/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % QQQ U U AAA N N TTTTT U U M M % % Q Q U U A A NN N T U U MM MM % % Q Q U U AAAAA N N N T U U M M M % % Q QQ U U A A N NN T U U M M % % QQQQ UUU A A N N T UUU M M % % % % IIIII M M PPPP OOO RRRR TTTTT % % I MM MM P P O O R R T % % I M M M PPPP O O RRRR T % % I M M P O O R R T % % IIIII M M P OOO R R T % % % % MagickCore Methods to Import Quantum Pixels % % % % Software Design % % John Cristy % % October 1998 % % % % % % Copyright 1999-2008 ImageMagick Studio LLC, a non-profit organization % % dedicated to making software imaging solutions freely available. % % % % You may not use this file except in compliance with the License. You may % % obtain a copy of the License at % % % % http://www.imagemagick.org/script/license.php % % % % Unless required by applicable law or agreed to in writing, software % % distributed under the License is distributed on an "AS IS" BASIS, % % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % % See the License for the specific language governing permissions and % % limitations under the License. % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % */ /* Include declarations. */ #include "MagickCore/studio.h" #include "MagickCore/property.h" #include "MagickCore/blob.h" #include "MagickCore/blob-private.h" #include "MagickCore/color-private.h" #include "MagickCore/exception.h" #include "MagickCore/exception-private.h" #include "MagickCore/cache.h" #include "MagickCore/constitute.h" #include "MagickCore/delegate.h" #include "MagickCore/geometry.h" #include "MagickCore/list.h" #include "MagickCore/magick.h" #include "MagickCore/memory_.h" #include "MagickCore/monitor.h" #include "MagickCore/option.h" #include "MagickCore/pixel.h" #include "MagickCore/pixel-accessor.h" #include "MagickCore/quantum.h" #include "MagickCore/quantum-private.h" #include "MagickCore/resource_.h" #include "MagickCore/semaphore.h" #include "MagickCore/statistic.h" #include "MagickCore/stream.h" #include "MagickCore/string_.h" #include "MagickCore/utility.h" /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % I m p o r t Q u a n t u m P i x e l s % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % ImportQuantumPixels() transfers one or more pixel components from a user % supplied buffer into the image pixel cache of an image. The pixels are % expected in network byte order. It returns MagickTrue if the pixels are % successfully transferred, otherwise MagickFalse. % % The format of the ImportQuantumPixels method is: % % size_t ImportQuantumPixels(Image *image,CacheView *image_view, % const QuantumInfo *quantum_info,const QuantumType quantum_type, % const unsigned char *pixels,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o image_view: the image cache view. % % o quantum_info: the quantum info. % % o quantum_type: Declare which pixel components to transfer (red, green, % blue, opacity, RGB, or RGBA). % % o pixels: The pixel components are transferred from this buffer. % % o exception: return any errors or warnings in this structure. % */ static inline Quantum PushColormapIndex(Image *image, const size_t index,MagickBooleanType *range_exception) { if (index < image->colors) return((Quantum) index); *range_exception=MagickTrue; return((Quantum) 0); } static inline const unsigned char *PushDoublePixel( const QuantumState *quantum_state,const unsigned char *pixels,double *pixel) { double *p; unsigned char quantum[8]; if (quantum_state->endian != LSBEndian) { quantum[7]=(*pixels++); quantum[6]=(*pixels++); quantum[5]=(*pixels++); quantum[5]=(*pixels++); quantum[3]=(*pixels++); quantum[2]=(*pixels++); quantum[1]=(*pixels++); quantum[0]=(*pixels++); p=(double *) quantum; *pixel=(*p); *pixel-=quantum_state->minimum; *pixel*=quantum_state->scale; return(pixels); } quantum[0]=(*pixels++); quantum[1]=(*pixels++); quantum[2]=(*pixels++); quantum[3]=(*pixels++); quantum[4]=(*pixels++); quantum[5]=(*pixels++); quantum[6]=(*pixels++); quantum[7]=(*pixels++); p=(double *) quantum; *pixel=(*p); *pixel-=quantum_state->minimum; *pixel*=quantum_state->scale; return(pixels); } static inline const unsigned char *PushFloatPixel( const QuantumState *quantum_state,const unsigned char *pixels,float *pixel) { float *p; unsigned char quantum[4]; if (quantum_state->endian != LSBEndian) { quantum[3]=(*pixels++); quantum[2]=(*pixels++); quantum[1]=(*pixels++); quantum[0]=(*pixels++); p=(float *) quantum; *pixel=(*p); *pixel-=quantum_state->minimum; *pixel*=quantum_state->scale; return(pixels); } quantum[0]=(*pixels++); quantum[1]=(*pixels++); quantum[2]=(*pixels++); quantum[3]=(*pixels++); p=(float *) quantum; *pixel=(*p); *pixel-=quantum_state->minimum; *pixel*=quantum_state->scale; return(pixels); } static inline const unsigned char *PushQuantumPixel( QuantumState *quantum_state,const size_t depth, const unsigned char *pixels,unsigned int *quantum) { register ssize_t i; register size_t quantum_bits; *quantum=(QuantumAny) 0; for (i=(ssize_t) depth; i > 0L; ) { if (quantum_state->bits == 0UL) { quantum_state->pixel=(*pixels++); quantum_state->bits=8UL; } quantum_bits=(size_t) i; if (quantum_bits > quantum_state->bits) quantum_bits=quantum_state->bits; i-=(ssize_t) quantum_bits; quantum_state->bits-=quantum_bits; *quantum=(unsigned int) ((*quantum << quantum_bits) | ((quantum_state->pixel >> quantum_state->bits) &~ ((~0UL) << quantum_bits))); } return(pixels); } static inline const unsigned char *PushQuantumLongPixel( QuantumState *quantum_state,const size_t depth, const unsigned char *pixels,unsigned int *quantum) { register ssize_t i; register size_t quantum_bits; *quantum=0UL; for (i=(ssize_t) depth; i > 0; ) { if (quantum_state->bits == 0) { pixels=PushLongPixel(quantum_state->endian,pixels, &quantum_state->pixel); quantum_state->bits=32U; } quantum_bits=(size_t) i; if (quantum_bits > quantum_state->bits) quantum_bits=quantum_state->bits; *quantum|=(((quantum_state->pixel >> (32U-quantum_state->bits)) & quantum_state->mask[quantum_bits]) << (depth-i)); i-=(ssize_t) quantum_bits; quantum_state->bits-=quantum_bits; } return(pixels); } MagickExport size_t ImportQuantumPixels(Image *image,CacheView *image_view, const QuantumInfo *quantum_info,const QuantumType quantum_type, const unsigned char *pixels,ExceptionInfo *exception) { EndianType endian; MagickSizeType number_pixels; QuantumAny range; QuantumState quantum_state; register const unsigned char *restrict p; register ssize_t x; register Quantum *restrict q; size_t channels, extent; ssize_t bit; unsigned int pixel; assert(image != (Image *) NULL); assert(image->signature == MagickSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(quantum_info != (QuantumInfo *) NULL); assert(quantum_info->signature == MagickSignature); if (pixels == (const unsigned char *) NULL) pixels=GetQuantumPixels(quantum_info); x=0; p=pixels; if (image_view == (CacheView *) NULL) { number_pixels=GetImageExtent(image); q=GetAuthenticPixelQueue(image); channels=GetPixelChannels(image); } else { number_pixels=GetCacheViewExtent(image_view); q=GetCacheViewAuthenticPixelQueue(image_view); channels=GetPixelChannels(image); } InitializeQuantumState(quantum_info,image->endian,&quantum_state); extent=GetQuantumExtent(image,quantum_info,quantum_type); endian=quantum_state.endian; switch (quantum_type) { case IndexQuantum: { MagickBooleanType range_exception; if (image->storage_class != PseudoClass) { (void) ThrowMagickException(exception,GetMagickModule(),ImageError, "ColormappedImageRequired","`%s'",image->filename); return(extent); } range_exception=MagickFalse; switch (quantum_info->depth) { case 1: { register unsigned char pixel; for (x=0; x < ((ssize_t) number_pixels-7); x+=8) { for (bit=0; bit < 8; bit++) { if (quantum_info->min_is_white == MagickFalse) pixel=(unsigned char) (((*p) & (1 << (7-bit))) == 0 ? 0x00 : 0x01); else pixel=(unsigned char) (((*p) & (1 << (7-bit))) != 0 ? 0x00 : 0x01); SetPixelIndex(image,PushColormapIndex(image,pixel, &range_exception),q); SetPixelPacket(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); q+=channels; } p++; } for (bit=0; bit < (ssize_t) (number_pixels % 8); bit++) { if (quantum_info->min_is_white == MagickFalse) pixel=(unsigned char) (((*p) & (1 << (7-bit))) == 0 ? 0x00 : 0x01); else pixel=(unsigned char) (((*p) & (1 << (7-bit))) != 0 ? 0x00 : 0x01); SetPixelIndex(image,PushColormapIndex(image,pixel, &range_exception),q); SetPixelPacket(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); q+=channels; } break; } case 4: { register unsigned char pixel; for (x=0; x < ((ssize_t) number_pixels-1); x+=2) { pixel=(unsigned char) ((*p >> 4) & 0xf); SetPixelIndex(image,PushColormapIndex(image,pixel, &range_exception),q); SetPixelPacket(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); q+=channels; pixel=(unsigned char) ((*p) & 0xf); SetPixelIndex(image,PushColormapIndex(image,pixel, &range_exception),q); SetPixelPacket(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); p++; q+=channels; } for (bit=0; bit < (ssize_t) (number_pixels % 2); bit++) { pixel=(unsigned char) ((*p++ >> 4) & 0xf); SetPixelIndex(image,PushColormapIndex(image,pixel, &range_exception),q); SetPixelPacket(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); q+=channels; } break; } case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelIndex(image,PushColormapIndex(image,pixel, &range_exception),q); SetPixelPacket(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); p+=quantum_info->pad; q+=channels; } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetPixelIndex(image,PushColormapIndex(image,ClampToQuantum( (MagickRealType) QuantumRange*HalfToSinglePrecision(pixel)), &range_exception),q); SetPixelPacket(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); p+=quantum_info->pad; q+=channels; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetPixelIndex(image,PushColormapIndex(image,pixel, &range_exception),q); SetPixelPacket(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); p+=quantum_info->pad; q+=channels; } break; } case 32: { unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushFloatPixel(&quantum_state,p,&pixel); SetPixelIndex(image,PushColormapIndex(image, ClampToQuantum(pixel),&range_exception),q); SetPixelPacket(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); p+=quantum_info->pad; q+=channels; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(endian,p,&pixel); SetPixelIndex(image,PushColormapIndex(image,pixel, &range_exception),q); SetPixelPacket(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); p+=quantum_info->pad; q+=channels; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(&quantum_state,p,&pixel); SetPixelIndex(image,PushColormapIndex(image, ClampToQuantum(pixel),&range_exception),q); SetPixelPacket(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); p+=quantum_info->pad; q+=channels; } break; } } default: { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelIndex(image,PushColormapIndex(image,pixel, &range_exception),q); SetPixelPacket(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); p+=quantum_info->pad; q+=channels; } break; } } if (range_exception != MagickFalse) (void) ThrowMagickException(exception,GetMagickModule(), CorruptImageError,"InvalidColormapIndex","`%s'",image->filename); break; } case IndexAlphaQuantum: { MagickBooleanType range_exception; if (image->storage_class != PseudoClass) { (void) ThrowMagickException(exception,GetMagickModule(), ImageError,"ColormappedImageRequired","`%s'",image->filename); return(extent); } range_exception=MagickFalse; switch (quantum_info->depth) { case 1: { register unsigned char pixel; for (x=0; x < ((ssize_t) number_pixels-3); x+=4) { for (bit=0; bit < 8; bit+=2) { if (quantum_info->min_is_white == MagickFalse) pixel=(unsigned char) (((*p) & (1 << (7-bit))) == 0 ? 0x00 : 0x01); else pixel=(unsigned char) (((*p) & (1 << (7-bit))) != 0 ? 0x00 : 0x01); SetPixelRed(image,(Quantum) (pixel == 0 ? 0 : QuantumRange),q); SetPixelGreen(image,GetPixelRed(image,q),q); SetPixelBlue(image,GetPixelRed(image,q),q); SetPixelAlpha(image,((*p) & (1UL << (unsigned char) (6-bit))) == 0 ? TransparentAlpha : OpaqueAlpha,q); SetPixelIndex(image,(Quantum) (pixel == 0 ? 0 : 1),q); q+=channels; } } for (bit=0; bit < (ssize_t) (number_pixels % 4); bit+=2) { if (quantum_info->min_is_white == MagickFalse) pixel=(unsigned char) (((*p) & (1 << (7-bit))) == 0 ? 0x00 : 0x01); else pixel=(unsigned char) (((*p) & (1 << (7-bit))) != 0 ? 0x00 : 0x01); SetPixelIndex(image,(Quantum) (pixel == 0 ? 0 : 1),q); SetPixelRed(image,(Quantum) (pixel == 0 ? 0 : QuantumRange),q); SetPixelGreen(image,GetPixelRed(image,q),q); SetPixelBlue(image,GetPixelRed(image,q),q); SetPixelAlpha(image,((*p) & (1UL << (unsigned char) (6-bit))) == 0 ? TransparentAlpha : OpaqueAlpha,q); q+=channels; } break; } case 4: { register unsigned char pixel; range=GetQuantumRange(image->depth); for (x=0; x < (ssize_t) number_pixels; x++) { pixel=(unsigned char) ((*p >> 4) & 0xf); SetPixelIndex(image,PushColormapIndex(image,pixel, &range_exception),q); SetPixelPacket(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); pixel=(unsigned char) ((*p) & 0xf); SetPixelAlpha(image,ScaleAnyToQuantum(pixel,range),q); p++; q+=channels; } break; } case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelIndex(image,PushColormapIndex(image,pixel, &range_exception),q); SetPixelPacket(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); p=PushCharPixel(p,&pixel); SetPixelAlpha(image,ScaleCharToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetPixelIndex(image,PushColormapIndex(image,ClampToQuantum( (MagickRealType) QuantumRange*HalfToSinglePrecision(pixel)), &range_exception),q); SetPixelPacket(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); p=PushShortPixel(endian,p,&pixel); SetPixelAlpha(image,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel)),q); p+=quantum_info->pad; q+=channels; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetPixelIndex(image,PushColormapIndex(image,pixel, &range_exception),q); SetPixelPacket(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); p=PushShortPixel(endian,p,&pixel); SetPixelAlpha(image,ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } case 32: { unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushFloatPixel(&quantum_state,p,&pixel); SetPixelIndex(image,PushColormapIndex(image, ClampToQuantum(pixel),&range_exception),q); SetPixelPacket(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); p=PushFloatPixel(&quantum_state,p,&pixel); SetPixelAlpha(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(endian,p,&pixel); SetPixelIndex(image,PushColormapIndex(image,pixel, &range_exception),q); SetPixelPacket(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); p=PushLongPixel(endian,p,&pixel); SetPixelAlpha(image,ScaleLongToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(&quantum_state,p,&pixel); SetPixelIndex(image,PushColormapIndex(image, ClampToQuantum(pixel),&range_exception),q); SetPixelPacket(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); p=PushDoublePixel(&quantum_state,p,&pixel); SetPixelAlpha(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } } default: { range=GetQuantumRange(image->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelIndex(image,PushColormapIndex(image,pixel, &range_exception),q); SetPixelPacket(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelAlpha(image,ScaleAnyToQuantum(pixel,range),q); p+=quantum_info->pad; q+=channels; } break; } } if (range_exception != MagickFalse) (void) ThrowMagickException(exception,GetMagickModule(), CorruptImageError,"InvalidColormapIndex","`%s'",image->filename); break; } case BGRQuantum: { switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelBlue(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelGreen(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelRed(image,ScaleCharToQuantum(pixel),q); SetPixelAlpha(image,OpaqueAlpha,q); p+=quantum_info->pad; q+=channels; } break; } case 10: { range=GetQuantumRange(image->depth); if (quantum_info->pack == MagickFalse) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(endian,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum((pixel >> 22) & 0x3ff, range),q); SetPixelGreen(image,ScaleAnyToQuantum((pixel >> 12) & 0x3ff, range),q); SetPixelBlue(image,ScaleAnyToQuantum((pixel >> 2) & 0x3ff, range),q); p+=quantum_info->pad; q+=channels; } break; } if (quantum_info->quantum == 32U) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumLongPixel(&quantum_state,image->depth,p,&pixel); SetPixelBlue(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumLongPixel(&quantum_state,image->depth,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumLongPixel(&quantum_state,image->depth,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); q+=channels; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelBlue(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); q+=channels; } break; } case 12: { range=GetQuantumRange(image->depth); if (quantum_info->pack == MagickFalse) { unsigned short pixel; for (x=0; x < (ssize_t) (3*number_pixels-1); x+=2) { p=PushShortPixel(endian,p,&pixel); switch (x % 3) { default: case 0: { SetPixelRed(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range),q); break; } case 1: { SetPixelGreen(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range),q); break; } case 2: { SetPixelBlue(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range),q); q+=channels; break; } } p=PushShortPixel(endian,p,&pixel); switch ((x+1) % 3) { default: case 0: { SetPixelRed(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range),q); break; } case 1: { SetPixelGreen(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range),q); break; } case 2: { SetPixelBlue(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range),q); q+=channels; break; } } p+=quantum_info->pad; } for (bit=0; bit < (ssize_t) (3*number_pixels % 2); bit++) { p=PushShortPixel(endian,p,&pixel); switch ((x+bit) % 3) { default: case 0: { SetPixelRed(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range),q); break; } case 1: { SetPixelGreen(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range),q); break; } case 2: { SetPixelBlue(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range),q); q+=channels; break; } } p+=quantum_info->pad; } if (bit != 0) p++; break; } if (quantum_info->quantum == 32U) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumLongPixel(&quantum_state,image->depth,p,&pixel); SetPixelBlue(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumLongPixel(&quantum_state,image->depth,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumLongPixel(&quantum_state,image->depth,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); q+=channels; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelBlue(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); q+=channels; } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetPixelRed(image,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel)),q); p=PushShortPixel(endian,p,&pixel); SetPixelGreen(image,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel)),q); p=PushShortPixel(endian,p,&pixel); SetPixelBlue(image,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel)),q); p+=quantum_info->pad; q+=channels; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetPixelBlue(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(endian,p,&pixel); SetPixelGreen(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(endian,p,&pixel); SetPixelRed(image,ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } case 32: { unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushFloatPixel(&quantum_state,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushFloatPixel(&quantum_state,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushFloatPixel(&quantum_state,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(endian,p,&pixel); SetPixelBlue(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(endian,p,&pixel); SetPixelGreen(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(endian,p,&pixel); SetPixelRed(image,ScaleLongToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(&quantum_state,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushDoublePixel(&quantum_state,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushDoublePixel(&quantum_state,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } } default: { range=GetQuantumRange(image->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelBlue(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); q+=channels; } break; } } break; } case BGRAQuantum: case BGROQuantum: { switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelBlue(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelGreen(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelRed(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelAlpha(image,ScaleCharToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } case 10: { pixel=0; if (quantum_info->pack == MagickFalse) { register ssize_t i; size_t quantum; ssize_t n; n=0; quantum=0; for (x=0; x < (ssize_t) number_pixels; x++) { for (i=0; i < 4; i++) { switch (n % 3) { case 0: { p=PushLongPixel(endian,p,&pixel); quantum=(size_t) (ScaleShortToQuantum((unsigned short) (((pixel >> 22) & 0x3ff) << 6))); break; } case 1: { quantum=(size_t) (ScaleShortToQuantum((unsigned short) (((pixel >> 12) & 0x3ff) << 6))); break; } case 2: { quantum=(size_t) (ScaleShortToQuantum((unsigned short) (((pixel >> 2) & 0x3ff) << 6))); break; } } switch (i) { case 0: SetPixelRed(image,(Quantum) quantum,q); break; case 1: SetPixelGreen(image,(Quantum) quantum,q); break; case 2: SetPixelBlue(image,(Quantum) quantum,q); break; case 3: SetPixelAlpha(image,(Quantum) quantum,q); break; } n++; } p+=quantum_info->pad; q+=channels; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelRed(image,ScaleShortToQuantum((unsigned short) (pixel << 6)),q); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelGreen(image,ScaleShortToQuantum((unsigned short) (pixel << 6)),q); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelBlue(image,ScaleShortToQuantum((unsigned short) (pixel << 6)),q); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelAlpha(image,ScaleShortToQuantum((unsigned short) (pixel << 6)),q); q+=channels; } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetPixelRed(image,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel)),q); p=PushShortPixel(endian,p,&pixel); SetPixelGreen(image,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel)),q); p=PushShortPixel(endian,p,&pixel); SetPixelBlue(image,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel)),q); p=PushShortPixel(endian,p,&pixel); SetPixelAlpha(image,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel)),q); p+=quantum_info->pad; q+=channels; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetPixelBlue(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(endian,p,&pixel); SetPixelGreen(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(endian,p,&pixel); SetPixelRed(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(endian,p,&pixel); SetPixelAlpha(image,ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } case 32: { unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushFloatPixel(&quantum_state,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushFloatPixel(&quantum_state,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushFloatPixel(&quantum_state,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p=PushFloatPixel(&quantum_state,p,&pixel); SetPixelAlpha(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(endian,p,&pixel); SetPixelBlue(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(endian,p,&pixel); SetPixelGreen(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(endian,p,&pixel); SetPixelRed(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(endian,p,&pixel); SetPixelAlpha(image,ScaleLongToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(&quantum_state,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushDoublePixel(&quantum_state,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushDoublePixel(&quantum_state,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p=PushDoublePixel(&quantum_state,p,&pixel); SetPixelAlpha(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } } default: { range=GetQuantumRange(image->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelBlue(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelAlpha(image,ScaleAnyToQuantum(pixel,range),q); q+=channels; } break; } } break; } case GrayQuantum: { switch (quantum_info->depth) { case 1: { register Quantum black, white; black=0; white=(Quantum) QuantumRange; if (quantum_info->min_is_white != MagickFalse) { black=(Quantum) QuantumRange; white=0; } for (x=0; x < ((ssize_t) number_pixels-7); x+=8) { for (bit=0; bit < 8; bit++) { SetPixelRed(image,((*p) & (1 << (7-bit))) == 0 ? black : white,q); SetPixelGreen(image,GetPixelRed(image,q),q); SetPixelBlue(image,GetPixelRed(image,q),q); q+=channels; } p++; } for (bit=0; bit < (ssize_t) (number_pixels % 8); bit++) { SetPixelRed(image,((*p) & (0x01 << (7-bit))) == 0 ? black : white,q); SetPixelGreen(image,GetPixelRed(image,q),q); SetPixelBlue(image,GetPixelRed(image,q),q); q+=channels; } if (bit != 0) p++; break; } case 4: { register unsigned char pixel; range=GetQuantumRange(image->depth); for (x=0; x < ((ssize_t) number_pixels-1); x+=2) { pixel=(unsigned char) ((*p >> 4) & 0xf); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); SetPixelGreen(image,GetPixelRed(image,q),q); SetPixelBlue(image,GetPixelRed(image,q),q); q+=channels; pixel=(unsigned char) ((*p) & 0xf); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); SetPixelGreen(image,GetPixelRed(image,q),q); SetPixelBlue(image,GetPixelRed(image,q),q); p++; q+=channels; } for (bit=0; bit < (ssize_t) (number_pixels % 2); bit++) { pixel=(unsigned char) (*p++ >> 4); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); SetPixelGreen(image,GetPixelRed(image,q),q); SetPixelBlue(image,GetPixelRed(image,q),q); q+=channels; } break; } case 8: { unsigned char pixel; if (quantum_info->min_is_white != MagickFalse) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelRed(image,ScaleCharToQuantum(pixel),q); SetPixelGreen(image,GetPixelRed(image,q),q); SetPixelBlue(image,GetPixelRed(image,q),q); SetPixelAlpha(image,OpaqueAlpha,q); p+=quantum_info->pad; q+=channels; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelRed(image,ScaleCharToQuantum(pixel),q); SetPixelGreen(image,GetPixelRed(image,q),q); SetPixelBlue(image,GetPixelRed(image,q),q); SetPixelAlpha(image,OpaqueAlpha,q); p+=quantum_info->pad; q+=channels; } break; } case 10: { range=GetQuantumRange(image->depth); if (quantum_info->pack == MagickFalse) { if (image->endian != LSBEndian) { for (x=0; x < (ssize_t) (number_pixels-2); x+=3) { p=PushLongPixel(endian,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum((pixel >> 2) & 0x3ff, range),q); SetPixelGreen(image,GetPixelRed(image,q),q); SetPixelBlue(image,GetPixelRed(image,q),q); q+=channels; SetPixelRed(image,ScaleAnyToQuantum((pixel >> 12) & 0x3ff, range),q); SetPixelGreen(image,GetPixelRed(image,q),q); SetPixelBlue(image,GetPixelRed(image,q),q); q+=channels; SetPixelRed(image,ScaleAnyToQuantum((pixel >> 22) & 0x3ff, range),q); SetPixelGreen(image,GetPixelRed(image,q),q); SetPixelBlue(image,GetPixelRed(image,q),q); p+=quantum_info->pad; q+=channels; } p=PushLongPixel(endian,p,&pixel); if (x++ < (ssize_t) (number_pixels-1)) { SetPixelRed(image,ScaleAnyToQuantum((pixel >> 2) & 0x3ff, range),q); SetPixelGreen(image,GetPixelRed(image,q),q); SetPixelBlue(image,GetPixelRed(image,q),q); q+=channels; } if (x++ < (ssize_t) number_pixels) { SetPixelRed(image,ScaleAnyToQuantum((pixel >> 12) & 0x3ff, range),q); SetPixelGreen(image,GetPixelRed(image,q),q); SetPixelBlue(image,GetPixelRed(image,q),q); q+=channels; } break; } for (x=0; x < (ssize_t) (number_pixels-2); x+=3) { p=PushLongPixel(endian,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum((pixel >> 22) & 0x3ff, range),q); SetPixelGreen(image,GetPixelRed(image,q),q); SetPixelBlue(image,GetPixelRed(image,q),q); q+=channels; SetPixelRed(image,ScaleAnyToQuantum((pixel >> 12) & 0x3ff, range),q); SetPixelGreen(image,GetPixelRed(image,q),q); SetPixelBlue(image,GetPixelRed(image,q),q); q+=channels; SetPixelRed(image,ScaleAnyToQuantum((pixel >> 2) & 0x3ff, range),q); SetPixelGreen(image,GetPixelRed(image,q),q); SetPixelBlue(image,GetPixelRed(image,q),q); p+=quantum_info->pad; q+=channels; } p=PushLongPixel(endian,p,&pixel); if (x++ < (ssize_t) (number_pixels-1)) { SetPixelRed(image,ScaleAnyToQuantum((pixel >> 22) & 0x3ff, range),q); SetPixelGreen(image,GetPixelRed(image,q),q); SetPixelBlue(image,GetPixelRed(image,q),q); q+=channels; } if (x++ < (ssize_t) number_pixels) { SetPixelRed(image,ScaleAnyToQuantum((pixel >> 12) & 0x3ff, range),q); SetPixelGreen(image,GetPixelRed(image,q),q); SetPixelBlue(image,GetPixelRed(image,q),q); q+=channels; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); SetPixelGreen(image,GetPixelRed(image,q),q); SetPixelBlue(image,GetPixelRed(image,q),q); p+=quantum_info->pad; q+=channels; } break; } case 12: { range=GetQuantumRange(image->depth); if (quantum_info->pack == MagickFalse) { unsigned short pixel; for (x=0; x < (ssize_t) (number_pixels-1); x+=2) { p=PushShortPixel(endian,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range),q); SetPixelGreen(image,GetPixelRed(image,q),q); SetPixelBlue(image,GetPixelRed(image,q),q); q+=channels; p=PushShortPixel(endian,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum( (QuantumAny) (pixel >> 4),range),q); SetPixelGreen(image,GetPixelRed(image,q),q); SetPixelBlue(image,GetPixelRed(image,q),q); p+=quantum_info->pad; q+=channels; } for (bit=0; bit < (ssize_t) (number_pixels % 2); bit++) { p=PushShortPixel(endian,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum( (QuantumAny) (pixel >> 4),range),q); SetPixelGreen(image,GetPixelRed(image,q),q); SetPixelBlue(image,GetPixelRed(image,q),q); p+=quantum_info->pad; q+=channels; } if (bit != 0) p++; break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); SetPixelGreen(image,GetPixelRed(image,q),q); SetPixelBlue(image,GetPixelRed(image,q),q); p+=quantum_info->pad; q+=channels; } break; } case 16: { unsigned short pixel; if (quantum_info->min_is_white != MagickFalse) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetPixelRed(image,ScaleShortToQuantum(pixel),q); SetPixelGreen(image,GetPixelRed(image,q),q); SetPixelBlue(image,GetPixelRed(image,q),q); p+=quantum_info->pad; q+=channels; } break; } if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetPixelRed(image,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel)),q); SetPixelGreen(image,GetPixelRed(image,q),q); SetPixelBlue(image,GetPixelRed(image,q),q); p+=quantum_info->pad; q+=channels; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetPixelRed(image,ScaleShortToQuantum(pixel),q); SetPixelGreen(image,GetPixelRed(image,q),q); SetPixelBlue(image,GetPixelRed(image,q),q); p+=quantum_info->pad; q+=channels; } break; } case 32: { unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushFloatPixel(&quantum_state,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); SetPixelGreen(image,GetPixelRed(image,q),q); SetPixelBlue(image,GetPixelRed(image,q),q); p+=quantum_info->pad; q+=channels; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(endian,p,&pixel); SetPixelRed(image,ScaleLongToQuantum(pixel),q); SetPixelGreen(image,GetPixelRed(image,q),q); SetPixelBlue(image,GetPixelRed(image,q),q); p+=quantum_info->pad; q+=channels; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(&quantum_state,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); SetPixelGreen(image,GetPixelRed(image,q),q); SetPixelBlue(image,GetPixelRed(image,q),q); p+=quantum_info->pad; q+=channels; } break; } } default: { range=GetQuantumRange(image->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); SetPixelGreen(image,GetPixelRed(image,q),q); SetPixelBlue(image,GetPixelRed(image,q),q); p+=quantum_info->pad; q+=channels; } break; } } break; } case GrayAlphaQuantum: { switch (quantum_info->depth) { case 1: { register unsigned char pixel; for (x=0; x < ((ssize_t) number_pixels-3); x+=4) { for (bit=0; bit < 8; bit+=2) { pixel=(unsigned char) (((*p) & (1 << (7-bit))) != 0 ? 0x00 : 0x01); SetPixelRed(image,(Quantum) (pixel == 0 ? 0 : QuantumRange),q); SetPixelGreen(image,GetPixelRed(image,q),q); SetPixelBlue(image,GetPixelRed(image,q),q); SetPixelAlpha(image,((*p) & (1UL << (unsigned char) (6-bit))) == 0 ? TransparentAlpha : OpaqueAlpha,q); q+=channels; } p++; } for (bit=0; bit <= (ssize_t) (number_pixels % 4); bit+=2) { pixel=(unsigned char) (((*p) & (1 << (7-bit))) != 0 ? 0x00 : 0x01); SetPixelRed(image,(Quantum) (pixel != 0 ? 0 : QuantumRange),q); SetPixelGreen(image,GetPixelRed(image,q),q); SetPixelBlue(image,GetPixelRed(image,q),q); SetPixelAlpha(image,((*p) & (1UL << (unsigned char) (6-bit))) == 0 ? TransparentAlpha : OpaqueAlpha,q); q+=channels; } if (bit != 0) p++; break; } case 4: { register unsigned char pixel; range=GetQuantumRange(image->depth); for (x=0; x < (ssize_t) number_pixels; x++) { pixel=(unsigned char) ((*p >> 4) & 0xf); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); SetPixelGreen(image,GetPixelRed(image,q),q); SetPixelBlue(image,GetPixelRed(image,q),q); pixel=(unsigned char) ((*p) & 0xf); SetPixelAlpha(image,ScaleAnyToQuantum(pixel,range),q); p++; q+=channels; } break; } case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelRed(image,ScaleCharToQuantum(pixel),q); SetPixelGreen(image,GetPixelRed(image,q),q); SetPixelBlue(image,GetPixelRed(image,q),q); p=PushCharPixel(p,&pixel); SetPixelAlpha(image,ScaleCharToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } case 10: { range=GetQuantumRange(image->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); SetPixelGreen(image,GetPixelRed(image,q),q); SetPixelBlue(image,GetPixelRed(image,q),q); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelAlpha(image,ScaleAnyToQuantum(pixel,range),q); p+=quantum_info->pad; q+=channels; } break; } case 12: { range=GetQuantumRange(image->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); SetPixelGreen(image,GetPixelRed(image,q),q); SetPixelBlue(image,GetPixelRed(image,q),q); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelAlpha(image,ScaleAnyToQuantum(pixel,range),q); p+=quantum_info->pad; q+=channels; } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetPixelRed(image,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel)),q); SetPixelGreen(image,GetPixelRed(image,q),q); SetPixelBlue(image,GetPixelRed(image,q),q); p=PushShortPixel(endian,p,&pixel); SetPixelAlpha(image,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel)),q); p+=quantum_info->pad; q+=channels; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetPixelRed(image,ScaleShortToQuantum(pixel),q); SetPixelGreen(image,GetPixelRed(image,q),q); SetPixelBlue(image,GetPixelRed(image,q),q); p=PushShortPixel(endian,p,&pixel); SetPixelAlpha(image,ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } case 32: { unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushFloatPixel(&quantum_state,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); SetPixelGreen(image,GetPixelRed(image,q),q); SetPixelBlue(image,GetPixelRed(image,q),q); p=PushFloatPixel(&quantum_state,p,&pixel); SetPixelAlpha(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(endian,p,&pixel); SetPixelRed(image,ScaleLongToQuantum(pixel),q); SetPixelGreen(image,GetPixelRed(image,q),q); SetPixelBlue(image,GetPixelRed(image,q),q); p=PushLongPixel(endian,p,&pixel); SetPixelAlpha(image,ScaleLongToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(&quantum_state,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); SetPixelGreen(image,GetPixelRed(image,q),q); SetPixelBlue(image,GetPixelRed(image,q),q); p=PushDoublePixel(&quantum_state,p,&pixel); SetPixelAlpha(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } } default: { range=GetQuantumRange(image->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); SetPixelGreen(image,GetPixelRed(image,q),q); SetPixelBlue(image,GetPixelRed(image,q),q); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelAlpha(image,ScaleAnyToQuantum(pixel,range),q); p+=quantum_info->pad; q+=channels; } break; } } break; } case RedQuantum: case CyanQuantum: { switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelRed(image,ScaleCharToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetPixelRed(image,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel)),q); p+=quantum_info->pad; q+=channels; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetPixelRed(image,ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } case 32: { unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushFloatPixel(&quantum_state,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(endian,p,&pixel); SetPixelRed(image,ScaleLongToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(&quantum_state,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } } default: { range=GetQuantumRange(image->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); p+=quantum_info->pad; q+=channels; } break; } } break; } case GreenQuantum: case MagentaQuantum: { switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelGreen(image,ScaleCharToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetPixelGreen(image,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel)),q); p+=quantum_info->pad; q+=channels; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetPixelGreen(image,ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } case 32: { unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushFloatPixel(&quantum_state,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(endian,p,&pixel); SetPixelGreen(image,ScaleLongToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(&quantum_state,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } } default: { range=GetQuantumRange(image->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); p+=quantum_info->pad; q+=channels; } break; } } break; } case BlueQuantum: case YellowQuantum: { switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelBlue(image,ScaleCharToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetPixelBlue(image,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel)),q); p+=quantum_info->pad; q+=channels; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetPixelBlue(image,ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } case 32: { unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushFloatPixel(&quantum_state,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(endian,p,&pixel); SetPixelBlue(image,ScaleLongToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(&quantum_state,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } } default: { range=GetQuantumRange(image->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelBlue(image,ScaleAnyToQuantum(pixel,range),q); p+=quantum_info->pad; q+=channels; } break; } } break; } case AlphaQuantum: { switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelAlpha(image,ScaleCharToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetPixelAlpha(image,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel)),q); p+=quantum_info->pad; q+=channels; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetPixelAlpha(image,ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } case 32: { unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushFloatPixel(&quantum_state,p,&pixel); SetPixelAlpha(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(endian,p,&pixel); SetPixelAlpha(image,ScaleLongToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(&quantum_state,p,&pixel); SetPixelAlpha(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } } default: { range=GetQuantumRange(image->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelAlpha(image,ScaleAnyToQuantum(pixel,range),q); p+=quantum_info->pad; q+=channels; } break; } } break; } case BlackQuantum: { if (image->colorspace != CMYKColorspace) { (void) ThrowMagickException(exception,GetMagickModule(),ImageError, "ColorSeparatedImageRequired","`%s'",image->filename); return(extent); } switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelBlack(image,ScaleCharToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetPixelBlack(image,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel)),q); p+=quantum_info->pad; q+=channels; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetPixelBlack(image,ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } case 32: { unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushFloatPixel(&quantum_state,p,&pixel); SetPixelBlack(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(endian,p,&pixel); SetPixelBlack(image,ScaleLongToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(&quantum_state,p,&pixel); SetPixelBlack(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } } default: { range=GetQuantumRange(image->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelBlack(image,ScaleAnyToQuantum(pixel,range),q); p+=quantum_info->pad; q+=channels; } break; } } break; } case RGBQuantum: case CbYCrQuantum: { switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelRed(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelGreen(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelBlue(image,ScaleCharToQuantum(pixel),q); SetPixelAlpha(image,OpaqueAlpha,q); p+=quantum_info->pad; q+=channels; } break; } case 10: { range=GetQuantumRange(image->depth); if (quantum_info->pack == MagickFalse) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(endian,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum((pixel >> 22) & 0x3ff, range),q); SetPixelGreen(image,ScaleAnyToQuantum((pixel >> 12) & 0x3ff, range),q); SetPixelBlue(image,ScaleAnyToQuantum((pixel >> 2) & 0x3ff, range),q); p+=quantum_info->pad; q+=channels; } break; } if (quantum_info->quantum == 32U) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumLongPixel(&quantum_state,image->depth,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumLongPixel(&quantum_state,image->depth,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumLongPixel(&quantum_state,image->depth,p,&pixel); SetPixelBlue(image,ScaleAnyToQuantum(pixel,range),q); q+=channels; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelBlue(image,ScaleAnyToQuantum(pixel,range),q); q+=channels; } break; } case 12: { range=GetQuantumRange(image->depth); if (quantum_info->pack == MagickFalse) { unsigned short pixel; for (x=0; x < (ssize_t) (3*number_pixels-1); x+=2) { p=PushShortPixel(endian,p,&pixel); switch (x % 3) { default: case 0: { SetPixelRed(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range),q); break; } case 1: { SetPixelGreen(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range),q); break; } case 2: { SetPixelBlue(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range),q); q+=channels; break; } } p=PushShortPixel(endian,p,&pixel); switch ((x+1) % 3) { default: case 0: { SetPixelRed(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range),q); break; } case 1: { SetPixelGreen(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range),q); break; } case 2: { SetPixelBlue(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range),q); q+=channels; break; } } p+=quantum_info->pad; } for (bit=0; bit < (ssize_t) (3*number_pixels % 2); bit++) { p=PushShortPixel(endian,p,&pixel); switch ((x+bit) % 3) { default: case 0: { SetPixelRed(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range),q); break; } case 1: { SetPixelGreen(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range),q); break; } case 2: { SetPixelBlue(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range),q); q+=channels; break; } } p+=quantum_info->pad; } if (bit != 0) p++; break; } if (quantum_info->quantum == 32U) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumLongPixel(&quantum_state,image->depth,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumLongPixel(&quantum_state,image->depth,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumLongPixel(&quantum_state,image->depth,p,&pixel); SetPixelBlue(image,ScaleAnyToQuantum(pixel,range),q); q+=channels; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelBlue(image,ScaleAnyToQuantum(pixel,range),q); q+=channels; } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetPixelRed(image,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel)),q); p=PushShortPixel(endian,p,&pixel); SetPixelGreen(image,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel)),q); p=PushShortPixel(endian,p,&pixel); SetPixelBlue(image,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel)),q); p+=quantum_info->pad; q+=channels; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetPixelRed(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(endian,p,&pixel); SetPixelGreen(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(endian,p,&pixel); SetPixelBlue(image,ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } case 32: { unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushFloatPixel(&quantum_state,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushFloatPixel(&quantum_state,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushFloatPixel(&quantum_state,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(endian,p,&pixel); SetPixelRed(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(endian,p,&pixel); SetPixelGreen(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(endian,p,&pixel); SetPixelBlue(image,ScaleLongToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(&quantum_state,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushDoublePixel(&quantum_state,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushDoublePixel(&quantum_state,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } } default: { range=GetQuantumRange(image->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelBlue(image,ScaleAnyToQuantum(pixel,range),q); q+=channels; } break; } } break; } case RGBAQuantum: case RGBOQuantum: case CbYCrAQuantum: { switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelRed(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelGreen(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelBlue(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelAlpha(image,ScaleCharToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } case 10: { pixel=0; if (quantum_info->pack == MagickFalse) { register ssize_t i; size_t quantum; ssize_t n; n=0; quantum=0; for (x=0; x < (ssize_t) number_pixels; x++) { for (i=0; i < 4; i++) { switch (n % 3) { case 0: { p=PushLongPixel(endian,p,&pixel); quantum=(size_t) (ScaleShortToQuantum((unsigned short) (((pixel >> 22) & 0x3ff) << 6))); break; } case 1: { quantum=(size_t) (ScaleShortToQuantum((unsigned short) (((pixel >> 12) & 0x3ff) << 6))); break; } case 2: { quantum=(size_t) (ScaleShortToQuantum((unsigned short) (((pixel >> 2) & 0x3ff) << 6))); break; } } switch (i) { case 0: SetPixelRed(image,(Quantum) quantum,q); break; case 1: SetPixelGreen(image,(Quantum) quantum,q); break; case 2: SetPixelBlue(image,(Quantum) quantum,q); break; case 3: SetPixelAlpha(image,(Quantum) quantum,q); break; } n++; } p+=quantum_info->pad; q+=channels; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelRed(image,ScaleShortToQuantum((unsigned short) (pixel << 6)),q); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelGreen(image,ScaleShortToQuantum((unsigned short) (pixel << 6)),q); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelBlue(image,ScaleShortToQuantum((unsigned short) (pixel << 6)),q); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelAlpha(image,ScaleShortToQuantum((unsigned short) (pixel << 6)),q); q+=channels; } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetPixelRed(image,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel)),q); p=PushShortPixel(endian,p,&pixel); SetPixelGreen(image,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel)),q); p=PushShortPixel(endian,p,&pixel); SetPixelBlue(image,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel)),q); p=PushShortPixel(endian,p,&pixel); SetPixelAlpha(image,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel)),q); p+=quantum_info->pad; q+=channels; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetPixelRed(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(endian,p,&pixel); SetPixelGreen(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(endian,p,&pixel); SetPixelBlue(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(endian,p,&pixel); SetPixelAlpha(image,ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } case 32: { unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushFloatPixel(&quantum_state,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushFloatPixel(&quantum_state,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushFloatPixel(&quantum_state,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p=PushFloatPixel(&quantum_state,p,&pixel); SetPixelAlpha(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(endian,p,&pixel); SetPixelRed(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(endian,p,&pixel); SetPixelGreen(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(endian,p,&pixel); SetPixelBlue(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(endian,p,&pixel); SetPixelAlpha(image,ScaleLongToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(&quantum_state,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushDoublePixel(&quantum_state,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushDoublePixel(&quantum_state,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p=PushDoublePixel(&quantum_state,p,&pixel); SetPixelAlpha(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } } default: { range=GetQuantumRange(image->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelBlue(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelAlpha(image,ScaleAnyToQuantum(pixel,range),q); q+=channels; } break; } } break; } case CMYKQuantum: { if (image->colorspace != CMYKColorspace) { (void) ThrowMagickException(exception,GetMagickModule(),ImageError, "ColorSeparatedImageRequired","`%s'",image->filename); return(extent); } switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelRed(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelGreen(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelBlue(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelBlack(image,ScaleCharToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetPixelRed(image,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel)),q); p=PushShortPixel(endian,p,&pixel); SetPixelGreen(image,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel)),q); p=PushShortPixel(endian,p,&pixel); SetPixelBlue(image,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel)),q); p=PushShortPixel(endian,p,&pixel); SetPixelBlack(image,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel)),q); p+=quantum_info->pad; q+=channels; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetPixelRed(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(endian,p,&pixel); SetPixelGreen(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(endian,p,&pixel); SetPixelBlue(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(endian,p,&pixel); SetPixelBlack(image,ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } case 32: { unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushFloatPixel(&quantum_state,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushFloatPixel(&quantum_state,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushFloatPixel(&quantum_state,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p=PushFloatPixel(&quantum_state,p,&pixel); SetPixelBlack(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(endian,p,&pixel); SetPixelRed(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(endian,p,&pixel); SetPixelGreen(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(endian,p,&pixel); SetPixelBlue(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(endian,p,&pixel); SetPixelBlack(image,ScaleLongToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(&quantum_state,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushDoublePixel(&quantum_state,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushDoublePixel(&quantum_state,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p=PushDoublePixel(&quantum_state,p,&pixel); SetPixelBlack(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } } default: { range=GetQuantumRange(image->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelBlue(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelBlack(image,ScaleAnyToQuantum(pixel,range),q); q+=channels; } break; } } break; } case CMYKAQuantum: case CMYKOQuantum: { if (image->colorspace != CMYKColorspace) { (void) ThrowMagickException(exception,GetMagickModule(),ImageError, "ColorSeparatedImageRequired","`%s'",image->filename); return(extent); } switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelRed(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelGreen(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelBlue(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelBlack(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelAlpha(image,ScaleCharToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetPixelRed(image,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel)),q); p=PushShortPixel(endian,p,&pixel); SetPixelGreen(image,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel)),q); p=PushShortPixel(endian,p,&pixel); SetPixelBlue(image,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel)),q); p=PushShortPixel(endian,p,&pixel); SetPixelBlack(image,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel)),q); p=PushShortPixel(endian,p,&pixel); SetPixelAlpha(image,ClampToQuantum((MagickRealType) QuantumRange*HalfToSinglePrecision(pixel)),q); p+=quantum_info->pad; q+=channels; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(endian,p,&pixel); SetPixelRed(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(endian,p,&pixel); SetPixelGreen(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(endian,p,&pixel); SetPixelBlue(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(endian,p,&pixel); SetPixelBlack(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(endian,p,&pixel); SetPixelAlpha(image,ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } case 32: { unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushFloatPixel(&quantum_state,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushFloatPixel(&quantum_state,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushFloatPixel(&quantum_state,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p=PushFloatPixel(&quantum_state,p,&pixel); SetPixelBlack(image,ClampToQuantum(pixel),q); p=PushFloatPixel(&quantum_state,p,&pixel); SetPixelAlpha(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(endian,p,&pixel); SetPixelRed(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(endian,p,&pixel); SetPixelGreen(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(endian,p,&pixel); SetPixelBlue(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(endian,p,&pixel); SetPixelBlack(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(endian,p,&pixel); SetPixelAlpha(image,ScaleLongToQuantum(pixel),q); p+=quantum_info->pad; q+=channels; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(&quantum_state,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushDoublePixel(&quantum_state,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushDoublePixel(&quantum_state,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p=PushDoublePixel(&quantum_state,p,&pixel); SetPixelBlack(image,ClampToQuantum(pixel),q); p=PushDoublePixel(&quantum_state,p,&pixel); SetPixelAlpha(image,ClampToQuantum(pixel),q); p=PushDoublePixel(&quantum_state,p,&pixel); p+=quantum_info->pad; q+=channels; } break; } } default: { range=GetQuantumRange(image->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelBlue(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelBlack(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelAlpha(image,ScaleAnyToQuantum(pixel,range),q); q+=channels; } break; } } break; } case CbYCrYQuantum: { switch (quantum_info->depth) { case 10: { Quantum cbcr[4]; pixel=0; if (quantum_info->pack == MagickFalse) { register ssize_t i; size_t quantum; ssize_t n; n=0; quantum=0; for (x=0; x < (ssize_t) number_pixels; x+=2) { for (i=0; i < 4; i++) { switch (n % 3) { case 0: { p=PushLongPixel(endian,p,&pixel); quantum=(size_t) (ScaleShortToQuantum((unsigned short) (((pixel >> 22) & 0x3ff) << 6))); break; } case 1: { quantum=(size_t) (ScaleShortToQuantum((unsigned short) (((pixel >> 12) & 0x3ff) << 6))); break; } case 2: { quantum=(size_t) (ScaleShortToQuantum((unsigned short) (((pixel >> 2) & 0x3ff) << 6))); break; } } cbcr[i]=(Quantum) (quantum); n++; } p+=quantum_info->pad; SetPixelRed(image,cbcr[1],q); SetPixelGreen(image,cbcr[0],q); SetPixelBlue(image,cbcr[2],q); q+=channels; SetPixelRed(image,cbcr[3],q); SetPixelGreen(image,cbcr[0],q); SetPixelBlue(image,cbcr[2],q); q+=channels; } break; } } default: { range=GetQuantumRange(image->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); q+=channels; } break; } } break; } default: break; } if ((quantum_type == CbYCrQuantum) || (quantum_type == CbYCrAQuantum)) { Quantum quantum; register Quantum *restrict q; q=GetAuthenticPixelQueue(image); if (image_view != (CacheView *) NULL) q=GetCacheViewAuthenticPixelQueue(image_view); for (x=0; x < (ssize_t) number_pixels; x++) { quantum=GetPixelRed(image,q); SetPixelRed(image,GetPixelGreen(image,q),q); SetPixelGreen(image,quantum,q); q+=channels; } } if ((quantum_type == RGBOQuantum) || (quantum_type == CMYKOQuantum)) { register Quantum *restrict q; q=GetAuthenticPixelQueue(image); if (image_view != (CacheView *) NULL) q=GetCacheViewAuthenticPixelQueue(image_view); for (x=0; x < (ssize_t) number_pixels; x++) { SetPixelAlpha(image,GetPixelAlpha(image,q),q); q+=channels; } } if (quantum_info->alpha_type == DisassociatedQuantumAlpha) { MagickRealType alpha; register Quantum *restrict q; /* Disassociate alpha. */ q=GetAuthenticPixelQueue(image); if (image_view != (CacheView *) NULL) q=GetCacheViewAuthenticPixelQueue(image_view); for (x=0; x < (ssize_t) number_pixels; x++) { alpha=QuantumScale*GetPixelAlpha(image,q); alpha=1.0/(fabs(alpha) <= MagickEpsilon ? 1.0 : alpha); SetPixelRed(image,ClampToQuantum(alpha*GetPixelRed(image,q)),q); SetPixelGreen(image,ClampToQuantum(alpha*GetPixelGreen(image,q)),q); SetPixelBlue(image,ClampToQuantum(alpha*GetPixelBlue(image,q)),q); q+=channels; } } return(extent); }