//===- ThreadSafetyTIL.h ---------------------------------------*- C++ --*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines a simple intermediate language that is used by the // thread safety analysis (See ThreadSafety.cpp). The thread safety analysis // works by comparing mutex expressions, e.g. // // class A { Mutex mu; int dat GUARDED_BY(this->mu); } // class B { A a; } // // void foo(B* b) { // (*b).a.mu.lock(); // locks (*b).a.mu // b->a.dat = 0; // substitute &b->a for 'this'; // // requires lock on (&b->a)->mu // (b->a.mu).unlock(); // unlocks (b->a.mu) // } // // As illustrated by the above example, clang Exprs are not well-suited to // represent mutex expressions directly, since there is no easy way to compare // Exprs for equivalence. The thread safety analysis thus lowers clang Exprs // into a simple intermediate language (IL). The IL supports: // // (1) comparisons for semantic equality of expressions // (2) SSA renaming of variables // (3) wildcards and pattern matching over expressions // (4) hash-based expression lookup // // The IL is currently very experimental, is intended only for use within // the thread safety analysis, and is subject to change without notice. // After the API stabilizes and matures, it may be appropriate to make this // more generally available to other analyses. // // UNDER CONSTRUCTION. USE AT YOUR OWN RISK. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_THREAD_SAFETY_TIL_H #define LLVM_CLANG_THREAD_SAFETY_TIL_H #include "clang/AST/DeclCXX.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/StmtCXX.h" #include "clang/AST/Type.h" #include "llvm/ADT/StringRef.h" #include "llvm/Support/AlignOf.h" #include "llvm/Support/Allocator.h" #include #include namespace clang { namespace threadSafety { namespace til { // Simple wrapper class to abstract away from the details of memory management. // SExprs are allocated in pools, and deallocated all at once. class MemRegionRef { private: union AlignmentType { double d; void *p; long double dd; long long ii; }; public: MemRegionRef() : Allocator(0) {} MemRegionRef(llvm::BumpPtrAllocator *A) : Allocator(A) {} void *allocate(size_t Sz) { return Allocator->Allocate(Sz, llvm::AlignOf::Alignment); } template T *allocateT() { return Allocator->Allocate(); } template T *allocateT(size_t NumElems) { return Allocator->Allocate(NumElems); } private: llvm::BumpPtrAllocator *Allocator; }; } // end namespace til } // end namespace threadSafety } // end namespace clang inline void *operator new(size_t Sz, clang::threadSafety::til::MemRegionRef &R) { return R.allocate(Sz); } namespace clang { namespace threadSafety { namespace til { using llvm::StringRef; // A simple fixed size array class that does not manage its own memory, // suitable for use with bump pointer allocation. template class SimpleArray { public: SimpleArray() : Data(0), Size(0), Capacity(0) {} SimpleArray(T *Dat, size_t Cp, size_t Sz = 0) : Data(Dat), Size(0), Capacity(Cp) {} SimpleArray(MemRegionRef A, size_t Cp) : Data(A.allocateT(Cp)), Size(0), Capacity(Cp) {} SimpleArray(SimpleArray &A, bool Steal) : Data(A.Data), Size(A.Size), Capacity(A.Capacity) { A.Data = 0; A.Size = 0; A.Capacity = 0; } T *resize(size_t Ncp, MemRegionRef A) { T *Odata = Data; Data = A.allocateT(Ncp); memcpy(Data, Odata, sizeof(T) * Size); return Odata; } typedef T *iterator; typedef const T *const_iterator; size_t size() const { return Size; } size_t capacity() const { return Capacity; } T &operator[](unsigned I) { return Data[I]; } const T &operator[](unsigned I) const { return Data[I]; } iterator begin() { return Data; } iterator end() { return Data + Size; } const_iterator cbegin() const { return Data; } const_iterator cend() const { return Data + Size; } void push_back(const T &Elem) { assert(Size < Capacity); Data[Size++] = Elem; } template unsigned append(Iter I, Iter E) { size_t Osz = Size; size_t J = Osz; for (; J < Capacity && I != E; ++J, ++I) Data[J] = *I; Size = J; return J - Osz; } private: T *Data; size_t Size; size_t Capacity; }; enum TIL_Opcode { #define TIL_OPCODE_DEF(X) COP_##X, #include "clang/Analysis/Analyses/ThreadSafetyOps.def" #undef TIL_OPCODE_DEF COP_MAX }; typedef clang::BinaryOperatorKind TIL_BinaryOpcode; typedef clang::UnaryOperatorKind TIL_UnaryOpcode; typedef clang::CastKind TIL_CastOpcode; enum TIL_TraversalKind { TRV_Normal, TRV_Lazy, // subexpression may need to be traversed lazily TRV_Tail // subexpression occurs in a tail position }; // Base class for AST nodes in the typed intermediate language. class SExpr { public: TIL_Opcode opcode() const { return static_cast(Opcode); } // Subclasses of SExpr must define the following: // // This(const This& E, ...) { // copy constructor: construct copy of E, with some additional arguments. // } // // template typename V::R_SExpr traverse(V &Visitor) { // traverse all subexpressions, following the traversal/rewriter interface // } // // template typename C::CType compare(CType* E, C& Cmp) { // compare all subexpressions, following the comparator interface // } protected: SExpr(TIL_Opcode Op) : Opcode(Op), Reserved(0), Flags(0) {} SExpr(const SExpr &E) : Opcode(E.Opcode), Reserved(0), Flags(E.Flags) {} const unsigned char Opcode; unsigned char Reserved; unsigned short Flags; private: SExpr(); }; typedef SExpr* SExprRef; // Contains various helper functions for SExprs. class ThreadSafetyTIL { public: static const int MaxOpcode = COP_MAX; static inline bool isTrivial(SExpr *E) { unsigned Op = E->opcode(); return Op == COP_Variable || Op == COP_Literal; } static inline bool isLargeValue(SExpr *E) { unsigned Op = E->opcode(); return (Op >= COP_Function && Op <= COP_Code); } }; // Placeholder for an expression that has not yet been created. // Used to implement lazy copy and rewriting strategies. class Future : public SExpr { public: static bool classof(const SExpr *E) { return E->opcode() == COP_Future; } enum FutureStatus { FS_pending, FS_evaluating, FS_done }; Future() : SExpr(COP_Future), Status(FS_pending), Result(0), Location(0) {} virtual ~Future() {} // Registers the location in the AST where this future is stored. // Forcing the future will automatically update the AST. static inline void registerLocation(SExpr **Member) { if (Future *F = dyn_cast_or_null(*Member)) F->Location = Member; } // A lazy rewriting strategy should subclass Future and override this method. virtual SExpr *create() { return 0; } // Return the result of this future if it exists, otherwise return null. SExpr *maybeGetResult() { return Result; } // Return the result of this future; forcing it if necessary. SExpr *result() { switch (Status) { case FS_pending: force(); return Result; case FS_evaluating: return 0; // infinite loop; illegal recursion. case FS_done: return Result; } } template typename V::R_SExpr traverse(V &Visitor) { assert(Result && "Cannot traverse Future that has not been forced."); return Visitor.traverse(Result); } template typename C::CType compare(Future* E, C& Cmp) { if (!Result || !E->Result) return Cmp.comparePointers(this, E); return Cmp.compare(Result, E->Result); } private: // Force the future. void force() { Status = FS_evaluating; SExpr *R = create(); Result = R; if (Location) { *Location = R; } Status = FS_done; } FutureStatus Status; SExpr *Result; SExpr **Location; }; // Placeholder for C++ expressions that cannot be represented in the TIL. class Undefined : public SExpr { public: static bool classof(const SExpr *E) { return E->opcode() == COP_Undefined; } Undefined(const clang::Stmt *S = 0) : SExpr(COP_Undefined), Cstmt(S) {} Undefined(const Undefined &U) : SExpr(U), Cstmt(U.Cstmt) {} template typename V::R_SExpr traverse(V &Visitor) { return Visitor.reduceUndefined(*this); } template typename C::CType compare(Undefined* E, C& Cmp) { return Cmp.comparePointers(Cstmt, E->Cstmt); } private: const clang::Stmt *Cstmt; }; // Placeholder for a wildcard that matches any other expression. class Wildcard : public SExpr { public: static bool classof(const SExpr *E) { return E->opcode() == COP_Wildcard; } Wildcard() : SExpr(COP_Wildcard) {} Wildcard(const Wildcard &W) : SExpr(W) {} template typename V::R_SExpr traverse(V &Visitor) { return Visitor.reduceWildcard(*this); } template typename C::CType compare(Wildcard* E, C& Cmp) { return Cmp.trueResult(); } }; // Base class for literal values. class Literal : public SExpr { public: static bool classof(const SExpr *E) { return E->opcode() == COP_Literal; } Literal(const clang::Expr *C) : SExpr(COP_Literal), Cexpr(C) {} Literal(const Literal &L) : SExpr(L), Cexpr(L.Cexpr) {} // The clang expression for this literal. const clang::Expr *clangExpr() { return Cexpr; } template typename V::R_SExpr traverse(V &Visitor) { return Visitor.reduceLiteral(*this); } template typename C::CType compare(Literal* E, C& Cmp) { // TODO -- use value, not pointer equality return Cmp.comparePointers(Cexpr, E->Cexpr); } private: const clang::Expr *Cexpr; }; // Literal pointer to an object allocated in memory. // At compile time, pointer literals are represented by symbolic names. class LiteralPtr : public SExpr { public: static bool classof(const SExpr *E) { return E->opcode() == COP_LiteralPtr; } LiteralPtr(const clang::ValueDecl *D) : SExpr(COP_LiteralPtr), Cvdecl(D) {} LiteralPtr(const LiteralPtr &R) : SExpr(R), Cvdecl(R.Cvdecl) {} // The clang declaration for the value that this pointer points to. const clang::ValueDecl *clangDecl() { return Cvdecl; } template typename V::R_SExpr traverse(V &Visitor) { return Visitor.reduceLiteralPtr(*this); } template typename C::CType compare(LiteralPtr* E, C& Cmp) { return Cmp.comparePointers(Cvdecl, E->Cvdecl); } private: const clang::ValueDecl *Cvdecl; }; // A named variable, e.g. "x". // // There are two distinct places in which a Variable can appear in the AST. // A variable declaration introduces a new variable, and can occur in 3 places: // Let-expressions: (Let (x = t) u) // Functions: (Function (x : t) u) // Self-applicable functions (SFunction (x) t) // // If a variable occurs in any other location, it is a reference to an existing // variable declaration -- e.g. 'x' in (x * y + z). To save space, we don't // allocate a separate AST node for variable references; a reference is just a // pointer to the original declaration. class Variable : public SExpr { public: static bool classof(const SExpr *E) { return E->opcode() == COP_Variable; } // Let-variable, function parameter, or self-variable enum VariableKind { VK_Let, VK_Fun, VK_SFun }; Variable(VariableKind K, SExpr *D = 0, const clang::ValueDecl *Cvd = 0) : SExpr(COP_Variable), Definition(D), Cvdecl(Cvd), BlockID(0), Id(0), NumUses(0) { Flags = K; Future::registerLocation(&Definition); } Variable(const clang::ValueDecl *Cvd, SExpr *D = 0) : SExpr(COP_Variable), Definition(D), Cvdecl(Cvd), BlockID(0), Id(0), NumUses(0) { Flags = VK_Let; Future::registerLocation(&Definition); } Variable(const Variable &Vd, SExpr *D) // rewrite constructor : SExpr(Vd), Definition(D), Cvdecl(Vd.Cvdecl), BlockID(0), Id(0), NumUses(0) { Flags = Vd.kind(); Future::registerLocation(&Definition); } VariableKind kind() const { return static_cast(Flags); } StringRef name() const { return Cvdecl ? Cvdecl->getName() : "_x"; } const clang::ValueDecl *clangDecl() const { return Cvdecl; } // Returns the definition (for let vars) or type (for parameter & self vars) SExpr *definition() const { return Definition; } void attachVar() const { ++NumUses; } void detachVar() const { --NumUses; } unsigned getID() { return Id; } unsigned getBlockID() { return BlockID; } void setID(unsigned Bid, unsigned I) { BlockID = static_cast(Bid); Id = static_cast(I); } template typename V::R_SExpr traverse(V &Visitor) { // This routine is only called for variable references. return Visitor.reduceVariableRef(this); } template typename C::CType compare(Variable* E, C& Cmp) { return Cmp.compareVariableRefs(this, E); } private: friend class Function; friend class SFunction; friend class BasicBlock; // Function, SFunction, and BasicBlock will reset the kind. void setKind(VariableKind K) { Flags = K; } SExpr *Definition; // The TIL type or definition const clang::ValueDecl *Cvdecl; // The clang declaration for this variable. unsigned short BlockID; unsigned short Id; mutable int NumUses; }; // A function -- a.k.a. lambda abstraction. // Functions with multiple arguments are created by currying, // e.g. (function (x: Int) (function (y: Int) (add x y))) class Function : public SExpr { public: static bool classof(const SExpr *E) { return E->opcode() == COP_Function; } Function(Variable *Vd, SExpr *Bd) : SExpr(COP_Function), VarDecl(Vd), Body(Bd) { Vd->setKind(Variable::VK_Fun); } Function(const Function &F, Variable *Vd, SExpr *Bd) // rewrite constructor : SExpr(F), VarDecl(Vd), Body(Bd) { Vd->setKind(Variable::VK_Fun); } Variable *variableDecl() const { return VarDecl; } SExpr *body() const { return Body; } template typename V::R_SExpr traverse(V &Visitor) { // This is a variable declaration, so traverse the definition. typename V::R_SExpr E0 = Visitor.traverse(VarDecl->Definition, TRV_Lazy); // Tell the rewriter to enter the scope of the function. Variable *Nvd = Visitor.enterScope(*VarDecl, E0); typename V::R_SExpr E1 = Visitor.traverse(Body); Visitor.exitScope(*VarDecl); return Visitor.reduceFunction(*this, Nvd, E1); } template typename C::CType compare(Function* E, C& Cmp) { typename C::CType Ct = Cmp.compare(VarDecl->definition(), E->VarDecl->definition()); if (Cmp.notTrue(Ct)) return Ct; Cmp.enterScope(VarDecl, E->VarDecl); Ct = Cmp.compare(Body, E->Body); Cmp.leaveScope(); return Ct; } private: Variable *VarDecl; SExpr *Body; }; // A self-applicable function. // A self-applicable function can be applied to itself. It's useful for // implementing objects and late binding class SFunction : public SExpr { public: static bool classof(const SExpr *E) { return E->opcode() == COP_SFunction; } SFunction(Variable *Vd, SExpr *B) : SExpr(COP_SFunction), VarDecl(Vd), Body(B) { assert(Vd->Definition == 0); Vd->setKind(Variable::VK_SFun); Vd->Definition = this; } SFunction(const SFunction &F, Variable *Vd, SExpr *B) // rewrite constructor : SExpr(F), VarDecl(Vd), Body(B) { assert(Vd->Definition == 0); Vd->setKind(Variable::VK_SFun); Vd->Definition = this; } Variable *variableDecl() const { return VarDecl; } SExpr *body() const { return Body; } template typename V::R_SExpr traverse(V &Visitor) { // A self-variable points to the SFunction itself. // A rewrite must introduce the variable with a null definition, and update // it after 'this' has been rewritten. Variable *Nvd = Visitor.enterScope(*VarDecl, 0 /* def */); typename V::R_SExpr E1 = Visitor.traverse(Body); Visitor.exitScope(*VarDecl); // A rewrite operation will call SFun constructor to set Vvd->Definition. return Visitor.reduceSFunction(*this, Nvd, E1); } template typename C::CType compare(SFunction* E, C& Cmp) { Cmp.enterScope(VarDecl, E->VarDecl); typename C::CType Ct = Cmp.compare(Body, E->Body); Cmp.leaveScope(); return Ct; } private: Variable *VarDecl; SExpr *Body; }; // A block of code -- e.g. the body of a function. class Code : public SExpr { public: static bool classof(const SExpr *E) { return E->opcode() == COP_Code; } Code(SExpr *T, SExpr *B) : SExpr(COP_Code), ReturnType(T), Body(B) { Future::registerLocation(&ReturnType); Future::registerLocation(&Body); } Code(const Code &C, SExpr *T, SExpr *B) // rewrite constructor : SExpr(C), ReturnType(T), Body(B) { Future::registerLocation(&ReturnType); Future::registerLocation(&Body); } SExpr *returnType() { return ReturnType; } SExpr *body() { return Body; } template typename V::R_SExpr traverse(V &Visitor) { typename V::R_SExpr Nt = Visitor.traverse(ReturnType, TRV_Lazy); typename V::R_SExpr Nb = Visitor.traverse(Body, TRV_Lazy); return Visitor.reduceCode(*this, Nt, Nb); } template typename C::CType compare(Code* E, C& Cmp) { typename C::CType Ct = Cmp.compare(ReturnType, E->ReturnType); if (Cmp.notTrue(Ct)) return Ct; return Cmp.compare(Body, E->Body); } private: SExpr *ReturnType; SExpr *Body; }; // Apply an argument to a function class Apply : public SExpr { public: static bool classof(const SExpr *E) { return E->opcode() == COP_Apply; } Apply(SExpr *F, SExpr *A) : SExpr(COP_Apply), Fun(F), Arg(A) {} Apply(const Apply &A, SExpr *F, SExpr *Ar) // rewrite constructor : SExpr(A), Fun(F), Arg(Ar) {} SExpr *fun() const { return Fun; } SExpr *arg() const { return Arg; } template typename V::R_SExpr traverse(V &Visitor) { typename V::R_SExpr Nf = Visitor.traverse(Fun); typename V::R_SExpr Na = Visitor.traverse(Arg); return Visitor.reduceApply(*this, Nf, Na); } template typename C::CType compare(Apply* E, C& Cmp) { typename C::CType Ct = Cmp.compare(Fun, E->Fun); if (Cmp.notTrue(Ct)) return Ct; return Cmp.compare(Arg, E->Arg); } private: SExpr *Fun; SExpr *Arg; }; // Apply a self-argument to a self-applicable function class SApply : public SExpr { public: static bool classof(const SExpr *E) { return E->opcode() == COP_SApply; } SApply(SExpr *Sf, SExpr *A = 0) : SExpr(COP_SApply), Sfun(Sf), Arg(A) {} SApply(SApply &A, SExpr *Sf, SExpr *Ar = 0) // rewrite constructor : SExpr(A), Sfun(Sf), Arg(Ar) {} SExpr *sfun() const { return Sfun; } SExpr *arg() const { return Arg ? Arg : Sfun; } bool isDelegation() const { return Arg == 0; } template typename V::R_SExpr traverse(V &Visitor) { typename V::R_SExpr Nf = Visitor.traverse(Sfun); typename V::R_SExpr Na = Arg ? Visitor.traverse(Arg) : 0; return Visitor.reduceSApply(*this, Nf, Na); } template typename C::CType compare(SApply* E, C& Cmp) { typename C::CType Ct = Cmp.compare(Sfun, E->Sfun); if (Cmp.notTrue(Ct) || (!Arg && !E->Arg)) return Ct; return Cmp.compare(arg(), E->arg()); } private: SExpr *Sfun; SExpr *Arg; }; // Project a named slot from a C++ struct or class. class Project : public SExpr { public: static bool classof(const SExpr *E) { return E->opcode() == COP_Project; } Project(SExpr *R, clang::ValueDecl *Cvd) : SExpr(COP_Project), Rec(R), Cvdecl(Cvd) {} Project(const Project &P, SExpr *R) : SExpr(P), Rec(R), Cvdecl(P.Cvdecl) {} SExpr *record() const { return Rec; } clang::ValueDecl *clangValueDecl() const { return Cvdecl; } StringRef slotName() const { return Cvdecl->getName(); } template typename V::R_SExpr traverse(V &Visitor) { typename V::R_SExpr Nr = Visitor.traverse(Rec); return Visitor.reduceProject(*this, Nr); } template typename C::CType compare(Project* E, C& Cmp) { typename C::CType Ct = Cmp.compare(Rec, E->Rec); if (Cmp.notTrue(Ct)) return Ct; return Cmp.comparePointers(Cvdecl, E->Cvdecl); } private: SExpr *Rec; clang::ValueDecl *Cvdecl; }; // Call a function (after all arguments have been applied). class Call : public SExpr { public: static bool classof(const SExpr *E) { return E->opcode() == COP_Call; } Call(SExpr *T, const clang::CallExpr *Ce = 0) : SExpr(COP_Call), Target(T), Cexpr(Ce) {} Call(const Call &C, SExpr *T) : SExpr(C), Target(T), Cexpr(C.Cexpr) {} SExpr *target() const { return Target; } const clang::CallExpr *clangCallExpr() { return Cexpr; } template typename V::R_SExpr traverse(V &Visitor) { typename V::R_SExpr Nt = Visitor.traverse(Target); return Visitor.reduceCall(*this, Nt); } template typename C::CType compare(Call* E, C& Cmp) { return Cmp.compare(Target, E->Target); } private: SExpr *Target; const clang::CallExpr *Cexpr; }; // Allocate memory for a new value on the heap or stack. class Alloc : public SExpr { public: static bool classof(const SExpr *E) { return E->opcode() == COP_Call; } enum AllocKind { AK_Stack, AK_Heap }; Alloc(SExpr* D, AllocKind K) : SExpr(COP_Alloc), Dtype(D) { Flags = K; } Alloc(const Alloc &A, SExpr* Dt) : SExpr(A), Dtype(Dt) { Flags = A.kind(); } AllocKind kind() const { return static_cast(Flags); } SExpr* dataType() const { return Dtype; } template typename V::R_SExpr traverse(V &Visitor) { typename V::R_SExpr Nd = Visitor.traverse(Dtype); return Visitor.reduceAlloc(*this, Nd); } template typename C::CType compare(Alloc* E, C& Cmp) { typename C::CType Ct = Cmp.compareIntegers(kind(), E->kind()); if (Cmp.notTrue(Ct)) return Ct; return Cmp.compare(Dtype, E->Dtype); } private: SExpr* Dtype; }; // Load a value from memory. class Load : public SExpr { public: static bool classof(const SExpr *E) { return E->opcode() == COP_Load; } Load(SExpr *P) : SExpr(COP_Load), Ptr(P) {} Load(const Load &L, SExpr *P) : SExpr(L), Ptr(P) {} SExpr *pointer() { return Ptr; } template typename V::R_SExpr traverse(V &Visitor) { typename V::R_SExpr Np = Visitor.traverse(Ptr); return Visitor.reduceLoad(*this, Np); } template typename C::CType compare(Load* E, C& Cmp) { return Cmp.compare(Ptr, E->Ptr); } private: SExpr *Ptr; }; // Store a value to memory. class Store : public SExpr { public: static bool classof(const SExpr *E) { return E->opcode() == COP_Store; } Store(SExpr *P, SExpr *V) : SExpr(COP_Store), Ptr(P) {} Store(const Store &S, SExpr *P, SExpr *V) : SExpr(S), Ptr(P) {} SExpr *pointer() const { return Ptr; } SExpr *value() const { return Value; } template typename V::R_SExpr traverse(V &Visitor) { typename V::R_SExpr Np = Visitor.traverse(Ptr); typename V::R_SExpr Nv = Visitor.traverse(Value); return Visitor.reduceStore(*this, Np, Nv); } template typename C::CType compare(Store* E, C& Cmp) { typename C::CType Ct = Cmp.compare(Ptr, E->Ptr); if (Cmp.notTrue(Ct)) return Ct; return Cmp.compare(Value, E->Value); } SExpr *Ptr; SExpr *Value; }; // Simple unary operation -- e.g. !, ~, etc. class UnaryOp : public SExpr { public: static bool classof(const SExpr *E) { return E->opcode() == COP_UnaryOp; } UnaryOp(TIL_UnaryOpcode Op, SExpr *E) : SExpr(COP_UnaryOp), Expr0(E) { Flags = Op; } UnaryOp(const UnaryOp &U, SExpr *E) : SExpr(U) { Flags = U.Flags; } TIL_UnaryOpcode unaryOpcode() { return static_cast(Flags); } SExpr *expr() const { return Expr0; } template typename V::R_SExpr traverse(V &Visitor) { typename V::R_SExpr Ne = Visitor.traverse(Expr0); return Visitor.reduceUnaryOp(*this, Ne); } template typename C::CType compare(UnaryOp* E, C& Cmp) { typename C::CType Ct = Cmp.compareIntegers(unaryOpcode(), E->unaryOpcode()); if (Cmp.notTrue(Ct)) return Ct; return Cmp.compare(Expr0, E->Expr0); } private: SExpr *Expr0; }; // Simple binary operation -- e.g. +, -, etc. class BinaryOp : public SExpr { public: static bool classof(const SExpr *E) { return E->opcode() == COP_BinaryOp; } BinaryOp(TIL_BinaryOpcode Op, SExpr *E0, SExpr *E1) : SExpr(COP_BinaryOp), Expr0(E0), Expr1(E1) { Flags = Op; } BinaryOp(const BinaryOp &B, SExpr *E0, SExpr *E1) : SExpr(B), Expr0(E0), Expr1(E1) { Flags = B.Flags; } TIL_BinaryOpcode binaryOpcode() { return static_cast(Flags); } SExpr *expr0() const { return Expr0; } SExpr *expr1() const { return Expr1; } template typename V::R_SExpr traverse(V &Visitor) { typename V::R_SExpr Ne0 = Visitor.traverse(Expr0); typename V::R_SExpr Ne1 = Visitor.traverse(Expr1); return Visitor.reduceBinaryOp(*this, Ne0, Ne1); } template typename C::CType compare(BinaryOp* E, C& Cmp) { typename C::CType Ct = Cmp.compareIntegers(binaryOpcode(), E->binaryOpcode()); if (Cmp.notTrue(Ct)) return Ct; Ct = Cmp.compare(Expr0, E->Expr0); if (Cmp.notTrue(Ct)) return Ct; return Cmp.compare(Expr1, E->Expr1); } private: SExpr *Expr0; SExpr *Expr1; }; // Cast expression class Cast : public SExpr { public: static bool classof(const SExpr *E) { return E->opcode() == COP_Cast; } Cast(TIL_CastOpcode Op, SExpr *E) : SExpr(COP_Cast), Expr0(E) { Flags = Op; } Cast(const Cast &C, SExpr *E) : SExpr(C), Expr0(E) { Flags = C.Flags; } TIL_BinaryOpcode castOpcode() { return static_cast(Flags); } SExpr *expr() const { return Expr0; } template typename V::R_SExpr traverse(V &Visitor) { typename V::R_SExpr Ne = Visitor.traverse(Expr0); return Visitor.reduceCast(*this, Ne); } template typename C::CType compare(Cast* E, C& Cmp) { typename C::CType Ct = Cmp.compareIntegers(castOpcode(), E->castOpcode()); if (Cmp.notTrue(Ct)) return Ct; return Cmp.compare(Expr0, E->Expr0); } private: SExpr *Expr0; }; class BasicBlock; // An SCFG is a control-flow graph. It consists of a set of basic blocks, each // of which terminates in a branch to another basic block. There is one // entry point, and one exit point. class SCFG : public SExpr { public: typedef SimpleArray BlockArray; static bool classof(const SExpr *E) { return E->opcode() == COP_SCFG; } SCFG(MemRegionRef A, unsigned Nblocks) : SExpr(COP_SCFG), Blocks(A, Nblocks), Entry(0), Exit(0) {} SCFG(const SCFG &Cfg, BlockArray &Ba) // steals memory from ba : SExpr(COP_SCFG), Blocks(Ba, true), Entry(0), Exit(0) { /* TODO: set entry and exit! */ } typedef BlockArray::iterator iterator; typedef BlockArray::const_iterator const_iterator; iterator begin() { return Blocks.begin(); } iterator end() { return Blocks.end(); } const_iterator cbegin() const { return Blocks.cbegin(); } const_iterator cend() const { return Blocks.cend(); } BasicBlock *entry() const { return Entry; } BasicBlock *exit() const { return Exit; } void add(BasicBlock *BB) { Blocks.push_back(BB); } void setEntry(BasicBlock *BB) { Entry = BB; } void setExit(BasicBlock *BB) { Exit = BB; } template typename V::R_SExpr traverse(V &Visitor); template typename C::CType compare(SCFG* E, C& Cmp) { // TODO -- implement CFG comparisons return Cmp.comparePointers(this, E); } private: BlockArray Blocks; BasicBlock *Entry; BasicBlock *Exit; }; // A basic block is part of an SCFG, and can be treated as a function in // continuation passing style. It consists of a sequence of phi nodes, which // are "arguments" to the function, followed by a sequence of instructions. // Both arguments and instructions define new variables. It ends with a // branch or goto to another basic block in the same SCFG. class BasicBlock { public: typedef SimpleArray VarArray; BasicBlock(MemRegionRef A, unsigned Nargs, unsigned Nins, SExpr *Term = 0) : BlockID(0), Parent(0), Args(A, Nargs), Instrs(A, Nins), Terminator(Term) {} BasicBlock(const BasicBlock &B, VarArray &As, VarArray &Is, SExpr *T) : BlockID(0), Parent(0), Args(As, true), Instrs(Is, true), Terminator(T) {} unsigned blockID() const { return BlockID; } BasicBlock *parent() const { return Parent; } const VarArray &arguments() const { return Args; } VarArray &arguments() { return Args; } const VarArray &instructions() const { return Instrs; } VarArray &instructions() { return Instrs; } const SExpr *terminator() const { return Terminator; } SExpr *terminator() { return Terminator; } void setParent(BasicBlock *P) { Parent = P; } void setBlockID(unsigned i) { BlockID = i; } void setTerminator(SExpr *E) { Terminator = E; } void addArgument(Variable *V) { Args.push_back(V); } void addInstr(Variable *V) { Args.push_back(V); } template BasicBlock *traverse(V &Visitor) { typename V::template Container Nas(Visitor, Args.size()); typename V::template Container Nis(Visitor, Instrs.size()); for (unsigned I = 0; I < Args.size(); ++I) { typename V::R_SExpr Ne = Visitor.traverse(Args[I]->Definition); Variable *Nvd = Visitor.enterScope(*Args[I], Ne); Nas.push_back(Nvd); } for (unsigned J = 0; J < Instrs.size(); ++J) { typename V::R_SExpr Ne = Visitor.traverse(Instrs[J]->Definition); Variable *Nvd = Visitor.enterScope(*Instrs[J], Ne); Nis.push_back(Nvd); } typename V::R_SExpr Nt = Visitor.traverse(Terminator); for (unsigned J = 0, JN = Instrs.size(); J < JN; ++J) Visitor.exitScope(*Instrs[JN-J]); for (unsigned I = 0, IN = Instrs.size(); I < IN; ++I) Visitor.exitScope(*Args[IN-I]); return Visitor.reduceBasicBlock(*this, Nas, Nis, Nt); } template typename C::CType compare(BasicBlock* E, C& Cmp) { // TODO -- implement CFG comparisons return Cmp.comparePointers(this, E); } private: friend class SCFG; unsigned BlockID; BasicBlock *Parent; // The parent block is the enclosing lexical scope. // The parent dominates this block. VarArray Args; // Phi nodes VarArray Instrs; SExpr *Terminator; }; template typename V::R_SExpr SCFG::traverse(V &Visitor) { Visitor.enterCFG(*this); typename V::template Container Bbs(Visitor, Blocks.size()); for (unsigned I = 0; I < Blocks.size(); ++I) { BasicBlock *Nbb = Blocks[I]->traverse(Visitor); Bbs.push_back(Nbb); } Visitor.exitCFG(*this); return Visitor.reduceSCFG(*this, Bbs); } class Phi : public SExpr { public: typedef SimpleArray ValArray; static bool classof(const SExpr *E) { return E->opcode() == COP_Phi; } Phi(MemRegionRef A, unsigned Nvals) : SExpr(COP_Phi), Values(A, Nvals) {} Phi(const Phi &P, ValArray &Vs) // steals memory of vs : SExpr(COP_Phi), Values(Vs, true) {} const ValArray &values() const { return Values; } ValArray &values() { return Values; } template typename V::R_SExpr traverse(V &Visitor) { typename V::template Container Nvs(Visitor, Values.size()); for (ValArray::iterator I = Values.begin(), E = Values.end(); I != E; ++I) { typename V::R_SExpr Nv = Visitor.traverse(*I); Nvs.push_back(Nv); } return Visitor.reducePhi(*this, Nvs); } template typename C::CType compare(Phi* E, C& Cmp) { // TODO -- implement CFG comparisons return Cmp.comparePointers(this, E); } private: ValArray Values; }; class Goto : public SExpr { public: static bool classof(const SExpr *E) { return E->opcode() == COP_Goto; } Goto(BasicBlock *B, unsigned Index) : SExpr(COP_Goto), TargetBlock(B) {} Goto(const Goto &G, BasicBlock *B, unsigned Index) : SExpr(COP_Goto), TargetBlock(B) {} BasicBlock *targetBlock() const { return TargetBlock; } unsigned index() const { return Index; } template typename V::R_SExpr traverse(V &Visitor) { // TODO -- rewrite indices properly BasicBlock *Ntb = Visitor.reduceBasicBlockRef(TargetBlock); return Visitor.reduceGoto(*this, Ntb, Index); } template typename C::CType compare(Goto* E, C& Cmp) { // TODO -- implement CFG comparisons return Cmp.comparePointers(this, E); } private: BasicBlock *TargetBlock; unsigned Index; // Index into Phi nodes of target block. }; class Branch : public SExpr { public: static bool classof(const SExpr *E) { return E->opcode() == COP_Branch; } Branch(SExpr *C, BasicBlock *T, BasicBlock *E) : SExpr(COP_Branch), Condition(C), ThenBlock(T), ElseBlock(E) {} Branch(const Branch &Br, SExpr *C, BasicBlock *T, BasicBlock *E) : SExpr(COP_Branch), Condition(C), ThenBlock(T), ElseBlock(E) {} SExpr *condition() { return Condition; } BasicBlock *thenBlock() { return ThenBlock; } BasicBlock *elseBlock() { return ElseBlock; } template typename V::R_SExpr traverse(V &Visitor) { typename V::R_SExpr Nc = Visitor.traverse(Condition); BasicBlock *Ntb = Visitor.reduceBasicBlockRef(ThenBlock); BasicBlock *Nte = Visitor.reduceBasicBlockRef(ElseBlock); return Visitor.reduceBranch(*this, Nc, Ntb, Nte); } template typename C::CType compare(Branch* E, C& Cmp) { // TODO -- implement CFG comparisons return Cmp.comparePointers(this, E); } private: SExpr *Condition; BasicBlock *ThenBlock; BasicBlock *ElseBlock; }; // Defines an interface used to traverse SExprs. Traversals have been made as // generic as possible, and are intended to handle any kind of pass over the // AST, e.g. visiters, copying, non-destructive rewriting, destructive // (in-place) rewriting, hashing, typing, etc. // // Traversals implement the functional notion of a "fold" operation on SExprs. // Each SExpr class provides a traverse method, which does the following: // * e->traverse(v): // // compute a result r_i for each subexpression e_i // for (i = 1..n) r_i = v.traverse(e_i); // // combine results into a result for e, where X is the class of e // return v.reduceX(*e, r_1, .. r_n). // // A visitor can control the traversal by overriding the following methods: // * v.traverse(e): // return v.traverseByCase(e), which returns v.traverseX(e) // * v.traverseX(e): (X is the class of e) // return e->traverse(v). // * v.reduceX(*e, r_1, .. r_n): // compute a result for a node of type X // // The reduceX methods control the kind of traversal (visitor, copy, etc.). // These are separated into a separate class R for the purpose of code reuse. // The full reducer interface also has methods to handle scopes template class TILTraversal : public R { public: Self *self() { return reinterpret_cast(this); } // Traverse an expression -- returning a result of type R_SExpr. // Override this method to do something for every expression, regardless // of which kind it is. TIL_TraversalKind indicates the context in which // the expression occurs, and can be: // TRV_Normal // TRV_Lazy -- e may need to be traversed lazily, using a Future. // TRV_Tail -- e occurs in a tail position typename R::R_SExpr traverse(SExpr *E, TIL_TraversalKind K = TRV_Normal) { return traverseByCase(E); } // Helper method to call traverseX(e) on the appropriate type. typename R::R_SExpr traverseByCase(SExpr *E) { switch (E->opcode()) { #define TIL_OPCODE_DEF(X) \ case COP_##X: \ return self()->traverse##X(cast(E)); #include "clang/Analysis/Analyses/ThreadSafetyOps.def" #undef TIL_OPCODE_DEF case COP_MAX: return self()->reduceNull(); } } // Traverse e, by static dispatch on the type "X" of e. // Override these methods to do something for a particular kind of term. #define TIL_OPCODE_DEF(X) \ typename R::R_SExpr traverse##X(X *e) { return e->traverse(*self()); } #include "clang/Analysis/Analyses/ThreadSafetyOps.def" #undef TIL_OPCODE_DEF }; // Implements a Reducer that makes a deep copy of an SExpr. // The default behavior of reduce##X(...) is to create a copy of the original. // Subclasses can override reduce##X to implement non-destructive rewriting // passes. class TILCopyReducer { public: TILCopyReducer() {} void setArena(MemRegionRef A) { Arena = A; } // R_SExpr is the result type for a traversal. // A copy or non-destructive rewrite returns a newly allocated term. typedef SExpr *R_SExpr; // Container is a minimal interface used to store results when traversing // SExprs of variable arity, such as Phi, Goto, and SCFG. template class Container { public: // Allocate a new container with a capacity for n elements. Container(TILCopyReducer &R, unsigned N) : Elems(R.Arena, N) {} // Push a new element onto the container. void push_back(T E) { Elems.push_back(E); } private: friend class TILCopyReducer; SimpleArray Elems; }; public: R_SExpr reduceNull() { return 0; } // R_SExpr reduceFuture(...) is never used. R_SExpr reduceUndefined(Undefined &Orig) { return new (Arena) Undefined(Orig); } R_SExpr reduceWildcard(Wildcard &Orig) { return new (Arena) Wildcard(Orig); } R_SExpr reduceLiteral(Literal &Orig) { return new (Arena) Literal(Orig); } R_SExpr reduceLiteralPtr(LiteralPtr &Orig) { return new (Arena) LiteralPtr(Orig); } R_SExpr reduceFunction(Function &Orig, Variable *Nvd, R_SExpr E0) { return new (Arena) Function(Orig, Nvd, E0); } R_SExpr reduceSFunction(SFunction &Orig, Variable *Nvd, R_SExpr E0) { return new (Arena) SFunction(Orig, Nvd, E0); } R_SExpr reduceCode(Code &Orig, R_SExpr E0, R_SExpr E1) { return new (Arena) Code(Orig, E0, E1); } R_SExpr reduceApply(Apply &Orig, R_SExpr E0, R_SExpr E1) { return new (Arena) Apply(Orig, E0, E1); } R_SExpr reduceSApply(SApply &Orig, R_SExpr E0, R_SExpr E1) { return new (Arena) SApply(Orig, E0, E1); } R_SExpr reduceProject(Project &Orig, R_SExpr E0) { return new (Arena) Project(Orig, E0); } R_SExpr reduceCall(Call &Orig, R_SExpr E0) { return new (Arena) Call(Orig, E0); } R_SExpr reduceAlloc(Alloc &Orig, R_SExpr E0) { return new (Arena) Alloc(Orig, E0); } R_SExpr reduceLoad(Load &Orig, R_SExpr E0) { return new (Arena) Load(Orig, E0); } R_SExpr reduceStore(Store &Orig, R_SExpr E0, R_SExpr E1) { return new (Arena) Store(Orig, E0, E1); } R_SExpr reduceUnaryOp(UnaryOp &Orig, R_SExpr E0) { return new (Arena) UnaryOp(Orig); } R_SExpr reduceBinaryOp(BinaryOp &Orig, R_SExpr E0, R_SExpr E1) { return new (Arena) BinaryOp(Orig, E0, E1); } R_SExpr reduceCast(Cast &Orig, R_SExpr E0) { return new (Arena) Cast(Orig, E0); } R_SExpr reduceSCFG(SCFG &Orig, Container Bbs) { return new (Arena) SCFG(Orig, Bbs.Elems); } R_SExpr reducePhi(Phi &Orig, Container As) { return new (Arena) Phi(Orig, As.Elems); } R_SExpr reduceGoto(Goto &Orig, BasicBlock *B, unsigned Index) { return new (Arena) Goto(Orig, B, Index); } R_SExpr reduceBranch(Branch &O, R_SExpr C, BasicBlock *B0, BasicBlock *B1) { return new (Arena) Branch(O, C, B0, B1); } BasicBlock *reduceBasicBlock(BasicBlock &Orig, Container &As, Container &Is, R_SExpr T) { return new (Arena) BasicBlock(Orig, As.Elems, Is.Elems, T); } // Create a new variable from orig, and push it onto the lexical scope. Variable *enterScope(Variable &Orig, R_SExpr E0) { return new (Arena) Variable(Orig, E0); } // Exit the lexical scope of orig. void exitScope(const Variable &Orig) {} void enterCFG(SCFG &Cfg) {} void exitCFG(SCFG &Cfg) {} // Map Variable references to their rewritten definitions. Variable *reduceVariableRef(Variable *Ovd) { return Ovd; } // Map BasicBlock references to their rewritten defs. BasicBlock *reduceBasicBlockRef(BasicBlock *Obb) { return Obb; } private: MemRegionRef Arena; }; class SExprCopier : public TILTraversal { public: SExprCopier(MemRegionRef A) { setArena(A); } // Create a copy of e in region a. static SExpr *copy(SExpr *E, MemRegionRef A) { SExprCopier Copier(A); return Copier.traverse(E); } }; // Implements a Reducer that visits each subexpression, and returns either // true or false. class TILVisitReducer { public: TILVisitReducer() {} // A visitor returns a bool, representing success or failure. typedef bool R_SExpr; // A visitor "container" is a single bool, which accumulates success. template class Container { public: Container(TILVisitReducer &R, unsigned N) : Success(true) {} void push_back(bool E) { Success = Success && E; } private: friend class TILVisitReducer; bool Success; }; public: R_SExpr reduceNull() { return true; } R_SExpr reduceUndefined(Undefined &Orig) { return true; } R_SExpr reduceWildcard(Wildcard &Orig) { return true; } R_SExpr reduceLiteral(Literal &Orig) { return true; } R_SExpr reduceLiteralPtr(Literal &Orig) { return true; } R_SExpr reduceFunction(Function &Orig, Variable *Nvd, R_SExpr E0) { return Nvd && E0; } R_SExpr reduceSFunction(SFunction &Orig, Variable *Nvd, R_SExpr E0) { return Nvd && E0; } R_SExpr reduceCode(Code &Orig, R_SExpr E0, R_SExpr E1) { return E0 && E1; } R_SExpr reduceApply(Apply &Orig, R_SExpr E0, R_SExpr E1) { return E0 && E1; } R_SExpr reduceSApply(SApply &Orig, R_SExpr E0, R_SExpr E1) { return E0 && E1; } R_SExpr reduceProject(Project &Orig, R_SExpr E0) { return E0; } R_SExpr reduceCall(Call &Orig, R_SExpr E0) { return E0; } R_SExpr reduceAlloc(Alloc &Orig, R_SExpr E0) { return E0; } R_SExpr reduceLoad(Load &Orig, R_SExpr E0) { return E0; } R_SExpr reduceStore(Store &Orig, R_SExpr E0, R_SExpr E1) { return E0 && E1; } R_SExpr reduceUnaryOp(UnaryOp &Orig, R_SExpr E0) { return E0; } R_SExpr reduceBinaryOp(BinaryOp &Orig, R_SExpr E0, R_SExpr E1) { return E0 && E1; } R_SExpr reduceCast(Cast &Orig, R_SExpr E0) { return E0; } R_SExpr reduceSCFG(SCFG &Orig, Container Bbs) { return Bbs.Success; } R_SExpr reducePhi(Phi &Orig, Container As) { return As.Success; } R_SExpr reduceGoto(Goto &Orig, BasicBlock *B, Container As) { return As.Success; } R_SExpr reduceBranch(Branch &O, R_SExpr C, BasicBlock *B0, BasicBlock *B1) { return C; } BasicBlock *reduceBasicBlock(BasicBlock &Orig, Container &As, Container &Is, R_SExpr T) { return (As.Success && Is.Success && T) ? &Orig : 0; } Variable *enterScope(Variable &Orig, R_SExpr E0) { return E0 ? &Orig : 0; } void exitScope(const Variable &Orig) {} void enterCFG(SCFG &Cfg) {} void exitCFG(SCFG &Cfg) {} Variable *reduceVariableRef(Variable *Ovd) { return Ovd; } BasicBlock *reduceBasicBlockRef(BasicBlock *Obb) { return Obb; } }; // A visitor will visit each node, and halt if any reducer returns false. template class SExprVisitor : public TILTraversal { public: SExprVisitor() : Success(true) {} bool traverse(SExpr *E, TIL_TraversalKind K = TRV_Normal) { Success = Success && this->traverseByCase(E); return Success; } static bool visit(SExpr *E) { SExprVisitor Visitor; return Visitor.traverse(E); } private: bool Success; }; // Basic class for comparison operations over expressions. template class TILComparator { public: Self *self() { return reinterpret_cast(this); } bool compareByCase(SExpr *E1, SExpr* E2) { switch (E1->opcode()) { #define TIL_OPCODE_DEF(X) \ case COP_##X: \ return cast(E1)->compare(cast(E2), *self()); #include "clang/Analysis/Analyses/ThreadSafetyOps.def" #undef TIL_OPCODE_DEF case COP_MAX: return false; } } }; class TILEqualsComparator : public TILComparator { public: // Result type for the comparison, e.g. bool for simple equality, // or int for lexigraphic comparison (-1, 0, 1). Must have one value which // denotes "true". typedef bool CType; CType trueResult() { return true; } bool notTrue(CType ct) { return !ct; } bool compareIntegers(unsigned i, unsigned j) { return i == j; } bool comparePointers(const void* P, const void* Q) { return P == Q; } bool compare(SExpr *E1, SExpr* E2) { if (E1->opcode() != E2->opcode()) return false; return compareByCase(E1, E2); } // TODO -- handle alpha-renaming of variables void enterScope(Variable* V1, Variable* V2) { } void leaveScope() { } bool compareVariableRefs(Variable* V1, Variable* V2) { return V1 == V2; } static bool compareExprs(SExpr *E1, SExpr* E2) { TILEqualsComparator Eq; return Eq.compare(E1, E2); } }; // Pretty printer for TIL expressions template class TILPrettyPrinter { public: static void print(SExpr *E, StreamType &SS) { Self printer; printer.printSExpr(E, SS, Prec_MAX); } protected: Self *self() { return reinterpret_cast(this); } void newline(StreamType &SS) { SS << "\n"; } // TODO: further distinguish between binary operations. static const unsigned Prec_Atom = 0; static const unsigned Prec_Postfix = 1; static const unsigned Prec_Unary = 2; static const unsigned Prec_Binary = 3; static const unsigned Prec_Other = 4; static const unsigned Prec_Decl = 5; static const unsigned Prec_MAX = 6; // Return the precedence of a given node, for use in pretty printing. unsigned precedence(SExpr *E) { switch (E->opcode()) { case COP_Future: return Prec_Atom; case COP_Undefined: return Prec_Atom; case COP_Wildcard: return Prec_Atom; case COP_Literal: return Prec_Atom; case COP_LiteralPtr: return Prec_Atom; case COP_Variable: return Prec_Atom; case COP_Function: return Prec_Decl; case COP_SFunction: return Prec_Decl; case COP_Code: return Prec_Decl; case COP_Apply: return Prec_Postfix; case COP_SApply: return Prec_Postfix; case COP_Project: return Prec_Postfix; case COP_Call: return Prec_Postfix; case COP_Alloc: return Prec_Other; case COP_Load: return Prec_Postfix; case COP_Store: return Prec_Other; case COP_UnaryOp: return Prec_Unary; case COP_BinaryOp: return Prec_Binary; case COP_Cast: return Prec_Unary; case COP_SCFG: return Prec_Decl; case COP_Phi: return Prec_Atom; case COP_Goto: return Prec_Atom; case COP_Branch: return Prec_Atom; case COP_MAX: return Prec_MAX; } return Prec_MAX; } void printSExpr(SExpr *E, StreamType &SS, unsigned P) { if (!E) { self()->printNull(SS); return; } if (self()->precedence(E) > P) { // Wrap expr in () if necessary. SS << "("; self()->printSExpr(E, SS, Prec_MAX); SS << ")"; return; } switch (E->opcode()) { #define TIL_OPCODE_DEF(X) \ case COP_##X: \ self()->print##X(cast(E), SS); \ return; #include "clang/Analysis/Analyses/ThreadSafetyOps.def" #undef TIL_OPCODE_DEF case COP_MAX: return; } } void printNull(StreamType &SS) { SS << "#null"; } void printFuture(Future *E, StreamType &SS) { self()->printSExpr(E->maybeGetResult(), SS, Prec_Atom); } void printUndefined(Undefined *E, StreamType &SS) { SS << "#undefined"; } void printWildcard(Wildcard *E, StreamType &SS) { SS << "_"; } void printLiteral(Literal *E, StreamType &SS) { // TODO: actually pretty print the literal. SS << "#lit"; } void printLiteralPtr(LiteralPtr *E, StreamType &SS) { SS << E->clangDecl()->getName(); } void printVariable(Variable *E, StreamType &SS) { SS << E->name() << E->getBlockID() << "_" << E->getID(); } void printFunction(Function *E, StreamType &SS, unsigned sugared = 0) { switch (sugared) { default: SS << "\\("; // Lambda case 1: SS << "("; // Slot declarations break; case 2: SS << ", "; // Curried functions break; } self()->printVariable(E->variableDecl(), SS); SS << ": "; self()->printSExpr(E->variableDecl()->definition(), SS, Prec_MAX); SExpr *B = E->body(); if (B && B->opcode() == COP_Function) self()->printFunction(cast(B), SS, 2); else self()->printSExpr(B, SS, Prec_Decl); } void printSFunction(SFunction *E, StreamType &SS) { SS << "@"; self()->printVariable(E->variableDecl(), SS); SS << " "; self()->printSExpr(E->body(), SS, Prec_Decl); } void printCode(Code *E, StreamType &SS) { SS << ": "; self()->printSExpr(E->returnType(), SS, Prec_Decl-1); SS << " = "; self()->printSExpr(E->body(), SS, Prec_Decl); } void printApply(Apply *E, StreamType &SS, bool sugared = false) { SExpr *F = E->fun(); if (F->opcode() == COP_Apply) { printApply(cast(F), SS, true); SS << ", "; } else { self()->printSExpr(F, SS, Prec_Postfix); SS << "("; } self()->printSExpr(E->arg(), SS, Prec_MAX); if (!sugared) SS << ")$"; } void printSApply(SApply *E, StreamType &SS) { self()->printSExpr(E->sfun(), SS, Prec_Postfix); SS << "@("; self()->printSExpr(E->arg(), SS, Prec_MAX); SS << ")"; } void printProject(Project *E, StreamType &SS) { self()->printSExpr(E->record(), SS, Prec_Postfix); SS << "."; SS << E->slotName(); } void printCall(Call *E, StreamType &SS) { SExpr *T = E->target(); if (T->opcode() == COP_Apply) { self()->printApply(cast(T), SS, true); SS << ")"; } else { self()->printSExpr(T, SS, Prec_Postfix); SS << "()"; } } void printAlloc(Alloc *E, StreamType &SS) { SS << "#alloc "; self()->printSExpr(E->dataType(), SS, Prec_Other-1); } void printLoad(Load *E, StreamType &SS) { self()->printSExpr(E->pointer(), SS, Prec_Postfix); SS << "^"; } void printStore(Store *E, StreamType &SS) { self()->printSExpr(E->pointer(), SS, Prec_Other-1); SS << " = "; self()->printSExpr(E->value(), SS, Prec_Other-1); } void printUnaryOp(UnaryOp *E, StreamType &SS) { self()->printSExpr(E->expr(), SS, Prec_Unary); } void printBinaryOp(BinaryOp *E, StreamType &SS) { self()->printSExpr(E->expr0(), SS, Prec_Binary-1); SS << " " << clang::BinaryOperator::getOpcodeStr(E->binaryOpcode()) << " "; self()->printSExpr(E->expr1(), SS, Prec_Binary-1); } void printCast(Cast *E, StreamType &SS) { SS << "~"; self()->printSExpr(E->expr(), SS, Prec_Unary); } void printSCFG(SCFG *E, StreamType &SS) { SS << "#CFG {\n"; for (auto BBI : *E) { SS << "BB_" << BBI->blockID() << ":"; newline(SS); for (auto I : BBI->arguments()) { SS << "let "; self()->printVariable(I, SS); SS << " = "; self()->printSExpr(I->definition(), SS, Prec_MAX); SS << ";"; newline(SS); } for (auto I : BBI->instructions()) { SS << "let "; self()->printVariable(I, SS); SS << " = "; self()->printSExpr(I->definition(), SS, Prec_MAX); SS << ";"; newline(SS); } SExpr *T = BBI->terminator(); if (T) { self()->printSExpr(T, SS, Prec_MAX); SS << ";"; newline(SS); } newline(SS); } SS << "}"; newline(SS); } void printPhi(Phi *E, StreamType &SS) { SS << "#phi("; unsigned i = 0; for (auto V : E->values()) { ++i; if (i > 0) SS << ", "; self()->printSExpr(V, SS, Prec_MAX); } SS << ")"; } void printGoto(Goto *E, StreamType &SS) { SS << "#goto BB_"; SS << E->targetBlock()->blockID(); SS << ":"; SS << E->index(); } void printBranch(Branch *E, StreamType &SS) { SS << "#branch ("; self()->printSExpr(E->condition(), SS, Prec_MAX); SS << ") BB_"; SS << E->thenBlock()->blockID(); SS << " BB_"; SS << E->elseBlock()->blockID(); } }; } // end namespace til } // end namespace threadSafety } // end namespace clang #endif // THREAD_SAFETY_TIL_H