/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % M M OOO RRRR PPPP H H OOO L OOO GGGG Y Y % % MM MM O O R R P P H H O O L O O G Y Y % % M M M O O RRRR PPPP HHHHH O O L O O G GGG Y % % M M O O R R P H H O O L O O G G Y % % M M OOO R R P H H OOO LLLLL OOO GGG Y % % % % % % MagickCore Morphology Methods % % % % Software Design % % Anthony Thyssen % % January 2010 % % % % % % Copyright 1999-2012 ImageMagick Studio LLC, a non-profit organization % % dedicated to making software imaging solutions freely available. % % % % You may not use this file except in compliance with the License. You may % % obtain a copy of the License at % % % % http://www.imagemagick.org/script/license.php % % % % Unless required by applicable law or agreed to in writing, software % % distributed under the License is distributed on an "AS IS" BASIS, % % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % % See the License for the specific language governing permissions and % % limitations under the License. % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Morpology is the the application of various kernels, of any size and even % shape, to a image in various ways (typically binary, but not always). % % Convolution (weighted sum or average) is just one specific type of % morphology. Just one that is very common for image bluring and sharpening % effects. Not only 2D Gaussian blurring, but also 2-pass 1D Blurring. % % This module provides not only a general morphology function, and the ability % to apply more advanced or iterative morphologies, but also functions for the % generation of many different types of kernel arrays from user supplied % arguments. Prehaps even the generation of a kernel from a small image. */ /* Include declarations. */ #include "MagickCore/studio.h" #include "MagickCore/artifact.h" #include "MagickCore/cache-view.h" #include "MagickCore/color-private.h" #include "MagickCore/enhance.h" #include "MagickCore/exception.h" #include "MagickCore/exception-private.h" #include "MagickCore/gem.h" #include "MagickCore/gem-private.h" #include "MagickCore/hashmap.h" #include "MagickCore/image.h" #include "MagickCore/image-private.h" #include "MagickCore/list.h" #include "MagickCore/magick.h" #include "MagickCore/memory_.h" #include "MagickCore/memory-private.h" #include "MagickCore/monitor-private.h" #include "MagickCore/morphology.h" #include "MagickCore/morphology-private.h" #include "MagickCore/option.h" #include "MagickCore/pixel-accessor.h" #include "MagickCore/prepress.h" #include "MagickCore/quantize.h" #include "MagickCore/resource_.h" #include "MagickCore/registry.h" #include "MagickCore/semaphore.h" #include "MagickCore/splay-tree.h" #include "MagickCore/statistic.h" #include "MagickCore/string_.h" #include "MagickCore/string-private.h" #include "MagickCore/thread-private.h" #include "MagickCore/token.h" #include "MagickCore/utility.h" #include "MagickCore/utility-private.h" /* ** The following test is for special floating point numbers of value NaN (not ** a number), that may be used within a Kernel Definition. NaN's are defined ** as part of the IEEE standard for floating point number representation. ** ** These are used as a Kernel value to mean that this kernel position is not ** part of the kernel neighbourhood for convolution or morphology processing, ** and thus should be ignored. This allows the use of 'shaped' kernels. ** ** The special property that two NaN's are never equal, even if they are from ** the same variable allow you to test if a value is special NaN value. ** ** This macro IsNaN() is thus is only true if the value given is NaN. */ #define IsNan(a) ((a)!=(a)) /* Other global definitions used by module. */ static inline double MagickMin(const double x,const double y) { return( x < y ? x : y); } static inline double MagickMax(const double x,const double y) { return( x > y ? x : y); } #define Minimize(assign,value) assign=MagickMin(assign,value) #define Maximize(assign,value) assign=MagickMax(assign,value) /* Integer Factorial Function - for a Binomial kernel */ #if 1 static inline size_t fact(size_t n) { size_t f,l; for(f=1, l=2; l <= n; f=f*l, l++); return(f); } #elif 1 /* glibc floating point alternatives */ #define fact(n) ((size_t)tgamma((double)n+1)) #else #define fact(n) ((size_t)lgamma((double)n+1)) #endif /* Currently these are only internal to this module */ static void CalcKernelMetaData(KernelInfo *), ExpandMirrorKernelInfo(KernelInfo *), ExpandRotateKernelInfo(KernelInfo *, const double), RotateKernelInfo(KernelInfo *, double); /* Quick function to find last kernel in a kernel list */ static inline KernelInfo *LastKernelInfo(KernelInfo *kernel) { while (kernel->next != (KernelInfo *) NULL) kernel = kernel->next; return(kernel); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % A c q u i r e K e r n e l I n f o % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % AcquireKernelInfo() takes the given string (generally supplied by the % user) and converts it into a Morphology/Convolution Kernel. This allows % users to specify a kernel from a number of pre-defined kernels, or to fully % specify their own kernel for a specific Convolution or Morphology % Operation. % % The kernel so generated can be any rectangular array of floating point % values (doubles) with the 'control point' or 'pixel being affected' % anywhere within that array of values. % % Previously IM was restricted to a square of odd size using the exact % center as origin, this is no longer the case, and any rectangular kernel % with any value being declared the origin. This in turn allows the use of % highly asymmetrical kernels. % % The floating point values in the kernel can also include a special value % known as 'nan' or 'not a number' to indicate that this value is not part % of the kernel array. This allows you to shaped the kernel within its % rectangular area. That is 'nan' values provide a 'mask' for the kernel % shape. However at least one non-nan value must be provided for correct % working of a kernel. % % The returned kernel should be freed using the DestroyKernelInfo() when you % are finished with it. Do not free this memory yourself. % % Input kernel defintion strings can consist of any of three types. % % "name:args[[@><]" % Select from one of the built in kernels, using the name and % geometry arguments supplied. See AcquireKernelBuiltIn() % % "WxH[+X+Y][@><]:num, num, num ..." % a kernel of size W by H, with W*H floating point numbers following. % the 'center' can be optionally be defined at +X+Y (such that +0+0 % is top left corner). If not defined the pixel in the center, for % odd sizes, or to the immediate top or left of center for even sizes % is automatically selected. % % "num, num, num, num, ..." % list of floating point numbers defining an 'old style' odd sized % square kernel. At least 9 values should be provided for a 3x3 % square kernel, 25 for a 5x5 square kernel, 49 for 7x7, etc. % Values can be space or comma separated. This is not recommended. % % You can define a 'list of kernels' which can be used by some morphology % operators A list is defined as a semi-colon separated list kernels. % % " kernel ; kernel ; kernel ; " % % Any extra ';' characters, at start, end or between kernel defintions are % simply ignored. % % The special flags will expand a single kernel, into a list of rotated % kernels. A '@' flag will expand a 3x3 kernel into a list of 45-degree % cyclic rotations, while a '>' will generate a list of 90-degree rotations. % The '<' also exands using 90-degree rotates, but giving a 180-degree % reflected kernel before the +/- 90-degree rotations, which can be important % for Thinning operations. % % Note that 'name' kernels will start with an alphabetic character while the % new kernel specification has a ':' character in its specification string. % If neither is the case, it is assumed an old style of a simple list of % numbers generating a odd-sized square kernel has been given. % % The format of the AcquireKernal method is: % % KernelInfo *AcquireKernelInfo(const char *kernel_string) % % A description of each parameter follows: % % o kernel_string: the Morphology/Convolution kernel wanted. % */ /* This was separated so that it could be used as a separate ** array input handling function, such as for -color-matrix */ static KernelInfo *ParseKernelArray(const char *kernel_string) { KernelInfo *kernel; char token[MaxTextExtent]; const char *p, *end; register ssize_t i; double nan = sqrt((double)-1.0); /* Special Value : Not A Number */ MagickStatusType flags; GeometryInfo args; kernel=(KernelInfo *) AcquireQuantumMemory(1,sizeof(*kernel)); if (kernel == (KernelInfo *)NULL) return(kernel); (void) ResetMagickMemory(kernel,0,sizeof(*kernel)); kernel->minimum = kernel->maximum = kernel->angle = 0.0; kernel->negative_range = kernel->positive_range = 0.0; kernel->type = UserDefinedKernel; kernel->next = (KernelInfo *) NULL; kernel->signature = MagickSignature; if (kernel_string == (const char *) NULL) return(kernel); /* find end of this specific kernel definition string */ end = strchr(kernel_string, ';'); if ( end == (char *) NULL ) end = strchr(kernel_string, '\0'); /* clear flags - for Expanding kernel lists thorugh rotations */ flags = NoValue; /* Has a ':' in argument - New user kernel specification FUTURE: this split on ':' could be done by StringToken() */ p = strchr(kernel_string, ':'); if ( p != (char *) NULL && p < end) { /* ParseGeometry() needs the geometry separated! -- Arrgghh */ memcpy(token, kernel_string, (size_t) (p-kernel_string)); token[p-kernel_string] = '\0'; SetGeometryInfo(&args); flags = ParseGeometry(token, &args); /* Size handling and checks of geometry settings */ if ( (flags & WidthValue) == 0 ) /* if no width then */ args.rho = args.sigma; /* then width = height */ if ( args.rho < 1.0 ) /* if width too small */ args.rho = 1.0; /* then width = 1 */ if ( args.sigma < 1.0 ) /* if height too small */ args.sigma = args.rho; /* then height = width */ kernel->width = (size_t)args.rho; kernel->height = (size_t)args.sigma; /* Offset Handling and Checks */ if ( args.xi < 0.0 || args.psi < 0.0 ) return(DestroyKernelInfo(kernel)); kernel->x = ((flags & XValue)!=0) ? (ssize_t)args.xi : (ssize_t) (kernel->width-1)/2; kernel->y = ((flags & YValue)!=0) ? (ssize_t)args.psi : (ssize_t) (kernel->height-1)/2; if ( kernel->x >= (ssize_t) kernel->width || kernel->y >= (ssize_t) kernel->height ) return(DestroyKernelInfo(kernel)); p++; /* advance beyond the ':' */ } else { /* ELSE - Old old specification, forming odd-square kernel */ /* count up number of values given */ p=(const char *) kernel_string; while ((isspace((int) ((unsigned char) *p)) != 0) || (*p == '\'')) p++; /* ignore "'" chars for convolve filter usage - Cristy */ for (i=0; p < end; i++) { GetMagickToken(p,&p,token); if (*token == ',') GetMagickToken(p,&p,token); } /* set the size of the kernel - old sized square */ kernel->width = kernel->height= (size_t) sqrt((double) i+1.0); kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; p=(const char *) kernel_string; while ((isspace((int) ((unsigned char) *p)) != 0) || (*p == '\'')) p++; /* ignore "'" chars for convolve filter usage - Cristy */ } /* Read in the kernel values from rest of input string argument */ kernel->values=(MagickRealType *) MagickAssumeAligned(AcquireAlignedMemory( kernel->width,kernel->height*sizeof(*kernel->values))); if (kernel->values == (MagickRealType *) NULL) return(DestroyKernelInfo(kernel)); kernel->minimum = +MagickHuge; kernel->maximum = -MagickHuge; kernel->negative_range = kernel->positive_range = 0.0; for (i=0; (i < (ssize_t) (kernel->width*kernel->height)) && (p < end); i++) { GetMagickToken(p,&p,token); if (*token == ',') GetMagickToken(p,&p,token); if ( LocaleCompare("nan",token) == 0 || LocaleCompare("-",token) == 0 ) { kernel->values[i] = nan; /* this value is not part of neighbourhood */ } else { kernel->values[i] = StringToDouble(token,(char **) NULL); ( kernel->values[i] < 0) ? ( kernel->negative_range += kernel->values[i] ) : ( kernel->positive_range += kernel->values[i] ); Minimize(kernel->minimum, kernel->values[i]); Maximize(kernel->maximum, kernel->values[i]); } } /* sanity check -- no more values in kernel definition */ GetMagickToken(p,&p,token); if ( *token != '\0' && *token != ';' && *token != '\'' ) return(DestroyKernelInfo(kernel)); #if 0 /* this was the old method of handling a incomplete kernel */ if ( i < (ssize_t) (kernel->width*kernel->height) ) { Minimize(kernel->minimum, kernel->values[i]); Maximize(kernel->maximum, kernel->values[i]); for ( ; i < (ssize_t) (kernel->width*kernel->height); i++) kernel->values[i]=0.0; } #else /* Number of values for kernel was not enough - Report Error */ if ( i < (ssize_t) (kernel->width*kernel->height) ) return(DestroyKernelInfo(kernel)); #endif /* check that we recieved at least one real (non-nan) value! */ if ( kernel->minimum == MagickHuge ) return(DestroyKernelInfo(kernel)); if ( (flags & AreaValue) != 0 ) /* '@' symbol in kernel size */ ExpandRotateKernelInfo(kernel, 45.0); /* cyclic rotate 3x3 kernels */ else if ( (flags & GreaterValue) != 0 ) /* '>' symbol in kernel args */ ExpandRotateKernelInfo(kernel, 90.0); /* 90 degree rotate of kernel */ else if ( (flags & LessValue) != 0 ) /* '<' symbol in kernel args */ ExpandMirrorKernelInfo(kernel); /* 90 degree mirror rotate */ return(kernel); } static KernelInfo *ParseKernelName(const char *kernel_string) { char token[MaxTextExtent]; const char *p, *end; GeometryInfo args; KernelInfo *kernel; MagickStatusType flags; ssize_t type; /* Parse special 'named' kernel */ GetMagickToken(kernel_string,&p,token); type=ParseCommandOption(MagickKernelOptions,MagickFalse,token); if ( type < 0 || type == UserDefinedKernel ) return((KernelInfo *)NULL); /* not a valid named kernel */ while (((isspace((int) ((unsigned char) *p)) != 0) || (*p == ',') || (*p == ':' )) && (*p != '\0') && (*p != ';')) p++; end = strchr(p, ';'); /* end of this kernel defintion */ if ( end == (char *) NULL ) end = strchr(p, '\0'); /* ParseGeometry() needs the geometry separated! -- Arrgghh */ memcpy(token, p, (size_t) (end-p)); token[end-p] = '\0'; SetGeometryInfo(&args); flags = ParseGeometry(token, &args); #if 0 /* For Debugging Geometry Input */ (void) FormatLocaleFile(stderr, "Geometry = 0x%04X : %lg x %lg %+lg %+lg\n", flags, args.rho, args.sigma, args.xi, args.psi ); #endif /* special handling of missing values in input string */ switch( type ) { /* Shape Kernel Defaults */ case UnityKernel: if ( (flags & WidthValue) == 0 ) args.rho = 1.0; /* Default scale = 1.0, zero is valid */ break; case SquareKernel: case DiamondKernel: case OctagonKernel: case DiskKernel: case PlusKernel: case CrossKernel: if ( (flags & HeightValue) == 0 ) args.sigma = 1.0; /* Default scale = 1.0, zero is valid */ break; case RingKernel: if ( (flags & XValue) == 0 ) args.xi = 1.0; /* Default scale = 1.0, zero is valid */ break; case RectangleKernel: /* Rectangle - set size defaults */ if ( (flags & WidthValue) == 0 ) /* if no width then */ args.rho = args.sigma; /* then width = height */ if ( args.rho < 1.0 ) /* if width too small */ args.rho = 3; /* then width = 3 */ if ( args.sigma < 1.0 ) /* if height too small */ args.sigma = args.rho; /* then height = width */ if ( (flags & XValue) == 0 ) /* center offset if not defined */ args.xi = (double)(((ssize_t)args.rho-1)/2); if ( (flags & YValue) == 0 ) args.psi = (double)(((ssize_t)args.sigma-1)/2); break; /* Distance Kernel Defaults */ case ChebyshevKernel: case ManhattanKernel: case OctagonalKernel: case EuclideanKernel: if ( (flags & HeightValue) == 0 ) /* no distance scale */ args.sigma = 100.0; /* default distance scaling */ else if ( (flags & AspectValue ) != 0 ) /* '!' flag */ args.sigma = QuantumRange/(args.sigma+1); /* maximum pixel distance */ else if ( (flags & PercentValue ) != 0 ) /* '%' flag */ args.sigma *= QuantumRange/100.0; /* percentage of color range */ break; default: break; } kernel = AcquireKernelBuiltIn((KernelInfoType)type, &args); if ( kernel == (KernelInfo *) NULL ) return(kernel); /* global expand to rotated kernel list - only for single kernels */ if ( kernel->next == (KernelInfo *) NULL ) { if ( (flags & AreaValue) != 0 ) /* '@' symbol in kernel args */ ExpandRotateKernelInfo(kernel, 45.0); else if ( (flags & GreaterValue) != 0 ) /* '>' symbol in kernel args */ ExpandRotateKernelInfo(kernel, 90.0); else if ( (flags & LessValue) != 0 ) /* '<' symbol in kernel args */ ExpandMirrorKernelInfo(kernel); } return(kernel); } MagickExport KernelInfo *AcquireKernelInfo(const char *kernel_string) { KernelInfo *kernel, *new_kernel; char token[MaxTextExtent]; const char *p; size_t kernel_number; if (kernel_string == (const char *) NULL) return(ParseKernelArray(kernel_string)); p = kernel_string; kernel = NULL; kernel_number = 0; while ( GetMagickToken(p,NULL,token), *token != '\0' ) { /* ignore extra or multiple ';' kernel separators */ if ( *token != ';' ) { /* tokens starting with alpha is a Named kernel */ if (isalpha((int) *token) != 0) new_kernel = ParseKernelName(p); else /* otherwise a user defined kernel array */ new_kernel = ParseKernelArray(p); /* Error handling -- this is not proper error handling! */ if ( new_kernel == (KernelInfo *) NULL ) { (void) FormatLocaleFile(stderr, "Failed to parse kernel number #%.20g\n", (double) kernel_number); if ( kernel != (KernelInfo *) NULL ) kernel=DestroyKernelInfo(kernel); return((KernelInfo *) NULL); } /* initialise or append the kernel list */ if ( kernel == (KernelInfo *) NULL ) kernel = new_kernel; else LastKernelInfo(kernel)->next = new_kernel; } /* look for the next kernel in list */ p = strchr(p, ';'); if ( p == (char *) NULL ) break; p++; } return(kernel); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % A c q u i r e K e r n e l B u i l t I n % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % AcquireKernelBuiltIn() returned one of the 'named' built-in types of % kernels used for special purposes such as gaussian blurring, skeleton % pruning, and edge distance determination. % % They take a KernelType, and a set of geometry style arguments, which were % typically decoded from a user supplied string, or from a more complex % Morphology Method that was requested. % % The format of the AcquireKernalBuiltIn method is: % % KernelInfo *AcquireKernelBuiltIn(const KernelInfoType type, % const GeometryInfo args) % % A description of each parameter follows: % % o type: the pre-defined type of kernel wanted % % o args: arguments defining or modifying the kernel % % Convolution Kernels % % Unity % The a No-Op or Scaling single element kernel. % % Gaussian:{radius},{sigma} % Generate a two-dimensional gaussian kernel, as used by -gaussian. % The sigma for the curve is required. The resulting kernel is % normalized, % % If 'sigma' is zero, you get a single pixel on a field of zeros. % % NOTE: that the 'radius' is optional, but if provided can limit (clip) % the final size of the resulting kernel to a square 2*radius+1 in size. % The radius should be at least 2 times that of the sigma value, or % sever clipping and aliasing may result. If not given or set to 0 the % radius will be determined so as to produce the best minimal error % result, which is usally much larger than is normally needed. % % LoG:{radius},{sigma} % "Laplacian of a Gaussian" or "Mexician Hat" Kernel. % The supposed ideal edge detection, zero-summing kernel. % % An alturnative to this kernel is to use a "DoG" with a sigma ratio of % approx 1.6 (according to wikipedia). % % DoG:{radius},{sigma1},{sigma2} % "Difference of Gaussians" Kernel. % As "Gaussian" but with a gaussian produced by 'sigma2' subtracted % from the gaussian produced by 'sigma1'. Typically sigma2 > sigma1. % The result is a zero-summing kernel. % % Blur:{radius},{sigma}[,{angle}] % Generates a 1 dimensional or linear gaussian blur, at the angle given % (current restricted to orthogonal angles). If a 'radius' is given the % kernel is clipped to a width of 2*radius+1. Kernel can be rotated % by a 90 degree angle. % % If 'sigma' is zero, you get a single pixel on a field of zeros. % % Note that two convolutions with two "Blur" kernels perpendicular to % each other, is equivalent to a far larger "Gaussian" kernel with the % same sigma value, However it is much faster to apply. This is how the % "-blur" operator actually works. % % Comet:{width},{sigma},{angle} % Blur in one direction only, much like how a bright object leaves % a comet like trail. The Kernel is actually half a gaussian curve, % Adding two such blurs in opposite directions produces a Blur Kernel. % Angle can be rotated in multiples of 90 degrees. % % Note that the first argument is the width of the kernel and not the % radius of the kernel. % % Binomial:[{radius}] % Generate a discrete kernel using a 2 dimentional Pascel's Triangle % of values. Used for special forma of image filters. % % # Still to be implemented... % # % # Filter2D % # Filter1D % # Set kernel values using a resize filter, and given scale (sigma) % # Cylindrical or Linear. Is this possible with an image? % # % % Named Constant Convolution Kernels % % All these are unscaled, zero-summing kernels by default. As such for % non-HDRI version of ImageMagick some form of normalization, user scaling, % and biasing the results is recommended, to prevent the resulting image % being 'clipped'. % % The 3x3 kernels (most of these) can be circularly rotated in multiples of % 45 degrees to generate the 8 angled varients of each of the kernels. % % Laplacian:{type} % Discrete Lapacian Kernels, (without normalization) % Type 0 : 3x3 with center:8 surounded by -1 (8 neighbourhood) % Type 1 : 3x3 with center:4 edge:-1 corner:0 (4 neighbourhood) % Type 2 : 3x3 with center:4 edge:1 corner:-2 % Type 3 : 3x3 with center:4 edge:-2 corner:1 % Type 5 : 5x5 laplacian % Type 7 : 7x7 laplacian % Type 15 : 5x5 LoG (sigma approx 1.4) % Type 19 : 9x9 LoG (sigma approx 1.4) % % Sobel:{angle} % Sobel 'Edge' convolution kernel (3x3) % | -1, 0, 1 | % | -2, 0,-2 | % | -1, 0, 1 | % % Roberts:{angle} % Roberts convolution kernel (3x3) % | 0, 0, 0 | % | -1, 1, 0 | % | 0, 0, 0 | % % Prewitt:{angle} % Prewitt Edge convolution kernel (3x3) % | -1, 0, 1 | % | -1, 0, 1 | % | -1, 0, 1 | % % Compass:{angle} % Prewitt's "Compass" convolution kernel (3x3) % | -1, 1, 1 | % | -1,-2, 1 | % | -1, 1, 1 | % % Kirsch:{angle} % Kirsch's "Compass" convolution kernel (3x3) % | -3,-3, 5 | % | -3, 0, 5 | % | -3,-3, 5 | % % FreiChen:{angle} % Frei-Chen Edge Detector is based on a kernel that is similar to % the Sobel Kernel, but is designed to be isotropic. That is it takes % into account the distance of the diagonal in the kernel. % % | 1, 0, -1 | % | sqrt(2), 0, -sqrt(2) | % | 1, 0, -1 | % % FreiChen:{type},{angle} % % Frei-Chen Pre-weighted kernels... % % Type 0: default un-nomalized version shown above. % % Type 1: Orthogonal Kernel (same as type 11 below) % | 1, 0, -1 | % | sqrt(2), 0, -sqrt(2) | / 2*sqrt(2) % | 1, 0, -1 | % % Type 2: Diagonal form of Kernel... % | 1, sqrt(2), 0 | % | sqrt(2), 0, -sqrt(2) | / 2*sqrt(2) % | 0, -sqrt(2) -1 | % % However this kernel is als at the heart of the FreiChen Edge Detection % Process which uses a set of 9 specially weighted kernel. These 9 % kernels not be normalized, but directly applied to the image. The % results is then added together, to produce the intensity of an edge in % a specific direction. The square root of the pixel value can then be % taken as the cosine of the edge, and at least 2 such runs at 90 degrees % from each other, both the direction and the strength of the edge can be % determined. % % Type 10: All 9 of the following pre-weighted kernels... % % Type 11: | 1, 0, -1 | % | sqrt(2), 0, -sqrt(2) | / 2*sqrt(2) % | 1, 0, -1 | % % Type 12: | 1, sqrt(2), 1 | % | 0, 0, 0 | / 2*sqrt(2) % | 1, sqrt(2), 1 | % % Type 13: | sqrt(2), -1, 0 | % | -1, 0, 1 | / 2*sqrt(2) % | 0, 1, -sqrt(2) | % % Type 14: | 0, 1, -sqrt(2) | % | -1, 0, 1 | / 2*sqrt(2) % | sqrt(2), -1, 0 | % % Type 15: | 0, -1, 0 | % | 1, 0, 1 | / 2 % | 0, -1, 0 | % % Type 16: | 1, 0, -1 | % | 0, 0, 0 | / 2 % | -1, 0, 1 | % % Type 17: | 1, -2, 1 | % | -2, 4, -2 | / 6 % | -1, -2, 1 | % % Type 18: | -2, 1, -2 | % | 1, 4, 1 | / 6 % | -2, 1, -2 | % % Type 19: | 1, 1, 1 | % | 1, 1, 1 | / 3 % | 1, 1, 1 | % % The first 4 are for edge detection, the next 4 are for line detection % and the last is to add a average component to the results. % % Using a special type of '-1' will return all 9 pre-weighted kernels % as a multi-kernel list, so that you can use them directly (without % normalization) with the special "-set option:morphology:compose Plus" % setting to apply the full FreiChen Edge Detection Technique. % % If 'type' is large it will be taken to be an actual rotation angle for % the default FreiChen (type 0) kernel. As such FreiChen:45 will look % like a Sobel:45 but with 'sqrt(2)' instead of '2' values. % % WARNING: The above was layed out as per % http://www.math.tau.ac.il/~turkel/notes/edge_detectors.pdf % But rotated 90 degrees so direction is from left rather than the top. % I have yet to find any secondary confirmation of the above. The only % other source found was actual source code at % http://ltswww.epfl.ch/~courstiv/exos_labos/sol3.pdf % Neigher paper defineds the kernels in a way that looks locical or % correct when taken as a whole. % % Boolean Kernels % % Diamond:[{radius}[,{scale}]] % Generate a diamond shaped kernel with given radius to the points. % Kernel size will again be radius*2+1 square and defaults to radius 1, % generating a 3x3 kernel that is slightly larger than a square. % % Square:[{radius}[,{scale}]] % Generate a square shaped kernel of size radius*2+1, and defaulting % to a 3x3 (radius 1). % % Octagon:[{radius}[,{scale}]] % Generate octagonal shaped kernel of given radius and constant scale. % Default radius is 3 producing a 7x7 kernel. A radius of 1 will result % in "Diamond" kernel. % % Disk:[{radius}[,{scale}]] % Generate a binary disk, thresholded at the radius given, the radius % may be a float-point value. Final Kernel size is floor(radius)*2+1 % square. A radius of 5.3 is the default. % % NOTE: That a low radii Disk kernels produce the same results as % many of the previously defined kernels, but differ greatly at larger % radii. Here is a table of equivalences... % "Disk:1" => "Diamond", "Octagon:1", or "Cross:1" % "Disk:1.5" => "Square" % "Disk:2" => "Diamond:2" % "Disk:2.5" => "Octagon" % "Disk:2.9" => "Square:2" % "Disk:3.5" => "Octagon:3" % "Disk:4.5" => "Octagon:4" % "Disk:5.4" => "Octagon:5" % "Disk:6.4" => "Octagon:6" % All other Disk shapes are unique to this kernel, but because a "Disk" % is more circular when using a larger radius, using a larger radius is % preferred over iterating the morphological operation. % % Rectangle:{geometry} % Simply generate a rectangle of 1's with the size given. You can also % specify the location of the 'control point', otherwise the closest % pixel to the center of the rectangle is selected. % % Properly centered and odd sized rectangles work the best. % % Symbol Dilation Kernels % % These kernel is not a good general morphological kernel, but is used % more for highlighting and marking any single pixels in an image using, % a "Dilate" method as appropriate. % % For the same reasons iterating these kernels does not produce the % same result as using a larger radius for the symbol. % % Plus:[{radius}[,{scale}]] % Cross:[{radius}[,{scale}]] % Generate a kernel in the shape of a 'plus' or a 'cross' with % a each arm the length of the given radius (default 2). % % NOTE: "plus:1" is equivalent to a "Diamond" kernel. % % Ring:{radius1},{radius2}[,{scale}] % A ring of the values given that falls between the two radii. % Defaults to a ring of approximataly 3 radius in a 7x7 kernel. % This is the 'edge' pixels of the default "Disk" kernel, % More specifically, "Ring" -> "Ring:2.5,3.5,1.0" % % Hit and Miss Kernels % % Peak:radius1,radius2 % Find any peak larger than the pixels the fall between the two radii. % The default ring of pixels is as per "Ring". % Edges % Find flat orthogonal edges of a binary shape % Corners % Find 90 degree corners of a binary shape % Diagonals:type % A special kernel to thin the 'outside' of diagonals % LineEnds:type % Find end points of lines (for pruning a skeletion) % Two types of lines ends (default to both) can be searched for % Type 0: All line ends % Type 1: single kernel for 4-conneected line ends % Type 2: single kernel for simple line ends % LineJunctions % Find three line junctions (within a skeletion) % Type 0: all line junctions % Type 1: Y Junction kernel % Type 2: Diagonal T Junction kernel % Type 3: Orthogonal T Junction kernel % Type 4: Diagonal X Junction kernel % Type 5: Orthogonal + Junction kernel % Ridges:type % Find single pixel ridges or thin lines % Type 1: Fine single pixel thick lines and ridges % Type 2: Find two pixel thick lines and ridges % ConvexHull % Octagonal Thickening Kernel, to generate convex hulls of 45 degrees % Skeleton:type % Traditional skeleton generating kernels. % Type 1: Tradional Skeleton kernel (4 connected skeleton) % Type 2: HIPR2 Skeleton kernel (8 connected skeleton) % Type 3: Thinning skeleton based on a ressearch paper by % Dan S. Bloomberg (Default Type) % ThinSE:type % A huge variety of Thinning Kernels designed to preserve conectivity. % many other kernel sets use these kernels as source definitions. % Type numbers are 41-49, 81-89, 481, and 482 which are based on % the super and sub notations used in the source research paper. % % Distance Measuring Kernels % % Different types of distance measuring methods, which are used with the % a 'Distance' morphology method for generating a gradient based on % distance from an edge of a binary shape, though there is a technique % for handling a anti-aliased shape. % % See the 'Distance' Morphological Method, for information of how it is % applied. % % Chebyshev:[{radius}][x{scale}[%!]] % Chebyshev Distance (also known as Tchebychev or Chessboard distance) % is a value of one to any neighbour, orthogonal or diagonal. One why % of thinking of it is the number of squares a 'King' or 'Queen' in % chess needs to traverse reach any other position on a chess board. % It results in a 'square' like distance function, but one where % diagonals are given a value that is closer than expected. % % Manhattan:[{radius}][x{scale}[%!]] % Manhattan Distance (also known as Rectilinear, City Block, or the Taxi % Cab distance metric), it is the distance needed when you can only % travel in horizontal or vertical directions only. It is the % distance a 'Rook' in chess would have to travel, and results in a % diamond like distances, where diagonals are further than expected. % % Octagonal:[{radius}][x{scale}[%!]] % An interleving of Manhatten and Chebyshev metrics producing an % increasing octagonally shaped distance. Distances matches those of % the "Octagon" shaped kernel of the same radius. The minimum radius % and default is 2, producing a 5x5 kernel. % % Euclidean:[{radius}][x{scale}[%!]] % Euclidean distance is the 'direct' or 'as the crow flys' distance. % However by default the kernel size only has a radius of 1, which % limits the distance to 'Knight' like moves, with only orthogonal and % diagonal measurements being correct. As such for the default kernel % you will get octagonal like distance function. % % However using a larger radius such as "Euclidean:4" you will get a % much smoother distance gradient from the edge of the shape. Especially % if the image is pre-processed to include any anti-aliasing pixels. % Of course a larger kernel is slower to use, and not always needed. % % The first three Distance Measuring Kernels will only generate distances % of exact multiples of {scale} in binary images. As such you can use a % scale of 1 without loosing any information. However you also need some % scaling when handling non-binary anti-aliased shapes. % % The "Euclidean" Distance Kernel however does generate a non-integer % fractional results, and as such scaling is vital even for binary shapes. % */ MagickExport KernelInfo *AcquireKernelBuiltIn(const KernelInfoType type, const GeometryInfo *args) { KernelInfo *kernel; register ssize_t i; register ssize_t u, v; double nan = sqrt((double)-1.0); /* Special Value : Not A Number */ /* Generate a new empty kernel if needed */ kernel=(KernelInfo *) NULL; switch(type) { case UndefinedKernel: /* These should not call this function */ case UserDefinedKernel: assert("Should not call this function" != (char *)NULL); break; case LaplacianKernel: /* Named Descrete Convolution Kernels */ case SobelKernel: /* these are defined using other kernels */ case RobertsKernel: case PrewittKernel: case CompassKernel: case KirschKernel: case FreiChenKernel: case EdgesKernel: /* Hit and Miss kernels */ case CornersKernel: case DiagonalsKernel: case LineEndsKernel: case LineJunctionsKernel: case RidgesKernel: case ConvexHullKernel: case SkeletonKernel: case ThinSEKernel: break; /* A pre-generated kernel is not needed */ #if 0 /* set to 1 to do a compile-time check that we haven't missed anything */ case UnityKernel: case GaussianKernel: case DoGKernel: case LoGKernel: case BlurKernel: case CometKernel: case BinomialKernel: case DiamondKernel: case SquareKernel: case RectangleKernel: case OctagonKernel: case DiskKernel: case PlusKernel: case CrossKernel: case RingKernel: case PeaksKernel: case ChebyshevKernel: case ManhattanKernel: case OctangonalKernel: case EuclideanKernel: #else default: #endif /* Generate the base Kernel Structure */ kernel=(KernelInfo *) AcquireMagickMemory(sizeof(*kernel)); if (kernel == (KernelInfo *) NULL) return(kernel); (void) ResetMagickMemory(kernel,0,sizeof(*kernel)); kernel->minimum = kernel->maximum = kernel->angle = 0.0; kernel->negative_range = kernel->positive_range = 0.0; kernel->type = type; kernel->next = (KernelInfo *) NULL; kernel->signature = MagickSignature; break; } switch(type) { /* Convolution Kernels */ case UnityKernel: { kernel->height = kernel->width = (size_t) 1; kernel->x = kernel->y = (ssize_t) 0; kernel->values=(MagickRealType *) MagickAssumeAligned( AcquireAlignedMemory(1,sizeof(*kernel->values))); if (kernel->values == (MagickRealType *) NULL) return(DestroyKernelInfo(kernel)); kernel->maximum = kernel->values[0] = args->rho; break; } break; case GaussianKernel: case DoGKernel: case LoGKernel: { double sigma = fabs(args->sigma), sigma2 = fabs(args->xi), A, B, R; if ( args->rho >= 1.0 ) kernel->width = (size_t)args->rho*2+1; else if ( (type != DoGKernel) || (sigma >= sigma2) ) kernel->width = GetOptimalKernelWidth2D(args->rho,sigma); else kernel->width = GetOptimalKernelWidth2D(args->rho,sigma2); kernel->height = kernel->width; kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; kernel->values=(MagickRealType *) MagickAssumeAligned( AcquireAlignedMemory(kernel->width,kernel->height* sizeof(*kernel->values))); if (kernel->values == (MagickRealType *) NULL) return(DestroyKernelInfo(kernel)); /* WARNING: The following generates a 'sampled gaussian' kernel. * What we really want is a 'discrete gaussian' kernel. * * How to do this is I don't know, but appears to be basied on the * Error Function 'erf()' (intergral of a gaussian) */ if ( type == GaussianKernel || type == DoGKernel ) { /* Calculate a Gaussian, OR positive half of a DoG */ if ( sigma > MagickEpsilon ) { A = 1.0/(2.0*sigma*sigma); /* simplify loop expressions */ B = (double) (1.0/(Magick2PI*sigma*sigma)); for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) kernel->values[i] = exp(-((double)(u*u+v*v))*A)*B; } else /* limiting case - a unity (normalized Dirac) kernel */ { (void) ResetMagickMemory(kernel->values,0, (size_t) kernel->width*kernel->height*sizeof(double)); kernel->values[kernel->x+kernel->y*kernel->width] = 1.0; } } if ( type == DoGKernel ) { /* Subtract a Negative Gaussian for "Difference of Gaussian" */ if ( sigma2 > MagickEpsilon ) { sigma = sigma2; /* simplify loop expressions */ A = 1.0/(2.0*sigma*sigma); B = (double) (1.0/(Magick2PI*sigma*sigma)); for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) kernel->values[i] -= exp(-((double)(u*u+v*v))*A)*B; } else /* limiting case - a unity (normalized Dirac) kernel */ kernel->values[kernel->x+kernel->y*kernel->width] -= 1.0; } if ( type == LoGKernel ) { /* Calculate a Laplacian of a Gaussian - Or Mexician Hat */ if ( sigma > MagickEpsilon ) { A = 1.0/(2.0*sigma*sigma); /* simplify loop expressions */ B = (double) (1.0/(MagickPI*sigma*sigma*sigma*sigma)); for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) { R = ((double)(u*u+v*v))*A; kernel->values[i] = (1-R)*exp(-R)*B; } } else /* special case - generate a unity kernel */ { (void) ResetMagickMemory(kernel->values,0, (size_t) kernel->width*kernel->height*sizeof(double)); kernel->values[kernel->x+kernel->y*kernel->width] = 1.0; } } /* Note the above kernels may have been 'clipped' by a user defined ** radius, producing a smaller (darker) kernel. Also for very small ** sigma's (> 0.1) the central value becomes larger than one, and thus ** producing a very bright kernel. ** ** Normalization will still be needed. */ /* Normalize the 2D Gaussian Kernel ** ** NB: a CorrelateNormalize performs a normal Normalize if ** there are no negative values. */ CalcKernelMetaData(kernel); /* the other kernel meta-data */ ScaleKernelInfo(kernel, 1.0, CorrelateNormalizeValue); break; } case BlurKernel: { double sigma = fabs(args->sigma), alpha, beta; if ( args->rho >= 1.0 ) kernel->width = (size_t)args->rho*2+1; else kernel->width = GetOptimalKernelWidth1D(args->rho,sigma); kernel->height = 1; kernel->x = (ssize_t) (kernel->width-1)/2; kernel->y = 0; kernel->negative_range = kernel->positive_range = 0.0; kernel->values=(MagickRealType *) MagickAssumeAligned( AcquireAlignedMemory(kernel->width,kernel->height* sizeof(*kernel->values))); if (kernel->values == (MagickRealType *) NULL) return(DestroyKernelInfo(kernel)); #if 1 #define KernelRank 3 /* Formula derived from GetBlurKernel() in "effect.c" (plus bug fix). ** It generates a gaussian 3 times the width, and compresses it into ** the expected range. This produces a closer normalization of the ** resulting kernel, especially for very low sigma values. ** As such while wierd it is prefered. ** ** I am told this method originally came from Photoshop. ** ** A properly normalized curve is generated (apart from edge clipping) ** even though we later normalize the result (for edge clipping) ** to allow the correct generation of a "Difference of Blurs". */ /* initialize */ v = (ssize_t) (kernel->width*KernelRank-1)/2; /* start/end points to fit range */ (void) ResetMagickMemory(kernel->values,0, (size_t) kernel->width*kernel->height*sizeof(double)); /* Calculate a Positive 1D Gaussian */ if ( sigma > MagickEpsilon ) { sigma *= KernelRank; /* simplify loop expressions */ alpha = 1.0/(2.0*sigma*sigma); beta= (double) (1.0/(MagickSQ2PI*sigma )); for ( u=-v; u <= v; u++) { kernel->values[(u+v)/KernelRank] += exp(-((double)(u*u))*alpha)*beta; } } else /* special case - generate a unity kernel */ kernel->values[kernel->x+kernel->y*kernel->width] = 1.0; #else /* Direct calculation without curve averaging This is equivelent to a KernelRank of 1 */ /* Calculate a Positive Gaussian */ if ( sigma > MagickEpsilon ) { alpha = 1.0/(2.0*sigma*sigma); /* simplify loop expressions */ beta = 1.0/(MagickSQ2PI*sigma); for ( i=0, u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) kernel->values[i] = exp(-((double)(u*u))*alpha)*beta; } else /* special case - generate a unity kernel */ { (void) ResetMagickMemory(kernel->values,0, (size_t) kernel->width*kernel->height*sizeof(double)); kernel->values[kernel->x+kernel->y*kernel->width] = 1.0; } #endif /* Note the above kernel may have been 'clipped' by a user defined ** radius, producing a smaller (darker) kernel. Also for very small ** sigma's (> 0.1) the central value becomes larger than one, as a ** result of not generating a actual 'discrete' kernel, and thus ** producing a very bright 'impulse'. ** ** Becuase of these two factors Normalization is required! */ /* Normalize the 1D Gaussian Kernel ** ** NB: a CorrelateNormalize performs a normal Normalize if ** there are no negative values. */ CalcKernelMetaData(kernel); /* the other kernel meta-data */ ScaleKernelInfo(kernel, 1.0, CorrelateNormalizeValue); /* rotate the 1D kernel by given angle */ RotateKernelInfo(kernel, args->xi ); break; } case CometKernel: { double sigma = fabs(args->sigma), A; if ( args->rho < 1.0 ) kernel->width = (GetOptimalKernelWidth1D(args->rho,sigma)-1)/2+1; else kernel->width = (size_t)args->rho; kernel->x = kernel->y = 0; kernel->height = 1; kernel->negative_range = kernel->positive_range = 0.0; kernel->values=(MagickRealType *) MagickAssumeAligned( AcquireAlignedMemory(kernel->width,kernel->height* sizeof(*kernel->values))); if (kernel->values == (MagickRealType *) NULL) return(DestroyKernelInfo(kernel)); /* A comet blur is half a 1D gaussian curve, so that the object is ** blurred in one direction only. This may not be quite the right ** curve to use so may change in the future. The function must be ** normalised after generation, which also resolves any clipping. ** ** As we are normalizing and not subtracting gaussians, ** there is no need for a divisor in the gaussian formula ** ** It is less comples */ if ( sigma > MagickEpsilon ) { #if 1 #define KernelRank 3 v = (ssize_t) kernel->width*KernelRank; /* start/end points */ (void) ResetMagickMemory(kernel->values,0, (size_t) kernel->width*sizeof(double)); sigma *= KernelRank; /* simplify the loop expression */ A = 1.0/(2.0*sigma*sigma); /* B = 1.0/(MagickSQ2PI*sigma); */ for ( u=0; u < v; u++) { kernel->values[u/KernelRank] += exp(-((double)(u*u))*A); /* exp(-((double)(i*i))/2.0*sigma*sigma)/(MagickSQ2PI*sigma); */ } for (i=0; i < (ssize_t) kernel->width; i++) kernel->positive_range += kernel->values[i]; #else A = 1.0/(2.0*sigma*sigma); /* simplify the loop expression */ /* B = 1.0/(MagickSQ2PI*sigma); */ for ( i=0; i < (ssize_t) kernel->width; i++) kernel->positive_range += kernel->values[i] = exp(-((double)(i*i))*A); /* exp(-((double)(i*i))/2.0*sigma*sigma)/(MagickSQ2PI*sigma); */ #endif } else /* special case - generate a unity kernel */ { (void) ResetMagickMemory(kernel->values,0, (size_t) kernel->width*kernel->height*sizeof(double)); kernel->values[kernel->x+kernel->y*kernel->width] = 1.0; kernel->positive_range = 1.0; } kernel->minimum = 0.0; kernel->maximum = kernel->values[0]; kernel->negative_range = 0.0; ScaleKernelInfo(kernel, 1.0, NormalizeValue); /* Normalize */ RotateKernelInfo(kernel, args->xi); /* Rotate by angle */ break; } case BinomialKernel: { size_t order_f; if (args->rho < 1.0) kernel->width = kernel->height = 3; /* default radius = 1 */ else kernel->width = kernel->height = ((size_t)args->rho)*2+1; kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; order_f = fact(kernel->width-1); kernel->values=(MagickRealType *) MagickAssumeAligned( AcquireAlignedMemory(kernel->width,kernel->height* sizeof(*kernel->values))); if (kernel->values == (MagickRealType *) NULL) return(DestroyKernelInfo(kernel)); /* set all kernel values within diamond area to scale given */ for ( i=0, v=0; v < (ssize_t)kernel->height; v++) { size_t alpha = order_f / ( fact((size_t) v) * fact(kernel->height-v-1) ); for ( u=0; u < (ssize_t)kernel->width; u++, i++) kernel->positive_range += kernel->values[i] = (double) (alpha * order_f / ( fact((size_t) u) * fact(kernel->height-u-1) )); } kernel->minimum = 1.0; kernel->maximum = kernel->values[kernel->x+kernel->y*kernel->width]; kernel->negative_range = 0.0; break; } /* Convolution Kernels - Well Known Named Constant Kernels */ case LaplacianKernel: { switch ( (int) args->rho ) { case 0: default: /* laplacian square filter -- default */ kernel=ParseKernelArray("3: -1,-1,-1 -1,8,-1 -1,-1,-1"); break; case 1: /* laplacian diamond filter */ kernel=ParseKernelArray("3: 0,-1,0 -1,4,-1 0,-1,0"); break; case 2: kernel=ParseKernelArray("3: -2,1,-2 1,4,1 -2,1,-2"); break; case 3: kernel=ParseKernelArray("3: 1,-2,1 -2,4,-2 1,-2,1"); break; case 5: /* a 5x5 laplacian */ kernel=ParseKernelArray( "5: -4,-1,0,-1,-4 -1,2,3,2,-1 0,3,4,3,0 -1,2,3,2,-1 -4,-1,0,-1,-4"); break; case 7: /* a 7x7 laplacian */ kernel=ParseKernelArray( "7:-10,-5,-2,-1,-2,-5,-10 -5,0,3,4,3,0,-5 -2,3,6,7,6,3,-2 -1,4,7,8,7,4,-1 -2,3,6,7,6,3,-2 -5,0,3,4,3,0,-5 -10,-5,-2,-1,-2,-5,-10" ); break; case 15: /* a 5x5 LoG (sigma approx 1.4) */ kernel=ParseKernelArray( "5: 0,0,-1,0,0 0,-1,-2,-1,0 -1,-2,16,-2,-1 0,-1,-2,-1,0 0,0,-1,0,0"); break; case 19: /* a 9x9 LoG (sigma approx 1.4) */ /* http://www.cscjournals.org/csc/manuscript/Journals/IJIP/volume3/Issue1/IJIP-15.pdf */ kernel=ParseKernelArray( "9: 0,-1,-1,-2,-2,-2,-1,-1,0 -1,-2,-4,-5,-5,-5,-4,-2,-1 -1,-4,-5,-3,-0,-3,-5,-4,-1 -2,-5,-3,12,24,12,-3,-5,-2 -2,-5,-0,24,40,24,-0,-5,-2 -2,-5,-3,12,24,12,-3,-5,-2 -1,-4,-5,-3,-0,-3,-5,-4,-1 -1,-2,-4,-5,-5,-5,-4,-2,-1 0,-1,-1,-2,-2,-2,-1,-1,0"); break; } if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; break; } case SobelKernel: { /* Simple Sobel Kernel */ kernel=ParseKernelArray("3: 1,0,-1 2,0,-2 1,0,-1"); if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; RotateKernelInfo(kernel, args->rho); break; } case RobertsKernel: { kernel=ParseKernelArray("3: 0,0,0 1,-1,0 0,0,0"); if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; RotateKernelInfo(kernel, args->rho); break; } case PrewittKernel: { kernel=ParseKernelArray("3: 1,0,-1 1,0,-1 1,0,-1"); if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; RotateKernelInfo(kernel, args->rho); break; } case CompassKernel: { kernel=ParseKernelArray("3: 1,1,-1 1,-2,-1 1,1,-1"); if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; RotateKernelInfo(kernel, args->rho); break; } case KirschKernel: { kernel=ParseKernelArray("3: 5,-3,-3 5,0,-3 5,-3,-3"); if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; RotateKernelInfo(kernel, args->rho); break; } case FreiChenKernel: /* Direction is set to be left to right positive */ /* http://www.math.tau.ac.il/~turkel/notes/edge_detectors.pdf -- RIGHT? */ /* http://ltswww.epfl.ch/~courstiv/exos_labos/sol3.pdf -- WRONG? */ { switch ( (int) args->rho ) { default: case 0: kernel=ParseKernelArray("3: 1,0,-1 2,0,-2 1,0,-1"); if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; kernel->values[3] = +(MagickRealType) MagickSQ2; kernel->values[5] = -(MagickRealType) MagickSQ2; CalcKernelMetaData(kernel); /* recalculate meta-data */ break; case 2: kernel=ParseKernelArray("3: 1,2,0 2,0,-2 0,-2,-1"); if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; kernel->values[1] = kernel->values[3]= +(MagickRealType) MagickSQ2; kernel->values[5] = kernel->values[7]= -(MagickRealType) MagickSQ2; CalcKernelMetaData(kernel); /* recalculate meta-data */ ScaleKernelInfo(kernel, (double) (1.0/2.0*MagickSQ2), NoValue); break; case 10: kernel=AcquireKernelInfo("FreiChen:11;FreiChen:12;FreiChen:13;FreiChen:14;FreiChen:15;FreiChen:16;FreiChen:17;FreiChen:18;FreiChen:19"); if (kernel == (KernelInfo *) NULL) return(kernel); break; case 1: case 11: kernel=ParseKernelArray("3: 1,0,-1 2,0,-2 1,0,-1"); if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; kernel->values[3] = +(MagickRealType) MagickSQ2; kernel->values[5] = -(MagickRealType) MagickSQ2; CalcKernelMetaData(kernel); /* recalculate meta-data */ ScaleKernelInfo(kernel, (double) (1.0/2.0*MagickSQ2), NoValue); break; case 12: kernel=ParseKernelArray("3: 1,2,1 0,0,0 1,2,1"); if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; kernel->values[1] = +(double) MagickSQ2; kernel->values[7] = +(double) MagickSQ2; CalcKernelMetaData(kernel); ScaleKernelInfo(kernel, (double) (1.0/2.0*MagickSQ2), NoValue); break; case 13: kernel=ParseKernelArray("3: 2,-1,0 -1,0,1 0,1,-2"); if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; kernel->values[0] = +(MagickRealType) MagickSQ2; kernel->values[8] = -(MagickRealType) MagickSQ2; CalcKernelMetaData(kernel); ScaleKernelInfo(kernel, (double) (1.0/2.0*MagickSQ2), NoValue); break; case 14: kernel=ParseKernelArray("3: 0,1,-2 -1,0,1 2,-1,0"); if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; kernel->values[2] = -(MagickRealType) MagickSQ2; kernel->values[6] = +(MagickRealType) MagickSQ2; CalcKernelMetaData(kernel); ScaleKernelInfo(kernel, (double) (1.0/2.0*MagickSQ2), NoValue); break; case 15: kernel=ParseKernelArray("3: 0,-1,0 1,0,1 0,-1,0"); if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; ScaleKernelInfo(kernel, 1.0/2.0, NoValue); break; case 16: kernel=ParseKernelArray("3: 1,0,-1 0,0,0 -1,0,1"); if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; ScaleKernelInfo(kernel, 1.0/2.0, NoValue); break; case 17: kernel=ParseKernelArray("3: 1,-2,1 -2,4,-2 -1,-2,1"); if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; ScaleKernelInfo(kernel, 1.0/6.0, NoValue); break; case 18: kernel=ParseKernelArray("3: -2,1,-2 1,4,1 -2,1,-2"); if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; ScaleKernelInfo(kernel, 1.0/6.0, NoValue); break; case 19: kernel=ParseKernelArray("3: 1,1,1 1,1,1 1,1,1"); if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; ScaleKernelInfo(kernel, 1.0/3.0, NoValue); break; } if ( fabs(args->sigma) >= MagickEpsilon ) /* Rotate by correctly supplied 'angle' */ RotateKernelInfo(kernel, args->sigma); else if ( args->rho > 30.0 || args->rho < -30.0 ) /* Rotate by out of bounds 'type' */ RotateKernelInfo(kernel, args->rho); break; } /* Boolean or Shaped Kernels */ case DiamondKernel: { if (args->rho < 1.0) kernel->width = kernel->height = 3; /* default radius = 1 */ else kernel->width = kernel->height = ((size_t)args->rho)*2+1; kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; kernel->values=(MagickRealType *) MagickAssumeAligned( AcquireAlignedMemory(kernel->width,kernel->height* sizeof(*kernel->values))); if (kernel->values == (MagickRealType *) NULL) return(DestroyKernelInfo(kernel)); /* set all kernel values within diamond area to scale given */ for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) if ( (labs((long) u)+labs((long) v)) <= (long) kernel->x) kernel->positive_range += kernel->values[i] = args->sigma; else kernel->values[i] = nan; kernel->minimum = kernel->maximum = args->sigma; /* a flat shape */ break; } case SquareKernel: case RectangleKernel: { double scale; if ( type == SquareKernel ) { if (args->rho < 1.0) kernel->width = kernel->height = 3; /* default radius = 1 */ else kernel->width = kernel->height = (size_t) (2*args->rho+1); kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; scale = args->sigma; } else { /* NOTE: user defaults set in "AcquireKernelInfo()" */ if ( args->rho < 1.0 || args->sigma < 1.0 ) return(DestroyKernelInfo(kernel)); /* invalid args given */ kernel->width = (size_t)args->rho; kernel->height = (size_t)args->sigma; if ( args->xi < 0.0 || args->xi > (double)kernel->width || args->psi < 0.0 || args->psi > (double)kernel->height ) return(DestroyKernelInfo(kernel)); /* invalid args given */ kernel->x = (ssize_t) args->xi; kernel->y = (ssize_t) args->psi; scale = 1.0; } kernel->values=(MagickRealType *) MagickAssumeAligned( AcquireAlignedMemory(kernel->width,kernel->height* sizeof(*kernel->values))); if (kernel->values == (MagickRealType *) NULL) return(DestroyKernelInfo(kernel)); /* set all kernel values to scale given */ u=(ssize_t) (kernel->width*kernel->height); for ( i=0; i < u; i++) kernel->values[i] = scale; kernel->minimum = kernel->maximum = scale; /* a flat shape */ kernel->positive_range = scale*u; break; } case OctagonKernel: { if (args->rho < 1.0) kernel->width = kernel->height = 5; /* default radius = 2 */ else kernel->width = kernel->height = ((size_t)args->rho)*2+1; kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; kernel->values=(MagickRealType *) MagickAssumeAligned( AcquireAlignedMemory(kernel->width,kernel->height* sizeof(*kernel->values))); if (kernel->values == (MagickRealType *) NULL) return(DestroyKernelInfo(kernel)); for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) if ( (labs((long) u)+labs((long) v)) <= ((long)kernel->x + (long)(kernel->x/2)) ) kernel->positive_range += kernel->values[i] = args->sigma; else kernel->values[i] = nan; kernel->minimum = kernel->maximum = args->sigma; /* a flat shape */ break; } case DiskKernel: { ssize_t limit = (ssize_t)(args->rho*args->rho); if (args->rho < 0.4) /* default radius approx 4.3 */ kernel->width = kernel->height = 9L, limit = 18L; else kernel->width = kernel->height = (size_t)fabs(args->rho)*2+1; kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; kernel->values=(MagickRealType *) MagickAssumeAligned( AcquireAlignedMemory(kernel->width,kernel->height* sizeof(*kernel->values))); if (kernel->values == (MagickRealType *) NULL) return(DestroyKernelInfo(kernel)); for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) if ((u*u+v*v) <= limit) kernel->positive_range += kernel->values[i] = args->sigma; else kernel->values[i] = nan; kernel->minimum = kernel->maximum = args->sigma; /* a flat shape */ break; } case PlusKernel: { if (args->rho < 1.0) kernel->width = kernel->height = 5; /* default radius 2 */ else kernel->width = kernel->height = ((size_t)args->rho)*2+1; kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; kernel->values=(MagickRealType *) MagickAssumeAligned( AcquireAlignedMemory(kernel->width,kernel->height* sizeof(*kernel->values))); if (kernel->values == (MagickRealType *) NULL) return(DestroyKernelInfo(kernel)); /* set all kernel values along axises to given scale */ for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) kernel->values[i] = (u == 0 || v == 0) ? args->sigma : nan; kernel->minimum = kernel->maximum = args->sigma; /* a flat shape */ kernel->positive_range = args->sigma*(kernel->width*2.0 - 1.0); break; } case CrossKernel: { if (args->rho < 1.0) kernel->width = kernel->height = 5; /* default radius 2 */ else kernel->width = kernel->height = ((size_t)args->rho)*2+1; kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; kernel->values=(MagickRealType *) MagickAssumeAligned( AcquireAlignedMemory(kernel->width,kernel->height* sizeof(*kernel->values))); if (kernel->values == (MagickRealType *) NULL) return(DestroyKernelInfo(kernel)); /* set all kernel values along axises to given scale */ for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) kernel->values[i] = (u == v || u == -v) ? args->sigma : nan; kernel->minimum = kernel->maximum = args->sigma; /* a flat shape */ kernel->positive_range = args->sigma*(kernel->width*2.0 - 1.0); break; } /* HitAndMiss Kernels */ case RingKernel: case PeaksKernel: { ssize_t limit1, limit2, scale; if (args->rho < args->sigma) { kernel->width = ((size_t)args->sigma)*2+1; limit1 = (ssize_t)(args->rho*args->rho); limit2 = (ssize_t)(args->sigma*args->sigma); } else { kernel->width = ((size_t)args->rho)*2+1; limit1 = (ssize_t)(args->sigma*args->sigma); limit2 = (ssize_t)(args->rho*args->rho); } if ( limit2 <= 0 ) kernel->width = 7L, limit1 = 7L, limit2 = 11L; kernel->height = kernel->width; kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; kernel->values=(MagickRealType *) MagickAssumeAligned( AcquireAlignedMemory(kernel->width,kernel->height* sizeof(*kernel->values))); if (kernel->values == (MagickRealType *) NULL) return(DestroyKernelInfo(kernel)); /* set a ring of points of 'scale' ( 0.0 for PeaksKernel ) */ scale = (ssize_t) (( type == PeaksKernel) ? 0.0 : args->xi); for ( i=0, v= -kernel->y; v <= (ssize_t)kernel->y; v++) for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) { ssize_t radius=u*u+v*v; if (limit1 < radius && radius <= limit2) kernel->positive_range += kernel->values[i] = (double) scale; else kernel->values[i] = nan; } kernel->minimum = kernel->maximum = (double) scale; if ( type == PeaksKernel ) { /* set the central point in the middle */ kernel->values[kernel->x+kernel->y*kernel->width] = 1.0; kernel->positive_range = 1.0; kernel->maximum = 1.0; } break; } case EdgesKernel: { kernel=AcquireKernelInfo("ThinSE:482"); if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; ExpandMirrorKernelInfo(kernel); /* mirror expansion of kernels */ break; } case CornersKernel: { kernel=AcquireKernelInfo("ThinSE:87"); if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; ExpandRotateKernelInfo(kernel, 90.0); /* Expand 90 degree rotations */ break; } case DiagonalsKernel: { switch ( (int) args->rho ) { case 0: default: { KernelInfo *new_kernel; kernel=ParseKernelArray("3: 0,0,0 0,-,1 1,1,-"); if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; new_kernel=ParseKernelArray("3: 0,0,1 0,-,1 0,1,-"); if (new_kernel == (KernelInfo *) NULL) return(DestroyKernelInfo(kernel)); new_kernel->type = type; LastKernelInfo(kernel)->next = new_kernel; ExpandMirrorKernelInfo(kernel); return(kernel); } case 1: kernel=ParseKernelArray("3: 0,0,0 0,-,1 1,1,-"); break; case 2: kernel=ParseKernelArray("3: 0,0,1 0,-,1 0,1,-"); break; } if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; RotateKernelInfo(kernel, args->sigma); break; } case LineEndsKernel: { /* Kernels for finding the end of thin lines */ switch ( (int) args->rho ) { case 0: default: /* set of kernels to find all end of lines */ return(AcquireKernelInfo("LineEnds:1>;LineEnds:2>")); case 1: /* kernel for 4-connected line ends - no rotation */ kernel=ParseKernelArray("3: 0,0,- 0,1,1 0,0,-"); break; case 2: /* kernel to add for 8-connected lines - no rotation */ kernel=ParseKernelArray("3: 0,0,0 0,1,0 0,0,1"); break; case 3: /* kernel to add for orthogonal line ends - does not find corners */ kernel=ParseKernelArray("3: 0,0,0 0,1,1 0,0,0"); break; case 4: /* traditional line end - fails on last T end */ kernel=ParseKernelArray("3: 0,0,0 0,1,- 0,0,-"); break; } if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; RotateKernelInfo(kernel, args->sigma); break; } case LineJunctionsKernel: { /* kernels for finding the junctions of multiple lines */ switch ( (int) args->rho ) { case 0: default: /* set of kernels to find all line junctions */ return(AcquireKernelInfo("LineJunctions:1@;LineJunctions:2>")); case 1: /* Y Junction */ kernel=ParseKernelArray("3: 1,-,1 -,1,- -,1,-"); break; case 2: /* Diagonal T Junctions */ kernel=ParseKernelArray("3: 1,-,- -,1,- 1,-,1"); break; case 3: /* Orthogonal T Junctions */ kernel=ParseKernelArray("3: -,-,- 1,1,1 -,1,-"); break; case 4: /* Diagonal X Junctions */ kernel=ParseKernelArray("3: 1,-,1 -,1,- 1,-,1"); break; case 5: /* Orthogonal X Junctions - minimal diamond kernel */ kernel=ParseKernelArray("3: -,1,- 1,1,1 -,1,-"); break; } if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; RotateKernelInfo(kernel, args->sigma); break; } case RidgesKernel: { /* Ridges - Ridge finding kernels */ KernelInfo *new_kernel; switch ( (int) args->rho ) { case 1: default: kernel=ParseKernelArray("3x1:0,1,0"); if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; ExpandRotateKernelInfo(kernel, 90.0); /* 2 rotated kernels (symmetrical) */ break; case 2: kernel=ParseKernelArray("4x1:0,1,1,0"); if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; ExpandRotateKernelInfo(kernel, 90.0); /* 4 rotated kernels */ /* Kernels to find a stepped 'thick' line, 4 rotates + mirrors */ /* Unfortunatally we can not yet rotate a non-square kernel */ /* But then we can't flip a non-symetrical kernel either */ new_kernel=ParseKernelArray("4x3+1+1:0,1,1,- -,1,1,- -,1,1,0"); if (new_kernel == (KernelInfo *) NULL) return(DestroyKernelInfo(kernel)); new_kernel->type = type; LastKernelInfo(kernel)->next = new_kernel; new_kernel=ParseKernelArray("4x3+2+1:0,1,1,- -,1,1,- -,1,1,0"); if (new_kernel == (KernelInfo *) NULL) return(DestroyKernelInfo(kernel)); new_kernel->type = type; LastKernelInfo(kernel)->next = new_kernel; new_kernel=ParseKernelArray("4x3+1+1:-,1,1,0 -,1,1,- 0,1,1,-"); if (new_kernel == (KernelInfo *) NULL) return(DestroyKernelInfo(kernel)); new_kernel->type = type; LastKernelInfo(kernel)->next = new_kernel; new_kernel=ParseKernelArray("4x3+2+1:-,1,1,0 -,1,1,- 0,1,1,-"); if (new_kernel == (KernelInfo *) NULL) return(DestroyKernelInfo(kernel)); new_kernel->type = type; LastKernelInfo(kernel)->next = new_kernel; new_kernel=ParseKernelArray("3x4+1+1:0,-,- 1,1,1 1,1,1 -,-,0"); if (new_kernel == (KernelInfo *) NULL) return(DestroyKernelInfo(kernel)); new_kernel->type = type; LastKernelInfo(kernel)->next = new_kernel; new_kernel=ParseKernelArray("3x4+1+2:0,-,- 1,1,1 1,1,1 -,-,0"); if (new_kernel == (KernelInfo *) NULL) return(DestroyKernelInfo(kernel)); new_kernel->type = type; LastKernelInfo(kernel)->next = new_kernel; new_kernel=ParseKernelArray("3x4+1+1:-,-,0 1,1,1 1,1,1 0,-,-"); if (new_kernel == (KernelInfo *) NULL) return(DestroyKernelInfo(kernel)); new_kernel->type = type; LastKernelInfo(kernel)->next = new_kernel; new_kernel=ParseKernelArray("3x4+1+2:-,-,0 1,1,1 1,1,1 0,-,-"); if (new_kernel == (KernelInfo *) NULL) return(DestroyKernelInfo(kernel)); new_kernel->type = type; LastKernelInfo(kernel)->next = new_kernel; break; } break; } case ConvexHullKernel: { KernelInfo *new_kernel; /* first set of 8 kernels */ kernel=ParseKernelArray("3: 1,1,- 1,0,- 1,-,0"); if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; ExpandRotateKernelInfo(kernel, 90.0); /* append the mirror versions too - no flip function yet */ new_kernel=ParseKernelArray("3: 1,1,1 1,0,- -,-,0"); if (new_kernel == (KernelInfo *) NULL) return(DestroyKernelInfo(kernel)); new_kernel->type = type; ExpandRotateKernelInfo(new_kernel, 90.0); LastKernelInfo(kernel)->next = new_kernel; break; } case SkeletonKernel: { switch ( (int) args->rho ) { case 1: default: /* Traditional Skeleton... ** A cyclically rotated single kernel */ kernel=AcquireKernelInfo("ThinSE:482"); if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; ExpandRotateKernelInfo(kernel, 45.0); /* 8 rotations */ break; case 2: /* HIPR Variation of the cyclic skeleton ** Corners of the traditional method made more forgiving, ** but the retain the same cyclic order. */ kernel=AcquireKernelInfo("ThinSE:482; ThinSE:87x90;"); if (kernel == (KernelInfo *) NULL) return(kernel); if (kernel->next == (KernelInfo *) NULL) return(DestroyKernelInfo(kernel)); kernel->type = type; kernel->next->type = type; ExpandRotateKernelInfo(kernel, 90.0); /* 4 rotations of the 2 kernels */ break; case 3: /* Dan Bloomberg Skeleton, from his paper on 3x3 thinning SE's ** "Connectivity-Preserving Morphological Image Thransformations" ** by Dan S. Bloomberg, available on Leptonica, Selected Papers, ** http://www.leptonica.com/papers/conn.pdf */ kernel=AcquireKernelInfo( "ThinSE:41; ThinSE:42; ThinSE:43"); if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; kernel->next->type = type; kernel->next->next->type = type; ExpandMirrorKernelInfo(kernel); /* 12 kernels total */ break; } break; } case ThinSEKernel: { /* Special kernels for general thinning, while preserving connections ** "Connectivity-Preserving Morphological Image Thransformations" ** by Dan S. Bloomberg, available on Leptonica, Selected Papers, ** http://www.leptonica.com/papers/conn.pdf ** And ** http://tpgit.github.com/Leptonica/ccthin_8c_source.html ** ** Note kernels do not specify the origin pixel, allowing them ** to be used for both thickening and thinning operations. */ switch ( (int) args->rho ) { /* SE for 4-connected thinning */ case 41: /* SE_4_1 */ kernel=ParseKernelArray("3: -,-,1 0,-,1 -,-,1"); break; case 42: /* SE_4_2 */ kernel=ParseKernelArray("3: -,-,1 0,-,1 -,0,-"); break; case 43: /* SE_4_3 */ kernel=ParseKernelArray("3: -,0,- 0,-,1 -,-,1"); break; case 44: /* SE_4_4 */ kernel=ParseKernelArray("3: -,0,- 0,-,1 -,0,-"); break; case 45: /* SE_4_5 */ kernel=ParseKernelArray("3: -,0,1 0,-,1 -,0,-"); break; case 46: /* SE_4_6 */ kernel=ParseKernelArray("3: -,0,- 0,-,1 -,0,1"); break; case 47: /* SE_4_7 */ kernel=ParseKernelArray("3: -,1,1 0,-,1 -,0,-"); break; case 48: /* SE_4_8 */ kernel=ParseKernelArray("3: -,-,1 0,-,1 0,-,1"); break; case 49: /* SE_4_9 */ kernel=ParseKernelArray("3: 0,-,1 0,-,1 -,-,1"); break; /* SE for 8-connected thinning - negatives of the above */ case 81: /* SE_8_0 */ kernel=ParseKernelArray("3: -,1,- 0,-,1 -,1,-"); break; case 82: /* SE_8_2 */ kernel=ParseKernelArray("3: -,1,- 0,-,1 0,-,-"); break; case 83: /* SE_8_3 */ kernel=ParseKernelArray("3: 0,-,- 0,-,1 -,1,-"); break; case 84: /* SE_8_4 */ kernel=ParseKernelArray("3: 0,-,- 0,-,1 0,-,-"); break; case 85: /* SE_8_5 */ kernel=ParseKernelArray("3: 0,-,1 0,-,1 0,-,-"); break; case 86: /* SE_8_6 */ kernel=ParseKernelArray("3: 0,-,- 0,-,1 0,-,1"); break; case 87: /* SE_8_7 */ kernel=ParseKernelArray("3: -,1,- 0,-,1 0,0,-"); break; case 88: /* SE_8_8 */ kernel=ParseKernelArray("3: -,1,- 0,-,1 0,1,-"); break; case 89: /* SE_8_9 */ kernel=ParseKernelArray("3: 0,1,- 0,-,1 -,1,-"); break; /* Special combined SE kernels */ case 423: /* SE_4_2 , SE_4_3 Combined Kernel */ kernel=ParseKernelArray("3: -,-,1 0,-,- -,0,-"); break; case 823: /* SE_8_2 , SE_8_3 Combined Kernel */ kernel=ParseKernelArray("3: -,1,- -,-,1 0,-,-"); break; case 481: /* SE_48_1 - General Connected Corner Kernel */ kernel=ParseKernelArray("3: -,1,1 0,-,1 0,0,-"); break; default: case 482: /* SE_48_2 - General Edge Kernel */ kernel=ParseKernelArray("3: 0,-,1 0,-,1 0,-,1"); break; } if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = type; RotateKernelInfo(kernel, args->sigma); break; } /* Distance Measuring Kernels */ case ChebyshevKernel: { if (args->rho < 1.0) kernel->width = kernel->height = 3; /* default radius = 1 */ else kernel->width = kernel->height = ((size_t)args->rho)*2+1; kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; kernel->values=(MagickRealType *) MagickAssumeAligned( AcquireAlignedMemory(kernel->width,kernel->height* sizeof(*kernel->values))); if (kernel->values == (MagickRealType *) NULL) return(DestroyKernelInfo(kernel)); for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) kernel->positive_range += ( kernel->values[i] = args->sigma*MagickMax(fabs((double)u),fabs((double)v)) ); kernel->maximum = kernel->values[0]; break; } case ManhattanKernel: { if (args->rho < 1.0) kernel->width = kernel->height = 3; /* default radius = 1 */ else kernel->width = kernel->height = ((size_t)args->rho)*2+1; kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; kernel->values=(MagickRealType *) MagickAssumeAligned( AcquireAlignedMemory(kernel->width,kernel->height* sizeof(*kernel->values))); if (kernel->values == (MagickRealType *) NULL) return(DestroyKernelInfo(kernel)); for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) kernel->positive_range += ( kernel->values[i] = args->sigma*(labs((long) u)+labs((long) v)) ); kernel->maximum = kernel->values[0]; break; } case OctagonalKernel: { if (args->rho < 2.0) kernel->width = kernel->height = 5; /* default/minimum radius = 2 */ else kernel->width = kernel->height = ((size_t)args->rho)*2+1; kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; kernel->values=(MagickRealType *) MagickAssumeAligned( AcquireAlignedMemory(kernel->width,kernel->height* sizeof(*kernel->values))); if (kernel->values == (MagickRealType *) NULL) return(DestroyKernelInfo(kernel)); for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) { double r1 = MagickMax(fabs((double)u),fabs((double)v)), r2 = floor((double)(labs((long)u)+labs((long)v)+1)/1.5); kernel->positive_range += kernel->values[i] = args->sigma*MagickMax(r1,r2); } kernel->maximum = kernel->values[0]; break; } case EuclideanKernel: { if (args->rho < 1.0) kernel->width = kernel->height = 3; /* default radius = 1 */ else kernel->width = kernel->height = ((size_t)args->rho)*2+1; kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; kernel->values=(MagickRealType *) MagickAssumeAligned( AcquireAlignedMemory(kernel->width,kernel->height* sizeof(*kernel->values))); if (kernel->values == (MagickRealType *) NULL) return(DestroyKernelInfo(kernel)); for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) kernel->positive_range += ( kernel->values[i] = args->sigma*sqrt((double)(u*u+v*v)) ); kernel->maximum = kernel->values[0]; break; } default: { /* No-Op Kernel - Basically just a single pixel on its own */ kernel=ParseKernelArray("1:1"); if (kernel == (KernelInfo *) NULL) return(kernel); kernel->type = UndefinedKernel; break; } break; } return(kernel); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % C l o n e K e r n e l I n f o % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % CloneKernelInfo() creates a new clone of the given Kernel List so that its % can be modified without effecting the original. The cloned kernel should % be destroyed using DestoryKernelInfo() when no longer needed. % % The format of the CloneKernelInfo method is: % % KernelInfo *CloneKernelInfo(const KernelInfo *kernel) % % A description of each parameter follows: % % o kernel: the Morphology/Convolution kernel to be cloned % */ MagickExport KernelInfo *CloneKernelInfo(const KernelInfo *kernel) { register ssize_t i; KernelInfo *new_kernel; assert(kernel != (KernelInfo *) NULL); new_kernel=(KernelInfo *) AcquireMagickMemory(sizeof(*kernel)); if (new_kernel == (KernelInfo *) NULL) return(new_kernel); *new_kernel=(*kernel); /* copy values in structure */ /* replace the values with a copy of the values */ new_kernel->values=(MagickRealType *) MagickAssumeAligned( AcquireAlignedMemory(kernel->width,kernel->height*sizeof(*kernel->values))); if (new_kernel->values == (MagickRealType *) NULL) return(DestroyKernelInfo(new_kernel)); for (i=0; i < (ssize_t) (kernel->width*kernel->height); i++) new_kernel->values[i]=kernel->values[i]; /* Also clone the next kernel in the kernel list */ if ( kernel->next != (KernelInfo *) NULL ) { new_kernel->next = CloneKernelInfo(kernel->next); if ( new_kernel->next == (KernelInfo *) NULL ) return(DestroyKernelInfo(new_kernel)); } return(new_kernel); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % D e s t r o y K e r n e l I n f o % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DestroyKernelInfo() frees the memory used by a Convolution/Morphology % kernel. % % The format of the DestroyKernelInfo method is: % % KernelInfo *DestroyKernelInfo(KernelInfo *kernel) % % A description of each parameter follows: % % o kernel: the Morphology/Convolution kernel to be destroyed % */ MagickExport KernelInfo *DestroyKernelInfo(KernelInfo *kernel) { assert(kernel != (KernelInfo *) NULL); if ( kernel->next != (KernelInfo *) NULL ) kernel->next=DestroyKernelInfo(kernel->next); kernel->values=(MagickRealType *) RelinquishAlignedMemory(kernel->values); kernel=(KernelInfo *) RelinquishMagickMemory(kernel); return(kernel); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % + E x p a n d M i r r o r K e r n e l I n f o % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % ExpandMirrorKernelInfo() takes a single kernel, and expands it into a % sequence of 90-degree rotated kernels but providing a reflected 180 % rotatation, before the -/+ 90-degree rotations. % % This special rotation order produces a better, more symetrical thinning of % objects. % % The format of the ExpandMirrorKernelInfo method is: % % void ExpandMirrorKernelInfo(KernelInfo *kernel) % % A description of each parameter follows: % % o kernel: the Morphology/Convolution kernel % % This function is only internel to this module, as it is not finalized, % especially with regard to non-orthogonal angles, and rotation of larger % 2D kernels. */ #if 0 static void FlopKernelInfo(KernelInfo *kernel) { /* Do a Flop by reversing each row. */ size_t y; register ssize_t x,r; register double *k,t; for ( y=0, k=kernel->values; y < kernel->height; y++, k+=kernel->width) for ( x=0, r=kernel->width-1; xwidth/2; x++, r--) t=k[x], k[x]=k[r], k[r]=t; kernel->x = kernel->width - kernel->x - 1; angle = fmod(angle+180.0, 360.0); } #endif static void ExpandMirrorKernelInfo(KernelInfo *kernel) { KernelInfo *clone, *last; last = kernel; clone = CloneKernelInfo(last); RotateKernelInfo(clone, 180); /* flip */ LastKernelInfo(last)->next = clone; last = clone; clone = CloneKernelInfo(last); RotateKernelInfo(clone, 90); /* transpose */ LastKernelInfo(last)->next = clone; last = clone; clone = CloneKernelInfo(last); RotateKernelInfo(clone, 180); /* flop */ LastKernelInfo(last)->next = clone; return; } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % + E x p a n d R o t a t e K e r n e l I n f o % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % ExpandRotateKernelInfo() takes a kernel list, and expands it by rotating % incrementally by the angle given, until the kernel repeats. % % WARNING: 45 degree rotations only works for 3x3 kernels. % While 90 degree roatations only works for linear and square kernels % % The format of the ExpandRotateKernelInfo method is: % % void ExpandRotateKernelInfo(KernelInfo *kernel, double angle) % % A description of each parameter follows: % % o kernel: the Morphology/Convolution kernel % % o angle: angle to rotate in degrees % % This function is only internel to this module, as it is not finalized, % especially with regard to non-orthogonal angles, and rotation of larger % 2D kernels. */ /* Internal Routine - Return true if two kernels are the same */ static MagickBooleanType SameKernelInfo(const KernelInfo *kernel1, const KernelInfo *kernel2) { register size_t i; /* check size and origin location */ if ( kernel1->width != kernel2->width || kernel1->height != kernel2->height || kernel1->x != kernel2->x || kernel1->y != kernel2->y ) return MagickFalse; /* check actual kernel values */ for (i=0; i < (kernel1->width*kernel1->height); i++) { /* Test for Nan equivalence */ if ( IsNan(kernel1->values[i]) && !IsNan(kernel2->values[i]) ) return MagickFalse; if ( IsNan(kernel2->values[i]) && !IsNan(kernel1->values[i]) ) return MagickFalse; /* Test actual values are equivalent */ if ( fabs(kernel1->values[i] - kernel2->values[i]) >= MagickEpsilon ) return MagickFalse; } return MagickTrue; } static void ExpandRotateKernelInfo(KernelInfo *kernel, const double angle) { KernelInfo *clone, *last; last = kernel; while(1) { clone = CloneKernelInfo(last); RotateKernelInfo(clone, angle); if ( SameKernelInfo(kernel, clone) == MagickTrue ) break; LastKernelInfo(last)->next = clone; last = clone; } clone = DestroyKernelInfo(clone); /* kernel has repeated - junk the clone */ return; } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % + C a l c M e t a K e r n a l I n f o % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % CalcKernelMetaData() recalculate the KernelInfo meta-data of this kernel only, % using the kernel values. This should only ne used if it is not possible to % calculate that meta-data in some easier way. % % It is important that the meta-data is correct before ScaleKernelInfo() is % used to perform kernel normalization. % % The format of the CalcKernelMetaData method is: % % void CalcKernelMetaData(KernelInfo *kernel, const double scale ) % % A description of each parameter follows: % % o kernel: the Morphology/Convolution kernel to modify % % WARNING: Minimum and Maximum values are assumed to include zero, even if % zero is not part of the kernel (as in Gaussian Derived kernels). This % however is not true for flat-shaped morphological kernels. % % WARNING: Only the specific kernel pointed to is modified, not a list of % multiple kernels. % % This is an internal function and not expected to be useful outside this % module. This could change however. */ static void CalcKernelMetaData(KernelInfo *kernel) { register size_t i; kernel->minimum = kernel->maximum = 0.0; kernel->negative_range = kernel->positive_range = 0.0; for (i=0; i < (kernel->width*kernel->height); i++) { if ( fabs(kernel->values[i]) < MagickEpsilon ) kernel->values[i] = 0.0; ( kernel->values[i] < 0) ? ( kernel->negative_range += kernel->values[i] ) : ( kernel->positive_range += kernel->values[i] ); Minimize(kernel->minimum, kernel->values[i]); Maximize(kernel->maximum, kernel->values[i]); } return; } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % M o r p h o l o g y A p p l y % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % MorphologyApply() applies a morphological method, multiple times using % a list of multiple kernels. This is the method that should be called by % other 'operators' that internally use morphology operations as part of % their processing. % % It is basically equivalent to as MorphologyImage() (see below) but % without any user controls. This allows internel programs to use this % function, to actually perform a specific task without possible interference % by any API user supplied settings. % % It is MorphologyImage() task to extract any such user controls, and % pass them to this function for processing. % % More specifically all given kernels should already be scaled, normalised, % and blended appropriatally before being parred to this routine. The % appropriate bias, and compose (typically 'UndefinedComposeOp') given. % % The format of the MorphologyApply method is: % % Image *MorphologyApply(const Image *image,MorphologyMethod method, % const ssize_t iterations,const KernelInfo *kernel, % const CompositeMethod compose,const double bias, % ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the source image % % o method: the morphology method to be applied. % % o iterations: apply the operation this many times (or no change). % A value of -1 means loop until no change found. % How this is applied may depend on the morphology method. % Typically this is a value of 1. % % o channel: the channel type. % % o kernel: An array of double representing the morphology kernel. % % o compose: How to handle or merge multi-kernel results. % If 'UndefinedCompositeOp' use default for the Morphology method. % If 'NoCompositeOp' force image to be re-iterated by each kernel. % Otherwise merge the results using the compose method given. % % o bias: Convolution Output Bias. % % o exception: return any errors or warnings in this structure. % */ /* Apply a Morphology Primative to an image using the given kernel. ** Two pre-created images must be provided, and no image is created. ** It returns the number of pixels that changed between the images ** for result convergence determination. */ static ssize_t MorphologyPrimitive(const Image *image,Image *morphology_image, const MorphologyMethod method,const KernelInfo *kernel,const double bias, ExceptionInfo *exception) { #define MorphologyTag "Morphology/Image" CacheView *image_view, *morphology_view; ssize_t y, offx, offy; size_t virt_width, changed; MagickBooleanType status; MagickOffsetType progress; assert(image != (Image *) NULL); assert(image->signature == MagickSignature); assert(morphology_image != (Image *) NULL); assert(morphology_image->signature == MagickSignature); assert(kernel != (KernelInfo *) NULL); assert(kernel->signature == MagickSignature); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickSignature); status=MagickTrue; changed=0; progress=0; image_view=AcquireVirtualCacheView(image,exception); morphology_view=AcquireAuthenticCacheView(morphology_image,exception); virt_width=image->columns+kernel->width-1; /* Some methods (including convolve) needs use a reflected kernel. * Adjust 'origin' offsets to loop though kernel as a reflection. */ offx = kernel->x; offy = kernel->y; switch(method) { case ConvolveMorphology: case DilateMorphology: case DilateIntensityMorphology: case IterativeDistanceMorphology: /* kernel needs to used with reflection about origin */ offx = (ssize_t) kernel->width-offx-1; offy = (ssize_t) kernel->height-offy-1; break; case ErodeMorphology: case ErodeIntensityMorphology: case HitAndMissMorphology: case ThinningMorphology: case ThickenMorphology: /* kernel is used as is, without reflection */ break; default: assert("Not a Primitive Morphology Method" != (char *) NULL); break; } if ( method == ConvolveMorphology && kernel->width == 1 ) { /* Special handling (for speed) of vertical (blur) kernels. ** This performs its handling in columns rather than in rows. ** This is only done for convolve as it is the only method that ** generates very large 1-D vertical kernels (such as a 'BlurKernel') ** ** Timing tests (on single CPU laptop) ** Using a vertical 1-d Blue with normal row-by-row (below) ** time convert logo: -morphology Convolve Blur:0x10+90 null: ** 0.807u ** Using this column method ** time convert logo: -morphology Convolve Blur:0x10+90 null: ** 0.620u ** ** Anthony Thyssen, 14 June 2010 */ register ssize_t x; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(progress,status) \ dynamic_number_threads(image,image->columns,image->rows,1) #endif for (x=0; x < (ssize_t) image->columns; x++) { register const Quantum *restrict p; register Quantum *restrict q; register ssize_t y; ssize_t r; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(image_view,x,-offy,1,image->rows+ kernel->height-1,exception); q=GetCacheViewAuthenticPixels(morphology_view,x,0,1, morphology_image->rows,exception); if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) { status=MagickFalse; continue; } /* offset to origin in 'p'. while 'q' points to it directly */ r = offy; for (y=0; y < (ssize_t) image->rows; y++) { PixelInfo result; register const MagickRealType *restrict k; register const Quantum *restrict k_pixels; register ssize_t v; /* Copy input image to the output image for unused channels * This removes need for 'cloning' a new image every iteration */ SetPixelRed(morphology_image,GetPixelRed(image,p+r* GetPixelChannels(image)),q); SetPixelGreen(morphology_image,GetPixelGreen(image,p+r* GetPixelChannels(image)),q); SetPixelBlue(morphology_image,GetPixelBlue(image,p+r* GetPixelChannels(image)),q); if (image->colorspace == CMYKColorspace) SetPixelBlack(morphology_image,GetPixelBlack(image,p+r* GetPixelChannels(image)),q); /* Set the bias of the weighted average output */ result.red = result.green = result.blue = result.alpha = result.black = bias; /* Weighted Average of pixels using reflected kernel ** ** NOTE for correct working of this operation for asymetrical ** kernels, the kernel needs to be applied in its reflected form. ** That is its values needs to be reversed. */ k = &kernel->values[ kernel->height-1 ]; k_pixels = p; if ( (image->channel_mask != DefaultChannels) || (image->alpha_trait != BlendPixelTrait) ) { /* No 'Sync' involved. ** Convolution is just a simple greyscale channel operation */ for (v=0; v < (ssize_t) kernel->height; v++) { if ( IsNan(*k) ) continue; result.red += (*k)*GetPixelRed(image,k_pixels); result.green += (*k)*GetPixelGreen(image,k_pixels); result.blue += (*k)*GetPixelBlue(image,k_pixels); if (image->colorspace == CMYKColorspace) result.black+=(*k)*GetPixelBlack(image,k_pixels); result.alpha += (*k)*GetPixelAlpha(image,k_pixels); k--; k_pixels+=GetPixelChannels(image); } if ((GetPixelRedTraits(image) & UpdatePixelTrait) != 0) SetPixelRed(morphology_image,ClampToQuantum(result.red),q); if ((GetPixelGreenTraits(image) & UpdatePixelTrait) != 0) SetPixelGreen(morphology_image,ClampToQuantum(result.green),q); if ((GetPixelBlueTraits(image) & UpdatePixelTrait) != 0) SetPixelBlue(morphology_image,ClampToQuantum(result.blue),q); if (((GetPixelBlackTraits(image) & UpdatePixelTrait) != 0) && (image->colorspace == CMYKColorspace)) SetPixelBlack(morphology_image,ClampToQuantum(result.black),q); if (((GetPixelAlphaTraits(image) & UpdatePixelTrait) != 0) && (image->alpha_trait == BlendPixelTrait)) SetPixelAlpha(morphology_image,ClampToQuantum(result.alpha),q); } else { /* Channel 'Sync' Flag, and Alpha Channel enabled. ** Weight the color channels with Alpha Channel so that ** transparent pixels are not part of the results. */ double alpha, /* alpha weighting for colors : alpha */ gamma; /* divisor, sum of color alpha weighting */ size_t count; /* alpha valus collected, number kernel values */ count=0; gamma=0.0; for (v=0; v < (ssize_t) kernel->height; v++) { if ( IsNan(*k) ) continue; alpha=QuantumScale*GetPixelAlpha(image,k_pixels); gamma += alpha; /* normalize alpha weights only */ count++; /* number of alpha values collected */ alpha*=(*k); /* include kernel weighting now */ result.red += alpha*GetPixelRed(image,k_pixels); result.green += alpha*GetPixelGreen(image,k_pixels); result.blue += alpha*GetPixelBlue(image,k_pixels); if (image->colorspace == CMYKColorspace) result.black += alpha*GetPixelBlack(image,k_pixels); result.alpha += (*k)*GetPixelAlpha(image,k_pixels); k--; k_pixels+=GetPixelChannels(image); } /* Sync'ed channels, all channels are modified */ gamma=(double)count/(fabs((double) gamma) < MagickEpsilon ? MagickEpsilon : gamma); SetPixelRed(morphology_image,ClampToQuantum(gamma*result.red),q); SetPixelGreen(morphology_image,ClampToQuantum(gamma*result.green),q); SetPixelBlue(morphology_image,ClampToQuantum(gamma*result.blue),q); if (image->colorspace == CMYKColorspace) SetPixelBlack(morphology_image,ClampToQuantum(gamma*result.black),q); SetPixelAlpha(morphology_image,ClampToQuantum(result.alpha),q); } /* Count up changed pixels */ if ((GetPixelRed(image,p+r*GetPixelChannels(image)) != GetPixelRed(morphology_image,q)) || (GetPixelGreen(image,p+r*GetPixelChannels(image)) != GetPixelGreen(morphology_image,q)) || (GetPixelBlue(image,p+r*GetPixelChannels(image)) != GetPixelBlue(morphology_image,q)) || (GetPixelAlpha(image,p+r*GetPixelChannels(image)) != GetPixelAlpha(morphology_image,q)) || ((image->colorspace == CMYKColorspace) && (GetPixelBlack(image,p+r*GetPixelChannels(image)) != GetPixelBlack(morphology_image,q)))) changed++; /* The pixel was changed in some way! */ p+=GetPixelChannels(image); q+=GetPixelChannels(morphology_image); } /* y */ if ( SyncCacheViewAuthenticPixels(morphology_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_MorphologyImage) #endif proceed=SetImageProgress(image,MorphologyTag,progress++,image->rows); if (proceed == MagickFalse) status=MagickFalse; } } /* x */ morphology_image->type=image->type; morphology_view=DestroyCacheView(morphology_view); image_view=DestroyCacheView(image_view); return(status ? (ssize_t) changed : 0); } /* ** Normal handling of horizontal or rectangular kernels (row by row) */ #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(progress,status) \ dynamic_number_threads(image,image->columns,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { register const Quantum *restrict p; register Quantum *restrict q; register ssize_t x; size_t r; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(image_view, -offx, y-offy, virt_width, kernel->height, exception); q=GetCacheViewAuthenticPixels(morphology_view,0,y, morphology_image->columns,1,exception); if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) { status=MagickFalse; continue; } /* offset to origin in 'p'. while 'q' points to it directly */ r = virt_width*offy + offx; for (x=0; x < (ssize_t) image->columns; x++) { PixelInfo result, min, max; register const MagickRealType *restrict k; register const Quantum *restrict k_pixels; register ssize_t u; ssize_t v; /* Copy input image to the output image for unused channels * This removes need for 'cloning' a new image every iteration */ SetPixelRed(morphology_image,GetPixelRed(image,p+r* GetPixelChannels(image)),q); SetPixelGreen(morphology_image,GetPixelGreen(image,p+r* GetPixelChannels(image)),q); SetPixelBlue(morphology_image,GetPixelBlue(image,p+r* GetPixelChannels(image)),q); if (image->colorspace == CMYKColorspace) SetPixelBlack(morphology_image,GetPixelBlack(image,p+r* GetPixelChannels(image)),q); /* Defaults */ min.red = min.green = min.blue = min.alpha = min.black = (double) QuantumRange; max.red = max.green = max.blue = max.alpha = max.black = (double) 0; /* default result is the original pixel value */ result.red = (double) GetPixelRed(image,p+r*GetPixelChannels(image)); result.green = (double) GetPixelGreen(image,p+r*GetPixelChannels(image)); result.blue = (double) GetPixelBlue(image,p+r*GetPixelChannels(image)); result.black = 0.0; if (image->colorspace == CMYKColorspace) result.black = (double) GetPixelBlack(image,p+r*GetPixelChannels(image)); result.alpha=(double) GetPixelAlpha(image,p+r*GetPixelChannels(image)); switch (method) { case ConvolveMorphology: /* Set the bias of the weighted average output */ result.red = result.green = result.blue = result.alpha = result.black = bias; break; case DilateIntensityMorphology: case ErodeIntensityMorphology: /* use a boolean flag indicating when first match found */ result.red = 0.0; /* result is not used otherwise */ break; default: break; } switch ( method ) { case ConvolveMorphology: /* Weighted Average of pixels using reflected kernel ** ** NOTE for correct working of this operation for asymetrical ** kernels, the kernel needs to be applied in its reflected form. ** That is its values needs to be reversed. ** ** Correlation is actually the same as this but without reflecting ** the kernel, and thus 'lower-level' that Convolution. However ** as Convolution is the more common method used, and it does not ** really cost us much in terms of processing to use a reflected ** kernel, so it is Convolution that is implemented. ** ** Correlation will have its kernel reflected before calling ** this function to do a Convolve. ** ** For more details of Correlation vs Convolution see ** http://www.cs.umd.edu/~djacobs/CMSC426/Convolution.pdf */ k = &kernel->values[ kernel->width*kernel->height-1 ]; k_pixels = p; if ( (image->channel_mask != DefaultChannels) || (image->alpha_trait != BlendPixelTrait) ) { /* No 'Sync' involved. ** Convolution is simple greyscale channel operation */ for (v=0; v < (ssize_t) kernel->height; v++) { for (u=0; u < (ssize_t) kernel->width; u++, k--) { if ( IsNan(*k) ) continue; result.red += (*k)* GetPixelRed(image,k_pixels+u*GetPixelChannels(image)); result.green += (*k)* GetPixelGreen(image,k_pixels+u*GetPixelChannels(image)); result.blue += (*k)* GetPixelBlue(image,k_pixels+u*GetPixelChannels(image)); if (image->colorspace == CMYKColorspace) result.black += (*k)* GetPixelBlack(image,k_pixels+u*GetPixelChannels(image)); result.alpha += (*k)* GetPixelAlpha(image,k_pixels+u*GetPixelChannels(image)); } k_pixels += virt_width*GetPixelChannels(image); } if ((GetPixelRedTraits(image) & UpdatePixelTrait) != 0) SetPixelRed(morphology_image,ClampToQuantum(result.red), q); if ((GetPixelGreenTraits(image) & UpdatePixelTrait) != 0) SetPixelGreen(morphology_image,ClampToQuantum(result.green), q); if ((GetPixelBlueTraits(image) & UpdatePixelTrait) != 0) SetPixelBlue(morphology_image,ClampToQuantum(result.blue), q); if (((GetPixelBlackTraits(image) & UpdatePixelTrait) != 0) && (image->colorspace == CMYKColorspace)) SetPixelBlack(morphology_image,ClampToQuantum(result.black), q); if (((GetPixelAlphaTraits(image) & UpdatePixelTrait) != 0) && (image->alpha_trait == BlendPixelTrait)) SetPixelAlpha(morphology_image,ClampToQuantum(result.alpha), q); } else { /* Channel 'Sync' Flag, and Alpha Channel enabled. ** Weight the color channels with Alpha Channel so that ** transparent pixels are not part of the results. */ double alpha, /* alpha weighting for colors : alpha */ gamma; /* divisor, sum of color alpha weighting */ size_t count; /* alpha valus collected, number kernel values */ count=0; gamma=0.0; for (v=0; v < (ssize_t) kernel->height; v++) { for (u=0; u < (ssize_t) kernel->width; u++, k--) { if ( IsNan(*k) ) continue; alpha=QuantumScale*GetPixelAlpha(image, k_pixels+u*GetPixelChannels(image)); gamma += alpha; /* normalize alpha weights only */ count++; /* number of alpha values collected */ alpha=alpha*(*k); /* include kernel weighting now */ result.red += alpha* GetPixelRed(image,k_pixels+u*GetPixelChannels(image)); result.green += alpha* GetPixelGreen(image,k_pixels+u*GetPixelChannels(image)); result.blue += alpha* GetPixelBlue(image,k_pixels+u*GetPixelChannels(image)); if (image->colorspace == CMYKColorspace) result.black += alpha* GetPixelBlack(image,k_pixels+u*GetPixelChannels(image)); result.alpha += (*k)* GetPixelAlpha(image,k_pixels+u*GetPixelChannels(image)); } k_pixels += virt_width*GetPixelChannels(image); } /* Sync'ed channels, all channels are modified */ gamma=(double)count/(fabs((double) gamma) < MagickEpsilon ? MagickEpsilon : gamma); SetPixelRed(morphology_image, ClampToQuantum(gamma*result.red),q); SetPixelGreen(morphology_image, ClampToQuantum(gamma*result.green),q); SetPixelBlue(morphology_image, ClampToQuantum(gamma*result.blue),q); if (image->colorspace == CMYKColorspace) SetPixelBlack(morphology_image, ClampToQuantum(gamma*result.black),q); SetPixelAlpha(morphology_image,ClampToQuantum(result.alpha),q); } break; case ErodeMorphology: /* Minimum Value within kernel neighbourhood ** ** NOTE that the kernel is not reflected for this operation! ** ** NOTE: in normal Greyscale Morphology, the kernel value should ** be added to the real value, this is currently not done, due to ** the nature of the boolean kernels being used. */ k = kernel->values; k_pixels = p; for (v=0; v < (ssize_t) kernel->height; v++) { for (u=0; u < (ssize_t) kernel->width; u++, k++) { if ( IsNan(*k) || (*k) < 0.5 ) continue; Minimize(min.red, (double) GetPixelRed(image,k_pixels+u*GetPixelChannels(image))); Minimize(min.green, (double) GetPixelGreen(image,k_pixels+u*GetPixelChannels(image))); Minimize(min.blue, (double) GetPixelBlue(image,k_pixels+u*GetPixelChannels(image))); Minimize(min.alpha, (double) GetPixelAlpha(image,k_pixels+u*GetPixelChannels(image))); if (image->colorspace == CMYKColorspace) Minimize(min.black, (double) GetPixelBlack(image,k_pixels+u*GetPixelChannels(image))); } k_pixels += virt_width*GetPixelChannels(image); } break; case DilateMorphology: /* Maximum Value within kernel neighbourhood ** ** NOTE for correct working of this operation for asymetrical ** kernels, the kernel needs to be applied in its reflected form. ** That is its values needs to be reversed. ** ** NOTE: in normal Greyscale Morphology, the kernel value should ** be added to the real value, this is currently not done, due to ** the nature of the boolean kernels being used. ** */ k = &kernel->values[ kernel->width*kernel->height-1 ]; k_pixels = p; for (v=0; v < (ssize_t) kernel->height; v++) { for (u=0; u < (ssize_t) kernel->width; u++, k--) { if ( IsNan(*k) || (*k) < 0.5 ) continue; Maximize(max.red, (double) GetPixelRed(image,k_pixels+u*GetPixelChannels(image))); Maximize(max.green, (double) GetPixelGreen(image,k_pixels+u*GetPixelChannels(image))); Maximize(max.blue, (double) GetPixelBlue(image,k_pixels+u*GetPixelChannels(image))); Maximize(max.alpha, (double) GetPixelAlpha(image,k_pixels+u*GetPixelChannels(image))); if (image->colorspace == CMYKColorspace) Maximize(max.black, (double) GetPixelBlack(image,k_pixels+u*GetPixelChannels(image))); } k_pixels += virt_width*GetPixelChannels(image); } break; case HitAndMissMorphology: case ThinningMorphology: case ThickenMorphology: /* Minimum of Foreground Pixel minus Maxumum of Background Pixels ** ** NOTE that the kernel is not reflected for this operation, ** and consists of both foreground and background pixel ** neighbourhoods, 0.0 for background, and 1.0 for foreground ** with either Nan or 0.5 values for don't care. ** ** Note that this will never produce a meaningless negative ** result. Such results can cause Thinning/Thicken to not work ** correctly when used against a greyscale image. */ k = kernel->values; k_pixels = p; for (v=0; v < (ssize_t) kernel->height; v++) { for (u=0; u < (ssize_t) kernel->width; u++, k++) { if ( IsNan(*k) ) continue; if ( (*k) > 0.7 ) { /* minimim of foreground pixels */ Minimize(min.red, (double) GetPixelRed(image,k_pixels+u*GetPixelChannels(image))); Minimize(min.green, (double) GetPixelGreen(image,k_pixels+u*GetPixelChannels(image))); Minimize(min.blue, (double) GetPixelBlue(image,k_pixels+u*GetPixelChannels(image))); Minimize(min.alpha,(double) GetPixelAlpha(image,k_pixels+u*GetPixelChannels(image))); if ( image->colorspace == CMYKColorspace) Minimize(min.black,(double) GetPixelBlack(image,k_pixels+u*GetPixelChannels(image))); } else if ( (*k) < 0.3 ) { /* maximum of background pixels */ Maximize(max.red, (double) GetPixelRed(image,k_pixels+u*GetPixelChannels(image))); Maximize(max.green, (double) GetPixelGreen(image,k_pixels+u*GetPixelChannels(image))); Maximize(max.blue, (double) GetPixelBlue(image,k_pixels+u*GetPixelChannels(image))); Maximize(max.alpha,(double) GetPixelAlpha(image,k_pixels+u*GetPixelChannels(image))); if (image->colorspace == CMYKColorspace) Maximize(max.black, (double) GetPixelBlack(image,k_pixels+u*GetPixelChannels(image))); } } k_pixels += virt_width*GetPixelChannels(image); } /* Pattern Match if difference is positive */ min.red -= max.red; Maximize( min.red, 0.0 ); min.green -= max.green; Maximize( min.green, 0.0 ); min.blue -= max.blue; Maximize( min.blue, 0.0 ); min.black -= max.black; Maximize( min.black, 0.0 ); min.alpha -= max.alpha; Maximize( min.alpha, 0.0 ); break; case ErodeIntensityMorphology: /* Select Pixel with Minimum Intensity within kernel neighbourhood ** ** WARNING: the intensity test fails for CMYK and does not ** take into account the moderating effect of the alpha channel ** on the intensity. ** ** NOTE that the kernel is not reflected for this operation! */ k = kernel->values; k_pixels = p; for (v=0; v < (ssize_t) kernel->height; v++) { for (u=0; u < (ssize_t) kernel->width; u++, k++) { if ( IsNan(*k) || (*k) < 0.5 ) continue; if ( result.red == 0.0 || GetPixelIntensity(image,k_pixels+u*GetPixelChannels(image)) < GetPixelIntensity(morphology_image,q) ) { /* copy the whole pixel - no channel selection */ SetPixelRed(morphology_image,GetPixelRed(image, k_pixels+u*GetPixelChannels(image)),q); SetPixelGreen(morphology_image,GetPixelGreen(image, k_pixels+u*GetPixelChannels(image)),q); SetPixelBlue(morphology_image,GetPixelBlue(image, k_pixels+u*GetPixelChannels(image)),q); SetPixelAlpha(morphology_image,GetPixelAlpha(image, k_pixels+u*GetPixelChannels(image)),q); if ( result.red > 0.0 ) changed++; result.red = 1.0; } } k_pixels += virt_width*GetPixelChannels(image); } break; case DilateIntensityMorphology: /* Select Pixel with Maximum Intensity within kernel neighbourhood ** ** WARNING: the intensity test fails for CMYK and does not ** take into account the moderating effect of the alpha channel ** on the intensity (yet). ** ** NOTE for correct working of this operation for asymetrical ** kernels, the kernel needs to be applied in its reflected form. ** That is its values needs to be reversed. */ k = &kernel->values[ kernel->width*kernel->height-1 ]; k_pixels = p; for (v=0; v < (ssize_t) kernel->height; v++) { for (u=0; u < (ssize_t) kernel->width; u++, k--) { if ( IsNan(*k) || (*k) < 0.5 ) continue; /* boolean kernel */ if ( result.red == 0.0 || GetPixelIntensity(image,k_pixels+u*GetPixelChannels(image)) > GetPixelIntensity(morphology_image,q) ) { /* copy the whole pixel - no channel selection */ SetPixelRed(morphology_image,GetPixelRed(image, k_pixels+u*GetPixelChannels(image)),q); SetPixelGreen(morphology_image,GetPixelGreen(image, k_pixels+u*GetPixelChannels(image)),q); SetPixelBlue(morphology_image,GetPixelBlue(image, k_pixels+u*GetPixelChannels(image)),q); SetPixelAlpha(morphology_image,GetPixelAlpha(image, k_pixels+u*GetPixelChannels(image)),q); if ( result.red > 0.0 ) changed++; result.red = 1.0; } } k_pixels += virt_width*GetPixelChannels(image); } break; case IterativeDistanceMorphology: /* Work out an iterative distance from black edge of a white image ** shape. Essentually white values are decreased to the smallest ** 'distance from edge' it can find. ** ** It works by adding kernel values to the neighbourhood, and and ** select the minimum value found. The kernel is rotated before ** use, so kernel distances match resulting distances, when a user ** provided asymmetric kernel is applied. ** ** ** This code is almost identical to True GrayScale Morphology But ** not quite. ** ** GreyDilate Kernel values added, maximum value found Kernel is ** rotated before use. ** ** GrayErode: Kernel values subtracted and minimum value found No ** kernel rotation used. ** ** Note the the Iterative Distance method is essentially a ** GrayErode, but with negative kernel values, and kernel ** rotation applied. */ k = &kernel->values[ kernel->width*kernel->height-1 ]; k_pixels = p; for (v=0; v < (ssize_t) kernel->height; v++) { for (u=0; u < (ssize_t) kernel->width; u++, k--) { if ( IsNan(*k) ) continue; Minimize(result.red, (*k)+(double) GetPixelRed(image,k_pixels+u*GetPixelChannels(image))); Minimize(result.green, (*k)+(double) GetPixelGreen(image,k_pixels+u*GetPixelChannels(image))); Minimize(result.blue, (*k)+(double) GetPixelBlue(image,k_pixels+u*GetPixelChannels(image))); Minimize(result.alpha, (*k)+(double) GetPixelAlpha(image,k_pixels+u*GetPixelChannels(image))); if ( image->colorspace == CMYKColorspace) Maximize(result.black, (*k)+(double) GetPixelBlack(image,k_pixels+u*GetPixelChannels(image))); } k_pixels += virt_width*GetPixelChannels(image); } break; case UndefinedMorphology: default: break; /* Do nothing */ } /* Final mathematics of results (combine with original image?) ** ** NOTE: Difference Morphology operators Edge* and *Hat could also ** be done here but works better with iteration as a image difference ** in the controling function (below). Thicken and Thinning however ** should be done here so thay can be iterated correctly. */ switch ( method ) { case HitAndMissMorphology: case ErodeMorphology: result = min; /* minimum of neighbourhood */ break; case DilateMorphology: result = max; /* maximum of neighbourhood */ break; case ThinningMorphology: /* subtract pattern match from original */ result.red -= min.red; result.green -= min.green; result.blue -= min.blue; result.black -= min.black; result.alpha -= min.alpha; break; case ThickenMorphology: /* Add the pattern matchs to the original */ result.red += min.red; result.green += min.green; result.blue += min.blue; result.black += min.black; result.alpha += min.alpha; break; default: /* result directly calculated or assigned */ break; } /* Assign the resulting pixel values - Clamping Result */ switch ( method ) { case UndefinedMorphology: case ConvolveMorphology: case DilateIntensityMorphology: case ErodeIntensityMorphology: break; /* full pixel was directly assigned - not a channel method */ default: if ((GetPixelRedTraits(image) & UpdatePixelTrait) != 0) SetPixelRed(morphology_image,ClampToQuantum(result.red),q); if ((GetPixelGreenTraits(image) & UpdatePixelTrait) != 0) SetPixelGreen(morphology_image,ClampToQuantum(result.green),q); if ((GetPixelBlueTraits(image) & UpdatePixelTrait) != 0) SetPixelBlue(morphology_image,ClampToQuantum(result.blue),q); if (((GetPixelBlackTraits(image) & UpdatePixelTrait) != 0) && (image->colorspace == CMYKColorspace)) SetPixelBlack(morphology_image,ClampToQuantum(result.black),q); if (((GetPixelAlphaTraits(image) & UpdatePixelTrait) != 0) && (image->alpha_trait == BlendPixelTrait)) SetPixelAlpha(morphology_image,ClampToQuantum(result.alpha),q); break; } /* Count up changed pixels */ if ((GetPixelRed(image,p+r*GetPixelChannels(image)) != GetPixelRed(morphology_image,q)) || (GetPixelGreen(image,p+r*GetPixelChannels(image)) != GetPixelGreen(morphology_image,q)) || (GetPixelBlue(image,p+r*GetPixelChannels(image)) != GetPixelBlue(morphology_image,q)) || (GetPixelAlpha(image,p+r*GetPixelChannels(image)) != GetPixelAlpha(morphology_image,q)) || ((image->colorspace == CMYKColorspace) && (GetPixelBlack(image,p+r*GetPixelChannels(image)) != GetPixelBlack(morphology_image,q)))) changed++; /* The pixel was changed in some way! */ p+=GetPixelChannels(image); q+=GetPixelChannels(morphology_image); } /* x */ if ( SyncCacheViewAuthenticPixels(morphology_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_MorphologyImage) #endif proceed=SetImageProgress(image,MorphologyTag,progress++,image->rows); if (proceed == MagickFalse) status=MagickFalse; } } /* y */ morphology_view=DestroyCacheView(morphology_view); image_view=DestroyCacheView(image_view); return(status ? (ssize_t)changed : -1); } /* This is almost identical to the MorphologyPrimative() function above, ** but will apply the primitive directly to the actual image using two ** passes, once in each direction, with the results of the previous (and ** current) row being re-used. ** ** That is after each row is 'Sync'ed' into the image, the next row will ** make use of those values as part of the calculation of the next row. ** It then repeats, but going in the oppisite (bottom-up) direction. ** ** Because of this 're-use of results' this function can not make use ** of multi-threaded, parellel processing. */ static ssize_t MorphologyPrimitiveDirect(Image *image, const MorphologyMethod method,const KernelInfo *kernel, ExceptionInfo *exception) { CacheView *auth_view, *virt_view; MagickBooleanType status; MagickOffsetType progress; ssize_t y, offx, offy; size_t virt_width, changed; status=MagickTrue; changed=0; progress=0; assert(image != (Image *) NULL); assert(image->signature == MagickSignature); assert(kernel != (KernelInfo *) NULL); assert(kernel->signature == MagickSignature); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickSignature); /* Some methods (including convolve) needs use a reflected kernel. * Adjust 'origin' offsets to loop though kernel as a reflection. */ offx = kernel->x; offy = kernel->y; switch(method) { case DistanceMorphology: case VoronoiMorphology: /* kernel needs to used with reflection about origin */ offx = (ssize_t) kernel->width-offx-1; offy = (ssize_t) kernel->height-offy-1; break; #if 0 case ?????Morphology: /* kernel is used as is, without reflection */ break; #endif default: assert("Not a PrimativeDirect Morphology Method" != (char *) NULL); break; } /* DO NOT THREAD THIS CODE! */ /* two views into same image (virtual, and actual) */ virt_view=AcquireVirtualCacheView(image,exception); auth_view=AcquireAuthenticCacheView(image,exception); virt_width=image->columns+kernel->width-1; for (y=0; y < (ssize_t) image->rows; y++) { register const Quantum *restrict p; register Quantum *restrict q; register ssize_t x; ssize_t r; /* NOTE read virtual pixels, and authentic pixels, from the same image! ** we read using virtual to get virtual pixel handling, but write back ** into the same image. ** ** Only top half of kernel is processed as we do a single pass downward ** through the image iterating the distance function as we go. */ if (status == MagickFalse) break; p=GetCacheViewVirtualPixels(virt_view,-offx,y-offy,virt_width,(size_t) offy+1,exception); q=GetCacheViewAuthenticPixels(auth_view, 0, y, image->columns, 1, exception); if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) status=MagickFalse; if (status == MagickFalse) break; /* offset to origin in 'p'. while 'q' points to it directly */ r = (ssize_t) virt_width*offy + offx; for (x=0; x < (ssize_t) image->columns; x++) { PixelInfo result; register const MagickRealType *restrict k; register const Quantum *restrict k_pixels; register ssize_t u; ssize_t v; /* Starting Defaults */ GetPixelInfo(image,&result); GetPixelInfoPixel(image,q,&result); if ( method != VoronoiMorphology ) result.alpha = QuantumRange - result.alpha; switch ( method ) { case DistanceMorphology: /* Add kernel Value and select the minimum value found. */ k = &kernel->values[ kernel->width*kernel->height-1 ]; k_pixels = p; for (v=0; v <= (ssize_t) offy; v++) { for (u=0; u < (ssize_t) kernel->width; u++, k--) { if ( IsNan(*k) ) continue; Minimize(result.red, (*k)+ GetPixelRed(image,k_pixels+u*GetPixelChannels(image))); Minimize(result.green, (*k)+ GetPixelGreen(image,k_pixels+u*GetPixelChannels(image))); Minimize(result.blue, (*k)+ GetPixelBlue(image,k_pixels+u*GetPixelChannels(image))); if (image->colorspace == CMYKColorspace) Minimize(result.black,(*k)+ GetPixelBlue(image,k_pixels+u*GetPixelChannels(image))); Minimize(result.alpha, (*k)+ GetPixelAlpha(image,k_pixels+u*GetPixelChannels(image))); } k_pixels += virt_width*GetPixelChannels(image); } /* repeat with the just processed pixels of this row */ k = &kernel->values[ kernel->width*(kernel->y+1)-1 ]; k_pixels = q-offx*GetPixelChannels(image); for (u=0; u < (ssize_t) offx; u++, k--) { if ( x+u-offx < 0 ) continue; /* off the edge! */ if ( IsNan(*k) ) continue; Minimize(result.red, (*k)+ GetPixelRed(image,k_pixels+u*GetPixelChannels(image))); Minimize(result.green, (*k)+ GetPixelGreen(image,k_pixels+u*GetPixelChannels(image))); Minimize(result.blue, (*k)+ GetPixelBlue(image,k_pixels+u*GetPixelChannels(image))); if (image->colorspace == CMYKColorspace) Minimize(result.black,(*k)+ GetPixelBlack(image,k_pixels+u*GetPixelChannels(image))); Minimize(result.alpha,(*k)+ GetPixelAlpha(image,k_pixels+u*GetPixelChannels(image))); } break; case VoronoiMorphology: /* Apply Distance to 'Matte' channel, while coping the color ** values of the closest pixel. ** ** This is experimental, and realy the 'alpha' component should ** be completely separate 'masking' channel so that alpha can ** also be used as part of the results. */ k = &kernel->values[ kernel->width*kernel->height-1 ]; k_pixels = p; for (v=0; v <= (ssize_t) offy; v++) { for (u=0; u < (ssize_t) kernel->width; u++, k--) { if ( IsNan(*k) ) continue; if( result.alpha > (*k)+GetPixelAlpha(image,k_pixels+u*GetPixelChannels(image)) ) { GetPixelInfoPixel(image,k_pixels+u*GetPixelChannels(image), &result); result.alpha += *k; } } k_pixels += virt_width*GetPixelChannels(image); } /* repeat with the just processed pixels of this row */ k = &kernel->values[ kernel->width*(kernel->y+1)-1 ]; k_pixels = q-offx*GetPixelChannels(image); for (u=0; u < (ssize_t) offx; u++, k--) { if ( x+u-offx < 0 ) continue; /* off the edge! */ if ( IsNan(*k) ) continue; if( result.alpha > (*k)+GetPixelAlpha(image,k_pixels+u*GetPixelChannels(image)) ) { GetPixelInfoPixel(image,k_pixels+u*GetPixelChannels(image), &result); result.alpha += *k; } } break; default: /* result directly calculated or assigned */ break; } /* Assign the resulting pixel values - Clamping Result */ switch ( method ) { case VoronoiMorphology: SetPixelInfoPixel(image,&result,q); break; default: if ((GetPixelRedTraits(image) & UpdatePixelTrait) != 0) SetPixelRed(image,ClampToQuantum(result.red),q); if ((GetPixelGreenTraits(image) & UpdatePixelTrait) != 0) SetPixelGreen(image,ClampToQuantum(result.green),q); if ((GetPixelBlueTraits(image) & UpdatePixelTrait) != 0) SetPixelBlue(image,ClampToQuantum(result.blue),q); if (((GetPixelBlackTraits(image) & UpdatePixelTrait) != 0) && (image->colorspace == CMYKColorspace)) SetPixelBlack(image,ClampToQuantum(result.black),q); if ((GetPixelAlphaTraits(image) & UpdatePixelTrait) != 0 && (image->alpha_trait == BlendPixelTrait)) SetPixelAlpha(image,ClampToQuantum(result.alpha),q); break; } /* Count up changed pixels */ if ((GetPixelRed(image,p+r*GetPixelChannels(image)) != GetPixelRed(image,q)) || (GetPixelGreen(image,p+r*GetPixelChannels(image)) != GetPixelGreen(image,q)) || (GetPixelBlue(image,p+r*GetPixelChannels(image)) != GetPixelBlue(image,q)) || (GetPixelAlpha(image,p+r*GetPixelChannels(image)) != GetPixelAlpha(image,q)) || ((image->colorspace == CMYKColorspace) && (GetPixelBlack(image,p+r*GetPixelChannels(image)) != GetPixelBlack(image,q)))) changed++; /* The pixel was changed in some way! */ p+=GetPixelChannels(image); /* increment pixel buffers */ q+=GetPixelChannels(image); } /* x */ if ( SyncCacheViewAuthenticPixels(auth_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) if ( SetImageProgress(image,MorphologyTag,progress++,image->rows) == MagickFalse ) status=MagickFalse; } /* y */ /* Do the reversed pass through the image */ for (y=(ssize_t)image->rows-1; y >= 0; y--) { register const Quantum *restrict p; register Quantum *restrict q; register ssize_t x; ssize_t r; if (status == MagickFalse) break; /* NOTE read virtual pixels, and authentic pixels, from the same image! ** we read using virtual to get virtual pixel handling, but write back ** into the same image. ** ** Only the bottom half of the kernel will be processes as we ** up the image. */ p=GetCacheViewVirtualPixels(virt_view,-offx,y,virt_width,(size_t) kernel->y+1,exception); q=GetCacheViewAuthenticPixels(auth_view, 0, y, image->columns, 1, exception); if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) status=MagickFalse; if (status == MagickFalse) break; /* adjust positions to end of row */ p += (image->columns-1)*GetPixelChannels(image); q += (image->columns-1)*GetPixelChannels(image); /* offset to origin in 'p'. while 'q' points to it directly */ r = offx; for (x=(ssize_t)image->columns-1; x >= 0; x--) { PixelInfo result; register const MagickRealType *restrict k; register const Quantum *restrict k_pixels; register ssize_t u; ssize_t v; /* Default - previously modified pixel */ GetPixelInfo(image,&result); GetPixelInfoPixel(image,q,&result); if ( method != VoronoiMorphology ) result.alpha = QuantumRange - result.alpha; switch ( method ) { case DistanceMorphology: /* Add kernel Value and select the minimum value found. */ k = &kernel->values[ kernel->width*(kernel->y+1)-1 ]; k_pixels = p; for (v=offy; v < (ssize_t) kernel->height; v++) { for (u=0; u < (ssize_t) kernel->width; u++, k--) { if ( IsNan(*k) ) continue; Minimize(result.red, (*k)+ GetPixelRed(image,k_pixels+u*GetPixelChannels(image))); Minimize(result.green, (*k)+ GetPixelGreen(image,k_pixels+u*GetPixelChannels(image))); Minimize(result.blue, (*k)+ GetPixelBlue(image,k_pixels+u*GetPixelChannels(image))); if ( image->colorspace == CMYKColorspace) Minimize(result.black,(*k)+ GetPixelBlack(image,k_pixels+u*GetPixelChannels(image))); Minimize(result.alpha, (*k)+ GetPixelAlpha(image,k_pixels+u*GetPixelChannels(image))); } k_pixels += virt_width*GetPixelChannels(image); } /* repeat with the just processed pixels of this row */ k = &kernel->values[ kernel->width*(kernel->y)+kernel->x-1 ]; k_pixels = q-offx*GetPixelChannels(image); for (u=offx+1; u < (ssize_t) kernel->width; u++, k--) { if ( (x+u-offx) >= (ssize_t)image->columns ) continue; if ( IsNan(*k) ) continue; Minimize(result.red, (*k)+ GetPixelRed(image,k_pixels+u*GetPixelChannels(image))); Minimize(result.green, (*k)+ GetPixelGreen(image,k_pixels+u*GetPixelChannels(image))); Minimize(result.blue, (*k)+ GetPixelBlue(image,k_pixels+u*GetPixelChannels(image))); if ( image->colorspace == CMYKColorspace) Minimize(result.black, (*k)+ GetPixelBlack(image,k_pixels+u*GetPixelChannels(image))); Minimize(result.alpha, (*k)+ GetPixelAlpha(image,k_pixels+u*GetPixelChannels(image))); } break; case VoronoiMorphology: /* Apply Distance to 'Matte' channel, coping the closest color. ** ** This is experimental, and realy the 'alpha' component should ** be completely separate 'masking' channel. */ k = &kernel->values[ kernel->width*(kernel->y+1)-1 ]; k_pixels = p; for (v=offy; v < (ssize_t) kernel->height; v++) { for (u=0; u < (ssize_t) kernel->width; u++, k--) { if ( IsNan(*k) ) continue; if( result.alpha > (*k)+GetPixelAlpha(image,k_pixels+u*GetPixelChannels(image)) ) { GetPixelInfoPixel(image,k_pixels+u*GetPixelChannels(image), &result); result.alpha += *k; } } k_pixels += virt_width*GetPixelChannels(image); } /* repeat with the just processed pixels of this row */ k = &kernel->values[ kernel->width*(kernel->y)+kernel->x-1 ]; k_pixels = q-offx*GetPixelChannels(image); for (u=offx+1; u < (ssize_t) kernel->width; u++, k--) { if ( (x+u-offx) >= (ssize_t)image->columns ) continue; if ( IsNan(*k) ) continue; if( result.alpha > (*k)+GetPixelAlpha(image,k_pixels+u*GetPixelChannels(image)) ) { GetPixelInfoPixel(image,k_pixels+u*GetPixelChannels(image), &result); result.alpha += *k; } } break; default: /* result directly calculated or assigned */ break; } /* Assign the resulting pixel values - Clamping Result */ switch ( method ) { case VoronoiMorphology: SetPixelInfoPixel(image,&result,q); break; default: if ((GetPixelRedTraits(image) & UpdatePixelTrait) != 0) SetPixelRed(image,ClampToQuantum(result.red),q); if ((GetPixelGreenTraits(image) & UpdatePixelTrait) != 0) SetPixelGreen(image,ClampToQuantum(result.green),q); if ((GetPixelBlueTraits(image) & UpdatePixelTrait) != 0) SetPixelBlue(image,ClampToQuantum(result.blue),q); if (((GetPixelBlackTraits(image) & UpdatePixelTrait) != 0) && (image->colorspace == CMYKColorspace)) SetPixelBlack(image,ClampToQuantum(result.black),q); if ((GetPixelAlphaTraits(image) & UpdatePixelTrait) != 0 && (image->alpha_trait == BlendPixelTrait)) SetPixelAlpha(image,ClampToQuantum(result.alpha),q); break; } /* Count up changed pixels */ if ( (GetPixelRed(image,p+r*GetPixelChannels(image)) != GetPixelRed(image,q)) || (GetPixelGreen(image,p+r*GetPixelChannels(image)) != GetPixelGreen(image,q)) || (GetPixelBlue(image,p+r*GetPixelChannels(image)) != GetPixelBlue(image,q)) || (GetPixelAlpha(image,p+r*GetPixelChannels(image)) != GetPixelAlpha(image,q)) || ((image->colorspace == CMYKColorspace) && (GetPixelBlack(image,p+r*GetPixelChannels(image)) != GetPixelBlack(image,q)))) changed++; /* The pixel was changed in some way! */ p-=GetPixelChannels(image); /* go backward through pixel buffers */ q-=GetPixelChannels(image); } /* x */ if ( SyncCacheViewAuthenticPixels(auth_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) if ( SetImageProgress(image,MorphologyTag,progress++,image->rows) == MagickFalse ) status=MagickFalse; } /* y */ auth_view=DestroyCacheView(auth_view); virt_view=DestroyCacheView(virt_view); return(status ? (ssize_t) changed : -1); } /* Apply a Morphology by calling one of the above low level primitive ** application functions. This function handles any iteration loops, ** composition or re-iteration of results, and compound morphology methods ** that is based on multiple low-level (staged) morphology methods. ** ** Basically this provides the complex glue between the requested morphology ** method and raw low-level implementation (above). */ MagickPrivate Image *MorphologyApply(const Image *image, const MorphologyMethod method, const ssize_t iterations, const KernelInfo *kernel, const CompositeOperator compose,const double bias, ExceptionInfo *exception) { CompositeOperator curr_compose; Image *curr_image, /* Image we are working with or iterating */ *work_image, /* secondary image for primitive iteration */ *save_image, /* saved image - for 'edge' method only */ *rslt_image; /* resultant image - after multi-kernel handling */ KernelInfo *reflected_kernel, /* A reflected copy of the kernel (if needed) */ *norm_kernel, /* the current normal un-reflected kernel */ *rflt_kernel, /* the current reflected kernel (if needed) */ *this_kernel; /* the kernel being applied */ MorphologyMethod primitive; /* the current morphology primitive being applied */ CompositeOperator rslt_compose; /* multi-kernel compose method for results to use */ MagickBooleanType special, /* do we use a direct modify function? */ verbose; /* verbose output of results */ size_t method_loop, /* Loop 1: number of compound method iterations (norm 1) */ method_limit, /* maximum number of compound method iterations */ kernel_number, /* Loop 2: the kernel number being applied */ stage_loop, /* Loop 3: primitive loop for compound morphology */ stage_limit, /* how many primitives are in this compound */ kernel_loop, /* Loop 4: iterate the kernel over image */ kernel_limit, /* number of times to iterate kernel */ count, /* total count of primitive steps applied */ kernel_changed, /* total count of changed using iterated kernel */ method_changed; /* total count of changed over method iteration */ ssize_t changed; /* number pixels changed by last primitive operation */ char v_info[80]; assert(image != (Image *) NULL); assert(image->signature == MagickSignature); assert(kernel != (KernelInfo *) NULL); assert(kernel->signature == MagickSignature); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickSignature); count = 0; /* number of low-level morphology primitives performed */ if ( iterations == 0 ) return((Image *)NULL); /* null operation - nothing to do! */ kernel_limit = (size_t) iterations; if ( iterations < 0 ) /* negative interations = infinite (well alomst) */ kernel_limit = image->columns>image->rows ? image->columns : image->rows; verbose = IsStringTrue(GetImageArtifact(image,"verbose")); /* initialise for cleanup */ curr_image = (Image *) image; curr_compose = image->compose; (void) curr_compose; work_image = save_image = rslt_image = (Image *) NULL; reflected_kernel = (KernelInfo *) NULL; /* Initialize specific methods * + which loop should use the given iteratations * + how many primitives make up the compound morphology * + multi-kernel compose method to use (by default) */ method_limit = 1; /* just do method once, unless otherwise set */ stage_limit = 1; /* assume method is not a compound */ special = MagickFalse; /* assume it is NOT a direct modify primitive */ rslt_compose = compose; /* and we are composing multi-kernels as given */ switch( method ) { case SmoothMorphology: /* 4 primitive compound morphology */ stage_limit = 4; break; case OpenMorphology: /* 2 primitive compound morphology */ case OpenIntensityMorphology: case TopHatMorphology: case CloseMorphology: case CloseIntensityMorphology: case BottomHatMorphology: case EdgeMorphology: stage_limit = 2; break; case HitAndMissMorphology: rslt_compose = LightenCompositeOp; /* Union of multi-kernel results */ /* FALL THUR */ case ThinningMorphology: case ThickenMorphology: method_limit = kernel_limit; /* iterate the whole method */ kernel_limit = 1; /* do not do kernel iteration */ break; case DistanceMorphology: case VoronoiMorphology: special = MagickTrue; /* use special direct primative */ break; default: break; } /* Apply special methods with special requirments ** For example, single run only, or post-processing requirements */ if ( special == MagickTrue ) { rslt_image=CloneImage(image,0,0,MagickTrue,exception); if (rslt_image == (Image *) NULL) goto error_cleanup; if (SetImageStorageClass(rslt_image,DirectClass,exception) == MagickFalse) goto error_cleanup; changed = MorphologyPrimitiveDirect(rslt_image, method, kernel, exception); if ( IfMagickTrue(verbose) ) (void) (void) FormatLocaleFile(stderr, "%s:%.20g.%.20g #%.20g => Changed %.20g\n", CommandOptionToMnemonic(MagickMorphologyOptions, method), 1.0,0.0,1.0, (double) changed); if ( changed < 0 ) goto error_cleanup; if ( method == VoronoiMorphology ) { /* Preserve the alpha channel of input image - but turned off */ (void) SetImageAlphaChannel(rslt_image, DeactivateAlphaChannel, exception); (void) CompositeImage(rslt_image,image,CopyAlphaCompositeOp, MagickTrue,0,0,exception); (void) SetImageAlphaChannel(rslt_image, DeactivateAlphaChannel, exception); } goto exit_cleanup; } /* Handle user (caller) specified multi-kernel composition method */ if ( compose != UndefinedCompositeOp ) rslt_compose = compose; /* override default composition for method */ if ( rslt_compose == UndefinedCompositeOp ) rslt_compose = NoCompositeOp; /* still not defined! Then re-iterate */ /* Some methods require a reflected kernel to use with primitives. * Create the reflected kernel for those methods. */ switch ( method ) { case CorrelateMorphology: case CloseMorphology: case CloseIntensityMorphology: case BottomHatMorphology: case SmoothMorphology: reflected_kernel = CloneKernelInfo(kernel); if (reflected_kernel == (KernelInfo *) NULL) goto error_cleanup; RotateKernelInfo(reflected_kernel,180); break; default: break; } /* Loops around more primitive morpholgy methods ** erose, dilate, open, close, smooth, edge, etc... */ /* Loop 1: iterate the compound method */ method_loop = 0; method_changed = 1; while ( method_loop < method_limit && method_changed > 0 ) { method_loop++; method_changed = 0; /* Loop 2: iterate over each kernel in a multi-kernel list */ norm_kernel = (KernelInfo *) kernel; this_kernel = (KernelInfo *) kernel; rflt_kernel = reflected_kernel; kernel_number = 0; while ( norm_kernel != NULL ) { /* Loop 3: Compound Morphology Staging - Select Primative to apply */ stage_loop = 0; /* the compound morphology stage number */ while ( stage_loop < stage_limit ) { stage_loop++; /* The stage of the compound morphology */ /* Select primitive morphology for this stage of compound method */ this_kernel = norm_kernel; /* default use unreflected kernel */ primitive = method; /* Assume method is a primitive */ switch( method ) { case ErodeMorphology: /* just erode */ case EdgeInMorphology: /* erode and image difference */ primitive = ErodeMorphology; break; case DilateMorphology: /* just dilate */ case EdgeOutMorphology: /* dilate and image difference */ primitive = DilateMorphology; break; case OpenMorphology: /* erode then dialate */ case TopHatMorphology: /* open and image difference */ primitive = ErodeMorphology; if ( stage_loop == 2 ) primitive = DilateMorphology; break; case OpenIntensityMorphology: primitive = ErodeIntensityMorphology; if ( stage_loop == 2 ) primitive = DilateIntensityMorphology; break; case CloseMorphology: /* dilate, then erode */ case BottomHatMorphology: /* close and image difference */ this_kernel = rflt_kernel; /* use the reflected kernel */ primitive = DilateMorphology; if ( stage_loop == 2 ) primitive = ErodeMorphology; break; case CloseIntensityMorphology: this_kernel = rflt_kernel; /* use the reflected kernel */ primitive = DilateIntensityMorphology; if ( stage_loop == 2 ) primitive = ErodeIntensityMorphology; break; case SmoothMorphology: /* open, close */ switch ( stage_loop ) { case 1: /* start an open method, which starts with Erode */ primitive = ErodeMorphology; break; case 2: /* now Dilate the Erode */ primitive = DilateMorphology; break; case 3: /* Reflect kernel a close */ this_kernel = rflt_kernel; /* use the reflected kernel */ primitive = DilateMorphology; break; case 4: /* Finish the Close */ this_kernel = rflt_kernel; /* use the reflected kernel */ primitive = ErodeMorphology; break; } break; case EdgeMorphology: /* dilate and erode difference */ primitive = DilateMorphology; if ( stage_loop == 2 ) { save_image = curr_image; /* save the image difference */ curr_image = (Image *) image; primitive = ErodeMorphology; } break; case CorrelateMorphology: /* A Correlation is a Convolution with a reflected kernel. ** However a Convolution is a weighted sum using a reflected ** kernel. It may seem stange to convert a Correlation into a ** Convolution as the Correlation is the simplier method, but ** Convolution is much more commonly used, and it makes sense to ** implement it directly so as to avoid the need to duplicate the ** kernel when it is not required (which is typically the ** default). */ this_kernel = rflt_kernel; /* use the reflected kernel */ primitive = ConvolveMorphology; break; default: break; } assert( this_kernel != (KernelInfo *) NULL ); /* Extra information for debugging compound operations */ if ( IfMagickTrue(verbose) ) { if ( stage_limit > 1 ) (void) FormatLocaleString(v_info,MaxTextExtent,"%s:%.20g.%.20g -> ", CommandOptionToMnemonic(MagickMorphologyOptions,method),(double) method_loop,(double) stage_loop); else if ( primitive != method ) (void) FormatLocaleString(v_info, MaxTextExtent, "%s:%.20g -> ", CommandOptionToMnemonic(MagickMorphologyOptions, method),(double) method_loop); else v_info[0] = '\0'; } /* Loop 4: Iterate the kernel with primitive */ kernel_loop = 0; kernel_changed = 0; changed = 1; while ( kernel_loop < kernel_limit && changed > 0 ) { kernel_loop++; /* the iteration of this kernel */ /* Create a clone as the destination image, if not yet defined */ if ( work_image == (Image *) NULL ) { work_image=CloneImage(image,0,0,MagickTrue,exception); if (work_image == (Image *) NULL) goto error_cleanup; if (SetImageStorageClass(work_image,DirectClass,exception) == MagickFalse) goto error_cleanup; /* work_image->type=image->type; ??? */ } /* APPLY THE MORPHOLOGICAL PRIMITIVE (curr -> work) */ count++; changed = MorphologyPrimitive(curr_image, work_image, primitive, this_kernel, bias, exception); if ( IfMagickTrue(verbose) ) { if ( kernel_loop > 1 ) (void) FormatLocaleFile(stderr, "\n"); /* add end-of-line from previous */ (void) (void) FormatLocaleFile(stderr, "%s%s%s:%.20g.%.20g #%.20g => Changed %.20g", v_info,CommandOptionToMnemonic(MagickMorphologyOptions, primitive),(this_kernel == rflt_kernel ) ? "*" : "", (double) (method_loop+kernel_loop-1),(double) kernel_number, (double) count,(double) changed); } if ( changed < 0 ) goto error_cleanup; kernel_changed += changed; method_changed += changed; /* prepare next loop */ { Image *tmp = work_image; /* swap images for iteration */ work_image = curr_image; curr_image = tmp; } if ( work_image == image ) work_image = (Image *) NULL; /* replace input 'image' */ } /* End Loop 4: Iterate the kernel with primitive */ if ( IfMagickTrue(verbose) && kernel_changed != (size_t)changed ) (void) FormatLocaleFile(stderr, " Total %.20g",(double) kernel_changed); if ( IfMagickTrue(verbose) && stage_loop < stage_limit ) (void) FormatLocaleFile(stderr, "\n"); /* add end-of-line before looping */ #if 0 (void) FormatLocaleFile(stderr, "--E-- image=0x%lx\n", (unsigned long)image); (void) FormatLocaleFile(stderr, " curr =0x%lx\n", (unsigned long)curr_image); (void) FormatLocaleFile(stderr, " work =0x%lx\n", (unsigned long)work_image); (void) FormatLocaleFile(stderr, " save =0x%lx\n", (unsigned long)save_image); (void) FormatLocaleFile(stderr, " union=0x%lx\n", (unsigned long)rslt_image); #endif } /* End Loop 3: Primative (staging) Loop for Coumpound Methods */ /* Final Post-processing for some Compound Methods ** ** The removal of any 'Sync' channel flag in the Image Compositon ** below ensures the methematical compose method is applied in a ** purely mathematical way, and only to the selected channels. ** Turn off SVG composition 'alpha blending'. */ switch( method ) { case EdgeOutMorphology: case EdgeInMorphology: case TopHatMorphology: case BottomHatMorphology: if ( IfMagickTrue(verbose) ) (void) FormatLocaleFile(stderr, "\n%s: Difference with original image",CommandOptionToMnemonic( MagickMorphologyOptions, method) ); (void) CompositeImage(curr_image,image,DifferenceCompositeOp, MagickTrue,0,0,exception); break; case EdgeMorphology: if ( IfMagickTrue(verbose) ) (void) FormatLocaleFile(stderr, "\n%s: Difference of Dilate and Erode",CommandOptionToMnemonic( MagickMorphologyOptions, method) ); (void) CompositeImage(curr_image,save_image,DifferenceCompositeOp, MagickTrue,0,0,exception); save_image = DestroyImage(save_image); /* finished with save image */ break; default: break; } /* multi-kernel handling: re-iterate, or compose results */ if ( kernel->next == (KernelInfo *) NULL ) rslt_image = curr_image; /* just return the resulting image */ else if ( rslt_compose == NoCompositeOp ) { if ( IfMagickTrue(verbose) ) { if ( this_kernel->next != (KernelInfo *) NULL ) (void) FormatLocaleFile(stderr, " (re-iterate)"); else (void) FormatLocaleFile(stderr, " (done)"); } rslt_image = curr_image; /* return result, and re-iterate */ } else if ( rslt_image == (Image *) NULL) { if ( IfMagickTrue(verbose) ) (void) FormatLocaleFile(stderr, " (save for compose)"); rslt_image = curr_image; curr_image = (Image *) image; /* continue with original image */ } else { /* Add the new 'current' result to the composition ** ** The removal of any 'Sync' channel flag in the Image Compositon ** below ensures the methematical compose method is applied in a ** purely mathematical way, and only to the selected channels. ** IE: Turn off SVG composition 'alpha blending'. */ if ( IfMagickTrue(verbose) ) (void) FormatLocaleFile(stderr, " (compose \"%s\")", CommandOptionToMnemonic(MagickComposeOptions, rslt_compose) ); (void) CompositeImage(rslt_image,curr_image,rslt_compose,MagickTrue, 0,0,exception); curr_image = DestroyImage(curr_image); curr_image = (Image *) image; /* continue with original image */ } if ( IfMagickTrue(verbose) ) (void) FormatLocaleFile(stderr, "\n"); /* loop to the next kernel in a multi-kernel list */ norm_kernel = norm_kernel->next; if ( rflt_kernel != (KernelInfo *) NULL ) rflt_kernel = rflt_kernel->next; kernel_number++; } /* End Loop 2: Loop over each kernel */ } /* End Loop 1: compound method interation */ goto exit_cleanup; /* Yes goto's are bad, but it makes cleanup lot more efficient */ error_cleanup: if ( curr_image == rslt_image ) curr_image = (Image *) NULL; if ( rslt_image != (Image *) NULL ) rslt_image = DestroyImage(rslt_image); exit_cleanup: if ( curr_image == rslt_image || curr_image == image ) curr_image = (Image *) NULL; if ( curr_image != (Image *) NULL ) curr_image = DestroyImage(curr_image); if ( work_image != (Image *) NULL ) work_image = DestroyImage(work_image); if ( save_image != (Image *) NULL ) save_image = DestroyImage(save_image); if ( reflected_kernel != (KernelInfo *) NULL ) reflected_kernel = DestroyKernelInfo(reflected_kernel); return(rslt_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % M o r p h o l o g y I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % MorphologyImage() applies a user supplied kernel to the image % according to the given mophology method. % % This function applies any and all user defined settings before calling % the above internal function MorphologyApply(). % % User defined settings include... % * Output Bias for Convolution and correlation ("-define convolve:bias=??") % * Kernel Scale/normalize settings ("-define convolve:scale=??") % This can also includes the addition of a scaled unity kernel. % * Show Kernel being applied ("-define showkernel=1") % % Other operators that do not want user supplied options interfering, % especially "convolve:bias" and "showkernel" should use MorphologyApply() % directly. % % The format of the MorphologyImage method is: % % Image *MorphologyImage(const Image *image,MorphologyMethod method, % const ssize_t iterations,KernelInfo *kernel,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o method: the morphology method to be applied. % % o iterations: apply the operation this many times (or no change). % A value of -1 means loop until no change found. % How this is applied may depend on the morphology method. % Typically this is a value of 1. % % o kernel: An array of double representing the morphology kernel. % Warning: kernel may be normalized for the Convolve method. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *MorphologyImage(const Image *image, const MorphologyMethod method,const ssize_t iterations, const KernelInfo *kernel,ExceptionInfo *exception) { KernelInfo *curr_kernel; CompositeOperator compose; Image *morphology_image; double bias; curr_kernel = (KernelInfo *) kernel; bias=0.0; compose = UndefinedCompositeOp; /* use default for method */ /* Apply Convolve/Correlate Normalization and Scaling Factors. * This is done BEFORE the ShowKernelInfo() function is called so that * users can see the results of the 'option:convolve:scale' option. */ if ( method == ConvolveMorphology || method == CorrelateMorphology ) { const char *artifact; /* Get the bias value as it will be needed */ artifact = GetImageArtifact(image,"convolve:bias"); if ( artifact != (const char *) NULL) { if (IfMagickFalse(IsGeometry(artifact))) (void) ThrowMagickException(exception,GetMagickModule(), OptionWarning,"InvalidSetting","'%s' '%s'", "convolve:bias",artifact); else bias=StringToDoubleInterval(artifact,(double) QuantumRange+1.0); } /* Scale kernel according to user wishes */ artifact = GetImageArtifact(image,"convolve:scale"); if ( artifact != (const char *)NULL ) { if (IfMagickFalse(IsGeometry(artifact))) (void) ThrowMagickException(exception,GetMagickModule(), OptionWarning,"InvalidSetting","'%s' '%s'", "convolve:scale",artifact); else { if ( curr_kernel == kernel ) curr_kernel = CloneKernelInfo(kernel); if (curr_kernel == (KernelInfo *) NULL) return((Image *) NULL); ScaleGeometryKernelInfo(curr_kernel, artifact); } } } /* display the (normalized) kernel via stderr */ if ( IfStringTrue(GetImageArtifact(image,"showkernel")) || IfStringTrue(GetImageArtifact(image,"convolve:showkernel")) || IfStringTrue(GetImageArtifact(image,"morphology:showkernel")) ) ShowKernelInfo(curr_kernel); /* Override the default handling of multi-kernel morphology results * If 'Undefined' use the default method * If 'None' (default for 'Convolve') re-iterate previous result * Otherwise merge resulting images using compose method given. * Default for 'HitAndMiss' is 'Lighten'. */ { const char *artifact; ssize_t parse; artifact = GetImageArtifact(image,"morphology:compose"); if ( artifact != (const char *) NULL) { parse=ParseCommandOption(MagickComposeOptions, MagickFalse,artifact); if ( parse < 0 ) (void) ThrowMagickException(exception,GetMagickModule(), OptionWarning,"UnrecognizedComposeOperator","'%s' '%s'", "morphology:compose",artifact); else compose=(CompositeOperator)parse; } } /* Apply the Morphology */ morphology_image = MorphologyApply(image,method,iterations, curr_kernel,compose,bias,exception); /* Cleanup and Exit */ if ( curr_kernel != kernel ) curr_kernel=DestroyKernelInfo(curr_kernel); return(morphology_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % + R o t a t e K e r n e l I n f o % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % RotateKernelInfo() rotates the kernel by the angle given. % % Currently it is restricted to 90 degree angles, of either 1D kernels % or square kernels. And 'circular' rotations of 45 degrees for 3x3 kernels. % It will ignore usless rotations for specific 'named' built-in kernels. % % The format of the RotateKernelInfo method is: % % void RotateKernelInfo(KernelInfo *kernel, double angle) % % A description of each parameter follows: % % o kernel: the Morphology/Convolution kernel % % o angle: angle to rotate in degrees % % This function is currently internal to this module only, but can be exported % to other modules if needed. */ static void RotateKernelInfo(KernelInfo *kernel, double angle) { /* angle the lower kernels first */ if ( kernel->next != (KernelInfo *) NULL) RotateKernelInfo(kernel->next, angle); /* WARNING: Currently assumes the kernel (rightly) is horizontally symetrical ** ** TODO: expand beyond simple 90 degree rotates, flips and flops */ /* Modulus the angle */ angle = fmod(angle, 360.0); if ( angle < 0 ) angle += 360.0; if ( 337.5 < angle || angle <= 22.5 ) return; /* Near zero angle - no change! - At least not at this time */ /* Handle special cases */ switch (kernel->type) { /* These built-in kernels are cylindrical kernels, rotating is useless */ case GaussianKernel: case DoGKernel: case LoGKernel: case DiskKernel: case PeaksKernel: case LaplacianKernel: case ChebyshevKernel: case ManhattanKernel: case EuclideanKernel: return; /* These may be rotatable at non-90 angles in the future */ /* but simply rotating them in multiples of 90 degrees is useless */ case SquareKernel: case DiamondKernel: case PlusKernel: case CrossKernel: return; /* These only allows a +/-90 degree rotation (by transpose) */ /* A 180 degree rotation is useless */ case BlurKernel: if ( 135.0 < angle && angle <= 225.0 ) return; if ( 225.0 < angle && angle <= 315.0 ) angle -= 180; break; default: break; } /* Attempt rotations by 45 degrees -- 3x3 kernels only */ if ( 22.5 < fmod(angle,90.0) && fmod(angle,90.0) <= 67.5 ) { if ( kernel->width == 3 && kernel->height == 3 ) { /* Rotate a 3x3 square by 45 degree angle */ double t = kernel->values[0]; kernel->values[0] = kernel->values[3]; kernel->values[3] = kernel->values[6]; kernel->values[6] = kernel->values[7]; kernel->values[7] = kernel->values[8]; kernel->values[8] = kernel->values[5]; kernel->values[5] = kernel->values[2]; kernel->values[2] = kernel->values[1]; kernel->values[1] = t; /* rotate non-centered origin */ if ( kernel->x != 1 || kernel->y != 1 ) { ssize_t x,y; x = (ssize_t) kernel->x-1; y = (ssize_t) kernel->y-1; if ( x == y ) x = 0; else if ( x == 0 ) x = -y; else if ( x == -y ) y = 0; else if ( y == 0 ) y = x; kernel->x = (ssize_t) x+1; kernel->y = (ssize_t) y+1; } angle = fmod(angle+315.0, 360.0); /* angle reduced 45 degrees */ kernel->angle = fmod(kernel->angle+45.0, 360.0); } else perror("Unable to rotate non-3x3 kernel by 45 degrees"); } if ( 45.0 < fmod(angle, 180.0) && fmod(angle,180.0) <= 135.0 ) { if ( kernel->width == 1 || kernel->height == 1 ) { /* Do a transpose of a 1 dimensional kernel, ** which results in a fast 90 degree rotation of some type. */ ssize_t t; t = (ssize_t) kernel->width; kernel->width = kernel->height; kernel->height = (size_t) t; t = kernel->x; kernel->x = kernel->y; kernel->y = t; if ( kernel->width == 1 ) { angle = fmod(angle+270.0, 360.0); /* angle reduced 90 degrees */ kernel->angle = fmod(kernel->angle+90.0, 360.0); } else { angle = fmod(angle+90.0, 360.0); /* angle increased 90 degrees */ kernel->angle = fmod(kernel->angle+270.0, 360.0); } } else if ( kernel->width == kernel->height ) { /* Rotate a square array of values by 90 degrees */ { register ssize_t i,j,x,y; register MagickRealType *k,t; k=kernel->values; for( i=0, x=(ssize_t) kernel->width-1; i<=x; i++, x--) for( j=0, y=(ssize_t) kernel->height-1; jwidth]; k[i+j*kernel->width] = k[j+x*kernel->width]; k[j+x*kernel->width] = k[x+y*kernel->width]; k[x+y*kernel->width] = k[y+i*kernel->width]; k[y+i*kernel->width] = t; } } /* rotate the origin - relative to center of array */ { register ssize_t x,y; x = (ssize_t) (kernel->x*2-kernel->width+1); y = (ssize_t) (kernel->y*2-kernel->height+1); kernel->x = (ssize_t) ( -y +(ssize_t) kernel->width-1)/2; kernel->y = (ssize_t) ( +x +(ssize_t) kernel->height-1)/2; } angle = fmod(angle+270.0, 360.0); /* angle reduced 90 degrees */ kernel->angle = fmod(kernel->angle+90.0, 360.0); } else perror("Unable to rotate a non-square, non-linear kernel 90 degrees"); } if ( 135.0 < angle && angle <= 225.0 ) { /* For a 180 degree rotation - also know as a reflection * This is actually a very very common operation! * Basically all that is needed is a reversal of the kernel data! * And a reflection of the origon */ double t; register MagickRealType *k; ssize_t i, j; k=kernel->values; j=(ssize_t) (kernel->width*kernel->height-1); for (i=0; i < j; i++, j--) t=k[i], k[i]=k[j], k[j]=t; kernel->x = (ssize_t) kernel->width - kernel->x - 1; kernel->y = (ssize_t) kernel->height - kernel->y - 1; angle = fmod(angle-180.0, 360.0); /* angle+180 degrees */ kernel->angle = fmod(kernel->angle+180.0, 360.0); } /* At this point angle should at least between -45 (315) and +45 degrees * In the future some form of non-orthogonal angled rotates could be * performed here, posibily with a linear kernel restriction. */ return; } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % S c a l e G e o m e t r y K e r n e l I n f o % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % ScaleGeometryKernelInfo() takes a geometry argument string, typically % provided as a "-set option:convolve:scale {geometry}" user setting, % and modifies the kernel according to the parsed arguments of that setting. % % The first argument (and any normalization flags) are passed to % ScaleKernelInfo() to scale/normalize the kernel. The second argument % is then passed to UnityAddKernelInfo() to add a scled unity kernel % into the scaled/normalized kernel. % % The format of the ScaleGeometryKernelInfo method is: % % void ScaleGeometryKernelInfo(KernelInfo *kernel, % const double scaling_factor,const MagickStatusType normalize_flags) % % A description of each parameter follows: % % o kernel: the Morphology/Convolution kernel to modify % % o geometry: % The geometry string to parse, typically from the user provided % "-set option:convolve:scale {geometry}" setting. % */ MagickExport void ScaleGeometryKernelInfo (KernelInfo *kernel, const char *geometry) { //GeometryFlags MagickStatusType flags; GeometryInfo args; SetGeometryInfo(&args); flags = ParseGeometry(geometry, &args); #if 0 /* For Debugging Geometry Input */ (void) FormatLocaleFile(stderr, "Geometry = 0x%04X : %lg x %lg %+lg %+lg\n", flags, args.rho, args.sigma, args.xi, args.psi ); #endif if ( (flags & PercentValue) != 0 ) /* Handle Percentage flag*/ args.rho *= 0.01, args.sigma *= 0.01; if ( (flags & RhoValue) == 0 ) /* Set Defaults for missing args */ args.rho = 1.0; if ( (flags & SigmaValue) == 0 ) args.sigma = 0.0; /* Scale/Normalize the input kernel */ ScaleKernelInfo(kernel, args.rho, (GeometryFlags) flags); /* Add Unity Kernel, for blending with original */ if ( (flags & SigmaValue) != 0 ) UnityAddKernelInfo(kernel, args.sigma); return; } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % S c a l e K e r n e l I n f o % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % ScaleKernelInfo() scales the given kernel list by the given amount, with or % without normalization of the sum of the kernel values (as per given flags). % % By default (no flags given) the values within the kernel is scaled % directly using given scaling factor without change. % % If either of the two 'normalize_flags' are given the kernel will first be % normalized and then further scaled by the scaling factor value given. % % Kernel normalization ('normalize_flags' given) is designed to ensure that % any use of the kernel scaling factor with 'Convolve' or 'Correlate' % morphology methods will fall into -1.0 to +1.0 range. Note that for % non-HDRI versions of IM this may cause images to have any negative results % clipped, unless some 'bias' is used. % % More specifically. Kernels which only contain positive values (such as a % 'Gaussian' kernel) will be scaled so that those values sum to +1.0, % ensuring a 0.0 to +1.0 output range for non-HDRI images. % % For Kernels that contain some negative values, (such as 'Sharpen' kernels) % the kernel will be scaled by the absolute of the sum of kernel values, so % that it will generally fall within the +/- 1.0 range. % % For kernels whose values sum to zero, (such as 'Laplician' kernels) kernel % will be scaled by just the sum of the postive values, so that its output % range will again fall into the +/- 1.0 range. % % For special kernels designed for locating shapes using 'Correlate', (often % only containing +1 and -1 values, representing foreground/brackground % matching) a special normalization method is provided to scale the positive % values separately to those of the negative values, so the kernel will be % forced to become a zero-sum kernel better suited to such searches. % % WARNING: Correct normalization of the kernel assumes that the '*_range' % attributes within the kernel structure have been correctly set during the % kernels creation. % % NOTE: The values used for 'normalize_flags' have been selected specifically % to match the use of geometry options, so that '!' means NormalizeValue, '^' % means CorrelateNormalizeValue. All other GeometryFlags values are ignored. % % The format of the ScaleKernelInfo method is: % % void ScaleKernelInfo(KernelInfo *kernel, const double scaling_factor, % const MagickStatusType normalize_flags ) % % A description of each parameter follows: % % o kernel: the Morphology/Convolution kernel % % o scaling_factor: % multiply all values (after normalization) by this factor if not % zero. If the kernel is normalized regardless of any flags. % % o normalize_flags: % GeometryFlags defining normalization method to use. % specifically: NormalizeValue, CorrelateNormalizeValue, % and/or PercentValue % */ MagickExport void ScaleKernelInfo(KernelInfo *kernel, const double scaling_factor,const GeometryFlags normalize_flags) { register ssize_t i; register double pos_scale, neg_scale; /* do the other kernels in a multi-kernel list first */ if ( kernel->next != (KernelInfo *) NULL) ScaleKernelInfo(kernel->next, scaling_factor, normalize_flags); /* Normalization of Kernel */ pos_scale = 1.0; if ( (normalize_flags&NormalizeValue) != 0 ) { if ( fabs(kernel->positive_range + kernel->negative_range) >= MagickEpsilon ) /* non-zero-summing kernel (generally positive) */ pos_scale = fabs(kernel->positive_range + kernel->negative_range); else /* zero-summing kernel */ pos_scale = kernel->positive_range; } /* Force kernel into a normalized zero-summing kernel */ if ( (normalize_flags&CorrelateNormalizeValue) != 0 ) { pos_scale = ( fabs(kernel->positive_range) >= MagickEpsilon ) ? kernel->positive_range : 1.0; neg_scale = ( fabs(kernel->negative_range) >= MagickEpsilon ) ? -kernel->negative_range : 1.0; } else neg_scale = pos_scale; /* finialize scaling_factor for positive and negative components */ pos_scale = scaling_factor/pos_scale; neg_scale = scaling_factor/neg_scale; for (i=0; i < (ssize_t) (kernel->width*kernel->height); i++) if ( ! IsNan(kernel->values[i]) ) kernel->values[i] *= (kernel->values[i] >= 0) ? pos_scale : neg_scale; /* convolution output range */ kernel->positive_range *= pos_scale; kernel->negative_range *= neg_scale; /* maximum and minimum values in kernel */ kernel->maximum *= (kernel->maximum >= 0.0) ? pos_scale : neg_scale; kernel->minimum *= (kernel->minimum >= 0.0) ? pos_scale : neg_scale; /* swap kernel settings if user's scaling factor is negative */ if ( scaling_factor < MagickEpsilon ) { double t; t = kernel->positive_range; kernel->positive_range = kernel->negative_range; kernel->negative_range = t; t = kernel->maximum; kernel->maximum = kernel->minimum; kernel->minimum = 1; } return; } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % S h o w K e r n e l I n f o % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % ShowKernelInfo() outputs the details of the given kernel defination to % standard error, generally due to a users 'showkernel' option request. % % The format of the ShowKernel method is: % % void ShowKernelInfo(const KernelInfo *kernel) % % A description of each parameter follows: % % o kernel: the Morphology/Convolution kernel % */ MagickPrivate void ShowKernelInfo(const KernelInfo *kernel) { const KernelInfo *k; size_t c, i, u, v; for (c=0, k=kernel; k != (KernelInfo *) NULL; c++, k=k->next ) { (void) FormatLocaleFile(stderr, "Kernel"); if ( kernel->next != (KernelInfo *) NULL ) (void) FormatLocaleFile(stderr, " #%lu", (unsigned long) c ); (void) FormatLocaleFile(stderr, " \"%s", CommandOptionToMnemonic(MagickKernelOptions, k->type) ); if ( fabs(k->angle) >= MagickEpsilon ) (void) FormatLocaleFile(stderr, "@%lg", k->angle); (void) FormatLocaleFile(stderr, "\" of size %lux%lu%+ld%+ld",(unsigned long) k->width,(unsigned long) k->height,(long) k->x,(long) k->y); (void) FormatLocaleFile(stderr, " with values from %.*lg to %.*lg\n", GetMagickPrecision(), k->minimum, GetMagickPrecision(), k->maximum); (void) FormatLocaleFile(stderr, "Forming a output range from %.*lg to %.*lg", GetMagickPrecision(), k->negative_range, GetMagickPrecision(), k->positive_range); if ( fabs(k->positive_range+k->negative_range) < MagickEpsilon ) (void) FormatLocaleFile(stderr, " (Zero-Summing)\n"); else if ( fabs(k->positive_range+k->negative_range-1.0) < MagickEpsilon ) (void) FormatLocaleFile(stderr, " (Normalized)\n"); else (void) FormatLocaleFile(stderr, " (Sum %.*lg)\n", GetMagickPrecision(), k->positive_range+k->negative_range); for (i=v=0; v < k->height; v++) { (void) FormatLocaleFile(stderr, "%2lu:", (unsigned long) v ); for (u=0; u < k->width; u++, i++) if ( IsNan(k->values[i]) ) (void) FormatLocaleFile(stderr," %*s", GetMagickPrecision()+3, "nan"); else (void) FormatLocaleFile(stderr," %*.*lg", GetMagickPrecision()+3, GetMagickPrecision(), (double) k->values[i]); (void) FormatLocaleFile(stderr,"\n"); } } } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % U n i t y A d d K e r n a l I n f o % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % UnityAddKernelInfo() Adds a given amount of the 'Unity' Convolution Kernel % to the given pre-scaled and normalized Kernel. This in effect adds that % amount of the original image into the resulting convolution kernel. This % value is usually provided by the user as a percentage value in the % 'convolve:scale' setting. % % The resulting effect is to convert the defined kernels into blended % soft-blurs, unsharp kernels or into sharpening kernels. % % The format of the UnityAdditionKernelInfo method is: % % void UnityAdditionKernelInfo(KernelInfo *kernel, const double scale ) % % A description of each parameter follows: % % o kernel: the Morphology/Convolution kernel % % o scale: % scaling factor for the unity kernel to be added to % the given kernel. % */ MagickExport void UnityAddKernelInfo(KernelInfo *kernel, const double scale) { /* do the other kernels in a multi-kernel list first */ if ( kernel->next != (KernelInfo *) NULL) UnityAddKernelInfo(kernel->next, scale); /* Add the scaled unity kernel to the existing kernel */ kernel->values[kernel->x+kernel->y*kernel->width] += scale; CalcKernelMetaData(kernel); /* recalculate the meta-data */ return; } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % Z e r o K e r n e l N a n s % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % ZeroKernelNans() replaces any special 'nan' value that may be present in % the kernel with a zero value. This is typically done when the kernel will % be used in special hardware (GPU) convolution processors, to simply % matters. % % The format of the ZeroKernelNans method is: % % void ZeroKernelNans (KernelInfo *kernel) % % A description of each parameter follows: % % o kernel: the Morphology/Convolution kernel % */ MagickPrivate void ZeroKernelNans(KernelInfo *kernel) { register size_t i; /* do the other kernels in a multi-kernel list first */ if ( kernel->next != (KernelInfo *) NULL) ZeroKernelNans(kernel->next); for (i=0; i < (kernel->width*kernel->height); i++) if ( IsNan(kernel->values[i]) ) kernel->values[i] = 0.0; return; }