/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % EEEEE FFFFF FFFFF EEEEE CCCC TTTTT % % E F F E C T % % EEE FFF FFF EEE C T % % E F F E C T % % EEEEE F F EEEEE CCCC T % % % % % % MagickCore Image Effects Methods % % % % Software Design % % John Cristy % % October 1996 % % % % % % Copyright 1999-2012 ImageMagick Studio LLC, a non-profit organization % % dedicated to making software imaging solutions freely available. % % % % You may not use this file except in compliance with the License. You may % % obtain a copy of the License at % % % % http://www.imagemagick.org/script/license.php % % % % Unless required by applicable law or agreed to in writing, software % % distributed under the License is distributed on an "AS IS" BASIS, % % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % % See the License for the specific language governing permissions and % % limitations under the License. % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % */ /* Include declarations. */ #include "MagickCore/studio.h" #include "MagickCore/accelerate.h" #include "MagickCore/blob.h" #include "MagickCore/cache-view.h" #include "MagickCore/color.h" #include "MagickCore/color-private.h" #include "MagickCore/colorspace.h" #include "MagickCore/constitute.h" #include "MagickCore/decorate.h" #include "MagickCore/distort.h" #include "MagickCore/draw.h" #include "MagickCore/enhance.h" #include "MagickCore/exception.h" #include "MagickCore/exception-private.h" #include "MagickCore/effect.h" #include "MagickCore/fx.h" #include "MagickCore/gem.h" #include "MagickCore/gem-private.h" #include "MagickCore/geometry.h" #include "MagickCore/image-private.h" #include "MagickCore/list.h" #include "MagickCore/log.h" #include "MagickCore/memory_.h" #include "MagickCore/monitor.h" #include "MagickCore/monitor-private.h" #include "MagickCore/montage.h" #include "MagickCore/morphology.h" #include "MagickCore/paint.h" #include "MagickCore/pixel-accessor.h" #include "MagickCore/pixel-private.h" #include "MagickCore/property.h" #include "MagickCore/quantize.h" #include "MagickCore/quantum.h" #include "MagickCore/quantum-private.h" #include "MagickCore/random_.h" #include "MagickCore/random-private.h" #include "MagickCore/resample.h" #include "MagickCore/resample-private.h" #include "MagickCore/resize.h" #include "MagickCore/resource_.h" #include "MagickCore/segment.h" #include "MagickCore/shear.h" #include "MagickCore/signature-private.h" #include "MagickCore/statistic.h" #include "MagickCore/string_.h" #include "MagickCore/thread-private.h" #include "MagickCore/transform.h" #include "MagickCore/threshold.h" /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % A d a p t i v e B l u r I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % AdaptiveBlurImage() adaptively blurs the image by blurring less % intensely near image edges and more intensely far from edges. We blur the % image with a Gaussian operator of the given radius and standard deviation % (sigma). For reasonable results, radius should be larger than sigma. Use a % radius of 0 and AdaptiveBlurImage() selects a suitable radius for you. % % The format of the AdaptiveBlurImage method is: % % Image *AdaptiveBlurImage(const Image *image,const double radius, % const double sigma,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o radius: the radius of the Gaussian, in pixels, not counting the center % pixel. % % o sigma: the standard deviation of the Laplacian, in pixels. % % o exception: return any errors or warnings in this structure. % */ MagickExport MagickBooleanType AdaptiveLevelImage(Image *image, const char *levels,ExceptionInfo *exception) { double black_point, gamma, white_point; GeometryInfo geometry_info; MagickBooleanType status; MagickStatusType flags; /* Parse levels. */ if (levels == (char *) NULL) return(MagickFalse); flags=ParseGeometry(levels,&geometry_info); black_point=geometry_info.rho; white_point=(double) QuantumRange; if ((flags & SigmaValue) != 0) white_point=geometry_info.sigma; gamma=1.0; if ((flags & XiValue) != 0) gamma=geometry_info.xi; if ((flags & PercentValue) != 0) { black_point*=(double) image->columns*image->rows/100.0; white_point*=(double) image->columns*image->rows/100.0; } if ((flags & SigmaValue) == 0) white_point=(double) QuantumRange-black_point; if ((flags & AspectValue ) == 0) status=LevelImage(image,black_point,white_point,gamma,exception); else status=LevelizeImage(image,black_point,white_point,gamma,exception); return(status); } MagickExport Image *AdaptiveBlurImage(const Image *image,const double radius, const double sigma,ExceptionInfo *exception) { #define AdaptiveBlurImageTag "Convolve/Image" #define MagickSigma (fabs(sigma) < MagickEpsilon ? MagickEpsilon : sigma) CacheView *blur_view, *edge_view, *image_view; double **kernel, normalize; Image *blur_image, *edge_image, *gaussian_image; MagickBooleanType status; MagickOffsetType progress; register ssize_t i; size_t width; ssize_t j, k, u, v, y; assert(image != (const Image *) NULL); assert(image->signature == MagickSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickSignature); blur_image=CloneImage(image,image->columns,image->rows,MagickTrue,exception); if (blur_image == (Image *) NULL) return((Image *) NULL); if (fabs(sigma) <= MagickEpsilon) return(blur_image); if (SetImageStorageClass(blur_image,DirectClass,exception) == MagickFalse) { blur_image=DestroyImage(blur_image); return((Image *) NULL); } /* Edge detect the image brighness channel, level, blur, and level again. */ edge_image=EdgeImage(image,radius,sigma,exception); if (edge_image == (Image *) NULL) { blur_image=DestroyImage(blur_image); return((Image *) NULL); } (void) AdaptiveLevelImage(edge_image,"20%,95%",exception); gaussian_image=GaussianBlurImage(edge_image,radius,sigma,exception); if (gaussian_image != (Image *) NULL) { edge_image=DestroyImage(edge_image); edge_image=gaussian_image; } (void) AdaptiveLevelImage(edge_image,"10%,95%",exception); /* Create a set of kernels from maximum (radius,sigma) to minimum. */ width=GetOptimalKernelWidth2D(radius,sigma); kernel=(double **) AcquireAlignedMemory((size_t) width,sizeof(*kernel)); if (kernel == (double **) NULL) { edge_image=DestroyImage(edge_image); blur_image=DestroyImage(blur_image); ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); } (void) ResetMagickMemory(kernel,0,(size_t) width*sizeof(*kernel)); for (i=0; i < (ssize_t) width; i+=2) { kernel[i]=(double *) AcquireAlignedMemory((size_t) (width-i),(width-i)* sizeof(**kernel)); if (kernel[i] == (double *) NULL) break; normalize=0.0; j=(ssize_t) (width-i)/2; k=0; for (v=(-j); v <= j; v++) { for (u=(-j); u <= j; u++) { kernel[i][k]=(double) (exp(-((double) u*u+v*v)/(2.0*MagickSigma* MagickSigma))/(2.0*MagickPI*MagickSigma*MagickSigma)); normalize+=kernel[i][k]; k++; } } if (fabs(normalize) <= MagickEpsilon) normalize=1.0; normalize=1.0/normalize; for (k=0; k < (j*j); k++) kernel[i][k]=normalize*kernel[i][k]; } if (i < (ssize_t) width) { for (i-=2; i >= 0; i-=2) kernel[i]=(double *) RelinquishAlignedMemory(kernel[i]); kernel=(double **) RelinquishAlignedMemory(kernel); edge_image=DestroyImage(edge_image); blur_image=DestroyImage(blur_image); ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); } /* Adaptively blur image. */ status=MagickTrue; progress=0; image_view=AcquireVirtualCacheView(image,exception); edge_view=AcquireVirtualCacheView(edge_image,exception); blur_view=AcquireAuthenticCacheView(blur_image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(progress,status) \ dynamic_number_threads(image,image->columns,image->rows,1) #endif for (y=0; y < (ssize_t) blur_image->rows; y++) { register const Quantum *restrict r; register Quantum *restrict q; register ssize_t x; if (status == MagickFalse) continue; r=GetCacheViewVirtualPixels(edge_view,0,y,edge_image->columns,1,exception); q=QueueCacheViewAuthenticPixels(blur_view,0,y,blur_image->columns,1, exception); if ((r == (const Quantum *) NULL) || (q == (Quantum *) NULL)) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) blur_image->columns; x++) { register const Quantum *restrict p; register ssize_t i; ssize_t center, j; j=(ssize_t) ceil((double) width*QuantumScale* GetPixelIntensity(edge_image,r)-0.5); if (j < 0) j=0; else if (j > (ssize_t) width) j=(ssize_t) width; if ((j & 0x01) != 0) j--; p=GetCacheViewVirtualPixels(image_view,x-((ssize_t) (width-j)/2L),y- (ssize_t) ((width-j)/2L),width-j,width-j,exception); if (p == (const Quantum *) NULL) break; center=(ssize_t) GetPixelChannels(image)*(width-j)*((width-j)/2L)+ GetPixelChannels(image)*((width-j)/2L); if (GetPixelMask(image,p) != 0) { q+=GetPixelChannels(blur_image); r+=GetPixelChannels(edge_image); continue; } for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { MagickRealType alpha, gamma, pixel; PixelChannel channel; PixelTrait blur_traits, traits; register const double *restrict k; register const Quantum *restrict pixels; register ssize_t u; ssize_t v; channel=GetPixelChannelMapChannel(image,i); traits=GetPixelChannelMapTraits(image,channel); blur_traits=GetPixelChannelMapTraits(blur_image,channel); if ((traits == UndefinedPixelTrait) || (blur_traits == UndefinedPixelTrait)) continue; if ((blur_traits & CopyPixelTrait) != 0) { SetPixelChannel(blur_image,channel,p[center+i],q); continue; } k=kernel[j]; pixels=p; pixel=0.0; gamma=0.0; if ((blur_traits & BlendPixelTrait) == 0) { /* No alpha blending. */ for (v=0; v < (ssize_t) (width-j); v++) { for (u=0; u < (ssize_t) (width-j); u++) { pixel+=(*k)*pixels[i]; gamma+=(*k); k++; pixels+=GetPixelChannels(image); } } gamma=MagickEpsilonReciprocal(gamma); SetPixelChannel(blur_image,channel,ClampToQuantum(gamma*pixel),q); continue; } /* Alpha blending. */ for (v=0; v < (ssize_t) (width-j); v++) { for (u=0; u < (ssize_t) (width-j); u++) { alpha=(MagickRealType) (QuantumScale*GetPixelAlpha(image,pixels)); pixel+=(*k)*alpha*pixels[i]; gamma+=(*k)*alpha; k++; pixels+=GetPixelChannels(image); } } gamma=MagickEpsilonReciprocal(gamma); SetPixelChannel(blur_image,channel,ClampToQuantum(gamma*pixel),q); } q+=GetPixelChannels(blur_image); r+=GetPixelChannels(edge_image); } if (SyncCacheViewAuthenticPixels(blur_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_AdaptiveBlurImage) #endif proceed=SetImageProgress(image,AdaptiveBlurImageTag,progress++, image->rows); if (proceed == MagickFalse) status=MagickFalse; } } blur_image->type=image->type; blur_view=DestroyCacheView(blur_view); edge_view=DestroyCacheView(edge_view); image_view=DestroyCacheView(image_view); edge_image=DestroyImage(edge_image); for (i=0; i < (ssize_t) width; i+=2) kernel[i]=(double *) RelinquishAlignedMemory(kernel[i]); kernel=(double **) RelinquishAlignedMemory(kernel); if (status == MagickFalse) blur_image=DestroyImage(blur_image); return(blur_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % A d a p t i v e S h a r p e n I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % AdaptiveSharpenImage() adaptively sharpens the image by sharpening more % intensely near image edges and less intensely far from edges. We sharpen the % image with a Gaussian operator of the given radius and standard deviation % (sigma). For reasonable results, radius should be larger than sigma. Use a % radius of 0 and AdaptiveSharpenImage() selects a suitable radius for you. % % The format of the AdaptiveSharpenImage method is: % % Image *AdaptiveSharpenImage(const Image *image,const double radius, % const double sigma,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o radius: the radius of the Gaussian, in pixels, not counting the center % pixel. % % o sigma: the standard deviation of the Laplacian, in pixels. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *AdaptiveSharpenImage(const Image *image,const double radius, const double sigma,ExceptionInfo *exception) { #define AdaptiveSharpenImageTag "Convolve/Image" #define MagickSigma (fabs(sigma) < MagickEpsilon ? MagickEpsilon : sigma) CacheView *sharp_view, *edge_view, *image_view; double **kernel, normalize; Image *sharp_image, *edge_image, *gaussian_image; MagickBooleanType status; MagickOffsetType progress; register ssize_t i; size_t width; ssize_t j, k, u, v, y; assert(image != (const Image *) NULL); assert(image->signature == MagickSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickSignature); sharp_image=CloneImage(image,0,0,MagickTrue,exception); if (sharp_image == (Image *) NULL) return((Image *) NULL); if (fabs(sigma) <= MagickEpsilon) return(sharp_image); if (SetImageStorageClass(sharp_image,DirectClass,exception) == MagickFalse) { sharp_image=DestroyImage(sharp_image); return((Image *) NULL); } /* Edge detect the image brighness channel, level, sharp, and level again. */ edge_image=EdgeImage(image,radius,sigma,exception); if (edge_image == (Image *) NULL) { sharp_image=DestroyImage(sharp_image); return((Image *) NULL); } (void) AdaptiveLevelImage(edge_image,"20%,95%",exception); gaussian_image=GaussianBlurImage(edge_image,radius,sigma,exception); if (gaussian_image != (Image *) NULL) { edge_image=DestroyImage(edge_image); edge_image=gaussian_image; } (void) AdaptiveLevelImage(edge_image,"10%,95%",exception); /* Create a set of kernels from maximum (radius,sigma) to minimum. */ width=GetOptimalKernelWidth2D(radius,sigma); kernel=(double **) AcquireAlignedMemory((size_t) width,sizeof(*kernel)); if (kernel == (double **) NULL) { edge_image=DestroyImage(edge_image); sharp_image=DestroyImage(sharp_image); ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); } (void) ResetMagickMemory(kernel,0,(size_t) width*sizeof(*kernel)); for (i=0; i < (ssize_t) width; i+=2) { kernel[i]=(double *) AcquireAlignedMemory((size_t) (width-i),(width-i)* sizeof(**kernel)); if (kernel[i] == (double *) NULL) break; normalize=0.0; j=(ssize_t) (width-i)/2; k=0; for (v=(-j); v <= j; v++) { for (u=(-j); u <= j; u++) { kernel[i][k]=(double) (-exp(-((double) u*u+v*v)/(2.0*MagickSigma* MagickSigma))/(2.0*MagickPI*MagickSigma*MagickSigma)); normalize+=kernel[i][k]; k++; } } if (fabs(normalize) <= MagickEpsilon) normalize=1.0; normalize=1.0/normalize; for (k=0; k < (j*j); k++) kernel[i][k]=normalize*kernel[i][k]; } if (i < (ssize_t) width) { for (i-=2; i >= 0; i-=2) kernel[i]=(double *) RelinquishAlignedMemory(kernel[i]); kernel=(double **) RelinquishAlignedMemory(kernel); edge_image=DestroyImage(edge_image); sharp_image=DestroyImage(sharp_image); ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); } /* Adaptively sharpen image. */ status=MagickTrue; progress=0; image_view=AcquireVirtualCacheView(image,exception); edge_view=AcquireVirtualCacheView(edge_image,exception); sharp_view=AcquireAuthenticCacheView(sharp_image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(progress,status) \ dynamic_number_threads(image,image->columns,image->rows,1) #endif for (y=0; y < (ssize_t) sharp_image->rows; y++) { register const Quantum *restrict r; register Quantum *restrict q; register ssize_t x; if (status == MagickFalse) continue; r=GetCacheViewVirtualPixels(edge_view,0,y,edge_image->columns,1,exception); q=QueueCacheViewAuthenticPixels(sharp_view,0,y,sharp_image->columns,1, exception); if ((r == (const Quantum *) NULL) || (q == (Quantum *) NULL)) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) sharp_image->columns; x++) { register const Quantum *restrict p; register ssize_t i; ssize_t center, j; j=(ssize_t) ceil((double) width*QuantumScale* GetPixelIntensity(edge_image,r)-0.5); if (j < 0) j=0; else if (j > (ssize_t) width) j=(ssize_t) width; if ((j & 0x01) != 0) j--; p=GetCacheViewVirtualPixels(image_view,x-((ssize_t) (width-j)/2L),y- (ssize_t) ((width-j)/2L),width-j,width-j,exception); if (p == (const Quantum *) NULL) break; center=(ssize_t) GetPixelChannels(image)*(width-j)*((width-j)/2L)+ GetPixelChannels(image)*((width-j)/2); if (GetPixelMask(image,p) != 0) { q+=GetPixelChannels(sharp_image); r+=GetPixelChannels(edge_image); continue; } for (i=0; i < (ssize_t) GetPixelChannels(sharp_image); i++) { MagickRealType alpha, gamma, pixel; PixelChannel channel; PixelTrait sharp_traits, traits; register const double *restrict k; register const Quantum *restrict pixels; register ssize_t u; ssize_t v; channel=GetPixelChannelMapChannel(image,i); traits=GetPixelChannelMapTraits(image,channel); sharp_traits=GetPixelChannelMapTraits(sharp_image,channel); if ((traits == UndefinedPixelTrait) || (sharp_traits == UndefinedPixelTrait)) continue; if ((sharp_traits & CopyPixelTrait) != 0) { SetPixelChannel(sharp_image,channel,p[center+i],q); continue; } k=kernel[j]; pixels=p; pixel=0.0; gamma=0.0; if ((sharp_traits & BlendPixelTrait) == 0) { /* No alpha blending. */ for (v=0; v < (ssize_t) (width-j); v++) { for (u=0; u < (ssize_t) (width-j); u++) { pixel+=(*k)*pixels[i]; gamma+=(*k); k++; pixels+=GetPixelChannels(image); } } gamma=MagickEpsilonReciprocal(gamma); SetPixelChannel(sharp_image,channel,ClampToQuantum(gamma*pixel),q); continue; } /* Alpha blending. */ for (v=0; v < (ssize_t) (width-j); v++) { for (u=0; u < (ssize_t) (width-j); u++) { alpha=(MagickRealType) (QuantumScale*GetPixelAlpha(image,pixels)); pixel+=(*k)*alpha*pixels[i]; gamma+=(*k)*alpha; k++; pixels+=GetPixelChannels(image); } } gamma=MagickEpsilonReciprocal(gamma); SetPixelChannel(sharp_image,channel,ClampToQuantum(gamma*pixel),q); } q+=GetPixelChannels(sharp_image); r+=GetPixelChannels(edge_image); } if (SyncCacheViewAuthenticPixels(sharp_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_AdaptiveSharpenImage) #endif proceed=SetImageProgress(image,AdaptiveSharpenImageTag,progress++, image->rows); if (proceed == MagickFalse) status=MagickFalse; } } sharp_image->type=image->type; sharp_view=DestroyCacheView(sharp_view); edge_view=DestroyCacheView(edge_view); image_view=DestroyCacheView(image_view); edge_image=DestroyImage(edge_image); for (i=0; i < (ssize_t) width; i+=2) kernel[i]=(double *) RelinquishAlignedMemory(kernel[i]); kernel=(double **) RelinquishAlignedMemory(kernel); if (status == MagickFalse) sharp_image=DestroyImage(sharp_image); return(sharp_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % B l u r I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % BlurImage() blurs an image. We convolve the image with a Gaussian operator % of the given radius and standard deviation (sigma). For reasonable results, % the radius should be larger than sigma. Use a radius of 0 and BlurImage() % selects a suitable radius for you. % % BlurImage() differs from GaussianBlurImage() in that it uses a separable % kernel which is faster but mathematically equivalent to the non-separable % kernel. % % The format of the BlurImage method is: % % Image *BlurImage(const Image *image,const double radius, % const double sigma,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o radius: the radius of the Gaussian, in pixels, not counting the center % pixel. % % o sigma: the standard deviation of the Gaussian, in pixels. % % o exception: return any errors or warnings in this structure. % */ static double *GetBlurKernel(const size_t width,const double sigma) { double *kernel, normalize; register ssize_t i; ssize_t j, k; /* Generate a 1-D convolution kernel. */ (void) LogMagickEvent(TraceEvent,GetMagickModule(),"..."); kernel=(double *) AcquireAlignedMemory((size_t) width,sizeof(*kernel)); if (kernel == (double *) NULL) return(0); normalize=0.0; j=(ssize_t) width/2; i=0; for (k=(-j); k <= j; k++) { kernel[i]=(double) (exp(-((double) k*k)/(2.0*MagickSigma*MagickSigma))/ (MagickSQ2PI*MagickSigma)); normalize+=kernel[i]; i++; } for (i=0; i < (ssize_t) width; i++) kernel[i]/=normalize; return(kernel); } MagickExport Image *BlurImage(const Image *image,const double radius, const double sigma,ExceptionInfo *exception) { #define BlurImageTag "Blur/Image" CacheView *blur_view, *image_view; double *kernel; Image *blur_image; MagickBooleanType status; MagickOffsetType progress; register ssize_t i; size_t width; ssize_t center, x, y; /* Initialize blur image attributes. */ assert(image != (Image *) NULL); assert(image->signature == MagickSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickSignature); blur_image=CloneImage(image,0,0,MagickTrue,exception); if (blur_image == (Image *) NULL) return((Image *) NULL); if (fabs(sigma) <= MagickEpsilon) return(blur_image); if (SetImageStorageClass(blur_image,DirectClass,exception) == MagickFalse) { blur_image=DestroyImage(blur_image); return((Image *) NULL); } width=GetOptimalKernelWidth1D(radius,sigma); kernel=GetBlurKernel(width,sigma); if (kernel == (double *) NULL) { blur_image=DestroyImage(blur_image); ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); } if (image->debug != MagickFalse) { char format[MaxTextExtent], *message; register const double *k; (void) LogMagickEvent(TransformEvent,GetMagickModule(), " blur image with kernel width %.20g:",(double) width); message=AcquireString(""); k=kernel; for (i=0; i < (ssize_t) width; i++) { *message='\0'; (void) FormatLocaleString(format,MaxTextExtent,"%.20g: ",(double) i); (void) ConcatenateString(&message,format); (void) FormatLocaleString(format,MaxTextExtent,"%g ",*k++); (void) ConcatenateString(&message,format); (void) LogMagickEvent(TransformEvent,GetMagickModule(),"%s",message); } message=DestroyString(message); } /* Blur rows. */ status=MagickTrue; progress=0; center=(ssize_t) GetPixelChannels(image)*(width/2L); image_view=AcquireVirtualCacheView(image,exception); blur_view=AcquireAuthenticCacheView(blur_image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(progress,status) \ dynamic_number_threads(image,image->columns,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { register const Quantum *restrict p; register Quantum *restrict q; register ssize_t x; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(image_view,-((ssize_t) width/2L),y, image->columns+width,1,exception); q=QueueCacheViewAuthenticPixels(blur_view,0,y,blur_image->columns,1, exception); if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { register ssize_t i; if (GetPixelMask(image,p) != 0) { p+=GetPixelChannels(image); q+=GetPixelChannels(blur_image); continue; } for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { MagickRealType alpha, gamma, pixel; PixelChannel channel; PixelTrait blur_traits, traits; register const double *restrict k; register const Quantum *restrict pixels; register ssize_t u; channel=GetPixelChannelMapChannel(image,i); traits=GetPixelChannelMapTraits(image,channel); blur_traits=GetPixelChannelMapTraits(blur_image,channel); if ((traits == UndefinedPixelTrait) || (blur_traits == UndefinedPixelTrait)) continue; if ((blur_traits & CopyPixelTrait) != 0) { SetPixelChannel(blur_image,channel,p[center+i],q); continue; } k=kernel; pixels=p; pixel=0.0; if ((blur_traits & BlendPixelTrait) == 0) { /* No alpha blending. */ for (u=0; u < (ssize_t) width; u++) { pixel+=(*k)*pixels[i]; k++; pixels+=GetPixelChannels(image); } SetPixelChannel(blur_image,channel,ClampToQuantum(pixel),q); continue; } /* Alpha blending. */ gamma=0.0; for (u=0; u < (ssize_t) width; u++) { alpha=(MagickRealType) (QuantumScale*GetPixelAlpha(image,pixels)); pixel+=(*k)*alpha*pixels[i]; gamma+=(*k)*alpha; k++; pixels+=GetPixelChannels(image); } gamma=MagickEpsilonReciprocal(gamma); SetPixelChannel(blur_image,channel,ClampToQuantum(gamma*pixel),q); } p+=GetPixelChannels(image); q+=GetPixelChannels(blur_image); } if (SyncCacheViewAuthenticPixels(blur_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_BlurImage) #endif proceed=SetImageProgress(image,BlurImageTag,progress++,blur_image->rows+ blur_image->columns); if (proceed == MagickFalse) status=MagickFalse; } } blur_view=DestroyCacheView(blur_view); image_view=DestroyCacheView(image_view); /* Blur columns. */ center=(ssize_t) GetPixelChannels(blur_image)*(width/2L); image_view=AcquireVirtualCacheView(blur_image,exception); blur_view=AcquireAuthenticCacheView(blur_image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(progress,status) \ dynamic_number_threads(image,image->columns,image->rows,1) #endif for (x=0; x < (ssize_t) blur_image->columns; x++) { register const Quantum *restrict p; register Quantum *restrict q; register ssize_t y; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(image_view,x,-((ssize_t) width/2L),1, blur_image->rows+width,exception); q=GetCacheViewAuthenticPixels(blur_view,x,0,1,blur_image->rows,exception); if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) { status=MagickFalse; continue; } for (y=0; y < (ssize_t) blur_image->rows; y++) { register ssize_t i; if (GetPixelMask(image,p) != 0) { p+=GetPixelChannels(blur_image); q+=GetPixelChannels(blur_image); continue; } for (i=0; i < (ssize_t) GetPixelChannels(blur_image); i++) { MagickRealType alpha, gamma, pixel; PixelChannel channel; PixelTrait blur_traits, traits; register const double *restrict k; register const Quantum *restrict pixels; register ssize_t u; channel=GetPixelChannelMapChannel(blur_image,i); traits=GetPixelChannelMapTraits(blur_image,channel); blur_traits=GetPixelChannelMapTraits(blur_image,channel); if ((traits == UndefinedPixelTrait) || (blur_traits == UndefinedPixelTrait)) continue; if ((blur_traits & CopyPixelTrait) != 0) { SetPixelChannel(blur_image,channel,p[center+i],q); continue; } k=kernel; pixels=p; pixel=0.0; if ((blur_traits & BlendPixelTrait) == 0) { /* No alpha blending. */ for (u=0; u < (ssize_t) width; u++) { pixel+=(*k)*pixels[i]; k++; pixels+=GetPixelChannels(blur_image); } SetPixelChannel(blur_image,channel,ClampToQuantum(pixel),q); continue; } /* Alpha blending. */ gamma=0.0; for (u=0; u < (ssize_t) width; u++) { alpha=(MagickRealType) (QuantumScale*GetPixelAlpha(blur_image, pixels)); pixel+=(*k)*alpha*pixels[i]; gamma+=(*k)*alpha; k++; pixels+=GetPixelChannels(blur_image); } gamma=MagickEpsilonReciprocal(gamma); SetPixelChannel(blur_image,channel,ClampToQuantum(gamma*pixel),q); } p+=GetPixelChannels(blur_image); q+=GetPixelChannels(blur_image); } if (SyncCacheViewAuthenticPixels(blur_view,exception) == MagickFalse) status=MagickFalse; if (blur_image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_BlurImage) #endif proceed=SetImageProgress(blur_image,BlurImageTag,progress++, blur_image->rows+blur_image->columns); if (proceed == MagickFalse) status=MagickFalse; } } blur_view=DestroyCacheView(blur_view); image_view=DestroyCacheView(image_view); kernel=(double *) RelinquishAlignedMemory(kernel); blur_image->type=image->type; if (status == MagickFalse) blur_image=DestroyImage(blur_image); return(blur_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % C o n v o l v e I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % ConvolveImage() applies a custom convolution kernel to the image. % % The format of the ConvolveImage method is: % % Image *ConvolveImage(const Image *image,const KernelInfo *kernel, % ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o kernel: the filtering kernel. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *ConvolveImage(const Image *image, const KernelInfo *kernel_info,ExceptionInfo *exception) { return(MorphologyImage(image,CorrelateMorphology,1,kernel_info,exception)); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % D e s p e c k l e I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DespeckleImage() reduces the speckle noise in an image while perserving the % edges of the original image. A speckle removing filter uses a complementary % hulling technique (raising pixels that are darker than their surrounding % neighbors, then complementarily lowering pixels that are brighter than their % surrounding neighbors) to reduce the speckle index of that image (reference % Crimmins speckle removal). % % The format of the DespeckleImage method is: % % Image *DespeckleImage(const Image *image,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o exception: return any errors or warnings in this structure. % */ static void Hull(const Image *image,const ssize_t x_offset, const ssize_t y_offset,const size_t columns,const size_t rows, const int polarity,Quantum *restrict f,Quantum *restrict g) { register Quantum *p, *q, *r, *s; ssize_t y; assert(f != (Quantum *) NULL); assert(g != (Quantum *) NULL); p=f+(columns+2); q=g+(columns+2); r=p+(y_offset*(columns+2)+x_offset); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static) \ dynamic_number_threads(image,columns,rows,1) #endif for (y=0; y < (ssize_t) rows; y++) { register ssize_t i, x; SignedQuantum v; i=(2*y+1)+y*columns; if (polarity > 0) for (x=0; x < (ssize_t) columns; x++) { v=(SignedQuantum) p[i]; if ((SignedQuantum) r[i] >= (v+ScaleCharToQuantum(2))) v+=ScaleCharToQuantum(1); q[i]=(Quantum) v; i++; } else for (x=0; x < (ssize_t) columns; x++) { v=(SignedQuantum) p[i]; if ((SignedQuantum) r[i] <= (v-ScaleCharToQuantum(2))) v-=ScaleCharToQuantum(1); q[i]=(Quantum) v; i++; } } p=f+(columns+2); q=g+(columns+2); r=q+(y_offset*(columns+2)+x_offset); s=q-(y_offset*(columns+2)+x_offset); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static) \ dynamic_number_threads(image,columns,rows,1) #endif for (y=0; y < (ssize_t) rows; y++) { register ssize_t i, x; SignedQuantum v; i=(2*y+1)+y*columns; if (polarity > 0) for (x=0; x < (ssize_t) columns; x++) { v=(SignedQuantum) q[i]; if (((SignedQuantum) s[i] >= (v+ScaleCharToQuantum(2))) && ((SignedQuantum) r[i] > v)) v+=ScaleCharToQuantum(1); p[i]=(Quantum) v; i++; } else for (x=0; x < (ssize_t) columns; x++) { v=(SignedQuantum) q[i]; if (((SignedQuantum) s[i] <= (v-ScaleCharToQuantum(2))) && ((SignedQuantum) r[i] < v)) v-=ScaleCharToQuantum(1); p[i]=(Quantum) v; i++; } } } MagickExport Image *DespeckleImage(const Image *image,ExceptionInfo *exception) { #define DespeckleImageTag "Despeckle/Image" CacheView *despeckle_view, *image_view; Image *despeckle_image; MagickBooleanType status; Quantum *restrict buffer, *restrict pixels; register ssize_t i; size_t length; static const ssize_t X[4] = {0, 1, 1,-1}, Y[4] = {1, 0, 1, 1}; /* Allocate despeckled image. */ assert(image != (const Image *) NULL); assert(image->signature == MagickSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickSignature); despeckle_image=CloneImage(image,0,0,MagickTrue,exception); if (despeckle_image == (Image *) NULL) return((Image *) NULL); status=SetImageStorageClass(despeckle_image,DirectClass,exception); if (status == MagickFalse) { despeckle_image=DestroyImage(despeckle_image); return((Image *) NULL); } /* Allocate image buffer. */ length=(size_t) ((image->columns+2)*(image->rows+2)); pixels=(Quantum *) AcquireQuantumMemory(length,sizeof(*pixels)); buffer=(Quantum *) AcquireQuantumMemory(length,sizeof(*buffer)); if ((pixels == (Quantum *) NULL) || (buffer == (Quantum *) NULL)) { if (buffer != (Quantum *) NULL) buffer=(Quantum *) RelinquishMagickMemory(buffer); if (pixels != (Quantum *) NULL) pixels=(Quantum *) RelinquishMagickMemory(pixels); despeckle_image=DestroyImage(despeckle_image); ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); } /* Reduce speckle in the image. */ status=MagickTrue; image_view=AcquireVirtualCacheView(image,exception); despeckle_view=AcquireAuthenticCacheView(despeckle_image,exception); for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { PixelChannel channel; PixelTrait despeckle_traits, traits; register ssize_t k, x; ssize_t j, y; if (status == MagickFalse) continue; channel=GetPixelChannelMapChannel(image,i); traits=GetPixelChannelMapTraits(image,channel); despeckle_traits=GetPixelChannelMapTraits(despeckle_image,channel); if ((traits == UndefinedPixelTrait) || (despeckle_traits == UndefinedPixelTrait)) continue; if ((despeckle_traits & CopyPixelTrait) != 0) continue; (void) ResetMagickMemory(pixels,0,length*sizeof(*pixels)); j=(ssize_t) image->columns+2; for (y=0; y < (ssize_t) image->rows; y++) { register const Quantum *restrict p; p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception); if (p == (const Quantum *) NULL) { status=MagickFalse; continue; } j++; for (x=0; x < (ssize_t) image->columns; x++) { pixels[j++]=p[i]; p+=GetPixelChannels(image); } j++; } (void) ResetMagickMemory(buffer,0,length*sizeof(*buffer)); for (k=0; k < 4; k++) { Hull(image,X[k],Y[k],image->columns,image->rows,1,pixels,buffer); Hull(image,-X[k],-Y[k],image->columns,image->rows,1,pixels,buffer); Hull(image,-X[k],-Y[k],image->columns,image->rows,-1,pixels,buffer); Hull(image,X[k],Y[k],image->columns,image->rows,-1,pixels,buffer); } j=(ssize_t) image->columns+2; for (y=0; y < (ssize_t) image->rows; y++) { MagickBooleanType sync; register Quantum *restrict q; q=QueueCacheViewAuthenticPixels(despeckle_view,0,y, despeckle_image->columns,1,exception); if (q == (Quantum *) NULL) { status=MagickFalse; continue; } j++; for (x=0; x < (ssize_t) image->columns; x++) { SetPixelChannel(despeckle_image,channel,pixels[j++],q); q+=GetPixelChannels(despeckle_image); } sync=SyncCacheViewAuthenticPixels(despeckle_view,exception); if (sync == MagickFalse) status=MagickFalse; j++; } if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; proceed=SetImageProgress(image,DespeckleImageTag,(MagickOffsetType) i, GetPixelChannels(image)); if (proceed == MagickFalse) status=MagickFalse; } } despeckle_view=DestroyCacheView(despeckle_view); image_view=DestroyCacheView(image_view); buffer=(Quantum *) RelinquishMagickMemory(buffer); pixels=(Quantum *) RelinquishMagickMemory(pixels); despeckle_image->type=image->type; if (status == MagickFalse) despeckle_image=DestroyImage(despeckle_image); return(despeckle_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % E d g e I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % EdgeImage() finds edges in an image. Radius defines the radius of the % convolution filter. Use a radius of 0 and EdgeImage() selects a suitable % radius for you. % % The format of the EdgeImage method is: % % Image *EdgeImage(const Image *image,const double radius, % const double sigma,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o radius: the radius of the pixel neighborhood. % % o sigma: the standard deviation of the Gaussian, in pixels. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *EdgeImage(const Image *image,const double radius, const double sigma,ExceptionInfo *exception) { Image *edge_image; KernelInfo *kernel_info; register ssize_t i; size_t width; ssize_t j, u, v; assert(image != (const Image *) NULL); assert(image->signature == MagickSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickSignature); width=GetOptimalKernelWidth1D(radius,sigma); kernel_info=AcquireKernelInfo((const char *) NULL); if (kernel_info == (KernelInfo *) NULL) ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); kernel_info->width=width; kernel_info->height=width; kernel_info->values=(double *) AcquireAlignedMemory(kernel_info->width, kernel_info->width*sizeof(*kernel_info->values)); if (kernel_info->values == (double *) NULL) { kernel_info=DestroyKernelInfo(kernel_info); ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); } j=(ssize_t) kernel_info->width/2; i=0; for (v=(-j); v <= j; v++) { for (u=(-j); u <= j; u++) { kernel_info->values[i]=(-1.0); i++; } } kernel_info->values[i/2]=(double) (width*width-1.0); edge_image=ConvolveImage(image,kernel_info,exception); kernel_info=DestroyKernelInfo(kernel_info); return(edge_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % E m b o s s I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % EmbossImage() returns a grayscale image with a three-dimensional effect. % We convolve the image with a Gaussian operator of the given radius and % standard deviation (sigma). For reasonable results, radius should be % larger than sigma. Use a radius of 0 and Emboss() selects a suitable % radius for you. % % The format of the EmbossImage method is: % % Image *EmbossImage(const Image *image,const double radius, % const double sigma,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o radius: the radius of the pixel neighborhood. % % o sigma: the standard deviation of the Gaussian, in pixels. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *EmbossImage(const Image *image,const double radius, const double sigma,ExceptionInfo *exception) { Image *emboss_image; KernelInfo *kernel_info; register ssize_t i; size_t width; ssize_t j, k, u, v; assert(image != (const Image *) NULL); assert(image->signature == MagickSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickSignature); width=GetOptimalKernelWidth1D(radius,sigma); kernel_info=AcquireKernelInfo((const char *) NULL); if (kernel_info == (KernelInfo *) NULL) ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); kernel_info->width=width; kernel_info->height=width; kernel_info->values=(double *) AcquireAlignedMemory(kernel_info->width, kernel_info->width*sizeof(*kernel_info->values)); if (kernel_info->values == (double *) NULL) { kernel_info=DestroyKernelInfo(kernel_info); ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); } j=(ssize_t) kernel_info->width/2; k=j; i=0; for (v=(-j); v <= j; v++) { for (u=(-j); u <= j; u++) { kernel_info->values[i]=(double) (((u < 0) || (v < 0) ? -8.0 : 8.0)* exp(-((double) u*u+v*v)/(2.0*MagickSigma*MagickSigma))/ (2.0*MagickPI*MagickSigma*MagickSigma)); if (u != k) kernel_info->values[i]=0.0; i++; } k--; } emboss_image=ConvolveImage(image,kernel_info,exception); kernel_info=DestroyKernelInfo(kernel_info); if (emboss_image != (Image *) NULL) (void) EqualizeImage(emboss_image,exception); return(emboss_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % G a u s s i a n B l u r I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % GaussianBlurImage() blurs an image. We convolve the image with a % Gaussian operator of the given radius and standard deviation (sigma). % For reasonable results, the radius should be larger than sigma. Use a % radius of 0 and GaussianBlurImage() selects a suitable radius for you % % The format of the GaussianBlurImage method is: % % Image *GaussianBlurImage(const Image *image,onst double radius, % const double sigma,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o radius: the radius of the Gaussian, in pixels, not counting the center % pixel. % % o sigma: the standard deviation of the Gaussian, in pixels. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *GaussianBlurImage(const Image *image,const double radius, const double sigma,ExceptionInfo *exception) { Image *blur_image; KernelInfo *kernel_info; register ssize_t i; size_t width; ssize_t j, u, v; assert(image != (const Image *) NULL); assert(image->signature == MagickSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickSignature); width=GetOptimalKernelWidth2D(radius,sigma); kernel_info=AcquireKernelInfo((const char *) NULL); if (kernel_info == (KernelInfo *) NULL) ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); (void) ResetMagickMemory(kernel_info,0,sizeof(*kernel_info)); kernel_info->width=width; kernel_info->height=width; kernel_info->signature=MagickSignature; kernel_info->values=(double *) AcquireAlignedMemory( kernel_info->width,kernel_info->width*sizeof(*kernel_info->values)); if (kernel_info->values == (double *) NULL) { kernel_info=DestroyKernelInfo(kernel_info); ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); } j=(ssize_t) kernel_info->width/2; i=0; for (v=(-j); v <= j; v++) { for (u=(-j); u <= j; u++) { kernel_info->values[i]=(double) (exp(-((double) u*u+v*v)/(2.0* MagickSigma*MagickSigma))/(2.0*MagickPI*MagickSigma*MagickSigma)); i++; } } blur_image=ConvolveImage(image,kernel_info,exception); kernel_info=DestroyKernelInfo(kernel_info); return(blur_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % M o t i o n B l u r I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % MotionBlurImage() simulates motion blur. We convolve the image with a % Gaussian operator of the given radius and standard deviation (sigma). % For reasonable results, radius should be larger than sigma. Use a % radius of 0 and MotionBlurImage() selects a suitable radius for you. % Angle gives the angle of the blurring motion. % % Andrew Protano contributed this effect. % % The format of the MotionBlurImage method is: % % Image *MotionBlurImage(const Image *image,const double radius, % const double sigma,const double angle,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o radius: the radius of the Gaussian, in pixels, not counting % the center pixel. % % o sigma: the standard deviation of the Gaussian, in pixels. % % o angle: Apply the effect along this angle. % % o exception: return any errors or warnings in this structure. % */ static double *GetMotionBlurKernel(const size_t width,const double sigma) { double *kernel, normalize; register ssize_t i; /* Generate a 1-D convolution kernel. */ (void) LogMagickEvent(TraceEvent,GetMagickModule(),"..."); kernel=(double *) AcquireAlignedMemory((size_t) width,sizeof(*kernel)); if (kernel == (double *) NULL) return(kernel); normalize=0.0; for (i=0; i < (ssize_t) width; i++) { kernel[i]=(double) (exp((-((double) i*i)/(double) (2.0*MagickSigma* MagickSigma)))/(MagickSQ2PI*MagickSigma)); normalize+=kernel[i]; } for (i=0; i < (ssize_t) width; i++) kernel[i]/=normalize; return(kernel); } MagickExport Image *MotionBlurImage(const Image *image,const double radius, const double sigma,const double angle,ExceptionInfo *exception) { CacheView *blur_view, *image_view, *motion_view; double *kernel; Image *blur_image; MagickBooleanType status; MagickOffsetType progress; OffsetInfo *offset; PointInfo point; register ssize_t i; size_t width; ssize_t y; assert(image != (Image *) NULL); assert(image->signature == MagickSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); width=GetOptimalKernelWidth1D(radius,sigma); kernel=GetMotionBlurKernel(width,sigma); if (kernel == (double *) NULL) ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); offset=(OffsetInfo *) AcquireQuantumMemory(width,sizeof(*offset)); if (offset == (OffsetInfo *) NULL) { kernel=(double *) RelinquishAlignedMemory(kernel); ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); } blur_image=CloneImage(image,image->columns,image->rows,MagickTrue,exception); if (blur_image == (Image *) NULL) { kernel=(double *) RelinquishAlignedMemory(kernel); offset=(OffsetInfo *) RelinquishMagickMemory(offset); return((Image *) NULL); } if (SetImageStorageClass(blur_image,DirectClass,exception) == MagickFalse) { kernel=(double *) RelinquishAlignedMemory(kernel); offset=(OffsetInfo *) RelinquishMagickMemory(offset); blur_image=DestroyImage(blur_image); return((Image *) NULL); } point.x=(double) width*sin(DegreesToRadians(angle)); point.y=(double) width*cos(DegreesToRadians(angle)); for (i=0; i < (ssize_t) width; i++) { offset[i].x=(ssize_t) ceil((double) (i*point.y)/hypot(point.x,point.y)-0.5); offset[i].y=(ssize_t) ceil((double) (i*point.x)/hypot(point.x,point.y)-0.5); } /* Motion blur image. */ status=MagickTrue; progress=0; image_view=AcquireVirtualCacheView(image,exception); motion_view=AcquireVirtualCacheView(image,exception); blur_view=AcquireAuthenticCacheView(blur_image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(progress,status) \ dynamic_number_threads(image,image->columns,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { register const Quantum *restrict p; register Quantum *restrict q; register ssize_t x; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception); q=QueueCacheViewAuthenticPixels(blur_view,0,y,blur_image->columns,1, exception); if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { register ssize_t i; if (GetPixelMask(image,p) != 0) { p+=GetPixelChannels(image); q+=GetPixelChannels(blur_image); continue; } for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { MagickRealType alpha, gamma, pixel; PixelChannel channel; PixelTrait blur_traits, traits; register const Quantum *restrict r; register double *restrict k; register ssize_t j; channel=GetPixelChannelMapChannel(image,i); traits=GetPixelChannelMapTraits(image,channel); blur_traits=GetPixelChannelMapTraits(blur_image,channel); if ((traits == UndefinedPixelTrait) || (blur_traits == UndefinedPixelTrait)) continue; if ((blur_traits & CopyPixelTrait) != 0) { SetPixelChannel(blur_image,channel,p[i],q); continue; } k=kernel; pixel=0.0; if ((blur_traits & BlendPixelTrait) == 0) { for (j=0; j < (ssize_t) width; j++) { r=GetCacheViewVirtualPixels(motion_view,x+offset[j].x,y+ offset[j].y,1,1,exception); if (r == (const Quantum *) NULL) { status=MagickFalse; continue; } pixel+=(*k)*r[i]; k++; } SetPixelChannel(blur_image,channel,ClampToQuantum(pixel),q); continue; } alpha=0.0; gamma=0.0; for (j=0; j < (ssize_t) width; j++) { r=GetCacheViewVirtualPixels(motion_view,x+offset[j].x,y+offset[j].y,1, 1,exception); if (r == (const Quantum *) NULL) { status=MagickFalse; continue; } alpha=(MagickRealType) (QuantumScale*GetPixelAlpha(image,r)); pixel+=(*k)*alpha*r[i]; gamma+=(*k)*alpha; k++; } gamma=MagickEpsilonReciprocal(gamma); SetPixelChannel(blur_image,channel,ClampToQuantum(gamma*pixel),q); } p+=GetPixelChannels(image); q+=GetPixelChannels(blur_image); } if (SyncCacheViewAuthenticPixels(blur_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_MotionBlurImage) #endif proceed=SetImageProgress(image,BlurImageTag,progress++,image->rows); if (proceed == MagickFalse) status=MagickFalse; } } blur_view=DestroyCacheView(blur_view); motion_view=DestroyCacheView(motion_view); image_view=DestroyCacheView(image_view); kernel=(double *) RelinquishAlignedMemory(kernel); offset=(OffsetInfo *) RelinquishMagickMemory(offset); if (status == MagickFalse) blur_image=DestroyImage(blur_image); return(blur_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % P r e v i e w I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % PreviewImage() tiles 9 thumbnails of the specified image with an image % processing operation applied with varying parameters. This may be helpful % pin-pointing an appropriate parameter for a particular image processing % operation. % % The format of the PreviewImages method is: % % Image *PreviewImages(const Image *image,const PreviewType preview, % ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o preview: the image processing operation. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *PreviewImage(const Image *image,const PreviewType preview, ExceptionInfo *exception) { #define NumberTiles 9 #define PreviewImageTag "Preview/Image" #define DefaultPreviewGeometry "204x204+10+10" char factor[MaxTextExtent], label[MaxTextExtent]; double degrees, gamma, percentage, radius, sigma, threshold; extern const char DefaultTileFrame[]; Image *images, *montage_image, *preview_image, *thumbnail; ImageInfo *preview_info; MagickBooleanType proceed; MontageInfo *montage_info; QuantizeInfo quantize_info; RectangleInfo geometry; register ssize_t i, x; size_t colors; ssize_t y; /* Open output image file. */ assert(image != (Image *) NULL); assert(image->signature == MagickSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); colors=2; degrees=0.0; gamma=(-0.2f); preview_info=AcquireImageInfo(); SetGeometry(image,&geometry); (void) ParseMetaGeometry(DefaultPreviewGeometry,&geometry.x,&geometry.y, &geometry.width,&geometry.height); images=NewImageList(); percentage=12.5; GetQuantizeInfo(&quantize_info); radius=0.0; sigma=1.0; threshold=0.0; x=0; y=0; for (i=0; i < NumberTiles; i++) { thumbnail=ThumbnailImage(image,geometry.width,geometry.height,exception); if (thumbnail == (Image *) NULL) break; (void) SetImageProgressMonitor(thumbnail,(MagickProgressMonitor) NULL, (void *) NULL); (void) SetImageProperty(thumbnail,"label",DefaultTileLabel,exception); if (i == (NumberTiles/2)) { (void) QueryColorCompliance("#dfdfdf",AllCompliance, &thumbnail->matte_color,exception); AppendImageToList(&images,thumbnail); continue; } switch (preview) { case RotatePreview: { degrees+=45.0; preview_image=RotateImage(thumbnail,degrees,exception); (void) FormatLocaleString(label,MaxTextExtent,"rotate %g",degrees); break; } case ShearPreview: { degrees+=5.0; preview_image=ShearImage(thumbnail,degrees,degrees,exception); (void) FormatLocaleString(label,MaxTextExtent,"shear %gx%g", degrees,2.0*degrees); break; } case RollPreview: { x=(ssize_t) ((i+1)*thumbnail->columns)/NumberTiles; y=(ssize_t) ((i+1)*thumbnail->rows)/NumberTiles; preview_image=RollImage(thumbnail,x,y,exception); (void) FormatLocaleString(label,MaxTextExtent,"roll %+.20gx%+.20g", (double) x,(double) y); break; } case HuePreview: { preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception); if (preview_image == (Image *) NULL) break; (void) FormatLocaleString(factor,MaxTextExtent,"100,100,%g", 2.0*percentage); (void) ModulateImage(preview_image,factor,exception); (void) FormatLocaleString(label,MaxTextExtent,"modulate %s",factor); break; } case SaturationPreview: { preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception); if (preview_image == (Image *) NULL) break; (void) FormatLocaleString(factor,MaxTextExtent,"100,%g", 2.0*percentage); (void) ModulateImage(preview_image,factor,exception); (void) FormatLocaleString(label,MaxTextExtent,"modulate %s",factor); break; } case BrightnessPreview: { preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception); if (preview_image == (Image *) NULL) break; (void) FormatLocaleString(factor,MaxTextExtent,"%g",2.0*percentage); (void) ModulateImage(preview_image,factor,exception); (void) FormatLocaleString(label,MaxTextExtent,"modulate %s",factor); break; } case GammaPreview: default: { preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception); if (preview_image == (Image *) NULL) break; gamma+=0.4f; (void) GammaImage(preview_image,gamma,exception); (void) FormatLocaleString(label,MaxTextExtent,"gamma %g",gamma); break; } case SpiffPreview: { preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception); if (preview_image != (Image *) NULL) for (x=0; x < i; x++) (void) ContrastImage(preview_image,MagickTrue,exception); (void) FormatLocaleString(label,MaxTextExtent,"contrast (%.20g)", (double) i+1); break; } case DullPreview: { preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception); if (preview_image == (Image *) NULL) break; for (x=0; x < i; x++) (void) ContrastImage(preview_image,MagickFalse,exception); (void) FormatLocaleString(label,MaxTextExtent,"+contrast (%.20g)", (double) i+1); break; } case GrayscalePreview: { preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception); if (preview_image == (Image *) NULL) break; colors<<=1; quantize_info.number_colors=colors; quantize_info.colorspace=GRAYColorspace; (void) QuantizeImage(&quantize_info,preview_image,exception); (void) FormatLocaleString(label,MaxTextExtent, "-colorspace gray -colors %.20g",(double) colors); break; } case QuantizePreview: { preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception); if (preview_image == (Image *) NULL) break; colors<<=1; quantize_info.number_colors=colors; (void) QuantizeImage(&quantize_info,preview_image,exception); (void) FormatLocaleString(label,MaxTextExtent,"colors %.20g",(double) colors); break; } case DespecklePreview: { for (x=0; x < (i-1); x++) { preview_image=DespeckleImage(thumbnail,exception); if (preview_image == (Image *) NULL) break; thumbnail=DestroyImage(thumbnail); thumbnail=preview_image; } preview_image=DespeckleImage(thumbnail,exception); if (preview_image == (Image *) NULL) break; (void) FormatLocaleString(label,MaxTextExtent,"despeckle (%.20g)", (double) i+1); break; } case ReduceNoisePreview: { preview_image=StatisticImage(thumbnail,NonpeakStatistic,(size_t) radius, (size_t) radius,exception); (void) FormatLocaleString(label,MaxTextExtent,"noise %g",radius); break; } case AddNoisePreview: { switch ((int) i) { case 0: { (void) CopyMagickString(factor,"uniform",MaxTextExtent); break; } case 1: { (void) CopyMagickString(factor,"gaussian",MaxTextExtent); break; } case 2: { (void) CopyMagickString(factor,"multiplicative",MaxTextExtent); break; } case 3: { (void) CopyMagickString(factor,"impulse",MaxTextExtent); break; } case 4: { (void) CopyMagickString(factor,"laplacian",MaxTextExtent); break; } case 5: { (void) CopyMagickString(factor,"Poisson",MaxTextExtent); break; } default: { (void) CopyMagickString(thumbnail->magick,"NULL",MaxTextExtent); break; } } preview_image=StatisticImage(thumbnail,NonpeakStatistic,(size_t) i, (size_t) i,exception); (void) FormatLocaleString(label,MaxTextExtent,"+noise %s",factor); break; } case SharpenPreview: { preview_image=SharpenImage(thumbnail,radius,sigma,exception); (void) FormatLocaleString(label,MaxTextExtent,"sharpen %gx%g", radius,sigma); break; } case BlurPreview: { preview_image=BlurImage(thumbnail,radius,sigma,exception); (void) FormatLocaleString(label,MaxTextExtent,"blur %gx%g",radius, sigma); break; } case ThresholdPreview: { preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception); if (preview_image == (Image *) NULL) break; (void) BilevelImage(thumbnail,(double) (percentage*((MagickRealType) QuantumRange+1.0))/100.0,exception); (void) FormatLocaleString(label,MaxTextExtent,"threshold %g", (double) (percentage*((MagickRealType) QuantumRange+1.0))/100.0); break; } case EdgeDetectPreview: { preview_image=EdgeImage(thumbnail,radius,sigma,exception); (void) FormatLocaleString(label,MaxTextExtent,"edge %g",radius); break; } case SpreadPreview: { preview_image=SpreadImage(thumbnail,radius,thumbnail->interpolate, exception); (void) FormatLocaleString(label,MaxTextExtent,"spread %g", radius+0.5); break; } case SolarizePreview: { preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception); if (preview_image == (Image *) NULL) break; (void) SolarizeImage(preview_image,(double) QuantumRange* percentage/100.0,exception); (void) FormatLocaleString(label,MaxTextExtent,"solarize %g", (QuantumRange*percentage)/100.0); break; } case ShadePreview: { degrees+=10.0; preview_image=ShadeImage(thumbnail,MagickTrue,degrees,degrees, exception); (void) FormatLocaleString(label,MaxTextExtent,"shade %gx%g", degrees,degrees); break; } case RaisePreview: { preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception); if (preview_image == (Image *) NULL) break; geometry.width=(size_t) (2*i+2); geometry.height=(size_t) (2*i+2); geometry.x=i/2; geometry.y=i/2; (void) RaiseImage(preview_image,&geometry,MagickTrue,exception); (void) FormatLocaleString(label,MaxTextExtent, "raise %.20gx%.20g%+.20g%+.20g",(double) geometry.width,(double) geometry.height,(double) geometry.x,(double) geometry.y); break; } case SegmentPreview: { preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception); if (preview_image == (Image *) NULL) break; threshold+=0.4f; (void) SegmentImage(preview_image,sRGBColorspace,MagickFalse,threshold, threshold,exception); (void) FormatLocaleString(label,MaxTextExtent,"segment %gx%g", threshold,threshold); break; } case SwirlPreview: { preview_image=SwirlImage(thumbnail,degrees,image->interpolate, exception); (void) FormatLocaleString(label,MaxTextExtent,"swirl %g",degrees); degrees+=45.0; break; } case ImplodePreview: { degrees+=0.1f; preview_image=ImplodeImage(thumbnail,degrees,image->interpolate, exception); (void) FormatLocaleString(label,MaxTextExtent,"implode %g",degrees); break; } case WavePreview: { degrees+=5.0f; preview_image=WaveImage(thumbnail,0.5*degrees,2.0*degrees, image->interpolate,exception); (void) FormatLocaleString(label,MaxTextExtent,"wave %gx%g", 0.5*degrees,2.0*degrees); break; } case OilPaintPreview: { preview_image=OilPaintImage(thumbnail,(double) radius,(double) sigma, exception); (void) FormatLocaleString(label,MaxTextExtent,"charcoal %gx%g", radius,sigma); break; } case CharcoalDrawingPreview: { preview_image=CharcoalImage(thumbnail,(double) radius,(double) sigma, exception); (void) FormatLocaleString(label,MaxTextExtent,"charcoal %gx%g", radius,sigma); break; } case JPEGPreview: { char filename[MaxTextExtent]; int file; MagickBooleanType status; preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception); if (preview_image == (Image *) NULL) break; preview_info->quality=(size_t) percentage; (void) FormatLocaleString(factor,MaxTextExtent,"%.20g",(double) preview_info->quality); file=AcquireUniqueFileResource(filename); if (file != -1) file=close(file)-1; (void) FormatLocaleString(preview_image->filename,MaxTextExtent, "jpeg:%s",filename); status=WriteImage(preview_info,preview_image,exception); if (status != MagickFalse) { Image *quality_image; (void) CopyMagickString(preview_info->filename, preview_image->filename,MaxTextExtent); quality_image=ReadImage(preview_info,exception); if (quality_image != (Image *) NULL) { preview_image=DestroyImage(preview_image); preview_image=quality_image; } } (void) RelinquishUniqueFileResource(preview_image->filename); if ((GetBlobSize(preview_image)/1024) >= 1024) (void) FormatLocaleString(label,MaxTextExtent,"quality %s\n%gmb ", factor,(double) ((MagickOffsetType) GetBlobSize(preview_image))/ 1024.0/1024.0); else if (GetBlobSize(preview_image) >= 1024) (void) FormatLocaleString(label,MaxTextExtent, "quality %s\n%gkb ",factor,(double) ((MagickOffsetType) GetBlobSize(preview_image))/1024.0); else (void) FormatLocaleString(label,MaxTextExtent,"quality %s\n%.20gb ", factor,(double) ((MagickOffsetType) GetBlobSize(thumbnail))); break; } } thumbnail=DestroyImage(thumbnail); percentage+=12.5; radius+=0.5; sigma+=0.25; if (preview_image == (Image *) NULL) break; (void) DeleteImageProperty(preview_image,"label"); (void) SetImageProperty(preview_image,"label",label,exception); AppendImageToList(&images,preview_image); proceed=SetImageProgress(image,PreviewImageTag,(MagickOffsetType) i, NumberTiles); if (proceed == MagickFalse) break; } if (images == (Image *) NULL) { preview_info=DestroyImageInfo(preview_info); return((Image *) NULL); } /* Create the montage. */ montage_info=CloneMontageInfo(preview_info,(MontageInfo *) NULL); (void) CopyMagickString(montage_info->filename,image->filename,MaxTextExtent); montage_info->shadow=MagickTrue; (void) CloneString(&montage_info->tile,"3x3"); (void) CloneString(&montage_info->geometry,DefaultPreviewGeometry); (void) CloneString(&montage_info->frame,DefaultTileFrame); montage_image=MontageImages(images,montage_info,exception); montage_info=DestroyMontageInfo(montage_info); images=DestroyImageList(images); if (montage_image == (Image *) NULL) ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); if (montage_image->montage != (char *) NULL) { /* Free image directory. */ montage_image->montage=(char *) RelinquishMagickMemory( montage_image->montage); if (image->directory != (char *) NULL) montage_image->directory=(char *) RelinquishMagickMemory( montage_image->directory); } preview_info=DestroyImageInfo(preview_info); return(montage_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % R a d i a l B l u r I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % RadialBlurImage() applies a radial blur to the image. % % Andrew Protano contributed this effect. % % The format of the RadialBlurImage method is: % % Image *RadialBlurImage(const Image *image,const double angle, % ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o angle: the angle of the radial blur. % % o blur: the blur. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *RadialBlurImage(const Image *image,const double angle, ExceptionInfo *exception) { CacheView *blur_view, *image_view, *radial_view; Image *blur_image; MagickBooleanType status; MagickOffsetType progress; MagickRealType blur_radius, *cos_theta, offset, *sin_theta, theta; PointInfo blur_center; register ssize_t i; size_t n; ssize_t y; /* Allocate blur image. */ assert(image != (Image *) NULL); assert(image->signature == MagickSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickSignature); blur_image=CloneImage(image,image->columns,image->rows,MagickTrue,exception); if (blur_image == (Image *) NULL) return((Image *) NULL); if (SetImageStorageClass(blur_image,DirectClass,exception) == MagickFalse) { blur_image=DestroyImage(blur_image); return((Image *) NULL); } blur_center.x=(double) image->columns/2.0; blur_center.y=(double) image->rows/2.0; blur_radius=hypot(blur_center.x,blur_center.y); n=(size_t) fabs(4.0*DegreesToRadians(angle)*sqrt((double) blur_radius)+2UL); theta=DegreesToRadians(angle)/(MagickRealType) (n-1); cos_theta=(MagickRealType *) AcquireQuantumMemory((size_t) n, sizeof(*cos_theta)); sin_theta=(MagickRealType *) AcquireQuantumMemory((size_t) n, sizeof(*sin_theta)); if ((cos_theta == (MagickRealType *) NULL) || (sin_theta == (MagickRealType *) NULL)) { blur_image=DestroyImage(blur_image); ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); } offset=theta*(MagickRealType) (n-1)/2.0; for (i=0; i < (ssize_t) n; i++) { cos_theta[i]=cos((double) (theta*i-offset)); sin_theta[i]=sin((double) (theta*i-offset)); } /* Radial blur image. */ status=MagickTrue; progress=0; image_view=AcquireVirtualCacheView(image,exception); radial_view=AcquireVirtualCacheView(image,exception); blur_view=AcquireAuthenticCacheView(blur_image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(progress,status) \ dynamic_number_threads(image,image->columns,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { register const Quantum *restrict p; register Quantum *restrict q; register ssize_t x; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception); q=QueueCacheViewAuthenticPixels(blur_view,0,y,blur_image->columns,1, exception); if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { MagickRealType radius; PointInfo center; register ssize_t i; size_t step; center.x=(double) x-blur_center.x; center.y=(double) y-blur_center.y; radius=hypot((double) center.x,center.y); if (radius == 0) step=1; else { step=(size_t) (blur_radius/radius); if (step == 0) step=1; else if (step >= n) step=n-1; } if (GetPixelMask(image,p) != 0) { p+=GetPixelChannels(image); q+=GetPixelChannels(blur_image); continue; } for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { MagickRealType gamma, pixel; PixelChannel channel; PixelTrait blur_traits, traits; register const Quantum *restrict r; register ssize_t j; channel=GetPixelChannelMapChannel(image,i); traits=GetPixelChannelMapTraits(image,channel); blur_traits=GetPixelChannelMapTraits(blur_image,channel); if ((traits == UndefinedPixelTrait) || (blur_traits == UndefinedPixelTrait)) continue; if ((blur_traits & CopyPixelTrait) != 0) { SetPixelChannel(blur_image,channel,p[i],q); continue; } gamma=0.0; pixel=0.0; if ((blur_traits & BlendPixelTrait) == 0) { for (j=0; j < (ssize_t) n; j+=(ssize_t) step) { r=GetCacheViewVirtualPixels(radial_view, (ssize_t) (blur_center.x+ center.x*cos_theta[j]-center.y*sin_theta[j]+0.5),(ssize_t) (blur_center.y+center.x*sin_theta[j]+center.y*cos_theta[j]+0.5), 1,1,exception); if (r == (const Quantum *) NULL) { status=MagickFalse; continue; } pixel+=r[i]; gamma++; } gamma=MagickEpsilonReciprocal(gamma); SetPixelChannel(blur_image,channel,ClampToQuantum(gamma*pixel),q); continue; } for (j=0; j < (ssize_t) n; j+=(ssize_t) step) { r=GetCacheViewVirtualPixels(radial_view, (ssize_t) (blur_center.x+ center.x*cos_theta[j]-center.y*sin_theta[j]+0.5),(ssize_t) (blur_center.y+center.x*sin_theta[j]+center.y*cos_theta[j]+0.5), 1,1,exception); if (r == (const Quantum *) NULL) { status=MagickFalse; continue; } pixel+=GetPixelAlpha(image,r)*r[i]; gamma+=GetPixelAlpha(image,r); } gamma=MagickEpsilonReciprocal(gamma); SetPixelChannel(blur_image,channel,ClampToQuantum(gamma*pixel),q); } p+=GetPixelChannels(image); q+=GetPixelChannels(blur_image); } if (SyncCacheViewAuthenticPixels(blur_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_RadialBlurImage) #endif proceed=SetImageProgress(image,BlurImageTag,progress++,image->rows); if (proceed == MagickFalse) status=MagickFalse; } } blur_view=DestroyCacheView(blur_view); radial_view=DestroyCacheView(radial_view); image_view=DestroyCacheView(image_view); cos_theta=(MagickRealType *) RelinquishMagickMemory(cos_theta); sin_theta=(MagickRealType *) RelinquishMagickMemory(sin_theta); if (status == MagickFalse) blur_image=DestroyImage(blur_image); return(blur_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % S e l e c t i v e B l u r I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % SelectiveBlurImage() selectively blur pixels within a contrast threshold. % It is similar to the unsharpen mask that sharpens everything with contrast % above a certain threshold. % % The format of the SelectiveBlurImage method is: % % Image *SelectiveBlurImage(const Image *image,const double radius, % const double sigma,const double threshold,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o radius: the radius of the Gaussian, in pixels, not counting the center % pixel. % % o sigma: the standard deviation of the Gaussian, in pixels. % % o threshold: only pixels within this contrast threshold are included % in the blur operation. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *SelectiveBlurImage(const Image *image,const double radius, const double sigma,const double threshold,ExceptionInfo *exception) { #define SelectiveBlurImageTag "SelectiveBlur/Image" CacheView *blur_view, *image_view; double *kernel; Image *blur_image; MagickBooleanType status; MagickOffsetType progress; register ssize_t i; size_t width; ssize_t center, j, u, v, y; /* Initialize blur image attributes. */ assert(image != (Image *) NULL); assert(image->signature == MagickSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickSignature); width=GetOptimalKernelWidth1D(radius,sigma); kernel=(double *) AcquireAlignedMemory((size_t) width,width*sizeof(*kernel)); if (kernel == (double *) NULL) ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); j=(ssize_t) width/2; i=0; for (v=(-j); v <= j; v++) { for (u=(-j); u <= j; u++) kernel[i++]=(double) (exp(-((double) u*u+v*v)/(2.0*MagickSigma* MagickSigma))/(2.0*MagickPI*MagickSigma*MagickSigma)); } if (image->debug != MagickFalse) { char format[MaxTextExtent], *message; register const double *k; ssize_t u, v; (void) LogMagickEvent(TransformEvent,GetMagickModule(), " SelectiveBlurImage with %.20gx%.20g kernel:",(double) width,(double) width); message=AcquireString(""); k=kernel; for (v=0; v < (ssize_t) width; v++) { *message='\0'; (void) FormatLocaleString(format,MaxTextExtent,"%.20g: ",(double) v); (void) ConcatenateString(&message,format); for (u=0; u < (ssize_t) width; u++) { (void) FormatLocaleString(format,MaxTextExtent,"%+f ",*k++); (void) ConcatenateString(&message,format); } (void) LogMagickEvent(TransformEvent,GetMagickModule(),"%s",message); } message=DestroyString(message); } blur_image=CloneImage(image,image->columns,image->rows,MagickTrue,exception); if (blur_image == (Image *) NULL) return((Image *) NULL); if (SetImageStorageClass(blur_image,DirectClass,exception) == MagickFalse) { blur_image=DestroyImage(blur_image); return((Image *) NULL); } /* Threshold blur image. */ status=MagickTrue; progress=0; center=(ssize_t) (GetPixelChannels(image)*(image->columns+width)*(width/2L)+ GetPixelChannels(image)*(width/2L)); image_view=AcquireVirtualCacheView(image,exception); blur_view=AcquireAuthenticCacheView(blur_image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(progress,status) \ dynamic_number_threads(image,image->columns,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { double contrast; MagickBooleanType sync; register const Quantum *restrict p; register Quantum *restrict q; register ssize_t x; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(image_view,-((ssize_t) width/2L),y-(ssize_t) (width/2L),image->columns+width,width,exception); q=QueueCacheViewAuthenticPixels(blur_view,0,y,blur_image->columns,1, exception); if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { register ssize_t i; if (GetPixelMask(image,p) != 0) { p+=GetPixelChannels(image); q+=GetPixelChannels(blur_image); continue; } for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { MagickRealType alpha, gamma, intensity, pixel; PixelChannel channel; PixelTrait blur_traits, traits; register const double *restrict k; register const Quantum *restrict pixels; register ssize_t u; ssize_t v; channel=GetPixelChannelMapChannel(image,i); traits=GetPixelChannelMapTraits(image,channel); blur_traits=GetPixelChannelMapTraits(blur_image,channel); if ((traits == UndefinedPixelTrait) || (blur_traits == UndefinedPixelTrait)) continue; if ((blur_traits & CopyPixelTrait) != 0) { SetPixelChannel(blur_image,channel,p[center+i],q); continue; } k=kernel; pixel=0.0; pixels=p; intensity=(MagickRealType) GetPixelIntensity(image,p+center); gamma=0.0; if ((blur_traits & BlendPixelTrait) == 0) { for (v=0; v < (ssize_t) width; v++) { for (u=0; u < (ssize_t) width; u++) { contrast=GetPixelIntensity(image,pixels)-intensity; if (fabs(contrast) < threshold) { pixel+=(*k)*pixels[i]; gamma+=(*k); } k++; pixels+=GetPixelChannels(image); } pixels+=image->columns*GetPixelChannels(image); } if (fabs((double) gamma) < MagickEpsilon) { SetPixelChannel(blur_image,channel,p[center+i],q); continue; } gamma=MagickEpsilonReciprocal(gamma); SetPixelChannel(blur_image,channel,ClampToQuantum(gamma*pixel),q); continue; } for (v=0; v < (ssize_t) width; v++) { for (u=0; u < (ssize_t) width; u++) { contrast=GetPixelIntensity(image,pixels)-intensity; if (fabs(contrast) < threshold) { alpha=(MagickRealType) (QuantumScale* GetPixelAlpha(image,pixels)); pixel+=(*k)*alpha*pixels[i]; gamma+=(*k)*alpha; } k++; pixels+=GetPixelChannels(image); } pixels+=image->columns*GetPixelChannels(image); } if (fabs((double) gamma) < MagickEpsilon) { SetPixelChannel(blur_image,channel,p[center+i],q); continue; } gamma=MagickEpsilonReciprocal(gamma); SetPixelChannel(blur_image,channel,ClampToQuantum(gamma*pixel),q); } p+=GetPixelChannels(image); q+=GetPixelChannels(blur_image); } sync=SyncCacheViewAuthenticPixels(blur_view,exception); if (sync == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_SelectiveBlurImage) #endif proceed=SetImageProgress(image,SelectiveBlurImageTag,progress++, image->rows); if (proceed == MagickFalse) status=MagickFalse; } } blur_image->type=image->type; blur_view=DestroyCacheView(blur_view); image_view=DestroyCacheView(image_view); kernel=(double *) RelinquishAlignedMemory(kernel); if (status == MagickFalse) blur_image=DestroyImage(blur_image); return(blur_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % S h a d e I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % ShadeImage() shines a distant light on an image to create a % three-dimensional effect. You control the positioning of the light with % azimuth and elevation; azimuth is measured in degrees off the x axis % and elevation is measured in pixels above the Z axis. % % The format of the ShadeImage method is: % % Image *ShadeImage(const Image *image,const MagickBooleanType gray, % const double azimuth,const double elevation,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o gray: A value other than zero shades the intensity of each pixel. % % o azimuth, elevation: Define the light source direction. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *ShadeImage(const Image *image,const MagickBooleanType gray, const double azimuth,const double elevation,ExceptionInfo *exception) { #define ShadeImageTag "Shade/Image" CacheView *image_view, *shade_view; Image *shade_image; MagickBooleanType status; MagickOffsetType progress; PrimaryInfo light; ssize_t y; /* Initialize shaded image attributes. */ assert(image != (const Image *) NULL); assert(image->signature == MagickSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickSignature); shade_image=CloneImage(image,image->columns,image->rows,MagickTrue,exception); if (shade_image == (Image *) NULL) return((Image *) NULL); if (SetImageStorageClass(shade_image,DirectClass,exception) == MagickFalse) { shade_image=DestroyImage(shade_image); return((Image *) NULL); } /* Compute the light vector. */ light.x=(double) QuantumRange*cos(DegreesToRadians(azimuth))* cos(DegreesToRadians(elevation)); light.y=(double) QuantumRange*sin(DegreesToRadians(azimuth))* cos(DegreesToRadians(elevation)); light.z=(double) QuantumRange*sin(DegreesToRadians(elevation)); /* Shade image. */ status=MagickTrue; progress=0; image_view=AcquireVirtualCacheView(image,exception); shade_view=AcquireAuthenticCacheView(shade_image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(progress,status) \ dynamic_number_threads(image,image->columns,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { MagickRealType distance, normal_distance, shade; PrimaryInfo normal; register const Quantum *restrict center, *restrict p, *restrict post, *restrict pre; register Quantum *restrict q; register ssize_t x; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(image_view,-1,y-1,image->columns+2,3,exception); q=QueueCacheViewAuthenticPixels(shade_view,0,y,shade_image->columns,1, exception); if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) { status=MagickFalse; continue; } /* Shade this row of pixels. */ normal.z=2.0*(double) QuantumRange; /* constant Z of surface normal */ pre=p+GetPixelChannels(image); center=pre+(image->columns+2)*GetPixelChannels(image); post=center+(image->columns+2)*GetPixelChannels(image); for (x=0; x < (ssize_t) image->columns; x++) { register ssize_t i; /* Determine the surface normal and compute shading. */ normal.x=(double) (GetPixelIntensity(image,pre-GetPixelChannels(image))+ GetPixelIntensity(image,center-GetPixelChannels(image))+ GetPixelIntensity(image,post-GetPixelChannels(image))- GetPixelIntensity(image,pre+GetPixelChannels(image))- GetPixelIntensity(image,center+GetPixelChannels(image))- GetPixelIntensity(image,post+GetPixelChannels(image))); normal.y=(double) (GetPixelIntensity(image,post-GetPixelChannels(image))+ GetPixelIntensity(image,post)+GetPixelIntensity(image,post+ GetPixelChannels(image))-GetPixelIntensity(image,pre- GetPixelChannels(image))-GetPixelIntensity(image,pre)- GetPixelIntensity(image,pre+GetPixelChannels(image))); if ((normal.x == 0.0) && (normal.y == 0.0)) shade=light.z; else { shade=0.0; distance=normal.x*light.x+normal.y*light.y+normal.z*light.z; if (distance > MagickEpsilon) { normal_distance= normal.x*normal.x+normal.y*normal.y+normal.z*normal.z; if (normal_distance > (MagickEpsilon*MagickEpsilon)) shade=distance/sqrt((double) normal_distance); } } if (GetPixelMask(image,p) != 0) { pre+=GetPixelChannels(image); center+=GetPixelChannels(image); post+=GetPixelChannels(image); q+=GetPixelChannels(shade_image); continue; } for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { PixelChannel channel; PixelTrait shade_traits, traits; channel=GetPixelChannelMapChannel(image,i); traits=GetPixelChannelMapTraits(image,channel); shade_traits=GetPixelChannelMapTraits(shade_image,channel); if ((traits == UndefinedPixelTrait) || (shade_traits == UndefinedPixelTrait)) continue; if ((shade_traits & CopyPixelTrait) != 0) { SetPixelChannel(shade_image,channel,center[i],q); continue; } if (gray != MagickFalse) { SetPixelChannel(shade_image,channel,ClampToQuantum(shade),q); continue; } SetPixelChannel(shade_image,channel,ClampToQuantum(QuantumScale*shade* center[i]),q); } pre+=GetPixelChannels(image); center+=GetPixelChannels(image); post+=GetPixelChannels(image); q+=GetPixelChannels(shade_image); } if (SyncCacheViewAuthenticPixels(shade_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_ShadeImage) #endif proceed=SetImageProgress(image,ShadeImageTag,progress++,image->rows); if (proceed == MagickFalse) status=MagickFalse; } } shade_view=DestroyCacheView(shade_view); image_view=DestroyCacheView(image_view); if (status == MagickFalse) shade_image=DestroyImage(shade_image); return(shade_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % S h a r p e n I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % SharpenImage() sharpens the image. We convolve the image with a Gaussian % operator of the given radius and standard deviation (sigma). For % reasonable results, radius should be larger than sigma. Use a radius of 0 % and SharpenImage() selects a suitable radius for you. % % Using a separable kernel would be faster, but the negative weights cancel % out on the corners of the kernel producing often undesirable ringing in the % filtered result; this can be avoided by using a 2D gaussian shaped image % sharpening kernel instead. % % The format of the SharpenImage method is: % % Image *SharpenImage(const Image *image,const double radius, % const double sigma,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o radius: the radius of the Gaussian, in pixels, not counting the center % pixel. % % o sigma: the standard deviation of the Laplacian, in pixels. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *SharpenImage(const Image *image,const double radius, const double sigma,ExceptionInfo *exception) { double normalize; Image *sharp_image; KernelInfo *kernel_info; register ssize_t i; size_t width; ssize_t j, u, v; assert(image != (const Image *) NULL); assert(image->signature == MagickSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickSignature); width=GetOptimalKernelWidth2D(radius,sigma); kernel_info=AcquireKernelInfo((const char *) NULL); if (kernel_info == (KernelInfo *) NULL) ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); (void) ResetMagickMemory(kernel_info,0,sizeof(*kernel_info)); kernel_info->width=width; kernel_info->height=width; kernel_info->signature=MagickSignature; kernel_info->values=(double *) AcquireAlignedMemory( kernel_info->width,kernel_info->width*sizeof(*kernel_info->values)); if (kernel_info->values == (double *) NULL) { kernel_info=DestroyKernelInfo(kernel_info); ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); } normalize=0.0; j=(ssize_t) kernel_info->width/2; i=0; for (v=(-j); v <= j; v++) { for (u=(-j); u <= j; u++) { kernel_info->values[i]=(double) (-exp(-((double) u*u+v*v)/(2.0* MagickSigma*MagickSigma))/(2.0*MagickPI*MagickSigma*MagickSigma)); normalize+=kernel_info->values[i]; i++; } } kernel_info->values[i/2]=(double) ((-2.0)*normalize); sharp_image=ConvolveImage(image,kernel_info,exception); kernel_info=DestroyKernelInfo(kernel_info); return(sharp_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % S p r e a d I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % SpreadImage() is a special effects method that randomly displaces each % pixel in a block defined by the radius parameter. % % The format of the SpreadImage method is: % % Image *SpreadImage(const Image *image,const double radius, % const PixelInterpolateMethod method,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o radius: choose a random pixel in a neighborhood of this extent. % % o method: the pixel interpolation method. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *SpreadImage(const Image *image,const double radius, const PixelInterpolateMethod method,ExceptionInfo *exception) { #define SpreadImageTag "Spread/Image" CacheView *image_view, *spread_view; Image *spread_image; MagickBooleanType status; MagickOffsetType progress; RandomInfo **restrict random_info; size_t width; ssize_t y; unsigned long key; /* Initialize spread image attributes. */ assert(image != (Image *) NULL); assert(image->signature == MagickSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickSignature); spread_image=CloneImage(image,image->columns,image->rows,MagickTrue, exception); if (spread_image == (Image *) NULL) return((Image *) NULL); if (SetImageStorageClass(spread_image,DirectClass,exception) == MagickFalse) { spread_image=DestroyImage(spread_image); return((Image *) NULL); } /* Spread image. */ status=MagickTrue; progress=0; width=GetOptimalKernelWidth1D(radius,0.5); random_info=AcquireRandomInfoThreadSet(); key=GetRandomSecretKey(random_info[0]); image_view=AcquireVirtualCacheView(image,exception); spread_view=AcquireAuthenticCacheView(spread_image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,8) shared(progress,status) \ dynamic_number_threads(image,image->columns,image->rows,key == ~0UL) #endif for (y=0; y < (ssize_t) image->rows; y++) { const int id = GetOpenMPThreadId(); register const Quantum *restrict p; register Quantum *restrict q; register ssize_t x; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception); q=QueueCacheViewAuthenticPixels(spread_view,0,y,spread_image->columns,1, exception); if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { PointInfo point; point.x=GetPseudoRandomValue(random_info[id]); point.y=GetPseudoRandomValue(random_info[id]); status=InterpolatePixelChannels(image,image_view,spread_image,method, (double) x+width*point.x-0.5,(double) y+width*point.y-0.5,q,exception); q+=GetPixelChannels(spread_image); } if (SyncCacheViewAuthenticPixels(spread_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_SpreadImage) #endif proceed=SetImageProgress(image,SpreadImageTag,progress++,image->rows); if (proceed == MagickFalse) status=MagickFalse; } } spread_view=DestroyCacheView(spread_view); image_view=DestroyCacheView(image_view); random_info=DestroyRandomInfoThreadSet(random_info); return(spread_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % U n s h a r p M a s k I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % UnsharpMaskImage() sharpens one or more image channels. We convolve the % image with a Gaussian operator of the given radius and standard deviation % (sigma). For reasonable results, radius should be larger than sigma. Use a % radius of 0 and UnsharpMaskImage() selects a suitable radius for you. % % The format of the UnsharpMaskImage method is: % % Image *UnsharpMaskImage(const Image *image,const double radius, % const double sigma,const double amount,const double threshold, % ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o radius: the radius of the Gaussian, in pixels, not counting the center % pixel. % % o sigma: the standard deviation of the Gaussian, in pixels. % % o amount: the percentage of the difference between the original and the % blur image that is added back into the original. % % o threshold: the threshold in pixels needed to apply the diffence amount. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *UnsharpMaskImage(const Image *image,const double radius, const double sigma,const double amount,const double threshold, ExceptionInfo *exception) { #define SharpenImageTag "Sharpen/Image" CacheView *image_view, *unsharp_view; Image *unsharp_image; MagickBooleanType status; MagickOffsetType progress; MagickRealType quantum_threshold; ssize_t y; assert(image != (const Image *) NULL); assert(image->signature == MagickSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); unsharp_image=BlurImage(image,radius,sigma,exception); if (unsharp_image == (Image *) NULL) return((Image *) NULL); quantum_threshold=(MagickRealType) QuantumRange*threshold; /* Unsharp-mask image. */ status=MagickTrue; progress=0; image_view=AcquireVirtualCacheView(image,exception); unsharp_view=AcquireAuthenticCacheView(unsharp_image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(progress,status) \ dynamic_number_threads(image,image->columns,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { register const Quantum *restrict p; register Quantum *restrict q; register ssize_t x; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception); q=QueueCacheViewAuthenticPixels(unsharp_view,0,y,unsharp_image->columns,1, exception); if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { register ssize_t i; if (GetPixelMask(image,p) != 0) { p+=GetPixelChannels(image); q+=GetPixelChannels(unsharp_image); continue; } for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { MagickRealType pixel; PixelChannel channel; PixelTrait traits, unsharp_traits; channel=GetPixelChannelMapChannel(image,i); traits=GetPixelChannelMapTraits(image,channel); unsharp_traits=GetPixelChannelMapTraits(unsharp_image,channel); if ((traits == UndefinedPixelTrait) || (unsharp_traits == UndefinedPixelTrait)) continue; if ((unsharp_traits & CopyPixelTrait) != 0) { SetPixelChannel(unsharp_image,channel,p[i],q); continue; } pixel=p[i]-(MagickRealType) GetPixelChannel(unsharp_image,channel,q); if (fabs(2.0*pixel) < quantum_threshold) pixel=(MagickRealType) p[i]; else pixel=(MagickRealType) p[i]+amount*pixel; SetPixelChannel(unsharp_image,channel,ClampToQuantum(pixel),q); } p+=GetPixelChannels(image); q+=GetPixelChannels(unsharp_image); } if (SyncCacheViewAuthenticPixels(unsharp_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_UnsharpMaskImage) #endif proceed=SetImageProgress(image,SharpenImageTag,progress++,image->rows); if (proceed == MagickFalse) status=MagickFalse; } } unsharp_image->type=image->type; unsharp_view=DestroyCacheView(unsharp_view); image_view=DestroyCacheView(image_view); if (status == MagickFalse) unsharp_image=DestroyImage(unsharp_image); return(unsharp_image); }