/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % V V IIIII SSSSS IIIII OOO N N % % V V I SS I O O NN N % % V V I SSS I O O N N N % % V V I SS I O O N NN % % V IIIII SSSSS IIIII OOO N N % % % % % % MagickCore Computer Vision Methods % % % % Software Design % % Cristy % % September 2014 % % % % % % Copyright 1999-2017 ImageMagick Studio LLC, a non-profit organization % % dedicated to making software imaging solutions freely available. % % % % You may not use this file except in compliance with the License. You may % % obtain a copy of the License at % % % % https://www.imagemagick.org/script/license.php % % % % Unless required by applicable law or agreed to in writing, software % % distributed under the License is distributed on an "AS IS" BASIS, % % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % % See the License for the specific language governing permissions and % % limitations under the License. % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % */ #include "MagickCore/studio.h" #include "MagickCore/artifact.h" #include "MagickCore/blob.h" #include "MagickCore/cache-view.h" #include "MagickCore/color.h" #include "MagickCore/color-private.h" #include "MagickCore/colormap.h" #include "MagickCore/colorspace.h" #include "MagickCore/constitute.h" #include "MagickCore/decorate.h" #include "MagickCore/distort.h" #include "MagickCore/draw.h" #include "MagickCore/enhance.h" #include "MagickCore/exception.h" #include "MagickCore/exception-private.h" #include "MagickCore/effect.h" #include "MagickCore/gem.h" #include "MagickCore/geometry.h" #include "MagickCore/image-private.h" #include "MagickCore/list.h" #include "MagickCore/log.h" #include "MagickCore/matrix.h" #include "MagickCore/memory_.h" #include "MagickCore/memory-private.h" #include "MagickCore/monitor.h" #include "MagickCore/monitor-private.h" #include "MagickCore/montage.h" #include "MagickCore/morphology.h" #include "MagickCore/morphology-private.h" #include "MagickCore/opencl-private.h" #include "MagickCore/paint.h" #include "MagickCore/pixel-accessor.h" #include "MagickCore/pixel-private.h" #include "MagickCore/property.h" #include "MagickCore/quantum.h" #include "MagickCore/resource_.h" #include "MagickCore/signature-private.h" #include "MagickCore/string_.h" #include "MagickCore/string-private.h" #include "MagickCore/thread-private.h" #include "MagickCore/token.h" #include "MagickCore/vision.h" /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % C o n n e c t e d C o m p o n e n t s I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % ConnectedComponentsImage() returns the connected-components of the image % uniquely labeled. The returned connected components image colors member % defines the number of unique objects. Choose from 4 or 8-way connectivity. % % You are responsible for freeing the connected components objects resources % with this statement; % % objects = (CCObjectInfo *) RelinquishMagickMemory(objects); % % The format of the ConnectedComponentsImage method is: % % Image *ConnectedComponentsImage(const Image *image, % const size_t connectivity,CCObjectInfo **objects, % ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o connectivity: how many neighbors to visit, choose from 4 or 8. % % o objects: return the attributes of each unique object. % % o exception: return any errors or warnings in this structure. % */ static int CCObjectInfoCompare(const void *x,const void *y) { CCObjectInfo *p, *q; p=(CCObjectInfo *) x; q=(CCObjectInfo *) y; return((int) (q->area-(ssize_t) p->area)); } MagickExport Image *ConnectedComponentsImage(const Image *image, const size_t connectivity,CCObjectInfo **objects,ExceptionInfo *exception) { #define ConnectedComponentsImageTag "ConnectedComponents/Image" CacheView *image_view, *component_view; CCObjectInfo *object; char *c; const char *artifact; double area_threshold; Image *component_image; MagickBooleanType status; MagickOffsetType progress; MatrixInfo *equivalences; register ssize_t i; size_t size; ssize_t first, last, n, step, y; /* Initialize connected components image attributes. */ assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); if (objects != (CCObjectInfo **) NULL) *objects=(CCObjectInfo *) NULL; component_image=CloneImage(image,image->columns,image->rows,MagickTrue, exception); if (component_image == (Image *) NULL) return((Image *) NULL); component_image->depth=MAGICKCORE_QUANTUM_DEPTH; if (AcquireImageColormap(component_image,MaxColormapSize,exception) == MagickFalse) { component_image=DestroyImage(component_image); ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); } /* Initialize connected components equivalences. */ size=image->columns*image->rows; if (image->columns != (size/image->rows)) { component_image=DestroyImage(component_image); ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); } equivalences=AcquireMatrixInfo(size,1,sizeof(ssize_t),exception); if (equivalences == (MatrixInfo *) NULL) { component_image=DestroyImage(component_image); return((Image *) NULL); } for (n=0; n < (ssize_t) (image->columns*image->rows); n++) (void) SetMatrixElement(equivalences,n,0,&n); object=(CCObjectInfo *) AcquireQuantumMemory(MaxColormapSize,sizeof(*object)); if (object == (CCObjectInfo *) NULL) { equivalences=DestroyMatrixInfo(equivalences); component_image=DestroyImage(component_image); ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); } (void) ResetMagickMemory(object,0,MaxColormapSize*sizeof(*object)); for (i=0; i < (ssize_t) MaxColormapSize; i++) { object[i].id=i; object[i].bounding_box.x=(ssize_t) image->columns; object[i].bounding_box.y=(ssize_t) image->rows; GetPixelInfo(image,&object[i].color); } /* Find connected components. */ status=MagickTrue; progress=0; image_view=AcquireVirtualCacheView(image,exception); for (n=0; n < (ssize_t) (connectivity > 4 ? 4 : 2); n++) { ssize_t connect4[2][2] = { { -1, 0 }, { 0, -1 } }, connect8[4][2] = { { -1, -1 }, { -1, 0 }, { -1, 1 }, { 0, -1 } }, dx, dy; if (status == MagickFalse) continue; dy=connectivity > 4 ? connect8[n][0] : connect4[n][0]; dx=connectivity > 4 ? connect8[n][1] : connect4[n][1]; for (y=0; y < (ssize_t) image->rows; y++) { register const Quantum *magick_restrict p; register ssize_t x; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(image_view,0,y-1,image->columns,3,exception); if (p == (const Quantum *) NULL) { status=MagickFalse; continue; } p+=GetPixelChannels(image)*image->columns; for (x=0; x < (ssize_t) image->columns; x++) { PixelInfo pixel, target; ssize_t neighbor_offset, obj, offset, ox, oy, root; /* Is neighbor an authentic pixel and a different color than the pixel? */ GetPixelInfoPixel(image,p,&pixel); if (((x+dx) < 0) || ((x+dx) >= (ssize_t) image->columns) || ((y+dy) < 0) || ((y+dy) >= (ssize_t) image->rows)) { p+=GetPixelChannels(image); continue; } neighbor_offset=dy*(GetPixelChannels(image)*image->columns)+dx* GetPixelChannels(image); GetPixelInfoPixel(image,p+neighbor_offset,&target); if (IsFuzzyEquivalencePixelInfo(&pixel,&target) == MagickFalse) { p+=GetPixelChannels(image); continue; } /* Resolve this equivalence. */ offset=y*image->columns+x; neighbor_offset=dy*image->columns+dx; ox=offset; status=GetMatrixElement(equivalences,ox,0,&obj); while (obj != ox) { ox=obj; status=GetMatrixElement(equivalences,ox,0,&obj); } oy=offset+neighbor_offset; status=GetMatrixElement(equivalences,oy,0,&obj); while (obj != oy) { oy=obj; status=GetMatrixElement(equivalences,oy,0,&obj); } if (ox < oy) { status=SetMatrixElement(equivalences,oy,0,&ox); root=ox; } else { status=SetMatrixElement(equivalences,ox,0,&oy); root=oy; } ox=offset; status=GetMatrixElement(equivalences,ox,0,&obj); while (obj != root) { status=GetMatrixElement(equivalences,ox,0,&obj); status=SetMatrixElement(equivalences,ox,0,&root); } oy=offset+neighbor_offset; status=GetMatrixElement(equivalences,oy,0,&obj); while (obj != root) { status=GetMatrixElement(equivalences,oy,0,&obj); status=SetMatrixElement(equivalences,oy,0,&root); } status=SetMatrixElement(equivalences,y*image->columns+x,0,&root); p+=GetPixelChannels(image); } } } image_view=DestroyCacheView(image_view); /* Label connected components. */ n=0; image_view=AcquireVirtualCacheView(image,exception); component_view=AcquireAuthenticCacheView(component_image,exception); for (y=0; y < (ssize_t) component_image->rows; y++) { register const Quantum *magick_restrict p; register Quantum *magick_restrict q; register ssize_t x; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception); q=QueueCacheViewAuthenticPixels(component_view,0,y,component_image->columns, 1,exception); if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) component_image->columns; x++) { ssize_t id, offset; offset=y*image->columns+x; status=GetMatrixElement(equivalences,offset,0,&id); if (id != offset) status=GetMatrixElement(equivalences,id,0,&id); else { id=n++; if (id >= (ssize_t) MaxColormapSize) break; } status=SetMatrixElement(equivalences,offset,0,&id); if (x < object[id].bounding_box.x) object[id].bounding_box.x=x; if (x >= (ssize_t) object[id].bounding_box.width) object[id].bounding_box.width=(size_t) x; if (y < object[id].bounding_box.y) object[id].bounding_box.y=y; if (y >= (ssize_t) object[id].bounding_box.height) object[id].bounding_box.height=(size_t) y; object[id].color.red+=QuantumScale*GetPixelRed(image,p); object[id].color.green+=QuantumScale*GetPixelGreen(image,p); object[id].color.blue+=QuantumScale*GetPixelBlue(image,p); object[id].color.black+=QuantumScale*GetPixelBlack(image,p); object[id].color.alpha+=QuantumScale*GetPixelAlpha(image,p); object[id].centroid.x+=x; object[id].centroid.y+=y; object[id].area++; SetPixelIndex(component_image,(Quantum) id,q); p+=GetPixelChannels(image); q+=GetPixelChannels(component_image); } if (n > (ssize_t) MaxColormapSize) break; if (SyncCacheViewAuthenticPixels(component_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; proceed=SetImageProgress(image,ConnectedComponentsImageTag,progress++, image->rows); if (proceed == MagickFalse) status=MagickFalse; } } component_view=DestroyCacheView(component_view); image_view=DestroyCacheView(image_view); equivalences=DestroyMatrixInfo(equivalences); if (n > (ssize_t) MaxColormapSize) { object=(CCObjectInfo *) RelinquishMagickMemory(object); component_image=DestroyImage(component_image); ThrowImageException(ResourceLimitError,"TooManyObjects"); } component_image->colors=(size_t) n; for (i=0; i < (ssize_t) component_image->colors; i++) { object[i].bounding_box.width-=(object[i].bounding_box.x-1); object[i].bounding_box.height-=(object[i].bounding_box.y-1); object[i].color.red=QuantumRange*(object[i].color.red/object[i].area); object[i].color.green=QuantumRange*(object[i].color.green/object[i].area); object[i].color.blue=QuantumRange*(object[i].color.blue/object[i].area); object[i].color.alpha=QuantumRange*(object[i].color.alpha/object[i].area); object[i].color.black=QuantumRange*(object[i].color.black/object[i].area); object[i].centroid.x=object[i].centroid.x/object[i].area; object[i].centroid.y=object[i].centroid.y/object[i].area; } artifact=GetImageArtifact(image,"connected-components:area-threshold"); area_threshold=0.0; if (artifact != (const char *) NULL) area_threshold=StringToDouble(artifact,(char **) NULL); if (area_threshold > 0.0) { /* Merge object below area threshold. */ component_view=AcquireAuthenticCacheView(component_image,exception); for (i=0; i < (ssize_t) component_image->colors; i++) { double census; RectangleInfo bounding_box; register ssize_t j; size_t id; if (status == MagickFalse) continue; if ((double) object[i].area >= area_threshold) continue; for (j=0; j < (ssize_t) component_image->colors; j++) object[j].census=0; bounding_box=object[i].bounding_box; for (y=0; y < (ssize_t) bounding_box.height+2; y++) { register const Quantum *magick_restrict p; register ssize_t x; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(component_view,bounding_box.x-1, bounding_box.y+y-1,bounding_box.width+2,1,exception); if (p == (const Quantum *) NULL) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) bounding_box.width+2; x++) { j=(ssize_t) GetPixelIndex(component_image,p); if (j != i) object[j].census++; p+=GetPixelChannels(component_image); } } census=0; id=0; for (j=0; j < (ssize_t) component_image->colors; j++) if (census < object[j].census) { census=object[j].census; id=(size_t) j; } object[id].area+=object[i].area; for (y=0; y < (ssize_t) bounding_box.height; y++) { register Quantum *magick_restrict q; register ssize_t x; if (status == MagickFalse) continue; q=GetCacheViewAuthenticPixels(component_view,bounding_box.x, bounding_box.y+y,bounding_box.width,1,exception); if (q == (Quantum *) NULL) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) bounding_box.width; x++) { if ((ssize_t) GetPixelIndex(component_image,q) == i) SetPixelIndex(component_image,(Quantum) id,q); q+=GetPixelChannels(component_image); } if (SyncCacheViewAuthenticPixels(component_view,exception) == MagickFalse) status=MagickFalse; } } component_view=DestroyCacheView(component_view); (void) SyncImage(component_image,exception); } artifact=GetImageArtifact(image,"connected-components:mean-color"); if (IsStringTrue(artifact) != MagickFalse) { /* Replace object with mean color. */ for (i=0; i < (ssize_t) component_image->colors; i++) component_image->colormap[i]=object[i].color; } artifact=GetImageArtifact(image,"connected-components:keep"); if (artifact != (const char *) NULL) { /* Keep these object (make others transparent). */ for (i=0; i < (ssize_t) component_image->colors; i++) object[i].census=0; for (c=(char *) artifact; *c != '\0';) { while ((isspace((int) ((unsigned char) *c)) != 0) || (*c == ',')) c++; first=strtol(c,&c,10); if (first < 0) first+=(long) component_image->colors; last=first; while (isspace((int) ((unsigned char) *c)) != 0) c++; if (*c == '-') { last=strtol(c+1,&c,10); if (last < 0) last+=(long) component_image->colors; } for (step=first > last ? -1 : 1; first != (last+step); first+=step) object[first].census++; } for (i=0; i < (ssize_t) component_image->colors; i++) { if (object[i].census != 0) continue; component_image->alpha_trait=BlendPixelTrait; component_image->colormap[i].alpha=TransparentAlpha; } } artifact=GetImageArtifact(image,"connected-components:remove"); if (artifact != (const char *) NULL) { /* Remove these object (make them transparent). */ for (c=(char *) artifact; *c != '\0';) { while ((isspace((int) ((unsigned char) *c)) != 0) || (*c == ',')) c++; first=strtol(c,&c,10); if (first < 0) first+=(long) component_image->colors; last=first; while (isspace((int) ((unsigned char) *c)) != 0) c++; if (*c == '-') { last=strtol(c+1,&c,10); if (last < 0) last+=(long) component_image->colors; } for (step=first > last ? -1 : 1; first != (last+step); first+=step) { component_image->alpha_trait=BlendPixelTrait; component_image->colormap[first].alpha=TransparentAlpha; } } } (void) SyncImage(component_image,exception); artifact=GetImageArtifact(image,"connected-components:verbose"); if ((IsStringTrue(artifact) != MagickFalse) || (objects != (CCObjectInfo **) NULL)) { /* Report statistics on unique object. */ for (i=0; i < (ssize_t) component_image->colors; i++) { object[i].bounding_box.width=0; object[i].bounding_box.height=0; object[i].bounding_box.x=(ssize_t) component_image->columns; object[i].bounding_box.y=(ssize_t) component_image->rows; object[i].centroid.x=0; object[i].centroid.y=0; object[i].area=0; } component_view=AcquireVirtualCacheView(component_image,exception); for (y=0; y < (ssize_t) component_image->rows; y++) { register const Quantum *magick_restrict p; register ssize_t x; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(component_view,0,y, component_image->columns,1,exception); if (p == (const Quantum *) NULL) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) component_image->columns; x++) { size_t id; id=GetPixelIndex(component_image,p); if (x < object[id].bounding_box.x) object[id].bounding_box.x=x; if (x > (ssize_t) object[id].bounding_box.width) object[id].bounding_box.width=(size_t) x; if (y < object[id].bounding_box.y) object[id].bounding_box.y=y; if (y > (ssize_t) object[id].bounding_box.height) object[id].bounding_box.height=(size_t) y; object[id].centroid.x+=x; object[id].centroid.y+=y; object[id].area++; p+=GetPixelChannels(component_image); } } for (i=0; i < (ssize_t) component_image->colors; i++) { object[i].bounding_box.width-=(object[i].bounding_box.x-1); object[i].bounding_box.height-=(object[i].bounding_box.y-1); object[i].centroid.x=object[i].centroid.x/object[i].area; object[i].centroid.y=object[i].centroid.y/object[i].area; } component_view=DestroyCacheView(component_view); qsort((void *) object,component_image->colors,sizeof(*object), CCObjectInfoCompare); if (objects == (CCObjectInfo **) NULL) { (void) fprintf(stdout, "Objects (id: bounding-box centroid area mean-color):\n"); for (i=0; i < (ssize_t) component_image->colors; i++) { char mean_color[MagickPathExtent]; if (status == MagickFalse) break; if (object[i].area <= area_threshold) continue; GetColorTuple(&object[i].color,MagickFalse,mean_color); (void) fprintf(stdout, " %.20g: %.20gx%.20g%+.20g%+.20g %.1f,%.1f %.20g %s\n",(double) object[i].id,(double) object[i].bounding_box.width,(double) object[i].bounding_box.height,(double) object[i].bounding_box.x, (double) object[i].bounding_box.y,object[i].centroid.x, object[i].centroid.y,(double) object[i].area,mean_color); } } } if (objects == (CCObjectInfo **) NULL) object=(CCObjectInfo *) RelinquishMagickMemory(object); else *objects=object; return(component_image); }