/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % TTTTT H H RRRR EEEEE SSSSS H H OOO L DDDD % % T H H R R E SS H H O O L D D % % T HHHHH RRRR EEE SSS HHHHH O O L D D % % T H H R R E SS H H O O L D D % % T H H R R EEEEE SSSSS H H OOO LLLLL DDDD % % % % % % MagickCore Image Threshold Methods % % % % Software Design % % John Cristy % % October 1996 % % % % % % Copyright 1999-2011 ImageMagick Studio LLC, a non-profit organization % % dedicated to making software imaging solutions freely available. % % % % You may not use this file except in compliance with the License. You may % % obtain a copy of the License at % % % % http://www.imagemagick.org/script/license.php % % % % Unless required by applicable law or agreed to in writing, software % % distributed under the License is distributed on an "AS IS" BASIS, % % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % % See the License for the specific language governing permissions and % % limitations under the License. % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % */ /* Include declarations. */ #include "MagickCore/studio.h" #include "MagickCore/property.h" #include "MagickCore/blob.h" #include "MagickCore/cache-view.h" #include "MagickCore/color.h" #include "MagickCore/color-private.h" #include "MagickCore/colormap.h" #include "MagickCore/colorspace.h" #include "MagickCore/configure.h" #include "MagickCore/constitute.h" #include "MagickCore/decorate.h" #include "MagickCore/draw.h" #include "MagickCore/enhance.h" #include "MagickCore/exception.h" #include "MagickCore/exception-private.h" #include "MagickCore/effect.h" #include "MagickCore/fx.h" #include "MagickCore/gem.h" #include "MagickCore/geometry.h" #include "MagickCore/image-private.h" #include "MagickCore/list.h" #include "MagickCore/log.h" #include "MagickCore/memory_.h" #include "MagickCore/monitor.h" #include "MagickCore/monitor-private.h" #include "MagickCore/montage.h" #include "MagickCore/option.h" #include "MagickCore/pixel-accessor.h" #include "MagickCore/quantize.h" #include "MagickCore/quantum.h" #include "MagickCore/random_.h" #include "MagickCore/random-private.h" #include "MagickCore/resize.h" #include "MagickCore/resource_.h" #include "MagickCore/segment.h" #include "MagickCore/shear.h" #include "MagickCore/signature-private.h" #include "MagickCore/string_.h" #include "MagickCore/string-private.h" #include "MagickCore/thread-private.h" #include "MagickCore/threshold.h" #include "MagickCore/transform.h" #include "MagickCore/xml-tree.h" #include "MagickCore/xml-tree-private.h" /* Define declarations. */ #define ThresholdsFilename "thresholds.xml" /* Typedef declarations. */ struct _ThresholdMap { char *map_id, *description; size_t width, height; ssize_t divisor, *levels; }; /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % A d a p t i v e T h r e s h o l d I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % AdaptiveThresholdImage() selects an individual threshold for each pixel % based on the range of intensity values in its local neighborhood. This % allows for thresholding of an image whose global intensity histogram % doesn't contain distinctive peaks. % % The format of the AdaptiveThresholdImage method is: % % Image *AdaptiveThresholdImage(const Image *image,const size_t width, % const size_t height,const double bias,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o width: the width of the local neighborhood. % % o height: the height of the local neighborhood. % % o bias: the mean bias. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *AdaptiveThresholdImage(const Image *image, const size_t width,const size_t height,const double bias, ExceptionInfo *exception) { #define AdaptiveThresholdImageTag "AdaptiveThreshold/Image" CacheView *image_view, *threshold_view; Image *threshold_image; MagickBooleanType status; MagickOffsetType progress; MagickSizeType number_pixels; ssize_t y; /* Initialize threshold image attributes. */ assert(image != (Image *) NULL); assert(image->signature == MagickSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickSignature); if ((width % 2) == 0) ThrowImageException(OptionError,"KernelWidthMustBeAnOddNumber"); threshold_image=CloneImage(image,image->columns,image->rows,MagickTrue, exception); if (threshold_image == (Image *) NULL) return((Image *) NULL); if (SetImageStorageClass(threshold_image,DirectClass,exception) == MagickFalse) { threshold_image=DestroyImage(threshold_image); return((Image *) NULL); } /* Threshold image. */ status=MagickTrue; progress=0; number_pixels=(MagickSizeType) width*height; image_view=AcquireCacheView(image); threshold_view=AcquireCacheView(threshold_image); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(dynamic,4) shared(progress,status) #endif for (y=0; y < (ssize_t) image->rows; y++) { register const Quantum *restrict p; register Quantum *restrict q; register ssize_t x; ssize_t center; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(image_view,-((ssize_t) width/2L),y-(ssize_t) (height/2L),image->columns+width,height,exception); q=QueueCacheViewAuthenticPixels(threshold_view,0,y,threshold_image->columns, 1,exception); if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) { status=MagickFalse; continue; } center=GetPixelChannels(image)*(image->columns+width)*(height/2L)+ GetPixelChannels(image)*(width/2); for (x=0; x < (ssize_t) image->columns; x++) { register ssize_t i; for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { MagickRealType mean, pixel; PixelChannel channel; PixelTrait threshold_traits, traits; register const Quantum *restrict pixels; register ssize_t u; ssize_t v; traits=GetPixelChannelMapTraits(image,(PixelChannel) i); channel=GetPixelChannelMapChannel(image,(PixelChannel) i); threshold_traits=GetPixelChannelMapTraits(threshold_image,channel); if ((traits == UndefinedPixelTrait) || (threshold_traits == UndefinedPixelTrait)) continue; if ((threshold_traits & CopyPixelTrait) != 0) { SetPixelChannel(threshold_image,channel,p[center+i],q); continue; } pixels=p; pixel=0.0; for (v=0; v < (ssize_t) height; v++) { for (u=0; u < (ssize_t) width; u++) { pixel+=pixels[i]; pixels+=GetPixelChannels(image); } pixels+=image->columns*GetPixelChannels(image); } mean=pixel/number_pixels+bias; SetPixelChannel(threshold_image,channel,ClampToQuantum(((MagickRealType) p[center+i] <= mean) ? 0 : QuantumRange),q); } p+=GetPixelChannels(image); q+=GetPixelChannels(threshold_image); } if (SyncCacheViewAuthenticPixels(threshold_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_AdaptiveThresholdImage) #endif proceed=SetImageProgress(image,AdaptiveThresholdImageTag,progress++, image->rows); if (proceed == MagickFalse) status=MagickFalse; } } threshold_image->type=image->type; threshold_view=DestroyCacheView(threshold_view); image_view=DestroyCacheView(image_view); if (status == MagickFalse) threshold_image=DestroyImage(threshold_image); return(threshold_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % B i l e v e l I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % BilevelImage() changes the value of individual pixels based on the % intensity of each pixel channel. The result is a high-contrast image. % % More precisely each channel value of the image is 'thresholded' so that if % it is equal to or less than the given value it is set to zero, while any % value greater than that give is set to it maximum or QuantumRange. % % This function is what is used to implement the "-threshold" operator for % the command line API. % % If the default channel setting is given the image is thresholded using just % the gray 'intensity' of the image, rather than the individual channels. % % The format of the BilevelImage method is: % % MagickBooleanType BilevelImage(Image *image,const double threshold) % % A description of each parameter follows: % % o image: the image. % % o threshold: define the threshold values. % % Aside: You can get the same results as operator using LevelImages() % with the 'threshold' value for both the black_point and the white_point. % */ MagickExport MagickBooleanType BilevelImage(Image *image,const double threshold) { #define ThresholdImageTag "Threshold/Image" CacheView *image_view; ExceptionInfo *exception; MagickBooleanType status; MagickOffsetType progress; ssize_t y; assert(image != (Image *) NULL); assert(image->signature == MagickSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); exception=(&image->exception); if (SetImageStorageClass(image,DirectClass,exception) == MagickFalse) return(MagickFalse); /* Bilevel threshold image. */ status=MagickTrue; progress=0; image_view=AcquireCacheView(image); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(dynamic,4) shared(progress,status) #endif for (y=0; y < (ssize_t) image->rows; y++) { register ssize_t x; register Quantum *restrict q; if (status == MagickFalse) continue; q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception); if (q == (Quantum *) NULL) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { register ssize_t i; for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { PixelTrait traits; traits=GetPixelChannelMapTraits(image,(PixelChannel) i); if ((traits & UpdatePixelTrait) != 0) q[i]=q[i] <= threshold ? 0 : QuantumRange; } q+=GetPixelChannels(image); } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_BilevelImage) #endif proceed=SetImageProgress(image,ThresholdImageTag,progress++, image->rows); if (proceed == MagickFalse) status=MagickFalse; } } image_view=DestroyCacheView(image_view); return(status); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % B l a c k T h r e s h o l d I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % BlackThresholdImage() is like ThresholdImage() but forces all pixels below % the threshold into black while leaving all pixels at or above the threshold % unchanged. % % The format of the BlackThresholdImage method is: % % MagickBooleanType BlackThresholdImage(Image *image, % const char *threshold,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o threshold: Define the threshold value. % % o exception: return any errors or warnings in this structure. % */ MagickExport MagickBooleanType BlackThresholdImage(Image *image, const char *thresholds,ExceptionInfo *exception) { #define ThresholdImageTag "Threshold/Image" CacheView *image_view; GeometryInfo geometry_info; MagickBooleanType status; MagickOffsetType progress; PixelInfo threshold; MagickStatusType flags; ssize_t y; assert(image != (Image *) NULL); assert(image->signature == MagickSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); if (thresholds == (const char *) NULL) return(MagickTrue); if (SetImageStorageClass(image,DirectClass,exception) == MagickFalse) return(MagickFalse); GetPixelInfo(image,&threshold); flags=ParseGeometry(thresholds,&geometry_info); threshold.red=geometry_info.rho; threshold.green=geometry_info.sigma; if ((flags & SigmaValue) == 0) threshold.green=threshold.red; threshold.blue=geometry_info.xi; if ((flags & XiValue) == 0) threshold.blue=threshold.red; threshold.alpha=geometry_info.psi; if ((flags & PsiValue) == 0) threshold.alpha=threshold.red; threshold.black=geometry_info.chi; if ((flags & ChiValue) == 0) threshold.black=threshold.red; if ((flags & PercentValue) != 0) { threshold.red*=(QuantumRange/100.0); threshold.green*=(QuantumRange/100.0); threshold.blue*=(QuantumRange/100.0); threshold.alpha*=(QuantumRange/100.0); threshold.black*=(QuantumRange/100.0); } /* Black threshold image. */ status=MagickTrue; progress=0; image_view=AcquireCacheView(image); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(dynamic,4) shared(progress,status) #endif for (y=0; y < (ssize_t) image->rows; y++) { register ssize_t x; register Quantum *restrict q; if (status == MagickFalse) continue; q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception); if (q == (Quantum *) NULL) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { if (image->sync != MagickFalse) { if (GetPixelIntensity(image,q) < GetPixelInfoIntensity(&threshold)) { SetPixelRed(image,0,q); SetPixelGreen(image,0,q); SetPixelBlue(image,0,q); if (image->colorspace == CMYKColorspace) SetPixelBlack(image,0,q); } } else { if (((GetPixelRedTraits(image) & UpdatePixelTrait) != 0) && ((MagickRealType) GetPixelRed(image,q) < threshold.red)) SetPixelRed(image,0,q); if (((GetPixelGreenTraits(image) & UpdatePixelTrait) != 0) && ((MagickRealType) GetPixelGreen(image,q) < threshold.green)) SetPixelGreen(image,0,q); if (((GetPixelBlueTraits(image) & UpdatePixelTrait) != 0) && ((MagickRealType) GetPixelBlue(image,q) < threshold.blue)) SetPixelBlue(image,0,q); if (((GetPixelBlackTraits(image) & UpdatePixelTrait) != 0) && (image->colorspace == CMYKColorspace) && ((MagickRealType) GetPixelBlack(image,q) < threshold.black)) SetPixelBlack(image,0,q); if (((GetPixelAlphaTraits(image) & UpdatePixelTrait) != 0) && ((MagickRealType) GetPixelAlpha(image,q) < threshold.alpha)) SetPixelAlpha(image,0,q); } q+=GetPixelChannels(image); } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_BlackThresholdImage) #endif proceed=SetImageProgress(image,ThresholdImageTag,progress++, image->rows); if (proceed == MagickFalse) status=MagickFalse; } } image_view=DestroyCacheView(image_view); return(status); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % C l a m p I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % ClampImage() restricts the color range from 0 to the quantum depth. % % The format of the ClampImage method is: % % MagickBooleanType ClampImage(Image *image) % % A description of each parameter follows: % % o image: the image. % */ static inline Quantum ClampToUnsignedQuantum(const Quantum quantum) { #if defined(MAGICKCORE_HDRI_SUPPORT) if (quantum <= 0) return(0); if (quantum >= QuantumRange) return(QuantumRange); return(quantum); #else return(quantum); #endif } MagickExport MagickBooleanType ClampImage(Image *image) { #define ClampImageTag "Clamp/Image" CacheView *image_view; ExceptionInfo *exception; MagickBooleanType status; MagickOffsetType progress; ssize_t y; assert(image != (Image *) NULL); assert(image->signature == MagickSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); if (image->storage_class == PseudoClass) { register ssize_t i; register PixelPacket *restrict q; q=image->colormap; for (i=0; i < (ssize_t) image->colors; i++) { q->red=ClampToUnsignedQuantum(q->red); q->green=ClampToUnsignedQuantum(q->green); q->blue=ClampToUnsignedQuantum(q->blue); q->alpha=ClampToUnsignedQuantum(q->alpha); q++; } return(SyncImage(image)); } /* Clamp image. */ status=MagickTrue; progress=0; exception=(&image->exception); image_view=AcquireCacheView(image); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(dynamic,4) shared(progress,status) #endif for (y=0; y < (ssize_t) image->rows; y++) { register ssize_t x; register Quantum *restrict q; if (status == MagickFalse) continue; q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception); if (q == (Quantum *) NULL) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { if ((GetPixelRedTraits(image) & UpdatePixelTrait) != 0) SetPixelRed(image,ClampToUnsignedQuantum(GetPixelRed(image,q)),q); if ((GetPixelGreenTraits(image) & UpdatePixelTrait) != 0) SetPixelGreen(image,ClampToUnsignedQuantum(GetPixelGreen(image,q)),q); if ((GetPixelBlueTraits(image) & UpdatePixelTrait) != 0) SetPixelBlue(image,ClampToUnsignedQuantum(GetPixelBlue(image,q)),q); if (((GetPixelBlackTraits(image) & UpdatePixelTrait) != 0) && (image->colorspace == CMYKColorspace)) SetPixelBlack(image,ClampToUnsignedQuantum(GetPixelBlack(image,q)),q); if ((GetPixelAlphaTraits(image) & UpdatePixelTrait) != 0) SetPixelAlpha(image,ClampToUnsignedQuantum(GetPixelAlpha(image,q)),q); q+=GetPixelChannels(image); } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_ClampImage) #endif proceed=SetImageProgress(image,ClampImageTag,progress++, image->rows); if (proceed == MagickFalse) status=MagickFalse; } } image_view=DestroyCacheView(image_view); return(status); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % D e s t r o y T h r e s h o l d M a p % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DestroyThresholdMap() de-allocate the given ThresholdMap % % The format of the ListThresholdMaps method is: % % ThresholdMap *DestroyThresholdMap(Threshold *map) % % A description of each parameter follows. % % o map: Pointer to the Threshold map to destroy % */ MagickExport ThresholdMap *DestroyThresholdMap(ThresholdMap *map) { assert(map != (ThresholdMap *) NULL); if (map->map_id != (char *) NULL) map->map_id=DestroyString(map->map_id); if (map->description != (char *) NULL) map->description=DestroyString(map->description); if (map->levels != (ssize_t *) NULL) map->levels=(ssize_t *) RelinquishMagickMemory(map->levels); map=(ThresholdMap *) RelinquishMagickMemory(map); return(map); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % + G e t T h r e s h o l d M a p F i l e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % GetThresholdMapFile() look for a given threshold map name or alias in the % given XML file data, and return the allocated the map when found. % % The format of the ListThresholdMaps method is: % % ThresholdMap *GetThresholdMap(const char *xml,const char *filename, % const char *map_id,ExceptionInfo *exception) % % A description of each parameter follows. % % o xml: The threshold map list in XML format. % % o filename: The threshold map XML filename. % % o map_id: ID of the map to look for in XML list. % % o exception: return any errors or warnings in this structure. % */ MagickExport ThresholdMap *GetThresholdMapFile(const char *xml, const char *filename,const char *map_id,ExceptionInfo *exception) { const char *attr, *content; double value; ThresholdMap *map; XMLTreeInfo *description, *levels, *threshold, *thresholds; map = (ThresholdMap *)NULL; (void) LogMagickEvent(ConfigureEvent,GetMagickModule(), "Loading threshold map file \"%s\" ...",filename); thresholds=NewXMLTree(xml,exception); if ( thresholds == (XMLTreeInfo *)NULL ) return(map); for( threshold = GetXMLTreeChild(thresholds,"threshold"); threshold != (XMLTreeInfo *)NULL; threshold = GetNextXMLTreeTag(threshold) ) { attr = GetXMLTreeAttribute(threshold, "map"); if ( (attr != (char *)NULL) && (LocaleCompare(map_id,attr) == 0) ) break; attr = GetXMLTreeAttribute(threshold, "alias"); if ( (attr != (char *)NULL) && (LocaleCompare(map_id,attr) == 0) ) break; } if ( threshold == (XMLTreeInfo *)NULL ) { return(map); } description = GetXMLTreeChild(threshold,"description"); if ( description == (XMLTreeInfo *)NULL ) { (void) ThrowMagickException(exception,GetMagickModule(),OptionError, "XmlMissingElement", ", map \"%s\"", map_id); thresholds = DestroyXMLTree(thresholds); return(map); } levels = GetXMLTreeChild(threshold,"levels"); if ( levels == (XMLTreeInfo *)NULL ) { (void) ThrowMagickException(exception,GetMagickModule(),OptionError, "XmlMissingElement", ", map \"%s\"", map_id); thresholds = DestroyXMLTree(thresholds); return(map); } /* The map has been found -- Allocate a Threshold Map to return */ map = (ThresholdMap *)AcquireMagickMemory(sizeof(ThresholdMap)); if ( map == (ThresholdMap *)NULL ) ThrowFatalException(ResourceLimitFatalError,"UnableToAcquireThresholdMap"); map->map_id = (char *)NULL; map->description = (char *)NULL; map->levels = (ssize_t *) NULL; /* Assign Basic Attributes */ attr = GetXMLTreeAttribute(threshold, "map"); if ( attr != (char *)NULL ) map->map_id = ConstantString(attr); content = GetXMLTreeContent(description); if ( content != (char *)NULL ) map->description = ConstantString(content); attr = GetXMLTreeAttribute(levels, "width"); if ( attr == (char *)NULL ) { (void) ThrowMagickException(exception,GetMagickModule(),OptionError, "XmlMissingAttribute", ", map \"%s\"", map_id); thresholds = DestroyXMLTree(thresholds); map = DestroyThresholdMap(map); return(map); } map->width = StringToUnsignedLong(attr); if ( map->width == 0 ) { (void) ThrowMagickException(exception,GetMagickModule(),OptionError, "XmlInvalidAttribute", ", map \"%s\"", map_id); thresholds = DestroyXMLTree(thresholds); map = DestroyThresholdMap(map); return(map); } attr = GetXMLTreeAttribute(levels, "height"); if ( attr == (char *)NULL ) { (void) ThrowMagickException(exception,GetMagickModule(),OptionError, "XmlMissingAttribute", ", map \"%s\"", map_id); thresholds = DestroyXMLTree(thresholds); map = DestroyThresholdMap(map); return(map); } map->height = StringToUnsignedLong(attr); if ( map->height == 0 ) { (void) ThrowMagickException(exception,GetMagickModule(),OptionError, "XmlInvalidAttribute", ", map \"%s\"", map_id); thresholds = DestroyXMLTree(thresholds); map = DestroyThresholdMap(map); return(map); } attr = GetXMLTreeAttribute(levels, "divisor"); if ( attr == (char *)NULL ) { (void) ThrowMagickException(exception,GetMagickModule(),OptionError, "XmlMissingAttribute", ", map \"%s\"", map_id); thresholds = DestroyXMLTree(thresholds); map = DestroyThresholdMap(map); return(map); } map->divisor = (ssize_t) StringToLong(attr); if ( map->divisor < 2 ) { (void) ThrowMagickException(exception,GetMagickModule(),OptionError, "XmlInvalidAttribute", ", map \"%s\"", map_id); thresholds = DestroyXMLTree(thresholds); map = DestroyThresholdMap(map); return(map); } /* Allocate theshold levels array */ content = GetXMLTreeContent(levels); if ( content == (char *)NULL ) { (void) ThrowMagickException(exception,GetMagickModule(),OptionError, "XmlMissingContent", ", map \"%s\"", map_id); thresholds = DestroyXMLTree(thresholds); map = DestroyThresholdMap(map); return(map); } map->levels=(ssize_t *) AcquireQuantumMemory((size_t) map->width,map->height* sizeof(*map->levels)); if ( map->levels == (ssize_t *)NULL ) ThrowFatalException(ResourceLimitFatalError,"UnableToAcquireThresholdMap"); { /* parse levels into integer array */ ssize_t i; char *p; for( i=0; i< (ssize_t) (map->width*map->height); i++) { map->levels[i] = (ssize_t)strtol(content, &p, 10); if ( p == content ) { (void) ThrowMagickException(exception,GetMagickModule(),OptionError, "XmlInvalidContent", " too few values, map \"%s\"", map_id); thresholds = DestroyXMLTree(thresholds); map = DestroyThresholdMap(map); return(map); } if ( map->levels[i] < 0 || map->levels[i] > map->divisor ) { (void) ThrowMagickException(exception,GetMagickModule(),OptionError, "XmlInvalidContent", " %.20g out of range, map \"%s\"", (double) map->levels[i],map_id); thresholds = DestroyXMLTree(thresholds); map = DestroyThresholdMap(map); return(map); } content = p; } value=(double) strtol(content,&p,10); (void) value; if (p != content) { (void) ThrowMagickException(exception,GetMagickModule(),OptionError, "XmlInvalidContent", " too many values, map \"%s\"", map_id); thresholds=DestroyXMLTree(thresholds); map=DestroyThresholdMap(map); return(map); } } thresholds = DestroyXMLTree(thresholds); return(map); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % G e t T h r e s h o l d M a p % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % GetThresholdMap() load and search one or more threshold map files for the % a map matching the given name or aliase. % % The format of the GetThresholdMap method is: % % ThresholdMap *GetThresholdMap(const char *map_id, % ExceptionInfo *exception) % % A description of each parameter follows. % % o map_id: ID of the map to look for. % % o exception: return any errors or warnings in this structure. % */ MagickExport ThresholdMap *GetThresholdMap(const char *map_id, ExceptionInfo *exception) { const StringInfo *option; LinkedListInfo *options; ThresholdMap *map; map=(ThresholdMap *)NULL; options=GetConfigureOptions(ThresholdsFilename,exception); while (( option=(const StringInfo *) GetNextValueInLinkedList(options) ) != (const StringInfo *) NULL && map == (ThresholdMap *)NULL ) map=GetThresholdMapFile((const char *) GetStringInfoDatum(option), GetStringInfoPath(option),map_id,exception); options=DestroyConfigureOptions(options); return(map); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % + L i s t T h r e s h o l d M a p F i l e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % ListThresholdMapFile() lists the threshold maps and their descriptions % in the given XML file data. % % The format of the ListThresholdMaps method is: % % MagickBooleanType ListThresholdMaps(FILE *file,const char*xml, % const char *filename,ExceptionInfo *exception) % % A description of each parameter follows. % % o file: An pointer to the output FILE. % % o xml: The threshold map list in XML format. % % o filename: The threshold map XML filename. % % o exception: return any errors or warnings in this structure. % */ MagickBooleanType ListThresholdMapFile(FILE *file,const char *xml, const char *filename,ExceptionInfo *exception) { XMLTreeInfo *thresholds,*threshold,*description; const char *map,*alias,*content; assert( xml != (char *)NULL ); assert( file != (FILE *)NULL ); (void) LogMagickEvent(ConfigureEvent,GetMagickModule(), "Loading threshold map file \"%s\" ...",filename); thresholds=NewXMLTree(xml,exception); if ( thresholds == (XMLTreeInfo *)NULL ) return(MagickFalse); (void) FormatLocaleFile(file,"%-16s %-12s %s\n","Map","Alias","Description"); (void) FormatLocaleFile(file, "----------------------------------------------------\n"); for( threshold = GetXMLTreeChild(thresholds,"threshold"); threshold != (XMLTreeInfo *)NULL; threshold = GetNextXMLTreeTag(threshold) ) { map = GetXMLTreeAttribute(threshold, "map"); if (map == (char *) NULL) { (void) ThrowMagickException(exception,GetMagickModule(),OptionError, "XmlMissingAttribute", ""); thresholds=DestroyXMLTree(thresholds); return(MagickFalse); } alias = GetXMLTreeAttribute(threshold, "alias"); /* alias is optional, no if test needed */ description=GetXMLTreeChild(threshold,"description"); if ( description == (XMLTreeInfo *)NULL ) { (void) ThrowMagickException(exception,GetMagickModule(),OptionError, "XmlMissingElement", ", map \"%s\"", map); thresholds=DestroyXMLTree(thresholds); return(MagickFalse); } content=GetXMLTreeContent(description); if ( content == (char *)NULL ) { (void) ThrowMagickException(exception,GetMagickModule(),OptionError, "XmlMissingContent", ", map \"%s\"", map); thresholds=DestroyXMLTree(thresholds); return(MagickFalse); } (void) FormatLocaleFile(file,"%-16s %-12s %s\n",map,alias ? alias : "", content); } thresholds=DestroyXMLTree(thresholds); return(MagickTrue); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % L i s t T h r e s h o l d M a p s % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % ListThresholdMaps() lists the threshold maps and their descriptions % as defined by "threshold.xml" to a file. % % The format of the ListThresholdMaps method is: % % MagickBooleanType ListThresholdMaps(FILE *file,ExceptionInfo *exception) % % A description of each parameter follows. % % o file: An pointer to the output FILE. % % o exception: return any errors or warnings in this structure. % */ MagickExport MagickBooleanType ListThresholdMaps(FILE *file, ExceptionInfo *exception) { const StringInfo *option; LinkedListInfo *options; MagickStatusType status; status=MagickFalse; if ( file == (FILE *)NULL ) file = stdout; options=GetConfigureOptions(ThresholdsFilename,exception); (void) FormatLocaleFile(file, "\n Threshold Maps for Ordered Dither Operations\n"); while ( ( option=(const StringInfo *) GetNextValueInLinkedList(options) ) != (const StringInfo *) NULL) { (void) FormatLocaleFile(file,"\nPATH: %s\n\n",GetStringInfoPath(option)); status|=ListThresholdMapFile(file,(const char *) GetStringInfoDatum(option), GetStringInfoPath(option),exception); } options=DestroyConfigureOptions(options); return(status != 0 ? MagickTrue : MagickFalse); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % O r d e r e d P o s t e r i z e I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % OrderedPosterizeImage() will perform a ordered dither based on a number % of pre-defined dithering threshold maps, but over multiple intensity % levels, which can be different for different channels, according to the % input argument. % % The format of the OrderedPosterizeImage method is: % % MagickBooleanType OrderedPosterizeImage(Image *image, % const char *threshold_map,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o threshold_map: A string containing the name of the threshold dither % map to use, followed by zero or more numbers representing the number % of color levels tho dither between. % % Any level number less than 2 will be equivalent to 2, and means only % binary dithering will be applied to each color channel. % % No numbers also means a 2 level (bitmap) dither will be applied to all % channels, while a single number is the number of levels applied to each % channel in sequence. More numbers will be applied in turn to each of % the color channels. % % For example: "o3x3,6" will generate a 6 level posterization of the % image with a ordered 3x3 diffused pixel dither being applied between % each level. While checker,8,8,4 will produce a 332 colormaped image % with only a single checkerboard hash pattern (50% grey) between each % color level, to basically double the number of color levels with % a bare minimim of dithering. % % o exception: return any errors or warnings in this structure. % */ MagickExport MagickBooleanType OrderedPosterizeImage(Image *image, const char *threshold_map,ExceptionInfo *exception) { #define DitherImageTag "Dither/Image" CacheView *image_view; PixelLongPacket levels; MagickBooleanType status; MagickOffsetType progress; ssize_t y; ThresholdMap *map; assert(image != (Image *) NULL); assert(image->signature == MagickSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickSignature); if (threshold_map == (const char *) NULL) return(MagickTrue); { char token[MaxTextExtent]; register const char *p; p=(char *)threshold_map; while (((isspace((int) ((unsigned char) *p)) != 0) || (*p == ',')) && (*p != '\0')) p++; threshold_map=p; while (((isspace((int) ((unsigned char) *p)) == 0) && (*p != ',')) && (*p != '\0')) { if ((p-threshold_map) >= (MaxTextExtent-1)) break; token[p-threshold_map] = *p; p++; } token[p-threshold_map] = '\0'; map = GetThresholdMap(token, exception); if ( map == (ThresholdMap *)NULL ) { (void) ThrowMagickException(exception,GetMagickModule(),OptionError, "InvalidArgument","%s : '%s'","ordered-dither",threshold_map); return(MagickFalse); } } /* Set channel levels from extra comma separated arguments Default to 2, the single value given, or individual channel values */ #if 1 { /* parse directly as a comma separated list of integers */ char *p; p = strchr((char *) threshold_map,','); levels.red=0; levels.green=0; levels.blue=0; levels.black=0; levels.alpha=0; if ( p != (char *)NULL && isdigit((int) ((unsigned char) *(++p))) ) levels.black = (unsigned int) strtoul(p, &p, 10); else levels.black = 2; if ((GetPixelRedTraits(image) & UpdatePixelTrait) != 0) levels.red=levels.black; if ((GetPixelGreenTraits(image) & UpdatePixelTrait) != 0) levels.green=levels.black; if ((GetPixelBlueTraits(image) & UpdatePixelTrait) != 0) levels.blue=levels.black; if (((GetPixelBlackTraits(image) & UpdatePixelTrait) != 0) && (image->colorspace == CMYKColorspace)) levels.black=levels.black; if (((GetPixelAlphaTraits(image) & UpdatePixelTrait) != 0) && (image->matte != MagickFalse)) levels.alpha=levels.black; /* if more than a single number, each channel has a separate value */ if ( p != (char *) NULL && *p == ',' ) { p=strchr((char *) threshold_map,','); p++; if ((GetPixelRedTraits(image) & UpdatePixelTrait) != 0) levels.red = (unsigned int) strtoul(p, &p, 10), (void)(*p == ',' && p++); if ((GetPixelGreenTraits(image) & UpdatePixelTrait) != 0) levels.green = (unsigned int) strtoul(p, &p, 10), (void)(*p == ',' && p++); if ((GetPixelBlueTraits(image) & UpdatePixelTrait) != 0) levels.blue = (unsigned int) strtoul(p, &p, 10), (void)(*p == ',' && p++); if ((GetPixelBlackTraits(image) & UpdatePixelTrait) != 0 && (image->colorspace == CMYKColorspace)) levels.black=(unsigned int) strtoul(p, &p, 10), (void)(*p == ',' && p++); if ((GetPixelAlphaTraits(image) & UpdatePixelTrait) != 0) levels.alpha = (unsigned int) strtoul(p, &p, 10), (void)(*p == ',' && p++); } } #else /* Parse level values as a geometry */ /* This difficult! * How to map GeometryInfo structure elements into * PixelLongPacket structure elements, but according to channel? * Note the channels list may skip elements!!!! * EG -channel BA -ordered-dither map,2,3 * will need to map g.rho -> l.blue, and g.sigma -> l.alpha * A simpler way is needed, probably converting geometry to a temporary * array, then using channel to advance the index into ssize_t pixel packet. */ #endif #if 0 printf("DEBUG levels r=%u g=%u b=%u a=%u i=%u\n", levels.red, levels.green, levels.blue, levels.alpha, levels.index); #endif { /* Do the posterized ordered dithering of the image */ ssize_t d; /* d = number of psuedo-level divisions added between color levels */ d = map->divisor-1; /* reduce levels to levels - 1 */ levels.red = levels.red ? levels.red-1 : 0; levels.green = levels.green ? levels.green-1 : 0; levels.blue = levels.blue ? levels.blue-1 : 0; levels.black = levels.black ? levels.black-1 : 0; levels.alpha = levels.alpha ? levels.alpha-1 : 0; if (SetImageStorageClass(image,DirectClass,exception) == MagickFalse) return(MagickFalse); status=MagickTrue; progress=0; image_view=AcquireCacheView(image); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(dynamic,4) shared(progress,status) #endif for (y=0; y < (ssize_t) image->rows; y++) { register ssize_t x; register Quantum *restrict q; if (status == MagickFalse) continue; q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception); if (q == (Quantum *) NULL) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { register ssize_t threshold, t, l; /* Figure out the dither threshold for this pixel This must be a integer from 1 to map->divisor-1 */ threshold = map->levels[(x%map->width) +map->width*(y%map->height)]; /* Dither each channel in the image as appropriate Notes on the integer Math... total number of divisions = (levels-1)*(divisor-1)+1) t1 = this colors psuedo_level = q->red * total_divisions / (QuantumRange+1) l = posterization level 0..levels t = dither threshold level 0..divisor-1 NB: 0 only on last Each color_level is of size QuantumRange / (levels-1) NB: All input levels and divisor are already had 1 subtracted Opacity is inverted so 'off' represents transparent. */ if (levels.red != 0) { t = (ssize_t) (QuantumScale*GetPixelRed(image,q)*(levels.red*d+1)); l = t/d; t = t-l*d; SetPixelRed(image,RoundToQuantum((MagickRealType) ((l+(t >= threshold))*(MagickRealType) QuantumRange/levels.red)),q); } if (levels.green != 0) { t = (ssize_t) (QuantumScale*GetPixelGreen(image,q)* (levels.green*d+1)); l = t/d; t = t-l*d; SetPixelGreen(image,RoundToQuantum((MagickRealType) ((l+(t >= threshold))*(MagickRealType) QuantumRange/levels.green)),q); } if (levels.blue != 0) { t = (ssize_t) (QuantumScale*GetPixelBlue(image,q)* (levels.blue*d+1)); l = t/d; t = t-l*d; SetPixelBlue(image,RoundToQuantum((MagickRealType) ((l+(t >= threshold))*(MagickRealType) QuantumRange/levels.blue)),q); } if (levels.alpha != 0) { t = (ssize_t) ((1.0-QuantumScale*GetPixelAlpha(image,q))* (levels.alpha*d+1)); l = t/d; t = t-l*d; SetPixelAlpha(image,RoundToQuantum((MagickRealType) ((1.0-l-(t >= threshold))*(MagickRealType) QuantumRange/ levels.alpha)),q); } if (levels.black != 0) { t = (ssize_t) (QuantumScale*GetPixelBlack(image,q)* (levels.black*d+1)); l = t/d; t = t-l*d; SetPixelBlack(image,RoundToQuantum((MagickRealType) ((l+(t>=threshold))*(MagickRealType) QuantumRange/levels.black)),q); } q+=GetPixelChannels(image); } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_OrderedPosterizeImage) #endif proceed=SetImageProgress(image,DitherImageTag,progress++,image->rows); if (proceed == MagickFalse) status=MagickFalse; } } image_view=DestroyCacheView(image_view); } map=DestroyThresholdMap(map); return(MagickTrue); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % R a n d o m T h r e s h o l d I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % RandomThresholdImage() changes the value of individual pixels based on the % intensity of each pixel compared to a random threshold. The result is a % low-contrast, two color image. % % The format of the RandomThresholdImage method is: % % MagickBooleanType RandomThresholdImage(Image *image, % const char *thresholds,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o thresholds: a geometry string containing low,high thresholds. If the % string contains 2x2, 3x3, or 4x4, an ordered dither of order 2, 3, or 4 % is performed instead. % % o exception: return any errors or warnings in this structure. % */ MagickExport MagickBooleanType RandomThresholdImage(Image *image, const char *thresholds,ExceptionInfo *exception) { #define ThresholdImageTag "Threshold/Image" CacheView *image_view; GeometryInfo geometry_info; MagickStatusType flags; MagickBooleanType status; MagickOffsetType progress; PixelInfo threshold; MagickRealType min_threshold, max_threshold; RandomInfo **restrict random_info; ssize_t y; assert(image != (Image *) NULL); assert(image->signature == MagickSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickSignature); if (thresholds == (const char *) NULL) return(MagickTrue); GetPixelInfo(image,&threshold); min_threshold=0.0; max_threshold=(MagickRealType) QuantumRange; flags=ParseGeometry(thresholds,&geometry_info); min_threshold=geometry_info.rho; max_threshold=geometry_info.sigma; if ((flags & SigmaValue) == 0) max_threshold=min_threshold; if (strchr(thresholds,'%') != (char *) NULL) { max_threshold*=(MagickRealType) (0.01*QuantumRange); min_threshold*=(MagickRealType) (0.01*QuantumRange); } /* Random threshold image. */ status=MagickTrue; progress=0; if (image->sync != MagickFalse) { if (AcquireImageColormap(image,2,exception) == MagickFalse) ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed", image->filename); random_info=AcquireRandomInfoThreadSet(); image_view=AcquireCacheView(image); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(dynamic,4) shared(progress,status) #endif for (y=0; y < (ssize_t) image->rows; y++) { const int id = GetOpenMPThreadId(); MagickBooleanType sync; register ssize_t x; register Quantum *restrict q; if (status == MagickFalse) continue; q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1, exception); if (q == (Quantum *) NULL) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { MagickRealType intensity; Quantum index; intensity=(MagickRealType) GetPixelIntensity(image,q); if (intensity < min_threshold) threshold.black=min_threshold; else if (intensity > max_threshold) threshold.black=max_threshold; else threshold.black=(MagickRealType)(QuantumRange* GetPseudoRandomValue(random_info[id])); index=(Quantum) (intensity <= threshold.black ? 0 : 1); SetPixelIndex(image,index,q); SetPixelPacket(image,image->colormap+(ssize_t) index,q); q+=GetPixelChannels(image); } sync=SyncCacheViewAuthenticPixels(image_view,exception); if (sync == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_RandomThresholdImage) #endif proceed=SetImageProgress(image,ThresholdImageTag,progress++, image->rows); if (proceed == MagickFalse) status=MagickFalse; } } image_view=DestroyCacheView(image_view); random_info=DestroyRandomInfoThreadSet(random_info); return(status); } if (SetImageStorageClass(image,DirectClass,exception) == MagickFalse) return(MagickFalse); random_info=AcquireRandomInfoThreadSet(); image_view=AcquireCacheView(image); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(dynamic,4) shared(progress,status) #endif for (y=0; y < (ssize_t) image->rows; y++) { const int id = GetOpenMPThreadId(); register Quantum *restrict q; register ssize_t x; if (status == MagickFalse) continue; q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception); if (q == (Quantum *) NULL) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { if ((GetPixelRedTraits(image) & UpdatePixelTrait) != 0) { if ((MagickRealType) GetPixelRed(image,q) < min_threshold) threshold.red=min_threshold; else if ((MagickRealType) GetPixelRed(image,q) > max_threshold) threshold.red=max_threshold; else threshold.red=(MagickRealType) (QuantumRange* GetPseudoRandomValue(random_info[id])); } if ((GetPixelGreenTraits(image) & UpdatePixelTrait) != 0) { if ((MagickRealType) GetPixelGreen(image,q) < min_threshold) threshold.green=min_threshold; else if ((MagickRealType) GetPixelGreen(image,q) > max_threshold) threshold.green=max_threshold; else threshold.green=(MagickRealType) (QuantumRange* GetPseudoRandomValue(random_info[id])); } if ((GetPixelBlueTraits(image) & UpdatePixelTrait) != 0) { if ((MagickRealType) GetPixelBlue(image,q) < min_threshold) threshold.blue=min_threshold; else if ((MagickRealType) GetPixelBlue(image,q) > max_threshold) threshold.blue=max_threshold; else threshold.blue=(MagickRealType) (QuantumRange* GetPseudoRandomValue(random_info[id])); } if (((GetPixelBlackTraits(image) & UpdatePixelTrait) != 0) && (image->colorspace == CMYKColorspace)) { if ((MagickRealType) GetPixelBlack(image,q) < min_threshold) threshold.black=min_threshold; else if ((MagickRealType) GetPixelBlack(image,q) > max_threshold) threshold.black=max_threshold; else threshold.black=(MagickRealType) (QuantumRange* GetPseudoRandomValue(random_info[id])); } if ((GetPixelAlphaTraits(image) & UpdatePixelTrait) != 0) { if ((MagickRealType) GetPixelAlpha(image,q) < min_threshold) threshold.alpha=min_threshold; else if ((MagickRealType) GetPixelAlpha(image,q) > max_threshold) threshold.alpha=max_threshold; else threshold.alpha=(MagickRealType) (QuantumRange* GetPseudoRandomValue(random_info[id])); } if ((GetPixelRedTraits(image) & UpdatePixelTrait) != 0) SetPixelRed(image,(Quantum) ((MagickRealType) GetPixelRed(image,q) <= threshold.red ? 0 : QuantumRange),q); if ((GetPixelGreenTraits(image) & UpdatePixelTrait) != 0) SetPixelGreen(image,(Quantum) ((MagickRealType) GetPixelGreen(image,q) <= threshold.green ? 0 : QuantumRange),q); if ((GetPixelBlueTraits(image) & UpdatePixelTrait) != 0) SetPixelBlue(image,(Quantum) ((MagickRealType) GetPixelBlue(image,q) <= threshold.blue ? 0 : QuantumRange),q); if (((GetPixelBlackTraits(image) & UpdatePixelTrait) != 0) && (image->colorspace == CMYKColorspace)) SetPixelBlack(image,(Quantum) ((MagickRealType) GetPixelBlack(image,q) <= threshold.black ? 0 : QuantumRange),q); if ((GetPixelAlphaTraits(image) & UpdatePixelTrait) != 0) SetPixelAlpha(image,(Quantum) ((MagickRealType) GetPixelAlpha(image,q) <= threshold.alpha ? 0 : QuantumRange),q); q+=GetPixelChannels(image); } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_RandomThresholdImage) #endif proceed=SetImageProgress(image,ThresholdImageTag,progress++, image->rows); if (proceed == MagickFalse) status=MagickFalse; } } image_view=DestroyCacheView(image_view); random_info=DestroyRandomInfoThreadSet(random_info); return(status); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % W h i t e T h r e s h o l d I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % WhiteThresholdImage() is like ThresholdImage() but forces all pixels above % the threshold into white while leaving all pixels at or below the threshold % unchanged. % % The format of the WhiteThresholdImage method is: % % MagickBooleanType WhiteThresholdImage(Image *image, % const char *threshold,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o threshold: Define the threshold value. % % o exception: return any errors or warnings in this structure. % */ MagickExport MagickBooleanType WhiteThresholdImage(Image *image, const char *thresholds,ExceptionInfo *exception) { #define ThresholdImageTag "Threshold/Image" CacheView *image_view; GeometryInfo geometry_info; MagickBooleanType status; PixelInfo threshold; MagickOffsetType progress; MagickStatusType flags; ssize_t y; assert(image != (Image *) NULL); assert(image->signature == MagickSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); if (thresholds == (const char *) NULL) return(MagickTrue); if (SetImageStorageClass(image,DirectClass,exception) == MagickFalse) return(MagickFalse); flags=ParseGeometry(thresholds,&geometry_info); GetPixelInfo(image,&threshold); threshold.red=geometry_info.rho; threshold.green=geometry_info.sigma; if ((flags & SigmaValue) == 0) threshold.green=threshold.red; threshold.blue=geometry_info.xi; if ((flags & XiValue) == 0) threshold.blue=threshold.red; threshold.alpha=geometry_info.psi; if ((flags & PsiValue) == 0) threshold.alpha=threshold.red; threshold.black=geometry_info.chi; if ((flags & ChiValue) == 0) threshold.black=threshold.red; if ((flags & PercentValue) != 0) { threshold.red*=(QuantumRange/100.0); threshold.green*=(QuantumRange/100.0); threshold.blue*=(QuantumRange/100.0); threshold.alpha*=(QuantumRange/100.0); threshold.black*=(QuantumRange/100.0); } /* White threshold image. */ status=MagickTrue; progress=0; image_view=AcquireCacheView(image); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(dynamic,4) shared(progress,status) #endif for (y=0; y < (ssize_t) image->rows; y++) { register ssize_t x; register Quantum *restrict q; if (status == MagickFalse) continue; q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception); if (q == (Quantum *) NULL) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { if (image->sync != MagickFalse) { if (GetPixelIntensity(image,q) > GetPixelInfoIntensity(&threshold)) { SetPixelRed(image,QuantumRange,q); SetPixelGreen(image,QuantumRange,q); SetPixelBlue(image,QuantumRange,q); if (image->colorspace == CMYKColorspace) SetPixelBlack(image,QuantumRange,q); } } else { if (((GetPixelRedTraits(image) & UpdatePixelTrait) != 0) && ((MagickRealType) GetPixelRed(image,q) > threshold.red)) SetPixelRed(image,QuantumRange,q); if (((GetPixelGreenTraits(image) & UpdatePixelTrait) != 0) && ((MagickRealType) GetPixelGreen(image,q) > threshold.green)) SetPixelGreen(image,QuantumRange,q); if (((GetPixelBlueTraits(image) & UpdatePixelTrait) != 0) && ((MagickRealType) GetPixelBlue(image,q) > threshold.blue)) SetPixelBlue(image,QuantumRange,q); if (((GetPixelBlackTraits(image) & UpdatePixelTrait) != 0) && (image->colorspace == CMYKColorspace) && ((MagickRealType) GetPixelBlack(image,q)) > threshold.black) SetPixelBlack(image,QuantumRange,q); if (((GetPixelAlphaTraits(image) & UpdatePixelTrait) != 0) && ((MagickRealType) GetPixelAlpha(image,q) > threshold.alpha)) SetPixelAlpha(image,QuantumRange,q); } q+=GetPixelChannels(image); } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_WhiteThresholdImage) #endif proceed=SetImageProgress(image,ThresholdImageTag,progress++, image->rows); if (proceed == MagickFalse) status=MagickFalse; } } image_view=DestroyCacheView(image_view); return(status); }