/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % QQQ U U AAA N N TTTTT U U M M % % Q Q U U A A NN N T U U MM MM % % Q Q U U AAAAA N N N T U U M M M % % Q QQ U U A A N NN T U U M M % % QQQQ UUU A A N N T UUU M M % % % % EEEEE X X PPPP OOO RRRR TTTTT % % E X X P P O O R R T % % EEE X PPPP O O RRRR T % % E X X P O O R R T % % EEEEE X X P OOO R R T % % % % MagickCore Methods to Export Quantum Pixels % % % % Software Design % % John Cristy % % October 1998 % % % % % % Copyright 1999-2008 ImageMagick Studio LLC, a non-profit organization % % dedicated to making software imaging solutions freely available. % % % % You may not use this file except in compliance with the License. You may % % obtain a copy of the License at % % % % http://www.imagemagick.org/script/license.php % % % % Unless required by applicable law or agreed to in writing, software % % distributed under the License is distributed on an "AS IS" BASIS, % % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % % See the License for the specific language governing permissions and % % limitations under the License. % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % */ /* Include declarations. */ #include "MagickCore/studio.h" #include "MagickCore/property.h" #include "MagickCore/blob.h" #include "MagickCore/blob-private.h" #include "MagickCore/color-private.h" #include "MagickCore/exception.h" #include "MagickCore/exception-private.h" #include "MagickCore/cache.h" #include "MagickCore/constitute.h" #include "MagickCore/delegate.h" #include "MagickCore/geometry.h" #include "MagickCore/list.h" #include "MagickCore/magick.h" #include "MagickCore/memory_.h" #include "MagickCore/monitor.h" #include "MagickCore/option.h" #include "MagickCore/pixel.h" #include "MagickCore/pixel-accessor.h" #include "MagickCore/quantum.h" #include "MagickCore/quantum-private.h" #include "MagickCore/resource_.h" #include "MagickCore/semaphore.h" #include "MagickCore/statistic.h" #include "MagickCore/stream.h" #include "MagickCore/string_.h" #include "MagickCore/utility.h" /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % + E x p o r t Q u a n t u m P i x e l s % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % ExportQuantumPixels() transfers one or more pixel components from the image % pixel cache to a user supplied buffer. The pixels are returned in network % byte order. MagickTrue is returned if the pixels are successfully % transferred, otherwise MagickFalse. % % The format of the ExportQuantumPixels method is: % % size_t ExportQuantumPixels(const Image *image, % const CacheView *image_view,const QuantumInfo *quantum_info, % const QuantumType quantum_type,unsigned char *pixels, % ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o image_view: the image cache view. % % o quantum_info: the quantum info. % % o quantum_type: Declare which pixel components to transfer (RGB, RGBA, % etc). % % o pixels: The components are transferred to this buffer. % % o exception: return any errors or warnings in this structure. % */ static inline unsigned char *PopDoublePixel(const QuantumState *quantum_state, const double pixel,unsigned char *pixels) { double *p; unsigned char quantum[8]; p=(double *) quantum; *p=(double) (pixel*quantum_state->inverse_scale+quantum_state->minimum); if (quantum_state->endian != LSBEndian) { *pixels++=quantum[7]; *pixels++=quantum[6]; *pixels++=quantum[5]; *pixels++=quantum[4]; *pixels++=quantum[3]; *pixels++=quantum[2]; *pixels++=quantum[1]; *pixels++=quantum[0]; return(pixels); } *pixels++=quantum[0]; *pixels++=quantum[1]; *pixels++=quantum[2]; *pixels++=quantum[3]; *pixels++=quantum[4]; *pixels++=quantum[5]; *pixels++=quantum[6]; *pixels++=quantum[7]; return(pixels); } static inline unsigned char *PopFloatPixel(const QuantumState *quantum_state, const float pixel,unsigned char *pixels) { float *p; unsigned char quantum[4]; p=(float *) quantum; *p=(float) ((double) pixel*quantum_state->inverse_scale+ quantum_state->minimum); if (quantum_state->endian != LSBEndian) { *pixels++=quantum[3]; *pixels++=quantum[2]; *pixels++=quantum[1]; *pixels++=quantum[0]; return(pixels); } *pixels++=quantum[0]; *pixels++=quantum[1]; *pixels++=quantum[2]; *pixels++=quantum[3]; return(pixels); } static inline unsigned char *PopQuantumPixel(QuantumState *quantum_state, const size_t depth,const QuantumAny pixel,unsigned char *pixels) { register ssize_t i; size_t quantum_bits; if (quantum_state->bits == 0UL) quantum_state->bits=8U; for (i=(ssize_t) depth; i > 0L; ) { quantum_bits=(size_t) i; if (quantum_bits > quantum_state->bits) quantum_bits=quantum_state->bits; i-=(ssize_t) quantum_bits; if (quantum_state->bits == 8UL) *pixels='\0'; quantum_state->bits-=quantum_bits; *pixels|=(((pixel >> i) &~ ((~0UL) << quantum_bits)) << quantum_state->bits); if (quantum_state->bits == 0UL) { pixels++; quantum_state->bits=8UL; } } return(pixels); } static inline unsigned char *PopQuantumLongPixel(QuantumState *quantum_state, const size_t depth,const size_t pixel,unsigned char *pixels) { register ssize_t i; size_t quantum_bits; if (quantum_state->bits == 0U) quantum_state->bits=32UL; for (i=(ssize_t) depth; i > 0; ) { quantum_bits=(size_t) i; if (quantum_bits > quantum_state->bits) quantum_bits=quantum_state->bits; quantum_state->pixel|=(((pixel >> (depth-i)) & quantum_state->mask[quantum_bits]) << (32U-quantum_state->bits)); i-=(ssize_t) quantum_bits; quantum_state->bits-=quantum_bits; if (quantum_state->bits == 0U) { pixels=PopLongPixel(quantum_state->endian,quantum_state->pixel,pixels); quantum_state->pixel=0U; quantum_state->bits=32U; } } return(pixels); } MagickExport size_t ExportQuantumPixels(Image *image,CacheView *image_view, const QuantumInfo *quantum_info,const QuantumType quantum_type, unsigned char *pixels,ExceptionInfo *exception) { EndianType endian; MagickRealType alpha; MagickSizeType number_pixels; QuantumAny range; QuantumState quantum_state; register const Quantum *restrict p; register ssize_t x; register unsigned char *restrict q; size_t channels, extent; ssize_t bit; assert(image != (Image *) NULL); assert(image->signature == MagickSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(quantum_info != (QuantumInfo *) NULL); assert(quantum_info->signature == MagickSignature); if (pixels == (unsigned char *) NULL) pixels=GetQuantumPixels(quantum_info); if (image_view == (CacheView *) NULL) { number_pixels=GetImageExtent(image); p=GetVirtualPixelQueue(image); channels=GetPixelChannels(image); } else { number_pixels=GetCacheViewExtent(image_view); p=GetCacheViewVirtualPixelQueue(image_view); channels=GetPixelChannels(image); } if (quantum_info->alpha_type == AssociatedQuantumAlpha) { register Quantum *restrict q; /* Associate alpha. */ q=GetAuthenticPixelQueue(image); if (image_view != (CacheView *) NULL) q=GetCacheViewAuthenticPixelQueue(image_view); for (x=0; x < (ssize_t) image->columns; x++) { alpha=QuantumScale*GetPixelAlpha(image,q); SetPixelRed(image,ClampToQuantum(alpha*GetPixelRed(image,q)),q); SetPixelGreen(image,ClampToQuantum(alpha*GetPixelGreen(image,q)),q); SetPixelBlue(image,ClampToQuantum(alpha*GetPixelBlue(image,q)),q); q++; } } if ((quantum_type == RGBOQuantum) || (quantum_type == CMYKOQuantum) || (quantum_type == BGROQuantum)) { register Quantum *restrict q; q=GetAuthenticPixelQueue(image); if (image_view != (CacheView *) NULL) q=GetCacheViewAuthenticPixelQueue(image_view); for (x=0; x < (ssize_t) number_pixels; x++) { SetPixelAlpha(image,GetPixelAlpha(image,q),q); q++; } } if ((quantum_type == CbYCrQuantum) || (quantum_type == CbYCrAQuantum)) { Quantum quantum; register Quantum *restrict q; q=GetAuthenticPixelQueue(image); if (image_view != (CacheView *) NULL) q=GetAuthenticPixelQueue(image); for (x=0; x < (ssize_t) number_pixels; x++) { quantum=GetPixelRed(image,q); SetPixelRed(image,GetPixelGreen(image,q),q); SetPixelGreen(image,quantum,q); q+=channels; } } x=0; q=pixels; InitializeQuantumState(quantum_info,image->endian,&quantum_state); extent=GetQuantumExtent(image,quantum_info,quantum_type); endian=quantum_state.endian; switch (quantum_type) { case IndexQuantum: { if (image->storage_class != PseudoClass) { (void) ThrowMagickException(exception,GetMagickModule(),ImageError, "ColormappedImageRequired","`%s'",image->filename); return(extent); } switch (quantum_info->depth) { case 1: { register unsigned char pixel; for (x=((ssize_t) number_pixels-7); x > 0; x-=8) { pixel=(unsigned char) GetPixelIndex(image,p); *q=((pixel & 0x01) << 7); p+=channels; pixel=(unsigned char) GetPixelIndex(image,p); *q|=((pixel & 0x01) << 6); p+=channels; pixel=(unsigned char) GetPixelIndex(image,p); *q|=((pixel & 0x01) << 5); p+=channels; pixel=(unsigned char) GetPixelIndex(image,p); *q|=((pixel & 0x01) << 4); p+=channels; pixel=(unsigned char) GetPixelIndex(image,p); *q|=((pixel & 0x01) << 3); p+=channels; pixel=(unsigned char) GetPixelIndex(image,p); *q|=((pixel & 0x01) << 2); p+=channels; pixel=(unsigned char) GetPixelIndex(image,p); *q|=((pixel & 0x01) << 1); p+=channels; pixel=(unsigned char) GetPixelIndex(image,p); *q|=((pixel & 0x01) << 0); p+=channels; q++; } if ((number_pixels % 8) != 0) { *q='\0'; for (bit=7; bit >= (ssize_t) (8-(number_pixels % 8)); bit--) { pixel=(unsigned char) GetPixelIndex(image,p); *q|=((pixel & 0x01) << (unsigned char) bit); p+=channels; } q++; } break; } case 4: { register unsigned char pixel; for (x=0; x < (ssize_t) (number_pixels-1) ; x+=2) { pixel=(unsigned char) GetPixelIndex(image,p); *q=((pixel & 0xf) << 4); p+=channels; pixel=(unsigned char) GetPixelIndex(image,p); *q|=((pixel & 0xf) << 0); p+=channels; q++; } if ((number_pixels % 2) != 0) { pixel=(unsigned char) GetPixelIndex(image,p); *q=((pixel & 0xf) << 4); p+=channels; q++; } break; } case 8: { for (x=0; x < (ssize_t) number_pixels; x++) { q=PopCharPixel((unsigned char) GetPixelIndex(image,p),q); p+=channels; q+=quantum_info->pad; } break; } case 16: { if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { q=PopShortPixel(endian,SinglePrecisionToHalf(QuantumScale* GetPixelIndex(image,p)),q); p+=channels; q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { q=PopShortPixel(endian,(unsigned short) GetPixelIndex(image,p),q); p+=channels; q+=quantum_info->pad; } break; } case 32: { if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { q=PopFloatPixel(&quantum_state,(float) GetPixelIndex(image,p),q); p+=channels; q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { q=PopLongPixel(endian,(unsigned int) GetPixelIndex(image,p),q); p+=channels; q+=quantum_info->pad; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { q=PopDoublePixel(&quantum_state,(double) GetPixelIndex(image,p),q); p+=channels; q+=quantum_info->pad; } break; } } default: { for (x=0; x < (ssize_t) number_pixels; x++) { q=PopQuantumPixel(&quantum_state,quantum_info->depth, GetPixelIndex(image,p),q); p+=channels; q+=quantum_info->pad; } break; } } break; } case IndexAlphaQuantum: { if (image->storage_class != PseudoClass) { (void) ThrowMagickException(exception,GetMagickModule(),ImageError, "ColormappedImageRequired","`%s'",image->filename); return(extent); } switch (quantum_info->depth) { case 1: { register unsigned char pixel; for (x=((ssize_t) number_pixels-3); x > 0; x-=4) { pixel=(unsigned char) GetPixelIndex(image,p); *q=((pixel & 0x01) << 7); pixel=(unsigned char) (GetPixelAlpha(image,p) == (Quantum) TransparentAlpha ? 1 : 0); *q|=((pixel & 0x01) << 6); p+=channels; pixel=(unsigned char) GetPixelIndex(image,p); *q|=((pixel & 0x01) << 5); pixel=(unsigned char) (GetPixelAlpha(image,p) == (Quantum) TransparentAlpha ? 1 : 0); *q|=((pixel & 0x01) << 4); p+=channels; pixel=(unsigned char) GetPixelIndex(image,p); *q|=((pixel & 0x01) << 3); pixel=(unsigned char) (GetPixelAlpha(image,p) == (Quantum) TransparentAlpha ? 1 : 0); *q|=((pixel & 0x01) << 2); p+=channels; pixel=(unsigned char) GetPixelIndex(image,p); *q|=((pixel & 0x01) << 1); pixel=(unsigned char) (GetPixelAlpha(image,p) == (Quantum) TransparentAlpha ? 1 : 0); *q|=((pixel & 0x01) << 0); p+=channels; q++; } if ((number_pixels % 4) != 0) { *q='\0'; for (bit=3; bit >= (ssize_t) (4-(number_pixels % 4)); bit-=2) { pixel=(unsigned char) GetPixelIndex(image,p); *q|=((pixel & 0x01) << (unsigned char) (bit+4)); pixel=(unsigned char) (GetPixelAlpha(image,p) == (Quantum) TransparentAlpha ? 1 : 0); *q|=((pixel & 0x01) << (unsigned char) (bit+4-1)); p+=channels; } q++; } break; } case 4: { register unsigned char pixel; for (x=0; x < (ssize_t) number_pixels ; x++) { pixel=(unsigned char) GetPixelIndex(image,p); *q=((pixel & 0xf) << 4); pixel=(unsigned char) (16*QuantumScale*GetPixelAlpha(image,p)+0.5); *q|=((pixel & 0xf) << 0); p+=channels; q++; } break; } case 8: { register unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { q=PopCharPixel((unsigned char) GetPixelIndex(image,p),q); pixel=ScaleQuantumToChar(GetPixelAlpha(image,p)); q=PopCharPixel(pixel,q); p+=channels; q+=quantum_info->pad; } break; } case 16: { register unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { q=PopShortPixel(endian,(unsigned short) GetPixelIndex(image,p),q); pixel=SinglePrecisionToHalf(QuantumScale* GetPixelAlpha(image,p)); q=PopShortPixel(endian,pixel,q); p+=channels; q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { q=PopShortPixel(endian,(unsigned short) GetPixelIndex(image,p),q); pixel=ScaleQuantumToShort(GetPixelAlpha(image,p)); q=PopShortPixel(endian,pixel,q); p+=channels; q+=quantum_info->pad; } break; } case 32: { register unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { float pixel; q=PopFloatPixel(&quantum_state,(float) GetPixelIndex(image,p),q); pixel=(float) GetPixelAlpha(image,p); q=PopFloatPixel(&quantum_state,pixel,q); p+=channels; q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { q=PopLongPixel(endian,(unsigned int) GetPixelIndex(image,p),q); pixel=ScaleQuantumToLong(GetPixelAlpha(image,p)); q=PopLongPixel(endian,pixel,q); p+=channels; q+=quantum_info->pad; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { double pixel; q=PopDoublePixel(&quantum_state,(double) GetPixelIndex(image,p),q); pixel=(double) GetPixelAlpha(image,p); q=PopDoublePixel(&quantum_state,pixel,q); p+=channels; q+=quantum_info->pad; } break; } } default: { range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { q=PopQuantumPixel(&quantum_state,quantum_info->depth, GetPixelIndex(image,p),q); q=PopQuantumPixel(&quantum_state,quantum_info->depth, ScaleQuantumToAny(GetPixelAlpha(image,p),range),q); p+=channels; q+=quantum_info->pad; } break; } } break; } case BGRQuantum: { switch (quantum_info->depth) { case 8: { for (x=0; x < (ssize_t) number_pixels; x++) { q=PopCharPixel(ScaleQuantumToChar(GetPixelBlue(image,p)),q); q=PopCharPixel(ScaleQuantumToChar(GetPixelGreen(image,p)),q); q=PopCharPixel(ScaleQuantumToChar(GetPixelRed(image,p)),q); p+=channels; q+=quantum_info->pad; } break; } case 10: { register unsigned int pixel; range=GetQuantumRange(quantum_info->depth); if (quantum_info->pack == MagickFalse) { for (x=0; x < (ssize_t) number_pixels; x++) { pixel=(unsigned int) ( ScaleQuantumToAny(GetPixelRed(image,p),range) << 22 | ScaleQuantumToAny(GetPixelGreen(image,p),range) << 12 | ScaleQuantumToAny(GetPixelBlue(image,p),range) << 2); q=PopLongPixel(endian,pixel,q); p+=channels; q+=quantum_info->pad; } break; } if (quantum_info->quantum == 32UL) { for (x=0; x < (ssize_t) number_pixels; x++) { pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p), range); q=PopQuantumLongPixel(&quantum_state,quantum_info->depth,pixel, q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p), range); q=PopQuantumLongPixel(&quantum_state,quantum_info->depth,pixel, q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p), range); q=PopQuantumLongPixel(&quantum_state,quantum_info->depth,pixel, q); p+=channels; q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p), range); q=PopQuantumPixel(&quantum_state,quantum_info->depth,pixel,q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p), range); q=PopQuantumPixel(&quantum_state,quantum_info->depth,pixel,q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p), range); q=PopQuantumPixel(&quantum_state,quantum_info->depth,pixel,q); p+=channels; q+=quantum_info->pad; } break; } case 12: { register unsigned int pixel; range=GetQuantumRange(quantum_info->depth); if (quantum_info->pack == MagickFalse) { for (x=0; x < (ssize_t) (3*number_pixels-1); x+=2) { switch (x % 3) { default: case 0: { pixel=(unsigned int) ScaleQuantumToAny( GetPixelRed(image,p),range); break; } case 1: { pixel=(unsigned int) ScaleQuantumToAny( GetPixelGreen(image,p),range); break; } case 2: { pixel=(unsigned int) ScaleQuantumToAny( GetPixelBlue(image,p),range); p+=channels; break; } } q=PopShortPixel(endian,(unsigned short) (pixel << 4),q); switch ((x+1) % 3) { default: case 0: { pixel=(unsigned int) ScaleQuantumToAny( GetPixelRed(image,p),range); break; } case 1: { pixel=(unsigned int) ScaleQuantumToAny( GetPixelGreen(image,p),range); break; } case 2: { pixel=(unsigned int) ScaleQuantumToAny( GetPixelBlue(image,p),range); p+=channels; break; } } q=PopShortPixel(endian,(unsigned short) (pixel << 4),q); q+=quantum_info->pad; } for (bit=0; bit < (ssize_t) (3*number_pixels % 2); bit++) { switch ((x+bit) % 3) { default: case 0: { pixel=(unsigned int) ScaleQuantumToAny( GetPixelRed(image,p),range); break; } case 1: { pixel=(unsigned int) ScaleQuantumToAny( GetPixelGreen(image,p),range); break; } case 2: { pixel=(unsigned int) ScaleQuantumToAny( GetPixelBlue(image,p),range); p+=channels; break; } } q=PopShortPixel(endian,(unsigned short) (pixel << 4),q); q+=quantum_info->pad; } if (bit != 0) p+=channels; break; } if (quantum_info->quantum == 32UL) { for (x=0; x < (ssize_t) number_pixels; x++) { pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p), range); q=PopQuantumLongPixel(&quantum_state,quantum_info->depth,pixel, q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p), range); q=PopQuantumLongPixel(&quantum_state,quantum_info->depth,pixel, q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p), range); q=PopQuantumLongPixel(&quantum_state,quantum_info->depth,pixel, q); p+=channels; q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p), range); q=PopQuantumPixel(&quantum_state,quantum_info->depth,pixel,q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p), range); q=PopQuantumPixel(&quantum_state,quantum_info->depth,pixel,q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p), range); q=PopQuantumPixel(&quantum_state,quantum_info->depth,pixel,q); p+=channels; q+=quantum_info->pad; } break; } case 16: { register unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { pixel=SinglePrecisionToHalf(QuantumScale* GetPixelBlue(image,p)); q=PopShortPixel(endian,pixel,q); pixel=SinglePrecisionToHalf(QuantumScale* GetPixelGreen(image,p)); q=PopShortPixel(endian,pixel,q); pixel=SinglePrecisionToHalf(QuantumScale* GetPixelRed(image,p)); q=PopShortPixel(endian,pixel,q); p+=channels; q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToShort(GetPixelBlue(image,p)); q=PopShortPixel(endian,pixel,q); pixel=ScaleQuantumToShort(GetPixelGreen(image,p)); q=PopShortPixel(endian,pixel,q); pixel=ScaleQuantumToShort(GetPixelRed(image,p)); q=PopShortPixel(endian,pixel,q); p+=channels; q+=quantum_info->pad; } break; } case 32: { register unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { q=PopFloatPixel(&quantum_state,(float) GetPixelRed(image,p),q); q=PopFloatPixel(&quantum_state,(float) GetPixelGreen(image,p),q); q=PopFloatPixel(&quantum_state,(float) GetPixelBlue(image,p),q); p+=channels; q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToLong(GetPixelBlue(image,p)); q=PopLongPixel(endian,pixel,q); pixel=ScaleQuantumToLong(GetPixelGreen(image,p)); q=PopLongPixel(endian,pixel,q); pixel=ScaleQuantumToLong(GetPixelRed(image,p)); q=PopLongPixel(endian,pixel,q); p+=channels; q+=quantum_info->pad; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { q=PopDoublePixel(&quantum_state,(double) GetPixelRed(image,p),q); q=PopDoublePixel(&quantum_state,(double) GetPixelGreen(image,p),q); q=PopDoublePixel(&quantum_state,(double) GetPixelBlue(image,p),q); p+=channels; q+=quantum_info->pad; } break; } } default: { range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { q=PopQuantumPixel(&quantum_state,quantum_info->depth, ScaleQuantumToAny(GetPixelRed(image,p),range),q); q=PopQuantumPixel(&quantum_state,quantum_info->depth, ScaleQuantumToAny(GetPixelGreen(image,p),range),q); q=PopQuantumPixel(&quantum_state,quantum_info->depth, ScaleQuantumToAny(GetPixelBlue(image,p),range),q); p+=channels; q+=quantum_info->pad; } break; } } break; } case BGRAQuantum: case BGROQuantum: { switch (quantum_info->depth) { case 8: { register unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToChar(GetPixelBlue(image,p)); q=PopCharPixel(pixel,q); pixel=ScaleQuantumToChar(GetPixelGreen(image,p)); q=PopCharPixel(pixel,q); pixel=ScaleQuantumToChar(GetPixelRed(image,p)); q=PopCharPixel(pixel,q); pixel=ScaleQuantumToChar(GetPixelAlpha(image,p)); q=PopCharPixel(pixel,q); p+=channels; q+=quantum_info->pad; } break; } case 10: { register unsigned int pixel; range=GetQuantumRange(quantum_info->depth); if (quantum_info->pack == MagickFalse) { register ssize_t i; size_t quantum; ssize_t n; n=0; quantum=0; pixel=0; for (x=0; x < (ssize_t) number_pixels; x++) { for (i=0; i < 4; i++) { switch (i) { case 0: quantum=GetPixelRed(image,p); break; case 1: quantum=GetPixelGreen(image,p); break; case 2: quantum=GetPixelBlue(image,p); break; case 3: quantum=GetPixelAlpha(image,p); break; } switch (n % 3) { case 0: { pixel|=(size_t) (ScaleQuantumToAny((Quantum) quantum, range) << 22); break; } case 1: { pixel|=(size_t) (ScaleQuantumToAny((Quantum) quantum, range) << 12); break; } case 2: { pixel|=(size_t) (ScaleQuantumToAny((Quantum) quantum, range) << 2); q=PopLongPixel(endian,pixel,q); pixel=0; break; } } n++; } p+=channels; q+=quantum_info->pad; } break; } if (quantum_info->quantum == 32UL) { for (x=0; x < (ssize_t) number_pixels; x++) { pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p), range); q=PopQuantumLongPixel(&quantum_state,quantum_info->depth,pixel, q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p), range); q=PopQuantumLongPixel(&quantum_state,quantum_info->depth,pixel, q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p), range); q=PopQuantumLongPixel(&quantum_state,quantum_info->depth,pixel, q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelAlpha(image,p), range); q=PopQuantumLongPixel(&quantum_state,quantum_info->depth,pixel, q); p+=channels; q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p), range); q=PopQuantumPixel(&quantum_state,quantum_info->depth,pixel,q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p), range); q=PopQuantumPixel(&quantum_state,quantum_info->depth,pixel,q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p), range); q=PopQuantumPixel(&quantum_state,quantum_info->depth,pixel,q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelAlpha(image,p), range); q=PopQuantumPixel(&quantum_state,quantum_info->depth,pixel,q); p+=channels; q+=quantum_info->pad; } break; } case 16: { register unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { pixel=SinglePrecisionToHalf(QuantumScale* GetPixelBlue(image,p)); q=PopShortPixel(endian,pixel,q); pixel=SinglePrecisionToHalf(QuantumScale* GetPixelGreen(image,p)); q=PopShortPixel(endian,pixel,q); pixel=SinglePrecisionToHalf(QuantumScale* GetPixelRed(image,p)); q=PopShortPixel(endian,pixel,q); pixel=SinglePrecisionToHalf(QuantumScale* GetPixelAlpha(image,p)); q=PopShortPixel(endian,pixel,q); p+=channels; q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToShort(GetPixelBlue(image,p)); q=PopShortPixel(endian,pixel,q); pixel=ScaleQuantumToShort(GetPixelGreen(image,p)); q=PopShortPixel(endian,pixel,q); pixel=ScaleQuantumToShort(GetPixelRed(image,p)); q=PopShortPixel(endian,pixel,q); pixel=ScaleQuantumToShort(GetPixelAlpha(image,p)); q=PopShortPixel(endian,pixel,q); p+=channels; q+=quantum_info->pad; } break; } case 32: { register unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { float pixel; q=PopFloatPixel(&quantum_state,(float) GetPixelRed(image,p),q); q=PopFloatPixel(&quantum_state,(float) GetPixelGreen(image,p),q); q=PopFloatPixel(&quantum_state,(float) GetPixelBlue(image,p),q); pixel=(float) GetPixelAlpha(image,p); q=PopFloatPixel(&quantum_state,pixel,q); p+=channels; q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToLong(GetPixelBlue(image,p)); q=PopLongPixel(endian,pixel,q); pixel=ScaleQuantumToLong(GetPixelGreen(image,p)); q=PopLongPixel(endian,pixel,q); pixel=ScaleQuantumToLong(GetPixelRed(image,p)); q=PopLongPixel(endian,pixel,q); pixel=ScaleQuantumToLong(GetPixelAlpha(image,p)); q=PopLongPixel(endian,pixel,q); p+=channels; q+=quantum_info->pad; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { q=PopDoublePixel(&quantum_state,(double) GetPixelRed(image,p),q); q=PopDoublePixel(&quantum_state,(double) GetPixelGreen(image,p),q); q=PopDoublePixel(&quantum_state,(double) GetPixelBlue(image,p),q); pixel=(double) GetPixelAlpha(image,p); q=PopDoublePixel(&quantum_state,pixel,q); p+=channels; q+=quantum_info->pad; } break; } } default: { range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { q=PopQuantumPixel(&quantum_state,quantum_info->depth, ScaleQuantumToAny(GetPixelBlue(image,p),range),q); q=PopQuantumPixel(&quantum_state,quantum_info->depth, ScaleQuantumToAny(GetPixelGreen(image,p),range),q); q=PopQuantumPixel(&quantum_state,quantum_info->depth, ScaleQuantumToAny(GetPixelRed(image,p),range),q); q=PopQuantumPixel(&quantum_state,quantum_info->depth, ScaleQuantumToAny(GetPixelAlpha(image,p),range),q); p+=channels; q+=quantum_info->pad; } break; } } break; } case GrayQuantum: { switch (quantum_info->depth) { case 1: { register Quantum threshold; register unsigned char black, white; black=0x00; white=0x01; if (quantum_info->min_is_white != MagickFalse) { black=0x01; white=0x00; } threshold=(Quantum) (QuantumRange/2); for (x=((ssize_t) number_pixels-7); x > 0; x-=8) { *q='\0'; *q|=(GetPixelIntensity(image,p) < threshold ? black : white) << 7; p+=channels; *q|=(GetPixelIntensity(image,p) < threshold ? black : white) << 6; p+=channels; *q|=(GetPixelIntensity(image,p) < threshold ? black : white) << 5; p+=channels; *q|=(GetPixelIntensity(image,p) < threshold ? black : white) << 4; p+=channels; *q|=(GetPixelIntensity(image,p) < threshold ? black : white) << 3; p+=channels; *q|=(GetPixelIntensity(image,p) < threshold ? black : white) << 2; p+=channels; *q|=(GetPixelIntensity(image,p) < threshold ? black : white) << 1; p+=channels; *q|=(GetPixelIntensity(image,p) < threshold ? black : white) << 0; p+=channels; q++; } if ((number_pixels % 8) != 0) { *q='\0'; for (bit=7; bit >= (ssize_t) (8-(number_pixels % 8)); bit--) { *q|=(GetPixelIntensity(image,p) < threshold ? black : white) << bit; p+=channels; } q++; } break; } case 4: { register unsigned char pixel; for (x=0; x < (ssize_t) (number_pixels-1) ; x+=2) { pixel=ScaleQuantumToChar(GetPixelIntensity(image,p)); *q=(((pixel >> 4) & 0xf) << 4); p+=channels; pixel=ScaleQuantumToChar(GetPixelIntensity(image,p)); *q|=pixel >> 4; p+=channels; q++; } if ((number_pixels % 2) != 0) { pixel=ScaleQuantumToChar(GetPixelIntensity(image,p)); *q=(((pixel >> 4) & 0xf) << 4); p+=channels; q++; } break; } case 8: { register unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToChar(GetPixelIntensity(image,p)); q=PopCharPixel(pixel,q); p+=channels; q+=quantum_info->pad; } break; } case 10: { range=GetQuantumRange(quantum_info->depth); if (quantum_info->pack == MagickFalse) { register unsigned int pixel; for (x=0; x < (ssize_t) (number_pixels-2); x+=3) { pixel=(unsigned int) ( ScaleQuantumToAny(GetPixelIntensity(image,p+2),range) << 22 | ScaleQuantumToAny(GetPixelIntensity(image,p+1),range) << 12 | ScaleQuantumToAny(GetPixelIntensity(image,p+0),range) << 2); q=PopLongPixel(endian,pixel,q); p+=3; q+=quantum_info->pad; } pixel=0UL; if (x++ < (ssize_t) (number_pixels-1)) pixel|=ScaleQuantumToAny(GetPixelIntensity(image,p+1), range) << 12; if (x++ < (ssize_t) number_pixels) pixel|=ScaleQuantumToAny(GetPixelIntensity(image,p+0), range) << 2; q=PopLongPixel(endian,pixel,q); break; } for (x=0; x < (ssize_t) number_pixels; x++) { q=PopQuantumPixel(&quantum_state,quantum_info->depth, ScaleQuantumToAny(GetPixelIntensity(image,p),range),q); p+=channels; q+=quantum_info->pad; } break; } case 12: { register unsigned short pixel; range=GetQuantumRange(quantum_info->depth); if (quantum_info->pack == MagickFalse) { for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToShort(GetPixelIntensity(image,p)); q=PopShortPixel(endian,(unsigned short) (pixel >> 4),q); p+=channels; q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { q=PopQuantumPixel(&quantum_state,quantum_info->depth, ScaleQuantumToAny(GetPixelIntensity(image,p),range),q); p+=channels; q+=quantum_info->pad; } break; } case 16: { register unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { pixel=SinglePrecisionToHalf(QuantumScale* GetPixelIntensity(image,p)); q=PopShortPixel(endian,pixel,q); p+=channels; q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToShort(GetPixelIntensity(image,p)); q=PopShortPixel(endian,pixel,q); p+=channels; q+=quantum_info->pad; } break; } case 32: { register unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { float pixel; pixel=(float) GetPixelIntensity(image,p); q=PopFloatPixel(&quantum_state,pixel,q); p+=channels; q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToLong(GetPixelIntensity(image,p)); q=PopLongPixel(endian,pixel,q); p+=channels; q+=quantum_info->pad; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { double pixel; pixel=(double) GetPixelIntensity(image,p); q=PopDoublePixel(&quantum_state,pixel,q); p+=channels; q+=quantum_info->pad; } break; } } default: { range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { q=PopQuantumPixel(&quantum_state,quantum_info->depth, ScaleQuantumToAny(GetPixelIntensity(image,p),range),q); p+=channels; q+=quantum_info->pad; } break; } } break; } case GrayAlphaQuantum: { switch (quantum_info->depth) { case 1: { register Quantum threshold; register unsigned char black, pixel, white; black=0x00; white=0x01; if (quantum_info->min_is_white == MagickFalse) { black=0x01; white=0x00; } threshold=(Quantum) (QuantumRange/2); for (x=((ssize_t) number_pixels-3); x > 0; x-=4) { *q='\0'; *q|=(GetPixelIntensity(image,p) > threshold ? black : white) << 7; pixel=(unsigned char) (GetPixelAlpha(image,p) == OpaqueAlpha ? 0x00 : 0x01); *q|=(((int) pixel != 0 ? 0x00 : 0x01) << 6); p+=channels; *q|=(GetPixelIntensity(image,p) > threshold ? black : white) << 5; pixel=(unsigned char) (GetPixelAlpha(image,p) == OpaqueAlpha ? 0x00 : 0x01); *q|=(((int) pixel != 0 ? 0x00 : 0x01) << 4); p+=channels; *q|=(GetPixelIntensity(image,p) > threshold ? black : white) << 3; pixel=(unsigned char) (GetPixelAlpha(image,p) == OpaqueAlpha ? 0x00 : 0x01); *q|=(((int) pixel != 0 ? 0x00 : 0x01) << 2); p+=channels; *q|=(GetPixelIntensity(image,p) > threshold ? black : white) << 1; pixel=(unsigned char) (GetPixelAlpha(image,p) == OpaqueAlpha ? 0x00 : 0x01); *q|=(((int) pixel != 0 ? 0x00 : 0x01) << 0); p+=channels; q++; } if ((number_pixels % 4) != 0) { *q='\0'; for (bit=0; bit <= (ssize_t) (number_pixels % 4); bit+=2) { *q|=(GetPixelIntensity(image,p) > threshold ? black : white) << (7-bit); pixel=(unsigned char) (GetPixelAlpha(image,p) == OpaqueAlpha ? 0x00 : 0x01); *q|=(((int) pixel != 0 ? 0x00 : 0x01) << (unsigned char) (7-bit-1)); p+=channels; } q++; } break; } case 4: { register unsigned char pixel; for (x=0; x < (ssize_t) number_pixels ; x++) { pixel=ScaleQuantumToChar(GetPixelIntensity(image,p)); *q=(((pixel >> 4) & 0xf) << 4); pixel=(unsigned char) (16*QuantumScale*GetPixelAlpha(image,p)+0.5); *q|=pixel & 0xf; p+=channels; q++; } break; } case 8: { register unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToChar(GetPixelIntensity(image,p)); q=PopCharPixel(pixel,q); pixel=ScaleQuantumToChar(GetPixelAlpha(image,p)); q=PopCharPixel(pixel,q); p+=channels; q+=quantum_info->pad; } break; } case 16: { register unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { pixel=SinglePrecisionToHalf(QuantumScale* GetPixelIntensity(image,p)); q=PopShortPixel(endian,pixel,q); pixel=SinglePrecisionToHalf(QuantumScale* GetPixelAlpha(image,p)); q=PopShortPixel(endian,pixel,q); p+=channels; q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToShort(GetPixelIntensity(image,p)); q=PopShortPixel(endian,pixel,q); pixel=ScaleQuantumToShort(GetPixelAlpha(image,p)); q=PopShortPixel(endian,pixel,q); p+=channels; q+=quantum_info->pad; } break; } case 32: { register unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { float pixel; pixel=(float) GetPixelIntensity(image,p); q=PopFloatPixel(&quantum_state,pixel,q); pixel=(float) (GetPixelAlpha(image,p)); q=PopFloatPixel(&quantum_state,pixel,q); p+=channels; q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToLong(GetPixelIntensity(image,p)); q=PopLongPixel(endian,pixel,q); pixel=ScaleQuantumToLong(GetPixelAlpha(image,p)); q=PopLongPixel(endian,pixel,q); p+=channels; q+=quantum_info->pad; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { double pixel; pixel=(double) GetPixelIntensity(image,p); q=PopDoublePixel(&quantum_state,pixel,q); pixel=(double) (GetPixelAlpha(image,p)); q=PopDoublePixel(&quantum_state,pixel,q); p+=channels; q+=quantum_info->pad; } break; } } default: { range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { q=PopQuantumPixel(&quantum_state,quantum_info->depth, ScaleQuantumToAny(GetPixelIntensity(image,p),range),q); q=PopQuantumPixel(&quantum_state,quantum_info->depth, ScaleQuantumToAny(GetPixelAlpha(image,p),range),q); p+=channels; q+=quantum_info->pad; } break; } } break; } case RedQuantum: case CyanQuantum: { switch (quantum_info->depth) { case 8: { register unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToChar(GetPixelRed(image,p)); q=PopCharPixel(pixel,q); p+=channels; q+=quantum_info->pad; } break; } case 16: { register unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { pixel=SinglePrecisionToHalf(QuantumScale* GetPixelRed(image,p)); q=PopShortPixel(endian,pixel,q); p+=channels; q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToShort(GetPixelRed(image,p)); q=PopShortPixel(endian,pixel,q); p+=channels; q+=quantum_info->pad; } break; } case 32: { register unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { q=PopFloatPixel(&quantum_state,(float) GetPixelRed(image,p),q); p+=channels; q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToLong(GetPixelRed(image,p)); q=PopLongPixel(endian,pixel,q); p+=channels; q+=quantum_info->pad; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { q=PopDoublePixel(&quantum_state,(double) GetPixelRed(image,p),q); p+=channels; q+=quantum_info->pad; } break; } } default: { range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { q=PopQuantumPixel(&quantum_state,quantum_info->depth, ScaleQuantumToAny(GetPixelRed(image,p),range),q); p+=channels; q+=quantum_info->pad; } break; } } break; } case GreenQuantum: case MagentaQuantum: { switch (quantum_info->depth) { case 8: { register unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToChar(GetPixelGreen(image,p)); q=PopCharPixel(pixel,q); p+=channels; q+=quantum_info->pad; } break; } case 16: { register unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { pixel=SinglePrecisionToHalf(QuantumScale* GetPixelGreen(image,p)); q=PopShortPixel(endian,pixel,q); p+=channels; q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToShort(GetPixelGreen(image,p)); q=PopShortPixel(endian,pixel,q); p+=channels; q+=quantum_info->pad; } break; } case 32: { register unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { q=PopFloatPixel(&quantum_state,(float) GetPixelGreen(image,p),q); p+=channels; q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToLong(GetPixelGreen(image,p)); q=PopLongPixel(endian,pixel,q); p+=channels; q+=quantum_info->pad; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { q=PopDoublePixel(&quantum_state,(double) GetPixelGreen(image,p),q); p+=channels; q+=quantum_info->pad; } break; } } default: { range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { q=PopQuantumPixel(&quantum_state,quantum_info->depth, ScaleQuantumToAny(GetPixelGreen(image,p),range),q); p+=channels; q+=quantum_info->pad; } break; } } break; } case BlueQuantum: case YellowQuantum: { switch (quantum_info->depth) { case 8: { register unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToChar(GetPixelBlue(image,p)); q=PopCharPixel(pixel,q); p+=channels; q+=quantum_info->pad; } break; } case 16: { register unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { pixel=SinglePrecisionToHalf(QuantumScale* GetPixelBlue(image,p)); q=PopShortPixel(endian,pixel,q); p+=channels; q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToShort(GetPixelBlue(image,p)); q=PopShortPixel(endian,pixel,q); p+=channels; q+=quantum_info->pad; } break; } case 32: { register unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { q=PopFloatPixel(&quantum_state,(float) GetPixelBlue(image,p),q); p+=channels; q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToLong(GetPixelBlue(image,p)); q=PopLongPixel(endian,pixel,q); p+=channels; q+=quantum_info->pad; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { q=PopDoublePixel(&quantum_state,(double) GetPixelBlue(image,p),q); p+=channels; q+=quantum_info->pad; } break; } } default: { range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { q=PopQuantumPixel(&quantum_state,quantum_info->depth, ScaleQuantumToAny(GetPixelBlue(image,p),range),q); p+=channels; q+=quantum_info->pad; } break; } } break; } case AlphaQuantum: { switch (quantum_info->depth) { case 8: { register unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToChar(GetPixelAlpha(image,p)); q=PopCharPixel(pixel,q); p+=channels; q+=quantum_info->pad; } break; } case 16: { register unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { pixel=SinglePrecisionToHalf(QuantumScale* GetPixelAlpha(image,p)); q=PopShortPixel(endian,pixel,q); p+=channels; q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToShort(GetPixelAlpha(image,p)); q=PopShortPixel(endian,pixel,q); p+=channels; q+=quantum_info->pad; } break; } case 32: { register unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { float pixel; pixel=(float) GetPixelAlpha(image,p); q=PopFloatPixel(&quantum_state,pixel,q); p+=channels; q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToLong(GetPixelAlpha(image,p)); q=PopLongPixel(endian,pixel,q); p+=channels; q+=quantum_info->pad; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { double pixel; pixel=(double) (GetPixelAlpha(image,p)); q=PopDoublePixel(&quantum_state,pixel,q); p+=channels; q+=quantum_info->pad; } break; } } default: { range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { q=PopQuantumPixel(&quantum_state,quantum_info->depth, ScaleQuantumToAny(GetPixelAlpha(image,p),range),q); p+=channels; q+=quantum_info->pad; } break; } } break; } case OpacityQuantum: { switch (quantum_info->depth) { case 8: { register unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToChar(GetPixelAlpha(image,p)); q=PopCharPixel(pixel,q); p+=channels; q+=quantum_info->pad; } break; } case 16: { register unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { pixel=SinglePrecisionToHalf(QuantumScale* GetPixelAlpha(image,p)); q=PopShortPixel(endian,pixel,q); p+=channels; q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToShort(GetPixelAlpha(image,p)); q=PopShortPixel(endian,pixel,q); p+=channels; q+=quantum_info->pad; } break; } case 32: { register unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { q=PopFloatPixel(&quantum_state,(float) GetPixelAlpha(image,p),q); p+=channels; q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToLong(GetPixelAlpha(image,p)); q=PopLongPixel(endian,pixel,q); p+=channels; q+=quantum_info->pad; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { q=PopDoublePixel(&quantum_state,(double) GetPixelAlpha(image,p),q); p+=channels; q+=quantum_info->pad; } break; } } default: { range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { q=PopQuantumPixel(&quantum_state,quantum_info->depth, ScaleQuantumToAny(GetPixelAlpha(image,p),range),q); p+=channels; q+=quantum_info->pad; } break; } } break; } case BlackQuantum: { if (image->colorspace != CMYKColorspace) { (void) ThrowMagickException(exception,GetMagickModule(),ImageError, "ColorSeparatedImageRequired","`%s'",image->filename); return(extent); } switch (quantum_info->depth) { case 8: { register unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToChar(GetPixelBlack(image,p)); q=PopCharPixel(pixel,q); p+=channels; q+=quantum_info->pad; } break; } case 16: { register unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { pixel=SinglePrecisionToHalf(QuantumScale* GetPixelBlack(image,p)); q=PopShortPixel(endian,pixel,q); p+=channels; q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToShort(GetPixelBlack(image,p)); q=PopShortPixel(endian,pixel,q); p+=channels; q+=quantum_info->pad; } break; } case 32: { register unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { q=PopFloatPixel(&quantum_state,(float) GetPixelBlack(image,p),q); p+=channels; q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToLong(GetPixelBlack(image,p)); q=PopLongPixel(endian,pixel,q); p+=channels; q+=quantum_info->pad; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { q=PopDoublePixel(&quantum_state,(double) GetPixelBlack(image,p),q); p+=channels; q+=quantum_info->pad; } break; } } default: { range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { q=PopQuantumPixel(&quantum_state,quantum_info->depth, ScaleQuantumToAny((Quantum) GetPixelBlack(image,p),range),q); p+=channels; q+=quantum_info->pad; } break; } } break; } case RGBQuantum: case CbYCrQuantum: { switch (quantum_info->depth) { case 8: { for (x=0; x < (ssize_t) number_pixels; x++) { q=PopCharPixel(ScaleQuantumToChar(GetPixelRed(image,p)),q); q=PopCharPixel(ScaleQuantumToChar(GetPixelGreen(image,p)),q); q=PopCharPixel(ScaleQuantumToChar(GetPixelBlue(image,p)),q); p+=channels; q+=quantum_info->pad; } break; } case 10: { register unsigned int pixel; range=GetQuantumRange(quantum_info->depth); if (quantum_info->pack == MagickFalse) { for (x=0; x < (ssize_t) number_pixels; x++) { pixel=(unsigned int) ( ScaleQuantumToAny(GetPixelRed(image,p),range) << 22 | ScaleQuantumToAny(GetPixelGreen(image,p),range) << 12 | ScaleQuantumToAny(GetPixelBlue(image,p),range) << 2); q=PopLongPixel(endian,pixel,q); p+=channels; q+=quantum_info->pad; } break; } if (quantum_info->quantum == 32UL) { for (x=0; x < (ssize_t) number_pixels; x++) { pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p), range); q=PopQuantumLongPixel(&quantum_state,quantum_info->depth,pixel, q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p), range); q=PopQuantumLongPixel(&quantum_state,quantum_info->depth,pixel, q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p), range); q=PopQuantumLongPixel(&quantum_state,quantum_info->depth,pixel, q); p+=channels; q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p), range); q=PopQuantumPixel(&quantum_state,quantum_info->depth,pixel,q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p), range); q=PopQuantumPixel(&quantum_state,quantum_info->depth,pixel,q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p), range); q=PopQuantumPixel(&quantum_state,quantum_info->depth,pixel,q); p+=channels; q+=quantum_info->pad; } break; } case 12: { register unsigned int pixel; range=GetQuantumRange(quantum_info->depth); if (quantum_info->pack == MagickFalse) { for (x=0; x < (ssize_t) (3*number_pixels-1); x+=2) { switch (x % 3) { default: case 0: { pixel=(unsigned int) ScaleQuantumToAny( GetPixelRed(image,p),range); break; } case 1: { pixel=(unsigned int) ScaleQuantumToAny( GetPixelGreen(image,p),range); break; } case 2: { pixel=(unsigned int) ScaleQuantumToAny( GetPixelBlue(image,p),range); p+=channels; break; } } q=PopShortPixel(endian,(unsigned short) (pixel << 4),q); switch ((x+1) % 3) { default: case 0: { pixel=(unsigned int) ScaleQuantumToAny( GetPixelRed(image,p),range); break; } case 1: { pixel=(unsigned int) ScaleQuantumToAny( GetPixelGreen(image,p),range); break; } case 2: { pixel=(unsigned int) ScaleQuantumToAny( GetPixelBlue(image,p),range); p+=channels; break; } } q=PopShortPixel(endian,(unsigned short) (pixel << 4),q); q+=quantum_info->pad; } for (bit=0; bit < (ssize_t) (3*number_pixels % 2); bit++) { switch ((x+bit) % 3) { default: case 0: { pixel=(unsigned int) ScaleQuantumToAny( GetPixelRed(image,p),range); break; } case 1: { pixel=(unsigned int) ScaleQuantumToAny( GetPixelGreen(image,p),range); break; } case 2: { pixel=(unsigned int) ScaleQuantumToAny( GetPixelBlue(image,p),range); p+=channels; break; } } q=PopShortPixel(endian,(unsigned short) (pixel << 4),q); q+=quantum_info->pad; } if (bit != 0) p+=channels; break; } if (quantum_info->quantum == 32UL) { for (x=0; x < (ssize_t) number_pixels; x++) { pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p), range); q=PopQuantumLongPixel(&quantum_state,quantum_info->depth,pixel, q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p), range); q=PopQuantumLongPixel(&quantum_state,quantum_info->depth,pixel, q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p), range); q=PopQuantumLongPixel(&quantum_state,quantum_info->depth,pixel, q); p+=channels; q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p), range); q=PopQuantumPixel(&quantum_state,quantum_info->depth,pixel,q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p), range); q=PopQuantumPixel(&quantum_state,quantum_info->depth,pixel,q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p), range); q=PopQuantumPixel(&quantum_state,quantum_info->depth,pixel,q); p+=channels; q+=quantum_info->pad; } break; } case 16: { register unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { pixel=SinglePrecisionToHalf(QuantumScale* GetPixelRed(image,p)); q=PopShortPixel(endian,pixel,q); pixel=SinglePrecisionToHalf(QuantumScale* GetPixelGreen(image,p)); q=PopShortPixel(endian,pixel,q); pixel=SinglePrecisionToHalf(QuantumScale* GetPixelBlue(image,p)); q=PopShortPixel(endian,pixel,q); p+=channels; q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToShort(GetPixelRed(image,p)); q=PopShortPixel(endian,pixel,q); pixel=ScaleQuantumToShort(GetPixelGreen(image,p)); q=PopShortPixel(endian,pixel,q); pixel=ScaleQuantumToShort(GetPixelBlue(image,p)); q=PopShortPixel(endian,pixel,q); p+=channels; q+=quantum_info->pad; } break; } case 32: { register unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { q=PopFloatPixel(&quantum_state,(float) GetPixelRed(image,p),q); q=PopFloatPixel(&quantum_state,(float) GetPixelGreen(image,p),q); q=PopFloatPixel(&quantum_state,(float) GetPixelBlue(image,p),q); p+=channels; q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToLong(GetPixelRed(image,p)); q=PopLongPixel(endian,pixel,q); pixel=ScaleQuantumToLong(GetPixelGreen(image,p)); q=PopLongPixel(endian,pixel,q); pixel=ScaleQuantumToLong(GetPixelBlue(image,p)); q=PopLongPixel(endian,pixel,q); p+=channels; q+=quantum_info->pad; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { q=PopDoublePixel(&quantum_state,(double) GetPixelRed(image,p),q); q=PopDoublePixel(&quantum_state,(double) GetPixelGreen(image,p),q); q=PopDoublePixel(&quantum_state,(double) GetPixelBlue(image,p),q); p+=channels; q+=quantum_info->pad; } break; } } default: { range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { q=PopQuantumPixel(&quantum_state,quantum_info->depth, ScaleQuantumToAny(GetPixelRed(image,p),range),q); q=PopQuantumPixel(&quantum_state,quantum_info->depth, ScaleQuantumToAny(GetPixelGreen(image,p),range),q); q=PopQuantumPixel(&quantum_state,quantum_info->depth, ScaleQuantumToAny(GetPixelBlue(image,p),range),q); p+=channels; q+=quantum_info->pad; } break; } } break; } case RGBAQuantum: case RGBOQuantum: case CbYCrAQuantum: { switch (quantum_info->depth) { case 8: { register unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToChar(GetPixelRed(image,p)); q=PopCharPixel(pixel,q); pixel=ScaleQuantumToChar(GetPixelGreen(image,p)); q=PopCharPixel(pixel,q); pixel=ScaleQuantumToChar(GetPixelBlue(image,p)); q=PopCharPixel(pixel,q); pixel=ScaleQuantumToChar(GetPixelAlpha(image,p)); q=PopCharPixel(pixel,q); p+=channels; q+=quantum_info->pad; } break; } case 10: { register unsigned int pixel; range=GetQuantumRange(quantum_info->depth); if (quantum_info->pack == MagickFalse) { register ssize_t i; size_t quantum; ssize_t n; n=0; quantum=0; pixel=0; for (x=0; x < (ssize_t) number_pixels; x++) { for (i=0; i < 4; i++) { switch (i) { case 0: quantum=GetPixelRed(image,p); break; case 1: quantum=GetPixelGreen(image,p); break; case 2: quantum=GetPixelBlue(image,p); break; case 3: quantum=GetPixelAlpha(image,p); break; } switch (n % 3) { case 0: { pixel|=(size_t) (ScaleQuantumToAny((Quantum) quantum, range) << 22); break; } case 1: { pixel|=(size_t) (ScaleQuantumToAny((Quantum) quantum, range) << 12); break; } case 2: { pixel|=(size_t) (ScaleQuantumToAny((Quantum) quantum, range) << 2); q=PopLongPixel(endian,pixel,q); pixel=0; break; } } n++; } p+=channels; q+=quantum_info->pad; } break; } if (quantum_info->quantum == 32UL) { for (x=0; x < (ssize_t) number_pixels; x++) { pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p), range); q=PopQuantumLongPixel(&quantum_state,quantum_info->depth,pixel, q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p), range); q=PopQuantumLongPixel(&quantum_state,quantum_info->depth,pixel, q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p), range); q=PopQuantumLongPixel(&quantum_state,quantum_info->depth,pixel, q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelAlpha(image,p), range); q=PopQuantumLongPixel(&quantum_state,quantum_info->depth,pixel, q); p+=channels; q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=(unsigned int) ScaleQuantumToAny( GetPixelRed(image,p),range); q=PopQuantumPixel(&quantum_state,quantum_info->depth,pixel,q); pixel=(unsigned int) ScaleQuantumToAny( GetPixelGreen(image,p),range); q=PopQuantumPixel(&quantum_state,quantum_info->depth,pixel,q); pixel=(unsigned int) ScaleQuantumToAny( GetPixelBlue(image,p),range); q=PopQuantumPixel(&quantum_state,quantum_info->depth,pixel,q); pixel=(unsigned int) ScaleQuantumToAny( GetPixelAlpha(image,p),range); q=PopQuantumPixel(&quantum_state,quantum_info->depth,pixel,q); p+=channels; q+=quantum_info->pad; } break; } case 16: { register unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { pixel=SinglePrecisionToHalf(QuantumScale* GetPixelRed(image,p)); q=PopShortPixel(endian,pixel,q); pixel=SinglePrecisionToHalf(QuantumScale* GetPixelGreen(image,p)); q=PopShortPixel(endian,pixel,q); pixel=SinglePrecisionToHalf(QuantumScale* GetPixelBlue(image,p)); q=PopShortPixel(endian,pixel,q); pixel=SinglePrecisionToHalf(QuantumScale* GetPixelAlpha(image,p)); q=PopShortPixel(endian,pixel,q); p+=channels; q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToShort(GetPixelRed(image,p)); q=PopShortPixel(endian,pixel,q); pixel=ScaleQuantumToShort(GetPixelGreen(image,p)); q=PopShortPixel(endian,pixel,q); pixel=ScaleQuantumToShort(GetPixelBlue(image,p)); q=PopShortPixel(endian,pixel,q); pixel=ScaleQuantumToShort(GetPixelAlpha(image,p)); q=PopShortPixel(endian,pixel,q); p+=channels; q+=quantum_info->pad; } break; } case 32: { register unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { float pixel; q=PopFloatPixel(&quantum_state,(float) GetPixelRed(image,p),q); q=PopFloatPixel(&quantum_state,(float) GetPixelGreen(image,p),q); q=PopFloatPixel(&quantum_state,(float) GetPixelBlue(image,p),q); pixel=(float) GetPixelAlpha(image,p); q=PopFloatPixel(&quantum_state,pixel,q); p+=channels; q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToLong(GetPixelRed(image,p)); q=PopLongPixel(endian,pixel,q); pixel=ScaleQuantumToLong(GetPixelGreen(image,p)); q=PopLongPixel(endian,pixel,q); pixel=ScaleQuantumToLong(GetPixelBlue(image,p)); q=PopLongPixel(endian,pixel,q); pixel=ScaleQuantumToLong(GetPixelAlpha(image,p)); q=PopLongPixel(endian,pixel,q); p+=channels; q+=quantum_info->pad; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { q=PopDoublePixel(&quantum_state,(double) GetPixelRed(image,p),q); q=PopDoublePixel(&quantum_state,(double) GetPixelGreen(image,p),q); q=PopDoublePixel(&quantum_state,(double) GetPixelBlue(image,p),q); pixel=(double) GetPixelAlpha(image,p); q=PopDoublePixel(&quantum_state,pixel,q); p+=channels; q+=quantum_info->pad; } break; } } default: { range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { q=PopQuantumPixel(&quantum_state,quantum_info->depth, ScaleQuantumToAny(GetPixelRed(image,p),range),q); q=PopQuantumPixel(&quantum_state,quantum_info->depth, ScaleQuantumToAny(GetPixelGreen(image,p),range),q); q=PopQuantumPixel(&quantum_state,quantum_info->depth, ScaleQuantumToAny(GetPixelBlue(image,p),range),q); q=PopQuantumPixel(&quantum_state,quantum_info->depth, ScaleQuantumToAny(GetPixelAlpha(image,p),range),q); p+=channels; q+=quantum_info->pad; } break; } } break; } case CMYKQuantum: { if (image->colorspace != CMYKColorspace) { (void) ThrowMagickException(exception,GetMagickModule(),ImageError, "ColorSeparatedImageRequired","`%s'",image->filename); return(extent); } switch (quantum_info->depth) { case 8: { register unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToChar(GetPixelRed(image,p)); q=PopCharPixel(pixel,q); pixel=ScaleQuantumToChar(GetPixelGreen(image,p)); q=PopCharPixel(pixel,q); pixel=ScaleQuantumToChar(GetPixelBlue(image,p)); q=PopCharPixel(pixel,q); pixel=ScaleQuantumToChar(GetPixelBlack(image,p)); q=PopCharPixel(pixel,q); p+=channels; q+=quantum_info->pad; } break; } case 16: { register unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { pixel=SinglePrecisionToHalf(QuantumScale* GetPixelRed(image,p)); q=PopShortPixel(endian,pixel,q); pixel=SinglePrecisionToHalf(QuantumScale* GetPixelGreen(image,p)); q=PopShortPixel(endian,pixel,q); pixel=SinglePrecisionToHalf(QuantumScale* GetPixelBlue(image,p)); q=PopShortPixel(endian,pixel,q); pixel=SinglePrecisionToHalf(QuantumScale* GetPixelBlack(image,p)); q=PopShortPixel(endian,pixel,q); p+=channels; q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToShort(GetPixelRed(image,p)); q=PopShortPixel(endian,pixel,q); pixel=ScaleQuantumToShort(GetPixelGreen(image,p)); q=PopShortPixel(endian,pixel,q); pixel=ScaleQuantumToShort(GetPixelBlue(image,p)); q=PopShortPixel(endian,pixel,q); pixel=ScaleQuantumToShort(GetPixelBlack(image,p)); q=PopShortPixel(endian,pixel,q); p+=channels; q+=quantum_info->pad; } break; } case 32: { register unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { q=PopFloatPixel(&quantum_state,(float) GetPixelRed(image,p),q); q=PopFloatPixel(&quantum_state,(float) GetPixelGreen(image,p),q); q=PopFloatPixel(&quantum_state,(float) GetPixelBlue(image,p),q); q=PopFloatPixel(&quantum_state,(float) GetPixelBlack(image,p),q); p+=channels; q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToLong(GetPixelRed(image,p)); q=PopLongPixel(endian,pixel,q); pixel=ScaleQuantumToLong(GetPixelGreen(image,p)); q=PopLongPixel(endian,pixel,q); pixel=ScaleQuantumToLong(GetPixelBlue(image,p)); q=PopLongPixel(endian,pixel,q); pixel=ScaleQuantumToLong(GetPixelBlack(image,p)); q=PopLongPixel(endian,pixel,q); p+=channels; q+=quantum_info->pad; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { q=PopDoublePixel(&quantum_state,(double) GetPixelRed(image,p),q); q=PopDoublePixel(&quantum_state,(double) GetPixelGreen(image,p),q); q=PopDoublePixel(&quantum_state,(double) GetPixelBlue(image,p),q); q=PopDoublePixel(&quantum_state,(double) GetPixelBlack(image,p),q); p+=channels; q+=quantum_info->pad; } break; } } default: { range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { q=PopQuantumPixel(&quantum_state,quantum_info->depth, ScaleQuantumToAny(GetPixelRed(image,p),range),q); q=PopQuantumPixel(&quantum_state,quantum_info->depth, ScaleQuantumToAny(GetPixelGreen(image,p),range),q); q=PopQuantumPixel(&quantum_state,quantum_info->depth, ScaleQuantumToAny(GetPixelBlue(image,p),range),q); q=PopQuantumPixel(&quantum_state,quantum_info->depth, ScaleQuantumToAny(GetPixelBlack(image,p),range),q); p+=channels; q+=quantum_info->pad; } break; } } break; } case CMYKAQuantum: case CMYKOQuantum: { if (image->colorspace != CMYKColorspace) { (void) ThrowMagickException(exception,GetMagickModule(),ImageError, "ColorSeparatedImageRequired","`%s'",image->filename); return(extent); } switch (quantum_info->depth) { case 8: { register unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToChar(GetPixelRed(image,p)); q=PopCharPixel(pixel,q); pixel=ScaleQuantumToChar(GetPixelGreen(image,p)); q=PopCharPixel(pixel,q); pixel=ScaleQuantumToChar(GetPixelBlue(image,p)); q=PopCharPixel(pixel,q); pixel=ScaleQuantumToChar(GetPixelBlack(image,p)); q=PopCharPixel(pixel,q); pixel=ScaleQuantumToChar(GetPixelAlpha(image,p)); q=PopCharPixel(pixel,q); p+=channels; q+=quantum_info->pad; } break; } case 16: { register unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { pixel=SinglePrecisionToHalf(QuantumScale* GetPixelRed(image,p)); q=PopShortPixel(endian,pixel,q); pixel=SinglePrecisionToHalf(QuantumScale* GetPixelGreen(image,p)); q=PopShortPixel(endian,pixel,q); pixel=SinglePrecisionToHalf(QuantumScale* GetPixelBlue(image,p)); q=PopShortPixel(endian,pixel,q); pixel=SinglePrecisionToHalf(QuantumScale* GetPixelBlack(image,p)); q=PopShortPixel(endian,pixel,q); pixel=SinglePrecisionToHalf(QuantumScale* GetPixelAlpha(image,p)); q=PopShortPixel(endian,pixel,q); p+=channels; q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToShort(GetPixelRed(image,p)); q=PopShortPixel(endian,pixel,q); pixel=ScaleQuantumToShort(GetPixelGreen(image,p)); q=PopShortPixel(endian,pixel,q); pixel=ScaleQuantumToShort(GetPixelBlue(image,p)); q=PopShortPixel(endian,pixel,q); pixel=ScaleQuantumToShort(GetPixelBlack(image,p)); q=PopShortPixel(endian,pixel,q); pixel=ScaleQuantumToShort(GetPixelAlpha(image,p)); q=PopShortPixel(endian,pixel,q); p+=channels; q+=quantum_info->pad; } break; } case 32: { register unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { float pixel; q=PopFloatPixel(&quantum_state,(float) GetPixelRed(image,p),q); q=PopFloatPixel(&quantum_state,(float) GetPixelGreen(image,p),q); q=PopFloatPixel(&quantum_state,(float) GetPixelBlue(image,p),q); q=PopFloatPixel(&quantum_state,(float) GetPixelBlack(image,p),q); pixel=(float) (GetPixelAlpha(image,p)); q=PopFloatPixel(&quantum_state,pixel,q); p+=channels; q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToLong(GetPixelRed(image,p)); q=PopLongPixel(endian,pixel,q); pixel=ScaleQuantumToLong(GetPixelGreen(image,p)); q=PopLongPixel(endian,pixel,q); pixel=ScaleQuantumToLong(GetPixelBlue(image,p)); q=PopLongPixel(endian,pixel,q); pixel=ScaleQuantumToLong(GetPixelBlack(image,p)); q=PopLongPixel(endian,pixel,q); pixel=ScaleQuantumToLong(GetPixelAlpha(image,p)); q=PopLongPixel(endian,pixel,q); p+=channels; q+=quantum_info->pad; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { q=PopDoublePixel(&quantum_state,(double) GetPixelRed(image,p),q); q=PopDoublePixel(&quantum_state,(double) GetPixelGreen(image,p),q); q=PopDoublePixel(&quantum_state,(double) GetPixelBlue(image,p),q); q=PopDoublePixel(&quantum_state,(double) GetPixelBlack(image,p),q); pixel=(double) (GetPixelAlpha(image,p)); q=PopDoublePixel(&quantum_state,pixel,q); p+=channels; q+=quantum_info->pad; } break; } } default: { range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { q=PopQuantumPixel(&quantum_state,quantum_info->depth, ScaleQuantumToAny(GetPixelRed(image,p),range),q); q=PopQuantumPixel(&quantum_state,quantum_info->depth, ScaleQuantumToAny(GetPixelGreen(image,p),range),q); q=PopQuantumPixel(&quantum_state,quantum_info->depth, ScaleQuantumToAny(GetPixelBlue(image,p),range),q); q=PopQuantumPixel(&quantum_state,quantum_info->depth, ScaleQuantumToAny(GetPixelBlack(image,p),range),q); q=PopQuantumPixel(&quantum_state,quantum_info->depth, ScaleQuantumToAny(GetPixelAlpha(image,p),range),q); p+=channels; q+=quantum_info->pad; } break; } } break; } case CbYCrYQuantum: { Quantum cbcr[4]; register ssize_t i; register unsigned int pixel; size_t quantum; ssize_t n; n=0; quantum=0; range=GetQuantumRange(quantum_info->depth); switch (quantum_info->depth) { case 10: { if (quantum_info->pack == MagickFalse) { for (x=0; x < (ssize_t) number_pixels; x+=2) { for (i=0; i < 4; i++) { switch (n % 3) { case 0: { quantum=GetPixelRed(image,p); break; } case 1: { quantum=GetPixelGreen(image,p); break; } case 2: { quantum=GetPixelBlue(image,p); break; } } cbcr[i]=(Quantum) quantum; n++; } pixel=(unsigned int) ((size_t) (cbcr[1]) << 22 | (size_t) (cbcr[0]) << 12 | (size_t) (cbcr[2]) << 2); q=PopLongPixel(endian,pixel,q); p+=channels; pixel=(unsigned int) ((size_t) (cbcr[3]) << 22 | (size_t) (cbcr[0]) << 12 | (size_t) (cbcr[2]) << 2); q=PopLongPixel(endian,pixel,q); p+=channels; q+=quantum_info->pad; } break; } break; } default: { for (x=0; x < (ssize_t) number_pixels; x+=2) { for (i=0; i < 4; i++) { switch (n % 3) { case 0: { quantum=GetPixelRed(image,p); break; } case 1: { quantum=GetPixelGreen(image,p); break; } case 2: { quantum=GetPixelBlue(image,p); break; } } cbcr[i]=(Quantum) quantum; n++; } q=PopQuantumPixel(&quantum_state,quantum_info->depth, ScaleQuantumToAny(cbcr[1],range),q); q=PopQuantumPixel(&quantum_state,quantum_info->depth, ScaleQuantumToAny(cbcr[0],range),q); q=PopQuantumPixel(&quantum_state,quantum_info->depth, ScaleQuantumToAny(cbcr[2],range),q); p+=channels; q=PopQuantumPixel(&quantum_state,quantum_info->depth, ScaleQuantumToAny(cbcr[3],range),q); q=PopQuantumPixel(&quantum_state,quantum_info->depth, ScaleQuantumToAny(cbcr[0],range),q); q=PopQuantumPixel(&quantum_state,quantum_info->depth, ScaleQuantumToAny(cbcr[2],range),q); p+=channels; q+=quantum_info->pad; } break; } } break; } default: break; } if ((quantum_type == CbYCrQuantum) || (quantum_type == CbYCrAQuantum)) { Quantum quantum; register Quantum *restrict q; q=GetAuthenticPixelQueue(image); if (image_view != (CacheView *) NULL) q=GetCacheViewAuthenticPixelQueue(image_view); for (x=0; x < (ssize_t) number_pixels; x++) { quantum=GetPixelRed(image,q); SetPixelRed(image,GetPixelGreen(image,q),q); SetPixelGreen(image,quantum,q); q+=channels; } } if ((quantum_type == RGBOQuantum) || (quantum_type == CMYKOQuantum) || (quantum_type == BGROQuantum)) { register Quantum *restrict q; q=GetAuthenticPixelQueue(image); if (image_view != (CacheView *) NULL) q=GetCacheViewAuthenticPixelQueue(image_view); for (x=0; x < (ssize_t) number_pixels; x++) { SetPixelAlpha(image,GetPixelAlpha(image,q),q); q+=channels; } } return(extent); }