(double *) AcquireQuantumMemory(kernel->width, kernel->height*sizeof(double)); if (kernel->values == (double *) NULL) return(DestroyKernelInfo(kernel)); scale = (args->sigma < 1.0) ? 100.0 : args->sigma; for ( i=0, v=-kernel->y; v <= (long)kernel->y; v++) for ( u=-kernel->x; u <= (long)kernel->x; u++, i++) kernel->positive_range += ( kernel->values[i] = scale*sqrt((double)(u*u+v*v)) ); kernel->maximum = kernel->values[0]; break; } /* Undefined Kernels */ case LaplacianKernel: case LOGKernel: case DOGKernel: perror("Kernel Type has not been defined yet"); /* FALL THRU */ default: /* Generate a No-Op minimal kernel - 1x1 pixel */ kernel->values=(double *)AcquireQuantumMemory((size_t)1,sizeof(double)); if (kernel->values == (double *) NULL) return(DestroyKernelInfo(kernel)); kernel->width = kernel->height = 1; kernel->x = kernel->x = 0; kernel->type = UndefinedKernel; kernel->maximum = kernel->positive_range = kernel->values[0] = 1.0; /* a flat single-point no-op kernel! */ break; } return(kernel); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % + C l o n e K e r n e l I n f o % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % CloneKernelInfo() creates a new clone of the given Kernel so that its can % be modified without effecting the original. The cloned kernel should be % destroyed using DestoryKernelInfo() when no longer needed. % % The format of the DestroyKernelInfo method is: % % KernelInfo *CloneKernelInfo(KernelInfo *kernel) % % A description of each parameter follows: % % o kernel: the Morphology/Convolution kernel to be cloned % */ static KernelInfo *CloneKernelInfo(KernelInfo *kernel) { register long i; KernelInfo * new; assert(kernel != (KernelInfo *) NULL); new=(KernelInfo *) AcquireMagickMemory(sizeof(*kernel)); if (new == (KernelInfo *) NULL) return(new); *new = *kernel; /* copy values in structure */ new->values=(double *) AcquireQuantumMemory(kernel->width, kernel->height*sizeof(double)); if (new->values == (double *) NULL) return(DestroyKernelInfo(new)); for (i=0; i < (long) (kernel->width*kernel->height); i++) new->values[i] = kernel->values[i]; return(new); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % D e s t r o y K e r n e l I n f o % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DestroyKernelInfo() frees the memory used by a Convolution/Morphology % kernel. % % The format of the DestroyKernelInfo method is: % % KernelInfo *DestroyKernelInfo(KernelInfo *kernel) % % A description of each parameter follows: % % o kernel: the Morphology/Convolution kernel to be destroyed % */ MagickExport KernelInfo *DestroyKernelInfo(KernelInfo *kernel) { assert(kernel != (KernelInfo *) NULL); kernel->values=(double *) AcquireQuantumMemory(kernel->width, kernel->height*sizeof(double)); kernel->values=(double *)RelinquishMagickMemory(kernel->values); kernel=(KernelInfo *) RelinquishMagickMemory(kernel); return(kernel); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % M o r p h o l o g y I m a g e C h a n n e l % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % MorphologyImageChannel() applies a user supplied kernel to the image % according to the given mophology method. % % The given kernel is assumed to have been pre-scaled appropriatally, usally % by the kernel generator. % % The format of the MorphologyImage method is: % % Image *MorphologyImage(const Image *image, MorphologyMethod method, % const long iterations, KernelInfo *kernel, ExceptionInfo *exception) % Image *MorphologyImageChannel(const Image *image, const ChannelType % channel, MorphologyMethod method, const long iterations, KernelInfo % *kernel, ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o method: the morphology method to be applied. % % o iterations: apply the operation this many times (or no change). % A value of -1 means loop until no change found. % How this is applied may depend on the morphology method. % Typically this is a value of 1. % % o channel: the channel type. % % o kernel: An array of double representing the morphology kernel. % Warning: kernel may be normalized for the Convolve method. % % o exception: return any errors or warnings in this structure. % % % TODO: bias and auto-scale handling of the kernel for convolution % The given kernel is assumed to have been pre-scaled appropriatally, usally % by the kernel generator. % */ /* Internal function * Apply the Morphology method with the given Kernel * And return the number of pixels that changed. */ static unsigned long MorphologyApply(const Image *image, Image *result_image, const MorphologyMethod method, const ChannelType channel, const KernelInfo *kernel, ExceptionInfo *exception) { #define MorphologyTag "Morphology/Image" long progress, y, offx, offy, changed; MagickBooleanType status; MagickPixelPacket bias; CacheView *p_view, *q_view; /* Only the most basic morphology is actually performed by this routine */ assert( method <= DistanceMorphology ); /* Apply Basic Morphology to Image. */ status=MagickTrue; changed=0; progress=0; GetMagickPixelPacket(image,&bias); SetMagickPixelPacketBias(image,&bias); /* Future: handle auto-bias from user, based on kernel input */ p_view=AcquireCacheView(image); q_view=AcquireCacheView(result_image); /* Some methods (including convolve) needs use a reflected kernel. * Adjust 'origin' offsets for this reflected kernel. */ offx = kernel->x; offy = kernel->y; switch(method) { case ErodeMorphology: case ErodeIntensityMorphology: /* kernel is not reflected */ break; default: /* kernel needs to be reflected */ offx = (long) kernel->width-offx-1; offy = (long) kernel->height-offy-1; break; } #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(dynamic,4) shared(progress,status) #endif for (y=0; y < (long) image->rows; y++) { MagickBooleanType sync; register const PixelPacket *restrict p; register const IndexPacket *restrict p_indexes; register PixelPacket *restrict q; register IndexPacket *restrict q_indexes; register long x; unsigned long r; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(p_view, -offx, y-offy, image->columns+kernel->width, kernel->height, exception); q=GetCacheViewAuthenticPixels(q_view,0,y,result_image->columns,1, exception); if ((p == (const PixelPacket *) NULL) || (q == (PixelPacket *) NULL)) { status=MagickFalse; continue; } p_indexes=GetCacheViewVirtualIndexQueue(p_view); q_indexes=GetCacheViewAuthenticIndexQueue(q_view); r = (image->columns+kernel->width)*offy+offx; /* constant */ for (x=0; x < (long) image->columns; x++) { long v; register long u; register const double *restrict k; register const PixelPacket *restrict k_pixels; register const IndexPacket *restrict k_indexes; MagickPixelPacket result; /* Copy input to ouput image for unused channels * This removes need for 'cloning' a new image every iteration */ *q = p[r]; if (image->colorspace == CMYKColorspace) q_indexes[x] = p_indexes[r]; result.index=(MagickRealType) 0; /* stop compiler warnings */ switch (method) { case ConvolveMorphology: result=bias; break; /* default result is the convolution bias */ case DilateMorphology: result.red = result.green = result.blue = result.opacity = result.index = -MagickHuge; break; case ErodeMorphology: result.red = result.green = result.blue = result.opacity = result.index = +MagickHuge; break; case DilateIntensityMorphology: case ErodeIntensityMorphology: result.red = 0.0; /* flag indicating first match found */ break; default: /* Otherwise just start with the original pixel value */ result.red = (MagickRealType) p[r].red; result.green = (MagickRealType) p[r].green; result.blue = (MagickRealType) p[r].blue; result.opacity = QuantumRange - (MagickRealType) p[r].opacity; if ( image->colorspace == CMYKColorspace) result.index = (MagickRealType) p_indexes[r]; break; } switch ( method ) { case ConvolveMorphology: /* Weighted Average of pixels * * NOTE for correct working of this operation for asymetrical * kernels, the kernel needs to be applied in its reflected form. * That is its values needs to be reversed. */ if (((channel & OpacityChannel) == 0) || (image->matte == MagickFalse)) { /* Convolution (no transparency) */ k = &kernel->values[ kernel->width*kernel->height-1 ]; k_pixels = p; k_indexes = p_indexes; for (v=0; v < (long) kernel->height; v++) { for (u=0; u < (long) kernel->width; u++, k--) { if ( IsNan(*k) ) continue; result.red += (*k)*k_pixels[u].red; result.green += (*k)*k_pixels[u].green; result.blue += (*k)*k_pixels[u].blue; /* result.opacity += not involved here */ if ( image->colorspace == CMYKColorspace) result.index += (*k)*k_indexes[u]; } k_pixels += image->columns+kernel->width; k_indexes += image->columns+kernel->width; } } else { /* Kernel & Alpha weighted Convolution */ MagickRealType alpha, /* alpha value * kernel weighting */ gamma; /* weighting divisor */ gamma=0.0; k = &kernel->values[ kernel->width*kernel->height-1 ]; k_pixels = p; k_indexes = p_indexes; for (v=0; v < (long) kernel->height; v++) { for (u=0; u < (long) kernel->width; u++, k--) { if ( IsNan(*k) ) continue; alpha=(*k)*(QuantumScale*(QuantumRange- k_pixels[u].opacity)); gamma += alpha; result.red += alpha*k_pixels[u].red; result.green += alpha*k_pixels[u].green; result.blue += alpha*k_pixels[u].blue; result.opacity += (*k)*(QuantumRange-k_pixels[u].opacity); if ( image->colorspace == CMYKColorspace) result.index += alpha*k_indexes[u]; } k_pixels += image->columns+kernel->width; k_indexes += image->columns+kernel->width; } gamma=1.0/(fabs((double) gamma) <= MagickEpsilon ? 1.0 : gamma); result.red *= gamma; result.green *= gamma; result.blue *= gamma; result.opacity *= gamma; result.index *= gamma; } break; case ErodeMorphology: /* Minimize Value within kernel shape * * NOTE that the kernel is not reflected for this operation! * * NOTE: in normal Greyscale Morphology, the kernel value should * be added to the real value, this is currently not done, due to * the nature of the boolean kernels being used. */ k = kernel->values; k_pixels = p; k_indexes = p_indexes; for (v=0; v < (long) kernel->height; v++) { for (u=0; u < (long) kernel->width; u++, k++) { if ( IsNan(*k) || (*k) < 0.5 ) continue; Minimize(result.red, (double) k_pixels[u].red); Minimize(result.green, (double) k_pixels[u].green); Minimize(result.blue, (double) k_pixels[u].blue); Minimize(result.opacity, QuantumRange-(double) k_pixels[u].opacity); if ( image->colorspace == CMYKColorspace) Minimize(result.index, (double) k_indexes[u]); } k_pixels += image->columns+kernel->width; k_indexes += image->columns+kernel->width; } break; case DilateMorphology: /* Maximize Value within kernel shape * * NOTE for correct working of this operation for asymetrical * kernels, the kernel needs to be applied in its reflected form. * That is its values needs to be reversed. * * NOTE: in normal Greyscale Morphology, the kernel value should * be added to the real value, this is currently not done, due to * the nature of the boolean kernels being used. * */ k = &kernel->values[ kernel->width*kernel->height-1 ]; k_pixels = p; k_indexes = p_indexes; for (v=0; v < (long) kernel->height; v++) { for (u=0; u < (long) kernel->width; u++, k--) { if ( IsNan(*k) || (*k) < 0.5 ) continue; Maximize(result.red, (double) k_pixels[u].red); Maximize(result.green, (double) k_pixels[u].green); Maximize(result.blue, (double) k_pixels[u].blue); Maximize(result.opacity, QuantumRange-(double) k_pixels[u].opacity); if ( image->colorspace == CMYKColorspace) Maximize(result.index, (double) k_indexes[u]); } k_pixels += image->columns+kernel->width; k_indexes += image->columns+kernel->width; } break; case ErodeIntensityMorphology: /* Select pixel with mimimum intensity within kernel shape * * WARNING: the intensity test fails for CMYK and does not * take into account the moderating effect of teh alpha channel * on the intensity. * * NOTE that the kernel is not reflected for this operation! */ k = kernel->values; k_pixels = p; k_indexes = p_indexes; for (v=0; v < (long) kernel->height; v++) { for (u=0; u < (long) kernel->width; u++, k++) { if ( IsNan(*k) || (*k) < 0.5 ) continue; if ( result.red == 0.0 || PixelIntensity(&(k_pixels[u])) < PixelIntensity(q) ) { /* copy the whole pixel - no channel selection */ *q = k_pixels[u]; if ( result.red > 0.0 ) changed++; result.red = 1.0; } } k_pixels += image->columns+kernel->width; k_indexes += image->columns+kernel->width; } break; case DilateIntensityMorphology: /* Select pixel with maximum intensity within kernel shape * * WARNING: the intensity test fails for CMYK and does not * take into account the moderating effect of teh alpha channel * on the intensity. * * NOTE for correct working of this operation for asymetrical * kernels, the kernel needs to be applied in its reflected form. * That is its values needs to be reversed. */ k = &kernel->values[ kernel->width*kernel->height-1 ]; k_pixels = p; k_indexes = p_indexes; for (v=0; v < (long) kernel->height; v++) { for (u=0; u < (long) kernel->width; u++, k--) { if ( IsNan(*k) || (*k) < 0.5 ) continue; /* boolean kernel */ if ( result.red == 0.0 || PixelIntensity(&(k_pixels[u])) > PixelIntensity(q) ) { /* copy the whole pixel - no channel selection */ *q = k_pixels[u]; if ( result.red > 0.0 ) changed++; result.red = 1.0; } } k_pixels += image->columns+kernel->width; k_indexes += image->columns+kernel->width; } break; case DistanceMorphology: /* Add kernel value and select the minimum value found. * The result is a iterative distance from edge function. * * All Distance Kernels are symetrical, but that may not always * be the case. For example how about a distance from left edges? * To make it work correctly for asymetrical kernels the reflected * kernel needs to be applied. */ #if 0 /* No need to do distance morphology if original value is zero * Unfortunatally I have not been able to get this right * when channel selection also becomes involved. -- Arrgghhh */ if ( ((channel & RedChannel) == 0 && p[r].red == 0) || ((channel & GreenChannel) == 0 && p[r].green == 0) || ((channel & BlueChannel) == 0 && p[r].blue == 0) || ((channel & OpacityChannel) == 0 && p[r].opacity == 0) || (( (channel & IndexChannel) == 0 || image->colorspace != CMYKColorspace ) && p_indexes[x] ==0 ) ) break; #endif k = &kernel->values[ kernel->width*kernel->height-1 ]; k_pixels = p; k_indexes = p_indexes; for (v=0; v < (long) kernel->height; v++) { for (u=0; u < (long) kernel->width; u++, k--) { if ( IsNan(*k) ) continue; Minimize(result.red, (*k)+k_pixels[u].red); Minimize(result.green, (*k)+k_pixels[u].green); Minimize(result.blue, (*k)+k_pixels[u].blue); Minimize(result.opacity, (*k)+QuantumRange-k_pixels[u].opacity); if ( image->colorspace == CMYKColorspace) Minimize(result.index, (*k)+k_indexes[u]); } k_pixels += image->columns+kernel->width; k_indexes += image->columns+kernel->width; } break; case UndefinedMorphology: default: break; /* Do nothing */ } switch ( method ) { case UndefinedMorphology: case DilateIntensityMorphology: case ErodeIntensityMorphology: break; /* full pixel was directly assigned */ default: /* Assign the results */ if ((channel & RedChannel) != 0) q->red = ClampToQuantum(result.red); if ((channel & GreenChannel) != 0) q->green = ClampToQuantum(result.green); if ((channel & BlueChannel) != 0) q->blue = ClampToQuantum(result.blue); if ((channel & OpacityChannel) != 0 && image->matte == MagickTrue ) q->opacity = ClampToQuantum(QuantumRange-result.opacity); if ((channel & IndexChannel) != 0 && image->colorspace == CMYKColorspace) q_indexes[x] = ClampToQuantum(result.index); break; } if ( ( p[r].red != q->red ) || ( p[r].green != q->green ) || ( p[r].blue != q->blue ) || ( p[r].opacity != q->opacity ) || ( image->colorspace == CMYKColorspace && p_indexes[r] != q_indexes[x] ) ) changed++; /* The pixel had some value changed! */ p++; q++; } /* x */ sync=SyncCacheViewAuthenticPixels(q_view,exception); if (sync == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_MorphologyImage) #endif proceed=SetImageProgress(image,MorphologyTag,progress++,image->rows); if (proceed == MagickFalse) status=MagickFalse; } } /* y */ result_image->type=image->type; q_view=DestroyCacheView(q_view); p_view=DestroyCacheView(p_view); return(status ? (unsigned long) changed : 0); } MagickExport Image *MorphologyImage(const Image *image, const MorphologyMethod method, const long iterations,KernelInfo *kernel, ExceptionInfo *exception) { Image *morphology_image; morphology_image=MorphologyImageChannel(image,DefaultChannels,method, iterations,kernel,exception); return(morphology_image); } MagickExport Image *MorphologyImageChannel(const Image *image, const ChannelType channel, const MorphologyMethod method, const long iterations, KernelInfo *kernel, ExceptionInfo *exception) { long count; Image *new_image, *old_image, *grad_image; const char *artifact; unsigned long changed, limit; KernelInfo *curr_kernel; MorphologyMethod curr_method; assert(image != (Image *) NULL); assert(image->signature == MagickSignature); assert(kernel != (KernelInfo *) NULL); assert(kernel->signature == MagickSignature); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickSignature); if ( iterations == 0 ) return((Image *)NULL); /* null operation - nothing to do! */ /* kernel must be valid at this point * (except maybe for posible future morphology methods like "Prune" */ assert(kernel != (KernelInfo *)NULL); count = 0; /* interation count */ changed = 1; /* if compound method assume image was changed */ curr_kernel = kernel; /* allow kernel to be cloned and modified */ curr_method = method; /* and the method to be changed */ limit = (unsigned long) iterations; if ( iterations < 0 ) limit = image->columns > image->rows ? image->columns : image->rows; /* Third-level morphology methods */ switch( curr_method ) { case EdgeMorphology: grad_image = MorphologyImageChannel(image, channel, DilateMorphology, iterations, curr_kernel, exception); /* FALL-THRU */ case EdgeInMorphology: curr_method = ErodeMorphology; break; case EdgeOutMorphology: curr_method = DilateMorphology; break; case TopHatMorphology: curr_method = OpenMorphology; break; case BottomHatMorphology: curr_method = CloseMorphology; break; default: break; } /* Second-level morphology methods */ switch( curr_method ) { case OpenMorphology: /* Erode then Dilate without reflection */ new_image = MorphologyImageChannel(image, channel, ErodeMorphology, iterations, curr_kernel, exception); if (new_image == (Image *) NULL) return((Image *) NULL); curr_method = DilateMorphology; break; case CloseMorphology: /* Dilate then Erode using reflected kernel */ curr_kernel = CloneKernelInfo(kernel); RotateKernelInfo(curr_kernel,180); new_image = MorphologyImageChannel(image, channel, DilateMorphology, iterations, curr_kernel, exception); if (new_image == (Image *) NULL) return((Image *) NULL); curr_method = ErodeMorphology; break; case OpenIntensityMorphology: new_image = MorphologyImageChannel(image, channel, ErodeIntensityMorphology, iterations, curr_kernel, exception); if (new_image == (Image *) NULL) return((Image *) NULL); curr_method = DilateIntensityMorphology; break; case CloseIntensityMorphology: curr_kernel = CloneKernelInfo(kernel); /* a reflected kernel is needed */ RotateKernelInfo(curr_kernel,180); new_image = MorphologyImageChannel(image, channel, DilateIntensityMorphology, iterations, curr_kernel, exception); if (new_image == (Image *) NULL) return((Image *) NULL); curr_method = ErodeIntensityMorphology; break; case ConvolveMorphology: /* Scale or Normalize kernel, according to user wishes ** before using it for the convolution method. */ artifact = GetImageArtifact(image,"convolve:scale"); if ( artifact != (char *)NULL ) { curr_kernel = CloneKernelInfo(kernel); ScaleKernelInfo(curr_kernel, StringToDouble(artifact) ); } /* FALL-THRU */ default: /* Do a iteration using a Basic Morphology method just once! ** This ensures a new_image has been generated, but allows us ** to skip the creation of 'old_image' if it isn't needed. */ new_image=CloneImage(image,0,0,MagickTrue,exception); if (new_image == (Image *) NULL) return((Image *) NULL); if (SetImageStorageClass(new_image,DirectClass) == MagickFalse) { InheritException(exception,&new_image->exception); new_image=DestroyImage(new_image); return((Image *) NULL); } changed = MorphologyApply(image,new_image,curr_method,channel,curr_kernel, exception); count++; if ( GetImageArtifact(image,"verbose") != (const char *) NULL ) fprintf(stderr, "Morphology %s:%ld => Changed %lu\n", MagickOptionToMnemonic(MagickMorphologyOptions, curr_method), count, changed); } /* Repeat a Basic morphology until count or no change reached */ if ( count < (long) limit && changed > 0 ) { old_image = CloneImage(new_image,0,0,MagickTrue,exception); if (old_image == (Image *) NULL) return(DestroyImage(new_image)); if (SetImageStorageClass(old_image,DirectClass) == MagickFalse) { InheritException(exception,&old_image->exception); old_image=DestroyImage(old_image); return(DestroyImage(new_image)); } while( count < (long) limit && changed != 0 ) { Image *tmp = old_image; old_image = new_image; new_image = tmp; changed = MorphologyApply(old_image,new_image,curr_method,channel, curr_kernel, exception); count++; if ( GetImageArtifact(image,"verbose") != (const char *) NULL ) fprintf(stderr, "Morphology %s:%ld => Changed %lu\n", MagickOptionToMnemonic(MagickMorphologyOptions, curr_method), count, changed); } old_image=DestroyImage(old_image); } if ( curr_kernel != kernel ) curr_kernel=DestroyKernelInfo(curr_kernel); /* Subtractive morphology cases */ switch( method ) { case EdgeOutMorphology: case EdgeInMorphology: case TopHatMorphology: case BottomHatMorphology: (void) CompositeImageChannel(new_image, channel, DifferenceCompositeOp, image, 0, 0); break; case EdgeMorphology: /* subtract erode from dialate ??? */ (void) CompositeImageChannel(new_image, channel, DifferenceCompositeOp, grad_image, 0, 0); grad_image=DestroyImage(grad_image); break; default: break; } return(new_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % + R o t a t e K e r n e l I n f o % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % RotateKernelInfo() rotates the kernel by the angle given. Currently it is % restricted to 90 degree angles, but this may be improved in the future. % % The format of the RotateKernelInfo method is: % % void RotateKernelInfo(KernelInfo *kernel, double angle) % % A description of each parameter follows: % % o kernel: the Morphology/Convolution kernel % % o angle: angle to rotate in degrees % % This function is only internel to this module, as it is not finalized, % especially with regard to non-orthogonal angles, and rotation of larger % 2D kernels. */ static void RotateKernelInfo(KernelInfo *kernel, double angle) { /* WARNING: Currently assumes the kernel (rightly) is horizontally symetrical ** ** TODO: expand beyond simple 90 degree rotates, flips and flops */ /* Modulus the angle */ angle = fmod(angle, 360.0); if ( angle < 0 ) angle += 360.0; if ( 315.0 < angle || angle <= 45.0 ) return; /* no change! - At least at this time */ switch (kernel->type) { /* These built-in kernels are cylindrical kernels, rotating is useless */ case GaussianKernel: case LaplacianKernel: case LOGKernel: case DOGKernel: case DiskKernel: case ChebyshevKernel: case ManhattenKernel: case EuclideanKernel: return; /* These may be rotatable at non-90 angles in the future */ /* but simply rotating them in multiples of 90 degrees is useless */ case SquareKernel: case DiamondKernel: case PlusKernel: return; /* These only allows a +/-90 degree rotation (by transpose) */ /* A 180 degree rotation is useless */ case BlurKernel: case RectangleKernel: if ( 135.0 < angle && angle <= 225.0 ) return; if ( 225.0 < angle && angle <= 315.0 ) angle -= 180; break; /* these are freely rotatable in 90 degree units */ case CometKernel: case UndefinedKernel: case UserDefinedKernel: break; } if ( 135.0 < angle && angle <= 225.0 ) { /* For a 180 degree rotation - also know as a reflection */ /* This is actually a very very common operation! */ /* Basically all that is needed is a reversal of the kernel data! */ unsigned long i,j; register double *k,t; k=kernel->values; for ( i=0, j=kernel->width*kernel->height-1; ix = (long) kernel->width - kernel->x - 1; kernel->y = (long) kernel->width - kernel->y - 1; angle = fmod(angle+180.0, 360.0); } if ( 45.0 < angle && angle <= 135.0 ) { /* Do a transpose and a flop, of the image, which results in a 90 * degree rotation using two mirror operations. * * WARNING: this assumes the original image was a 1 dimentional image * but currently that is the only built-ins it is applied to. */ long t; t = (long) kernel->width; kernel->width = kernel->height; kernel->height = (unsigned long) t; t = kernel->x; kernel->x = kernel->y; kernel->y = t; angle = fmod(450.0 - angle, 360.0); } /* At this point angle should be between -45 (315) and +45 degrees * In the future some form of non-orthogonal angled rotates could be * performed here, posibily with a linear kernel restriction. */ #if 0 Not currently in use! { /* Do a flop, this assumes kernel is horizontally symetrical. * Each row of the kernel needs to be reversed! */ unsigned long y; register long x,r; register double *k,t; for ( y=0, k=kernel->values; y < kernel->height; y++, k+=kernel->width) for ( x=0, r=kernel->width-1; xwidth/2; x++, r--) t=k[x], k[x]=k[r], k[r]=t; kernel->x = kernel->width - kernel->x - 1; angle = fmod(angle+180.0, 360.0); } #endif return; } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % + S c a l e K e r n e l I n f o % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % ScaleKernelInfo() scales the kernel by the given amount. Scaling by value % of zero will result in a normalization of the kernel. % % For positive kernels normalization scales the kernel so the addition os all % values is 1.0. While for kernels where values add to zero it is scaled % so that the convolution output range covers 1.0. In such 'zero kernels' % it is generally recomended that the user also provides a 50% bias to the % output results. % % Correct normalization assumes the 'range_*' attributes of the kernel % structure have been correctly set during the kernel creation. % % The format of the ScaleKernelInfo method is: % % void ScaleKernelInfo(KernelInfo *kernel) % % A description of each parameter follows: % % o kernel: the Morphology/Convolution kernel % % o scale: multiple all values by this, if zero normalize instead. % % This function is internal to this module only at this time, but can be % exported to other modules if needed. */ static void ScaleKernelInfo(KernelInfo *kernel, double scale) { register long i; if ( fabs(scale) < MagickEpsilon ) { if ( fabs(kernel->positive_range + kernel->negative_range) < MagickEpsilon ) scale = 1/(kernel->positive_range - kernel->negative_range); /* zero kernels */ else scale = 1/(kernel->positive_range + kernel->negative_range); /* non-zero kernel */ } for (i=0; i < (long) (kernel->width*kernel->height); i++) if ( ! IsNan(kernel->values[i]) ) kernel->values[i] *= scale; kernel->positive_range *= scale; /* convolution output range */ kernel->negative_range *= scale; kernel->maximum *= scale; /* maximum and minimum values in kernel */ kernel->minimum *= scale; return; } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % + S h o w K e r n e l I n f o % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % ShowKernelInfo() outputs the details of the given kernel defination to % standard error, generally due to a users 'showkernel' option request. % % The format of the ShowKernel method is: % % void ShowKernelInfo(KernelInfo *kernel) % % A description of each parameter follows: % % o kernel: the Morphology/Convolution kernel % % This function is internal to this module only at this time. That may change % in the future. */ MagickExport void ShowKernelInfo(KernelInfo *kernel) { long i, u, v; fprintf(stderr, "Kernel \"%s\" of size %lux%lu%+ld%+ld with values from %.*lg to %.*lg\n", MagickOptionToMnemonic(MagickKernelOptions, kernel->type), kernel->width, kernel->height, kernel->x, kernel->y, GetMagickPrecision(), kernel->minimum, GetMagickPrecision(), kernel->maximum); fprintf(stderr, "Forming convolution output range from %.*lg to %.*lg%s\n", GetMagickPrecision(), kernel->negative_range, GetMagickPrecision(), kernel->positive_range, /*kernel->normalized == MagickTrue ? " (normalized)" : */ "" ); for (i=v=0; v < (long) kernel->height; v++) { fprintf(stderr,"%2ld:",v); for (u=0; u < (long) kernel->width; u++, i++) if ( IsNan(kernel->values[i]) ) fprintf(stderr," %*s", GetMagickPrecision()+2, "nan"); else fprintf(stderr," %*.*lg", GetMagickPrecision()+2, GetMagickPrecision(), kernel->values[i]); fprintf(stderr,"\n"); } } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % + Z e r o K e r n e l N a n s % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % ZeroKernelNans() replaces any special 'nan' value that may be present in % the kernel with a zero value. This is typically done when the kernel will % be used in special hardware (GPU) convolution processors, to simply % matters. % % The format of the ZeroKernelNans method is: % % voidZeroKernelNans (KernelInfo *kernel) % % A description of each parameter follows: % % o kernel: the Morphology/Convolution kernel % % FUTURE: return the information in a string for API usage. */ MagickExport void ZeroKernelNans(KernelInfo *kernel) { register long i; for (i=0; i < (long) (kernel->width*kernel->height); i++) if ( IsNan(kernel->values[i]) ) kernel->values[i] = 0.0; return; }