/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % DDDD RRRR AAA W W % % D D R R A A W W % % D D RRRR AAAAA W W W % % D D R RN A A WW WW % % DDDD R R A A W W % % % % % % MagickCore Image Drawing Methods % % % % % % Software Design % % Cristy % % July 1998 % % % % % % Copyright 1999-2014 ImageMagick Studio LLC, a non-profit organization % % dedicated to making software imaging solutions freely available. % % % % You may not use this file except in compliance with the License. You may % % obtain a copy of the License at % % % % http://www.imagemagick.org/script/license.php % % % % Unless required by applicable law or agreed to in writing, software % % distributed under the License is distributed on an "AS IS" BASIS, % % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % % See the License for the specific language governing permissions and % % limitations under the License. % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Bill Radcliffe of Corbis (www.corbis.com) contributed the polygon % rendering code based on Paul Heckbert's "Concave Polygon Scan Conversion", % Graphics Gems, 1990. Leonard Rosenthal and David Harr of Appligent % (www.appligent.com) contributed the dash pattern, linecap stroking % algorithm, and minor rendering improvements. % */ /* Include declarations. */ #include "MagickCore/studio.h" #include "MagickCore/annotate.h" #include "MagickCore/artifact.h" #include "MagickCore/blob.h" #include "MagickCore/cache.h" #include "MagickCore/cache-view.h" #include "MagickCore/channel.h" #include "MagickCore/color.h" #include "MagickCore/colorspace-private.h" #include "MagickCore/composite.h" #include "MagickCore/composite-private.h" #include "MagickCore/constitute.h" #include "MagickCore/draw.h" #include "MagickCore/draw-private.h" #include "MagickCore/enhance.h" #include "MagickCore/exception.h" #include "MagickCore/exception-private.h" #include "MagickCore/gem.h" #include "MagickCore/geometry.h" #include "MagickCore/image-private.h" #include "MagickCore/list.h" #include "MagickCore/log.h" #include "MagickCore/monitor.h" #include "MagickCore/monitor-private.h" #include "MagickCore/option.h" #include "MagickCore/paint.h" #include "MagickCore/pixel-accessor.h" #include "MagickCore/pixel-private.h" #include "MagickCore/property.h" #include "MagickCore/resample.h" #include "MagickCore/resample-private.h" #include "MagickCore/resource_.h" #include "MagickCore/string_.h" #include "MagickCore/string-private.h" #include "MagickCore/thread-private.h" #include "MagickCore/token.h" #include "MagickCore/transform.h" #include "MagickCore/utility.h" /* Define declarations. */ #define BezierQuantum 200 /* Typedef declarations. */ typedef struct _EdgeInfo { SegmentInfo bounds; double scanline; PointInfo *points; size_t number_points; ssize_t direction; MagickBooleanType ghostline; size_t highwater; } EdgeInfo; typedef struct _ElementInfo { double cx, cy, major, minor, angle; } ElementInfo; typedef struct _PolygonInfo { EdgeInfo *edges; size_t number_edges; } PolygonInfo; typedef enum { MoveToCode, OpenCode, GhostlineCode, LineToCode, EndCode } PathInfoCode; typedef struct _PathInfo { PointInfo point; PathInfoCode code; } PathInfo; /* Forward declarations. */ static MagickBooleanType DrawStrokePolygon(Image *,const DrawInfo *,const PrimitiveInfo *, ExceptionInfo *); static PrimitiveInfo *TraceStrokePolygon(const DrawInfo *,const PrimitiveInfo *); static size_t TracePath(PrimitiveInfo *,const char *); static void TraceArc(PrimitiveInfo *,const PointInfo,const PointInfo,const PointInfo), TraceArcPath(PrimitiveInfo *,const PointInfo,const PointInfo,const PointInfo, const double,const MagickBooleanType,const MagickBooleanType), TraceBezier(PrimitiveInfo *,const size_t), TraceCircle(PrimitiveInfo *,const PointInfo,const PointInfo), TraceEllipse(PrimitiveInfo *,const PointInfo,const PointInfo,const PointInfo), TraceLine(PrimitiveInfo *,const PointInfo,const PointInfo), TraceRectangle(PrimitiveInfo *,const PointInfo,const PointInfo), TraceRoundRectangle(PrimitiveInfo *,const PointInfo,const PointInfo, PointInfo), TraceSquareLinecap(PrimitiveInfo *,const size_t,const double); /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % A c q u i r e D r a w I n f o % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % AcquireDrawInfo() returns a DrawInfo structure properly initialized. % % The format of the AcquireDrawInfo method is: % % DrawInfo *AcquireDrawInfo(void) % */ MagickExport DrawInfo *AcquireDrawInfo(void) { DrawInfo *draw_info; draw_info=(DrawInfo *) AcquireMagickMemory(sizeof(*draw_info)); if (draw_info == (DrawInfo *) NULL) ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed"); GetDrawInfo((ImageInfo *) NULL,draw_info); return(draw_info); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % C l o n e D r a w I n f o % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % CloneDrawInfo() makes a copy of the given draw_info structure. If NULL % is specified, a new DrawInfo structure is created initialized to default % values. % % The format of the CloneDrawInfo method is: % % DrawInfo *CloneDrawInfo(const ImageInfo *image_info, % const DrawInfo *draw_info) % % A description of each parameter follows: % % o image_info: the image info. % % o draw_info: the draw info. % */ MagickExport DrawInfo *CloneDrawInfo(const ImageInfo *image_info, const DrawInfo *draw_info) { DrawInfo *clone_info; ExceptionInfo *exception; clone_info=(DrawInfo *) AcquireMagickMemory(sizeof(*clone_info)); if (clone_info == (DrawInfo *) NULL) ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed"); GetDrawInfo(image_info,clone_info); if (draw_info == (DrawInfo *) NULL) return(clone_info); exception=AcquireExceptionInfo(); (void) CloneString(&clone_info->primitive,draw_info->primitive); (void) CloneString(&clone_info->geometry,draw_info->geometry); clone_info->viewbox=draw_info->viewbox; clone_info->affine=draw_info->affine; clone_info->gravity=draw_info->gravity; clone_info->fill=draw_info->fill; clone_info->stroke=draw_info->stroke; clone_info->stroke_width=draw_info->stroke_width; if (draw_info->fill_pattern != (Image *) NULL) clone_info->fill_pattern=CloneImage(draw_info->fill_pattern,0,0,MagickTrue, exception); if (draw_info->stroke_pattern != (Image *) NULL) clone_info->stroke_pattern=CloneImage(draw_info->stroke_pattern,0,0, MagickTrue,exception); clone_info->stroke_antialias=draw_info->stroke_antialias; clone_info->text_antialias=draw_info->text_antialias; clone_info->fill_rule=draw_info->fill_rule; clone_info->linecap=draw_info->linecap; clone_info->linejoin=draw_info->linejoin; clone_info->miterlimit=draw_info->miterlimit; clone_info->dash_offset=draw_info->dash_offset; clone_info->decorate=draw_info->decorate; clone_info->compose=draw_info->compose; (void) CloneString(&clone_info->text,draw_info->text); (void) CloneString(&clone_info->font,draw_info->font); (void) CloneString(&clone_info->metrics,draw_info->metrics); (void) CloneString(&clone_info->family,draw_info->family); clone_info->style=draw_info->style; clone_info->stretch=draw_info->stretch; clone_info->weight=draw_info->weight; (void) CloneString(&clone_info->encoding,draw_info->encoding); clone_info->pointsize=draw_info->pointsize; clone_info->kerning=draw_info->kerning; clone_info->interline_spacing=draw_info->interline_spacing; clone_info->interword_spacing=draw_info->interword_spacing; clone_info->direction=draw_info->direction; (void) CloneString(&clone_info->density,draw_info->density); clone_info->align=draw_info->align; clone_info->undercolor=draw_info->undercolor; clone_info->border_color=draw_info->border_color; (void) CloneString(&clone_info->server_name,draw_info->server_name); if (draw_info->dash_pattern != (double *) NULL) { register ssize_t x; for (x=0; draw_info->dash_pattern[x] != 0.0; x++) ; clone_info->dash_pattern=(double *) AcquireQuantumMemory((size_t) x+1UL, sizeof(*clone_info->dash_pattern)); if (clone_info->dash_pattern == (double *) NULL) ThrowFatalException(ResourceLimitFatalError, "UnableToAllocateDashPattern"); (void) CopyMagickMemory(clone_info->dash_pattern,draw_info->dash_pattern, (size_t) (x+1)*sizeof(*clone_info->dash_pattern)); } clone_info->gradient=draw_info->gradient; if (draw_info->gradient.stops != (StopInfo *) NULL) { size_t number_stops; number_stops=clone_info->gradient.number_stops; clone_info->gradient.stops=(StopInfo *) AcquireQuantumMemory((size_t) number_stops,sizeof(*clone_info->gradient.stops)); if (clone_info->gradient.stops == (StopInfo *) NULL) ThrowFatalException(ResourceLimitFatalError, "UnableToAllocateDashPattern"); (void) CopyMagickMemory(clone_info->gradient.stops, draw_info->gradient.stops,(size_t) number_stops* sizeof(*clone_info->gradient.stops)); } (void) CloneString(&clone_info->clip_mask,draw_info->clip_mask); clone_info->bounds=draw_info->bounds; clone_info->clip_units=draw_info->clip_units; clone_info->render=draw_info->render; clone_info->alpha=draw_info->alpha; clone_info->element_reference=draw_info->element_reference; clone_info->debug=IsEventLogging(); exception=DestroyExceptionInfo(exception); return(clone_info); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % + C o n v e r t P a t h T o P o l y g o n % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % ConvertPathToPolygon() converts a path to the more efficient sorted % rendering form. % % The format of the ConvertPathToPolygon method is: % % PolygonInfo *ConvertPathToPolygon(const DrawInfo *draw_info, % const PathInfo *path_info) % % A description of each parameter follows: % % o Method ConvertPathToPolygon returns the path in a more efficient sorted % rendering form of type PolygonInfo. % % o draw_info: Specifies a pointer to an DrawInfo structure. % % o path_info: Specifies a pointer to an PathInfo structure. % % */ #if defined(__cplusplus) || defined(c_plusplus) extern "C" { #endif static int CompareEdges(const void *x,const void *y) { register const EdgeInfo *p, *q; /* Compare two edges. */ p=(const EdgeInfo *) x; q=(const EdgeInfo *) y; if ((p->points[0].y-MagickEpsilon) > q->points[0].y) return(1); if ((p->points[0].y+MagickEpsilon) < q->points[0].y) return(-1); if ((p->points[0].x-MagickEpsilon) > q->points[0].x) return(1); if ((p->points[0].x+MagickEpsilon) < q->points[0].x) return(-1); if (((p->points[1].x-p->points[0].x)*(q->points[1].y-q->points[0].y)- (p->points[1].y-p->points[0].y)*(q->points[1].x-q->points[0].x)) > 0.0) return(1); return(-1); } #if defined(__cplusplus) || defined(c_plusplus) } #endif static void LogPolygonInfo(const PolygonInfo *polygon_info) { register EdgeInfo *p; register ssize_t i, j; (void) LogMagickEvent(DrawEvent,GetMagickModule()," begin active-edge"); p=polygon_info->edges; for (i=0; i < (ssize_t) polygon_info->number_edges; i++) { (void) LogMagickEvent(DrawEvent,GetMagickModule()," edge %.20g:", (double) i); (void) LogMagickEvent(DrawEvent,GetMagickModule()," direction: %s", p->direction != MagickFalse ? "down" : "up"); (void) LogMagickEvent(DrawEvent,GetMagickModule()," ghostline: %s", p->ghostline != MagickFalse ? "transparent" : "opaque"); (void) LogMagickEvent(DrawEvent,GetMagickModule(), " bounds: %g %g - %g %g",p->bounds.x1,p->bounds.y1, p->bounds.x2,p->bounds.y2); for (j=0; j < (ssize_t) p->number_points; j++) (void) LogMagickEvent(DrawEvent,GetMagickModule()," %g %g", p->points[j].x,p->points[j].y); p++; } (void) LogMagickEvent(DrawEvent,GetMagickModule()," end active-edge"); } static void ReversePoints(PointInfo *points,const size_t number_points) { PointInfo point; register ssize_t i; for (i=0; i < (ssize_t) (number_points >> 1); i++) { point=points[i]; points[i]=points[number_points-(i+1)]; points[number_points-(i+1)]=point; } } static PolygonInfo *ConvertPathToPolygon( const DrawInfo *magick_unused(draw_info),const PathInfo *path_info) { long direction, next_direction; PointInfo point, *points; PolygonInfo *polygon_info; SegmentInfo bounds; register ssize_t i, n; MagickBooleanType ghostline; size_t edge, number_edges, number_points; /* Convert a path to the more efficient sorted rendering form. */ polygon_info=(PolygonInfo *) AcquireMagickMemory(sizeof(*polygon_info)); if (polygon_info == (PolygonInfo *) NULL) return((PolygonInfo *) NULL); number_edges=16; polygon_info->edges=(EdgeInfo *) AcquireQuantumMemory((size_t) number_edges, sizeof(*polygon_info->edges)); if (polygon_info->edges == (EdgeInfo *) NULL) return((PolygonInfo *) NULL); direction=0; edge=0; ghostline=MagickFalse; n=0; number_points=0; points=(PointInfo *) NULL; (void) ResetMagickMemory(&point,0,sizeof(point)); (void) ResetMagickMemory(&bounds,0,sizeof(bounds)); for (i=0; path_info[i].code != EndCode; i++) { if ((path_info[i].code == MoveToCode) || (path_info[i].code == OpenCode) || (path_info[i].code == GhostlineCode)) { /* Move to. */ if ((points != (PointInfo *) NULL) && (n >= 2)) { if (edge == number_edges) { number_edges<<=1; polygon_info->edges=(EdgeInfo *) ResizeQuantumMemory( polygon_info->edges,(size_t) number_edges, sizeof(*polygon_info->edges)); if (polygon_info->edges == (EdgeInfo *) NULL) return((PolygonInfo *) NULL); } polygon_info->edges[edge].number_points=(size_t) n; polygon_info->edges[edge].scanline=(-1.0); polygon_info->edges[edge].highwater=0; polygon_info->edges[edge].ghostline=ghostline; polygon_info->edges[edge].direction=(ssize_t) (direction > 0); if (direction < 0) ReversePoints(points,(size_t) n); polygon_info->edges[edge].points=points; polygon_info->edges[edge].bounds=bounds; polygon_info->edges[edge].bounds.y1=points[0].y; polygon_info->edges[edge].bounds.y2=points[n-1].y; points=(PointInfo *) NULL; ghostline=MagickFalse; edge++; } if (points == (PointInfo *) NULL) { number_points=16; points=(PointInfo *) AcquireQuantumMemory((size_t) number_points, sizeof(*points)); if (points == (PointInfo *) NULL) return((PolygonInfo *) NULL); } ghostline=path_info[i].code == GhostlineCode ? MagickTrue : MagickFalse; point=path_info[i].point; points[0]=point; bounds.x1=point.x; bounds.x2=point.x; direction=0; n=1; continue; } /* Line to. */ next_direction=((path_info[i].point.y > point.y) || ((path_info[i].point.y == point.y) && (path_info[i].point.x > point.x))) ? 1 : -1; if ((points != (PointInfo *) NULL) && (direction != 0) && (direction != next_direction)) { /* New edge. */ point=points[n-1]; if (edge == number_edges) { number_edges<<=1; polygon_info->edges=(EdgeInfo *) ResizeQuantumMemory( polygon_info->edges,(size_t) number_edges, sizeof(*polygon_info->edges)); if (polygon_info->edges == (EdgeInfo *) NULL) return((PolygonInfo *) NULL); } polygon_info->edges[edge].number_points=(size_t) n; polygon_info->edges[edge].scanline=(-1.0); polygon_info->edges[edge].highwater=0; polygon_info->edges[edge].ghostline=ghostline; polygon_info->edges[edge].direction=(ssize_t) (direction > 0); if (direction < 0) ReversePoints(points,(size_t) n); polygon_info->edges[edge].points=points; polygon_info->edges[edge].bounds=bounds; polygon_info->edges[edge].bounds.y1=points[0].y; polygon_info->edges[edge].bounds.y2=points[n-1].y; number_points=16; points=(PointInfo *) AcquireQuantumMemory((size_t) number_points, sizeof(*points)); if (points == (PointInfo *) NULL) return((PolygonInfo *) NULL); n=1; ghostline=MagickFalse; points[0]=point; bounds.x1=point.x; bounds.x2=point.x; edge++; } direction=next_direction; if (points == (PointInfo *) NULL) continue; if (n == (ssize_t) number_points) { number_points<<=1; points=(PointInfo *) ResizeQuantumMemory(points,(size_t) number_points, sizeof(*points)); if (points == (PointInfo *) NULL) return((PolygonInfo *) NULL); } point=path_info[i].point; points[n]=point; if (point.x < bounds.x1) bounds.x1=point.x; if (point.x > bounds.x2) bounds.x2=point.x; n++; } if (points != (PointInfo *) NULL) { if (n < 2) points=(PointInfo *) RelinquishMagickMemory(points); else { if (edge == number_edges) { number_edges<<=1; polygon_info->edges=(EdgeInfo *) ResizeQuantumMemory( polygon_info->edges,(size_t) number_edges, sizeof(*polygon_info->edges)); if (polygon_info->edges == (EdgeInfo *) NULL) return((PolygonInfo *) NULL); } polygon_info->edges[edge].number_points=(size_t) n; polygon_info->edges[edge].scanline=(-1.0); polygon_info->edges[edge].highwater=0; polygon_info->edges[edge].ghostline=ghostline; polygon_info->edges[edge].direction=(ssize_t) (direction > 0); if (direction < 0) ReversePoints(points,(size_t) n); polygon_info->edges[edge].points=points; polygon_info->edges[edge].bounds=bounds; polygon_info->edges[edge].bounds.y1=points[0].y; polygon_info->edges[edge].bounds.y2=points[n-1].y; ghostline=MagickFalse; edge++; } } polygon_info->number_edges=edge; qsort(polygon_info->edges,(size_t) polygon_info->number_edges, sizeof(*polygon_info->edges),CompareEdges); if (IsEventLogging() != MagickFalse) LogPolygonInfo(polygon_info); return(polygon_info); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % + C o n v e r t P r i m i t i v e T o P a t h % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % ConvertPrimitiveToPath() converts a PrimitiveInfo structure into a vector % path structure. % % The format of the ConvertPrimitiveToPath method is: % % PathInfo *ConvertPrimitiveToPath(const DrawInfo *draw_info, % const PrimitiveInfo *primitive_info) % % A description of each parameter follows: % % o Method ConvertPrimitiveToPath returns a vector path structure of type % PathInfo. % % o draw_info: a structure of type DrawInfo. % % o primitive_info: Specifies a pointer to an PrimitiveInfo structure. % % */ static void LogPathInfo(const PathInfo *path_info) { register const PathInfo *p; (void) LogMagickEvent(DrawEvent,GetMagickModule()," begin vector-path"); for (p=path_info; p->code != EndCode; p++) (void) LogMagickEvent(DrawEvent,GetMagickModule(), " %g %g %s",p->point.x,p->point.y,p->code == GhostlineCode ? "moveto ghostline" : p->code == OpenCode ? "moveto open" : p->code == MoveToCode ? "moveto" : p->code == LineToCode ? "lineto" : "?"); (void) LogMagickEvent(DrawEvent,GetMagickModule()," end vector-path"); } static PathInfo *ConvertPrimitiveToPath( const DrawInfo *magick_unused(draw_info),const PrimitiveInfo *primitive_info) { PathInfo *path_info; PathInfoCode code; PointInfo p, q; register ssize_t i, n; ssize_t coordinates, start; /* Converts a PrimitiveInfo structure into a vector path structure. */ switch (primitive_info->primitive) { case PointPrimitive: case ColorPrimitive: case MattePrimitive: case TextPrimitive: case ImagePrimitive: return((PathInfo *) NULL); default: break; } for (i=0; primitive_info[i].primitive != UndefinedPrimitive; i++) ; path_info=(PathInfo *) AcquireQuantumMemory((size_t) (2UL*i+3UL), sizeof(*path_info)); if (path_info == (PathInfo *) NULL) return((PathInfo *) NULL); coordinates=0; n=0; p.x=(-1.0); p.y=(-1.0); q.x=(-1.0); q.y=(-1.0); start=0; for (i=0; primitive_info[i].primitive != UndefinedPrimitive; i++) { code=LineToCode; if (coordinates <= 0) { coordinates=(ssize_t) primitive_info[i].coordinates; p=primitive_info[i].point; start=n; code=MoveToCode; } coordinates--; /* Eliminate duplicate points. */ if ((i == 0) || (fabs(q.x-primitive_info[i].point.x) >= MagickEpsilon) || (fabs(q.y-primitive_info[i].point.y) >= MagickEpsilon)) { path_info[n].code=code; path_info[n].point=primitive_info[i].point; q=primitive_info[i].point; n++; } if (coordinates > 0) continue; if ((fabs(p.x-primitive_info[i].point.x) < MagickEpsilon) && (fabs(p.y-primitive_info[i].point.y) < MagickEpsilon)) continue; /* Mark the p point as open if it does not match the q. */ path_info[start].code=OpenCode; path_info[n].code=GhostlineCode; path_info[n].point=primitive_info[i].point; n++; path_info[n].code=LineToCode; path_info[n].point=p; n++; } path_info[n].code=EndCode; path_info[n].point.x=0.0; path_info[n].point.y=0.0; if (IsEventLogging() != MagickFalse) LogPathInfo(path_info); return(path_info); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % D e s t r o y D r a w I n f o % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DestroyDrawInfo() deallocates memory associated with an DrawInfo % structure. % % The format of the DestroyDrawInfo method is: % % DrawInfo *DestroyDrawInfo(DrawInfo *draw_info) % % A description of each parameter follows: % % o draw_info: the draw info. % */ MagickExport DrawInfo *DestroyDrawInfo(DrawInfo *draw_info) { if (draw_info->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"..."); assert(draw_info != (DrawInfo *) NULL); assert(draw_info->signature == MagickSignature); if (draw_info->primitive != (char *) NULL) draw_info->primitive=DestroyString(draw_info->primitive); if (draw_info->text != (char *) NULL) draw_info->text=DestroyString(draw_info->text); if (draw_info->geometry != (char *) NULL) draw_info->geometry=DestroyString(draw_info->geometry); if (draw_info->fill_pattern != (Image *) NULL) draw_info->fill_pattern=DestroyImage(draw_info->fill_pattern); if (draw_info->stroke_pattern != (Image *) NULL) draw_info->stroke_pattern=DestroyImage(draw_info->stroke_pattern); if (draw_info->font != (char *) NULL) draw_info->font=DestroyString(draw_info->font); if (draw_info->metrics != (char *) NULL) draw_info->metrics=DestroyString(draw_info->metrics); if (draw_info->family != (char *) NULL) draw_info->family=DestroyString(draw_info->family); if (draw_info->encoding != (char *) NULL) draw_info->encoding=DestroyString(draw_info->encoding); if (draw_info->density != (char *) NULL) draw_info->density=DestroyString(draw_info->density); if (draw_info->server_name != (char *) NULL) draw_info->server_name=(char *) RelinquishMagickMemory(draw_info->server_name); if (draw_info->dash_pattern != (double *) NULL) draw_info->dash_pattern=(double *) RelinquishMagickMemory( draw_info->dash_pattern); if (draw_info->gradient.stops != (StopInfo *) NULL) draw_info->gradient.stops=(StopInfo *) RelinquishMagickMemory( draw_info->gradient.stops); if (draw_info->clip_mask != (char *) NULL) draw_info->clip_mask=DestroyString(draw_info->clip_mask); draw_info->signature=(~MagickSignature); draw_info=(DrawInfo *) RelinquishMagickMemory(draw_info); return(draw_info); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % + D e s t r o y E d g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DestroyEdge() destroys the specified polygon edge. % % The format of the DestroyEdge method is: % % ssize_t DestroyEdge(PolygonInfo *polygon_info,const int edge) % % A description of each parameter follows: % % o polygon_info: Specifies a pointer to an PolygonInfo structure. % % o edge: the polygon edge number to destroy. % */ static size_t DestroyEdge(PolygonInfo *polygon_info, const size_t edge) { assert(edge < polygon_info->number_edges); polygon_info->edges[edge].points=(PointInfo *) RelinquishMagickMemory( polygon_info->edges[edge].points); polygon_info->number_edges--; if (edge < polygon_info->number_edges) (void) CopyMagickMemory(polygon_info->edges+edge,polygon_info->edges+edge+1, (size_t) (polygon_info->number_edges-edge)*sizeof(*polygon_info->edges)); return(polygon_info->number_edges); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % + D e s t r o y P o l y g o n I n f o % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DestroyPolygonInfo() destroys the PolygonInfo data structure. % % The format of the DestroyPolygonInfo method is: % % PolygonInfo *DestroyPolygonInfo(PolygonInfo *polygon_info) % % A description of each parameter follows: % % o polygon_info: Specifies a pointer to an PolygonInfo structure. % */ static PolygonInfo *DestroyPolygonInfo(PolygonInfo *polygon_info) { register ssize_t i; for (i=0; i < (ssize_t) polygon_info->number_edges; i++) polygon_info->edges[i].points=(PointInfo *) RelinquishMagickMemory(polygon_info->edges[i].points); polygon_info->edges=(EdgeInfo *) RelinquishMagickMemory(polygon_info->edges); return((PolygonInfo *) RelinquishMagickMemory(polygon_info)); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % D r a w A f f i n e I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DrawAffineImage() composites the source over the destination image as % dictated by the affine transform. % % The format of the DrawAffineImage method is: % % MagickBooleanType DrawAffineImage(Image *image,const Image *source, % const AffineMatrix *affine,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o source: the source image. % % o affine: the affine transform. % % o exception: return any errors or warnings in this structure. % */ static SegmentInfo AffineEdge(const Image *image,const AffineMatrix *affine, const double y,const SegmentInfo *edge) { double intercept, z; register double x; SegmentInfo inverse_edge; /* Determine left and right edges. */ inverse_edge.x1=edge->x1; inverse_edge.y1=edge->y1; inverse_edge.x2=edge->x2; inverse_edge.y2=edge->y2; z=affine->ry*y+affine->tx; if (affine->sx >= MagickEpsilon) { intercept=(-z/affine->sx); x=intercept; if (x > inverse_edge.x1) inverse_edge.x1=x; intercept=(-z+(double) image->columns)/affine->sx; x=intercept; if (x < inverse_edge.x2) inverse_edge.x2=x; } else if (affine->sx < -MagickEpsilon) { intercept=(-z+(double) image->columns)/affine->sx; x=intercept; if (x > inverse_edge.x1) inverse_edge.x1=x; intercept=(-z/affine->sx); x=intercept; if (x < inverse_edge.x2) inverse_edge.x2=x; } else if ((z < 0.0) || ((size_t) floor(z+0.5) >= image->columns)) { inverse_edge.x2=edge->x1; return(inverse_edge); } /* Determine top and bottom edges. */ z=affine->sy*y+affine->ty; if (affine->rx >= MagickEpsilon) { intercept=(-z/affine->rx); x=intercept; if (x > inverse_edge.x1) inverse_edge.x1=x; intercept=(-z+(double) image->rows)/affine->rx; x=intercept; if (x < inverse_edge.x2) inverse_edge.x2=x; } else if (affine->rx < -MagickEpsilon) { intercept=(-z+(double) image->rows)/affine->rx; x=intercept; if (x > inverse_edge.x1) inverse_edge.x1=x; intercept=(-z/affine->rx); x=intercept; if (x < inverse_edge.x2) inverse_edge.x2=x; } else if ((z < 0.0) || ((size_t) floor(z+0.5) >= image->rows)) { inverse_edge.x2=edge->x2; return(inverse_edge); } return(inverse_edge); } static AffineMatrix InverseAffineMatrix(const AffineMatrix *affine) { AffineMatrix inverse_affine; double determinant; determinant=PerceptibleReciprocal(affine->sx*affine->sy-affine->rx* affine->ry); inverse_affine.sx=determinant*affine->sy; inverse_affine.rx=determinant*(-affine->rx); inverse_affine.ry=determinant*(-affine->ry); inverse_affine.sy=determinant*affine->sx; inverse_affine.tx=(-affine->tx)*inverse_affine.sx-affine->ty* inverse_affine.ry; inverse_affine.ty=(-affine->tx)*inverse_affine.rx-affine->ty* inverse_affine.sy; return(inverse_affine); } static inline ssize_t MagickAbsoluteValue(const ssize_t x) { if (x < 0) return(-x); return(x); } static inline double MagickMax(const double x,const double y) { if (x > y) return(x); return(y); } static inline double MagickMin(const double x,const double y) { if (x < y) return(x); return(y); } MagickExport MagickBooleanType DrawAffineImage(Image *image, const Image *source,const AffineMatrix *affine,ExceptionInfo *exception) { AffineMatrix inverse_affine; CacheView *image_view, *source_view; MagickBooleanType status; PixelInfo zero; PointInfo extent[4], min, max, point; register ssize_t i; SegmentInfo edge; ssize_t start, stop, y; /* Determine bounding box. */ assert(image != (Image *) NULL); assert(image->signature == MagickSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(source != (const Image *) NULL); assert(source->signature == MagickSignature); assert(affine != (AffineMatrix *) NULL); extent[0].x=0.0; extent[0].y=0.0; extent[1].x=(double) source->columns-1.0; extent[1].y=0.0; extent[2].x=(double) source->columns-1.0; extent[2].y=(double) source->rows-1.0; extent[3].x=0.0; extent[3].y=(double) source->rows-1.0; for (i=0; i < 4; i++) { point=extent[i]; extent[i].x=point.x*affine->sx+point.y*affine->ry+affine->tx; extent[i].y=point.x*affine->rx+point.y*affine->sy+affine->ty; } min=extent[0]; max=extent[0]; for (i=1; i < 4; i++) { if (min.x > extent[i].x) min.x=extent[i].x; if (min.y > extent[i].y) min.y=extent[i].y; if (max.x < extent[i].x) max.x=extent[i].x; if (max.y < extent[i].y) max.y=extent[i].y; } /* Affine transform image. */ if (SetImageStorageClass(image,DirectClass,exception) == MagickFalse) return(MagickFalse); status=MagickTrue; edge.x1=MagickMax(min.x,0.0); edge.y1=MagickMax(min.y,0.0); edge.x2=MagickMin(max.x,(double) image->columns-1.0); edge.y2=MagickMin(max.y,(double) image->rows-1.0); inverse_affine=InverseAffineMatrix(affine); GetPixelInfo(image,&zero); start=(ssize_t) ceil(edge.y1-0.5); stop=(ssize_t) floor(edge.y2+0.5); source_view=AcquireVirtualCacheView(source,exception); image_view=AcquireAuthenticCacheView(image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(status) \ magick_threads(source,image,1,1) #endif for (y=start; y <= stop; y++) { PixelInfo composite, pixel; PointInfo point; register ssize_t x; register Quantum *restrict q; SegmentInfo inverse_edge; ssize_t x_offset; inverse_edge=AffineEdge(source,&inverse_affine,(double) y,&edge); if (inverse_edge.x2 < inverse_edge.x1) continue; q=GetCacheViewAuthenticPixels(image_view,(ssize_t) ceil(inverse_edge.x1- 0.5),y,(size_t) (floor(inverse_edge.x2+0.5)-ceil(inverse_edge.x1-0.5)+1), 1,exception); if (q == (Quantum *) NULL) continue; pixel=zero; composite=zero; x_offset=0; for (x=(ssize_t) ceil(inverse_edge.x1-0.5); x <= (ssize_t) floor(inverse_edge.x2+0.5); x++) { point.x=(double) x*inverse_affine.sx+y*inverse_affine.ry+ inverse_affine.tx; point.y=(double) x*inverse_affine.rx+y*inverse_affine.sy+ inverse_affine.ty; (void) InterpolatePixelInfo(source,source_view,UndefinedInterpolatePixel, point.x,point.y,&pixel,exception); GetPixelInfoPixel(image,q,&composite); CompositePixelInfoOver(&pixel,pixel.alpha,&composite,composite.alpha, &composite); SetPixelInfoPixel(image,&composite,q); x_offset++; q+=GetPixelChannels(image); } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) status=MagickFalse; } source_view=DestroyCacheView(source_view); image_view=DestroyCacheView(image_view); return(status); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % + D r a w B o u n d i n g R e c t a n g l e s % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DrawBoundingRectangles() draws the bounding rectangles on the image. This % is only useful for developers debugging the rendering algorithm. % % The format of the DrawBoundingRectangles method is: % % void DrawBoundingRectangles(Image *image,const DrawInfo *draw_info, % PolygonInfo *polygon_info,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o draw_info: the draw info. % % o polygon_info: Specifies a pointer to a PolygonInfo structure. % % o exception: return any errors or warnings in this structure. % */ static void DrawBoundingRectangles(Image *image,const DrawInfo *draw_info, const PolygonInfo *polygon_info,ExceptionInfo *exception) { DrawInfo *clone_info; double mid; PointInfo end, resolution, start; PrimitiveInfo primitive_info[6]; register ssize_t i; SegmentInfo bounds; ssize_t coordinates; clone_info=CloneDrawInfo((ImageInfo *) NULL,draw_info); (void) QueryColorCompliance("#0000",AllCompliance,&clone_info->fill, exception); resolution.x=DefaultResolution; resolution.y=DefaultResolution; if (clone_info->density != (char *) NULL) { GeometryInfo geometry_info; MagickStatusType flags; flags=ParseGeometry(clone_info->density,&geometry_info); resolution.x=geometry_info.rho; resolution.y=geometry_info.sigma; if ((flags & SigmaValue) == MagickFalse) resolution.y=resolution.x; } mid=(resolution.x/72.0)*ExpandAffine(&clone_info->affine)* clone_info->stroke_width/2.0; bounds.x1=0.0; bounds.y1=0.0; bounds.x2=0.0; bounds.y2=0.0; if (polygon_info != (PolygonInfo *) NULL) { bounds=polygon_info->edges[0].bounds; for (i=1; i < (ssize_t) polygon_info->number_edges; i++) { if (polygon_info->edges[i].bounds.x1 < (double) bounds.x1) bounds.x1=polygon_info->edges[i].bounds.x1; if (polygon_info->edges[i].bounds.y1 < (double) bounds.y1) bounds.y1=polygon_info->edges[i].bounds.y1; if (polygon_info->edges[i].bounds.x2 > (double) bounds.x2) bounds.x2=polygon_info->edges[i].bounds.x2; if (polygon_info->edges[i].bounds.y2 > (double) bounds.y2) bounds.y2=polygon_info->edges[i].bounds.y2; } bounds.x1-=mid; bounds.x1=bounds.x1 < 0.0 ? 0.0 : bounds.x1 >= (double) image->columns ? (double) image->columns-1 : bounds.x1; bounds.y1-=mid; bounds.y1=bounds.y1 < 0.0 ? 0.0 : bounds.y1 >= (double) image->rows ? (double) image->rows-1 : bounds.y1; bounds.x2+=mid; bounds.x2=bounds.x2 < 0.0 ? 0.0 : bounds.x2 >= (double) image->columns ? (double) image->columns-1 : bounds.x2; bounds.y2+=mid; bounds.y2=bounds.y2 < 0.0 ? 0.0 : bounds.y2 >= (double) image->rows ? (double) image->rows-1 : bounds.y2; for (i=0; i < (ssize_t) polygon_info->number_edges; i++) { if (polygon_info->edges[i].direction != 0) (void) QueryColorCompliance("red",AllCompliance,&clone_info->stroke, exception); else (void) QueryColorCompliance("green",AllCompliance,&clone_info->stroke, exception); start.x=(double) (polygon_info->edges[i].bounds.x1-mid); start.y=(double) (polygon_info->edges[i].bounds.y1-mid); end.x=(double) (polygon_info->edges[i].bounds.x2+mid); end.y=(double) (polygon_info->edges[i].bounds.y2+mid); primitive_info[0].primitive=RectanglePrimitive; TraceRectangle(primitive_info,start,end); primitive_info[0].method=ReplaceMethod; coordinates=(ssize_t) primitive_info[0].coordinates; primitive_info[coordinates].primitive=UndefinedPrimitive; (void) DrawPrimitive(image,clone_info,primitive_info,exception); } } (void) QueryColorCompliance("blue",AllCompliance,&clone_info->stroke, exception); start.x=(double) (bounds.x1-mid); start.y=(double) (bounds.y1-mid); end.x=(double) (bounds.x2+mid); end.y=(double) (bounds.y2+mid); primitive_info[0].primitive=RectanglePrimitive; TraceRectangle(primitive_info,start,end); primitive_info[0].method=ReplaceMethod; coordinates=(ssize_t) primitive_info[0].coordinates; primitive_info[coordinates].primitive=UndefinedPrimitive; (void) DrawPrimitive(image,clone_info,primitive_info,exception); clone_info=DestroyDrawInfo(clone_info); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % D r a w C l i p P a t h % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DrawClipPath() draws the clip path on the image mask. % % The format of the DrawClipPath method is: % % MagickBooleanType DrawClipPath(Image *image,const DrawInfo *draw_info, % const char *name,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o draw_info: the draw info. % % o name: the name of the clip path. % % o exception: return any errors or warnings in this structure. % */ MagickExport MagickBooleanType DrawClipPath(Image *image, const DrawInfo *draw_info,const char *name,ExceptionInfo *exception) { char filename[MaxTextExtent]; Image *clip_mask; const char *value; DrawInfo *clone_info; MagickStatusType status; assert(image != (Image *) NULL); assert(image->signature == MagickSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(draw_info != (const DrawInfo *) NULL); (void) FormatLocaleString(filename,MaxTextExtent,"%s",name); value=GetImageArtifact(image,filename); if (value == (const char *) NULL) return(MagickFalse); clip_mask=CloneImage(image,image->columns,image->rows,MagickTrue,exception); if (clip_mask == (Image *) NULL) return(MagickFalse); (void) QueryColorCompliance("#0000",AllCompliance, &clip_mask->background_color,exception); clip_mask->background_color.alpha=(Quantum) TransparentAlpha; (void) SetImageBackgroundColor(clip_mask,exception); if (image->debug != MagickFalse) (void) LogMagickEvent(DrawEvent,GetMagickModule(),"\nbegin clip-path %s", draw_info->clip_mask); clone_info=CloneDrawInfo((ImageInfo *) NULL,draw_info); (void) CloneString(&clone_info->primitive,value); (void) QueryColorCompliance("#ffffff",AllCompliance,&clone_info->fill, exception); clone_info->clip_mask=(char *) NULL; status=NegateImage(clip_mask,MagickFalse,exception); (void) SetImageMask(image,clip_mask,exception); clip_mask=DestroyImage(clip_mask); status&=DrawImage(image,clone_info,exception); clone_info=DestroyDrawInfo(clone_info); if (image->debug != MagickFalse) (void) LogMagickEvent(DrawEvent,GetMagickModule(),"end clip-path"); return(status != 0 ? MagickTrue : MagickFalse); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % + D r a w D a s h P o l y g o n % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DrawDashPolygon() draws a dashed polygon (line, rectangle, ellipse) on the % image while respecting the dash offset and dash pattern attributes. % % The format of the DrawDashPolygon method is: % % MagickBooleanType DrawDashPolygon(const DrawInfo *draw_info, % const PrimitiveInfo *primitive_info,Image *image, % ExceptionInfo *exception) % % A description of each parameter follows: % % o draw_info: the draw info. % % o primitive_info: Specifies a pointer to a PrimitiveInfo structure. % % o image: the image. % % o exception: return any errors or warnings in this structure. % */ static MagickBooleanType DrawDashPolygon(const DrawInfo *draw_info, const PrimitiveInfo *primitive_info,Image *image,ExceptionInfo *exception) { DrawInfo *clone_info; double length, maximum_length, offset, scale, total_length; MagickStatusType status; PrimitiveInfo *dash_polygon; register ssize_t i; register double dx, dy; size_t number_vertices; ssize_t j, n; assert(draw_info != (const DrawInfo *) NULL); if (image->debug != MagickFalse) (void) LogMagickEvent(DrawEvent,GetMagickModule()," begin draw-dash"); clone_info=CloneDrawInfo((ImageInfo *) NULL,draw_info); clone_info->miterlimit=0; for (i=0; primitive_info[i].primitive != UndefinedPrimitive; i++) ; number_vertices=(size_t) i; dash_polygon=(PrimitiveInfo *) AcquireQuantumMemory((size_t) (2UL*number_vertices+1UL),sizeof(*dash_polygon)); if (dash_polygon == (PrimitiveInfo *) NULL) return(MagickFalse); dash_polygon[0]=primitive_info[0]; scale=ExpandAffine(&draw_info->affine); length=scale*(draw_info->dash_pattern[0]-0.5); offset=draw_info->dash_offset != 0.0 ? scale*draw_info->dash_offset : 0.0; j=1; for (n=0; offset > 0.0; j=0) { if (draw_info->dash_pattern[n] <= 0.0) break; length=scale*(draw_info->dash_pattern[n]+(n == 0 ? -0.5 : 0.5)); if (offset > length) { offset-=length; n++; length=scale*(draw_info->dash_pattern[n]+0.5); continue; } if (offset < length) { length-=offset; offset=0.0; break; } offset=0.0; n++; } status=MagickTrue; maximum_length=0.0; total_length=0.0; for (i=1; i < (ssize_t) number_vertices; i++) { dx=primitive_info[i].point.x-primitive_info[i-1].point.x; dy=primitive_info[i].point.y-primitive_info[i-1].point.y; maximum_length=hypot((double) dx,dy); if (length == 0.0) { n++; if (draw_info->dash_pattern[n] == 0.0) n=0; length=scale*(draw_info->dash_pattern[n]+(n == 0 ? -0.5 : 0.5)); } for (total_length=0.0; (total_length+length) <= maximum_length; ) { total_length+=length; if ((n & 0x01) != 0) { dash_polygon[0]=primitive_info[0]; dash_polygon[0].point.x=(double) (primitive_info[i-1].point.x+dx* total_length/maximum_length); dash_polygon[0].point.y=(double) (primitive_info[i-1].point.y+dy* total_length/maximum_length); j=1; } else { if ((j+1) > (ssize_t) (2*number_vertices)) break; dash_polygon[j]=primitive_info[i-1]; dash_polygon[j].point.x=(double) (primitive_info[i-1].point.x+dx* total_length/maximum_length); dash_polygon[j].point.y=(double) (primitive_info[i-1].point.y+dy* total_length/maximum_length); dash_polygon[j].coordinates=1; j++; dash_polygon[0].coordinates=(size_t) j; dash_polygon[j].primitive=UndefinedPrimitive; status&=DrawStrokePolygon(image,clone_info,dash_polygon,exception); } n++; if (draw_info->dash_pattern[n] == 0.0) n=0; length=scale*(draw_info->dash_pattern[n]+(n == 0 ? -0.5 : 0.5)); } length-=(maximum_length-total_length); if ((n & 0x01) != 0) continue; dash_polygon[j]=primitive_info[i]; dash_polygon[j].coordinates=1; j++; } if ((total_length <= maximum_length) && ((n & 0x01) == 0) && (j > 1)) { dash_polygon[j]=primitive_info[i-1]; dash_polygon[j].point.x+=MagickEpsilon; dash_polygon[j].point.y+=MagickEpsilon; dash_polygon[j].coordinates=1; j++; dash_polygon[0].coordinates=(size_t) j; dash_polygon[j].primitive=UndefinedPrimitive; status&=DrawStrokePolygon(image,clone_info,dash_polygon,exception); } dash_polygon=(PrimitiveInfo *) RelinquishMagickMemory(dash_polygon); clone_info=DestroyDrawInfo(clone_info); if (image->debug != MagickFalse) (void) LogMagickEvent(DrawEvent,GetMagickModule()," end draw-dash"); return(status != 0 ? MagickTrue : MagickFalse); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % D r a w I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DrawImage() draws a graphic primitive on your image. The primitive % may be represented as a string or filename. Precede the filename with an % "at" sign (@) and the contents of the file are drawn on the image. You % can affect how text is drawn by setting one or more members of the draw % info structure. % % The format of the DrawImage method is: % % MagickBooleanType DrawImage(Image *image,const DrawInfo *draw_info, % ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o draw_info: the draw info. % % o exception: return any errors or warnings in this structure. % */ static inline MagickBooleanType IsPoint(const char *point) { char *p; double value; value=StringToDouble(point,&p); return((value == 0.0) && (p == point) ? MagickFalse : MagickTrue); } static inline void TracePoint(PrimitiveInfo *primitive_info, const PointInfo point) { primitive_info->coordinates=1; primitive_info->point=point; } MagickExport MagickBooleanType DrawImage(Image *image,const DrawInfo *draw_info, ExceptionInfo *exception) { #define RenderImageTag "Render/Image" AffineMatrix affine, current; char key[2*MaxTextExtent], keyword[MaxTextExtent], geometry[MaxTextExtent], name[MaxTextExtent], pattern[MaxTextExtent], *primitive, *token; const char *q; DrawInfo **graphic_context; MagickBooleanType proceed; MagickStatusType status; double angle, factor, primitive_extent; PointInfo point; PixelInfo start_color; PrimitiveInfo *primitive_info; PrimitiveType primitive_type; register const char *p; register ssize_t i, x; SegmentInfo bounds; size_t length, number_points; ssize_t j, k, n; /* Ensure the annotation info is valid. */ assert(image != (Image *) NULL); assert(image->signature == MagickSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(draw_info != (DrawInfo *) NULL); assert(draw_info->signature == MagickSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"..."); if ((draw_info->primitive == (char *) NULL) || (*draw_info->primitive == '\0')) return(MagickFalse); if (image->debug != MagickFalse) (void) LogMagickEvent(DrawEvent,GetMagickModule(),"begin draw-image"); if (*draw_info->primitive != '@') primitive=AcquireString(draw_info->primitive); else primitive=FileToString(draw_info->primitive+1,~0UL,exception); if (primitive == (char *) NULL) return(MagickFalse); primitive_extent=(double) strlen(primitive); (void) SetImageArtifact(image,"MVG",primitive); n=0; /* Allocate primitive info memory. */ graphic_context=(DrawInfo **) AcquireMagickMemory( sizeof(*graphic_context)); if (graphic_context == (DrawInfo **) NULL) { primitive=DestroyString(primitive); ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed", image->filename); } number_points=6553; primitive_info=(PrimitiveInfo *) AcquireQuantumMemory((size_t) number_points, sizeof(*primitive_info)); if (primitive_info == (PrimitiveInfo *) NULL) { primitive=DestroyString(primitive); for ( ; n >= 0; n--) graphic_context[n]=DestroyDrawInfo(graphic_context[n]); graphic_context=(DrawInfo **) RelinquishMagickMemory(graphic_context); ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed", image->filename); } graphic_context[n]=CloneDrawInfo((ImageInfo *) NULL,draw_info); graphic_context[n]->viewbox=image->page; if ((image->page.width == 0) || (image->page.height == 0)) { graphic_context[n]->viewbox.width=image->columns; graphic_context[n]->viewbox.height=image->rows; } token=AcquireString(primitive); (void) QueryColorCompliance("#000000",AllCompliance,&start_color, exception); if (SetImageStorageClass(image,DirectClass,exception) == MagickFalse) return(MagickFalse); status=MagickTrue; for (q=primitive; *q != '\0'; ) { /* Interpret graphic primitive. */ GetMagickToken(q,&q,keyword); if (*keyword == '\0') break; if (*keyword == '#') { /* Comment. */ while ((*q != '\n') && (*q != '\0')) q++; continue; } p=q-strlen(keyword)-1; primitive_type=UndefinedPrimitive; current=graphic_context[n]->affine; GetAffineMatrix(&affine); switch (*keyword) { case ';': break; case 'a': case 'A': { if (LocaleCompare("affine",keyword) == 0) { GetMagickToken(q,&q,token); affine.sx=StringToDouble(token,(char **) NULL); GetMagickToken(q,&q,token); if (*token == ',') GetMagickToken(q,&q,token); affine.rx=StringToDouble(token,(char **) NULL); GetMagickToken(q,&q,token); if (*token == ',') GetMagickToken(q,&q,token); affine.ry=StringToDouble(token,(char **) NULL); GetMagickToken(q,&q,token); if (*token == ',') GetMagickToken(q,&q,token); affine.sy=StringToDouble(token,(char **) NULL); GetMagickToken(q,&q,token); if (*token == ',') GetMagickToken(q,&q,token); affine.tx=StringToDouble(token,(char **) NULL); GetMagickToken(q,&q,token); if (*token == ',') GetMagickToken(q,&q,token); affine.ty=StringToDouble(token,(char **) NULL); break; } if (LocaleCompare("arc",keyword) == 0) { primitive_type=ArcPrimitive; break; } status=MagickFalse; break; } case 'b': case 'B': { if (LocaleCompare("bezier",keyword) == 0) { primitive_type=BezierPrimitive; break; } if (LocaleCompare("border-color",keyword) == 0) { GetMagickToken(q,&q,token); (void) QueryColorCompliance(token,AllCompliance, &graphic_context[n]->border_color,exception); break; } status=MagickFalse; break; } case 'c': case 'C': { if (LocaleCompare("clip-path",keyword) == 0) { /* Create clip mask. */ GetMagickToken(q,&q,token); (void) CloneString(&graphic_context[n]->clip_mask,token); (void) DrawClipPath(image,graphic_context[n], graphic_context[n]->clip_mask,exception); break; } if (LocaleCompare("clip-rule",keyword) == 0) { ssize_t fill_rule; GetMagickToken(q,&q,token); fill_rule=ParseCommandOption(MagickFillRuleOptions,MagickFalse, token); if (fill_rule == -1) status=MagickFalse; else graphic_context[n]->fill_rule=(FillRule) fill_rule; break; } if (LocaleCompare("clip-units",keyword) == 0) { ssize_t clip_units; GetMagickToken(q,&q,token); clip_units=ParseCommandOption(MagickClipPathOptions,MagickFalse, token); if (clip_units == -1) { status=MagickFalse; break; } graphic_context[n]->clip_units=(ClipPathUnits) clip_units; if (clip_units == ObjectBoundingBox) { GetAffineMatrix(¤t); affine.sx=draw_info->bounds.x2; affine.sy=draw_info->bounds.y2; affine.tx=draw_info->bounds.x1; affine.ty=draw_info->bounds.y1; break; } break; } if (LocaleCompare("circle",keyword) == 0) { primitive_type=CirclePrimitive; break; } if (LocaleCompare("color",keyword) == 0) { primitive_type=ColorPrimitive; break; } status=MagickFalse; break; } case 'd': case 'D': { if (LocaleCompare("decorate",keyword) == 0) { ssize_t decorate; GetMagickToken(q,&q,token); decorate=ParseCommandOption(MagickDecorateOptions,MagickFalse, token); if (decorate == -1) status=MagickFalse; else graphic_context[n]->decorate=(DecorationType) decorate; break; } if (LocaleCompare("direction",keyword) == 0) { ssize_t direction; GetMagickToken(q,&q,token); direction=ParseCommandOption(MagickDirectionOptions,MagickFalse, token); if (direction == -1) status=MagickFalse; else graphic_context[n]->direction=(DirectionType) direction; break; } status=MagickFalse; break; } case 'e': case 'E': { if (LocaleCompare("ellipse",keyword) == 0) { primitive_type=EllipsePrimitive; break; } if (LocaleCompare("encoding",keyword) == 0) { GetMagickToken(q,&q,token); (void) CloneString(&graphic_context[n]->encoding,token); break; } status=MagickFalse; break; } case 'f': case 'F': { if (LocaleCompare("fill",keyword) == 0) { GetMagickToken(q,&q,token); (void) FormatLocaleString(pattern,MaxTextExtent,"%s",token); if (GetImageArtifact(image,pattern) != (const char *) NULL) (void) DrawPatternPath(image,draw_info,token, &graphic_context[n]->fill_pattern,exception); else { status&=QueryColorCompliance(token,AllCompliance, &graphic_context[n]->fill,exception); if (status == MagickFalse) { ImageInfo *pattern_info; pattern_info=AcquireImageInfo(); (void) CopyMagickString(pattern_info->filename,token, MaxTextExtent); graphic_context[n]->fill_pattern=ReadImage(pattern_info, exception); CatchException(exception); pattern_info=DestroyImageInfo(pattern_info); } } break; } if (LocaleCompare("fill-alpha",keyword) == 0) { GetMagickToken(q,&q,token); factor=strchr(token,'%') != (char *) NULL ? 0.01 : 1.0; graphic_context[n]->fill.alpha=(double) QuantumRange* factor*StringToDouble(token,(char **) NULL); break; } if (LocaleCompare("fill-rule",keyword) == 0) { ssize_t fill_rule; GetMagickToken(q,&q,token); fill_rule=ParseCommandOption(MagickFillRuleOptions,MagickFalse, token); if (fill_rule == -1) status=MagickFalse; else graphic_context[n]->fill_rule=(FillRule) fill_rule; break; } if (LocaleCompare("font",keyword) == 0) { GetMagickToken(q,&q,token); (void) CloneString(&graphic_context[n]->font,token); if (LocaleCompare("none",token) == 0) graphic_context[n]->font=(char *) RelinquishMagickMemory(graphic_context[n]->font); break; } if (LocaleCompare("font-family",keyword) == 0) { GetMagickToken(q,&q,token); (void) CloneString(&graphic_context[n]->family,token); break; } if (LocaleCompare("font-size",keyword) == 0) { GetMagickToken(q,&q,token); graphic_context[n]->pointsize=StringToDouble(token,(char **) NULL); break; } if (LocaleCompare("font-stretch",keyword) == 0) { ssize_t stretch; GetMagickToken(q,&q,token); stretch=ParseCommandOption(MagickStretchOptions,MagickFalse,token); if (stretch == -1) status=MagickFalse; else graphic_context[n]->stretch=(StretchType) stretch; break; } if (LocaleCompare("font-style",keyword) == 0) { ssize_t style; GetMagickToken(q,&q,token); style=ParseCommandOption(MagickStyleOptions,MagickFalse,token); if (style == -1) status=MagickFalse; else graphic_context[n]->style=(StyleType) style; break; } if (LocaleCompare("font-weight",keyword) == 0) { GetMagickToken(q,&q,token); graphic_context[n]->weight=StringToUnsignedLong(token); if (LocaleCompare(token,"all") == 0) graphic_context[n]->weight=0; if (LocaleCompare(token,"bold") == 0) graphic_context[n]->weight=700; if (LocaleCompare(token,"bolder") == 0) if (graphic_context[n]->weight <= 800) graphic_context[n]->weight+=100; if (LocaleCompare(token,"lighter") == 0) if (graphic_context[n]->weight >= 100) graphic_context[n]->weight-=100; if (LocaleCompare(token,"normal") == 0) graphic_context[n]->weight=400; break; } status=MagickFalse; break; } case 'g': case 'G': { if (LocaleCompare("gradient-units",keyword) == 0) { GetMagickToken(q,&q,token); break; } if (LocaleCompare("gravity",keyword) == 0) { ssize_t gravity; GetMagickToken(q,&q,token); gravity=ParseCommandOption(MagickGravityOptions,MagickFalse,token); if (gravity == -1) status=MagickFalse; else graphic_context[n]->gravity=(GravityType) gravity; break; } status=MagickFalse; break; } case 'i': case 'I': { if (LocaleCompare("image",keyword) == 0) { ssize_t compose; primitive_type=ImagePrimitive; GetMagickToken(q,&q,token); compose=ParseCommandOption(MagickComposeOptions,MagickFalse,token); if (compose == -1) status=MagickFalse; else graphic_context[n]->compose=(CompositeOperator) compose; break; } if (LocaleCompare("interline-spacing",keyword) == 0) { GetMagickToken(q,&q,token); graphic_context[n]->interline_spacing=StringToDouble(token, (char **) NULL); break; } if (LocaleCompare("interword-spacing",keyword) == 0) { GetMagickToken(q,&q,token); graphic_context[n]->interword_spacing=StringToDouble(token, (char **) NULL); break; } status=MagickFalse; break; } case 'k': case 'K': { if (LocaleCompare("kerning",keyword) == 0) { GetMagickToken(q,&q,token); graphic_context[n]->kerning=StringToDouble(token,(char **) NULL); break; } status=MagickFalse; break; } case 'l': case 'L': { if (LocaleCompare("line",keyword) == 0) primitive_type=LinePrimitive; else status=MagickFalse; break; } case 'm': case 'M': { if (LocaleCompare("matte",keyword) == 0) primitive_type=MattePrimitive; else status=MagickFalse; break; } case 'o': case 'O': { if (LocaleCompare("offset",keyword) == 0) { GetMagickToken(q,&q,token); break; } if (LocaleCompare("opacity",keyword) == 0) { GetMagickToken(q,&q,token); factor=strchr(token,'%') != (char *) NULL ? 0.01 : 1.0; graphic_context[n]->alpha=ClampToQuantum(QuantumRange*(1.0-((1.0- QuantumScale*graphic_context[n]->alpha)*factor* StringToDouble(token,(char **) NULL)))); graphic_context[n]->fill.alpha=(double) graphic_context[n]->alpha; graphic_context[n]->stroke.alpha=(double) graphic_context[n]->alpha; break; } status=MagickFalse; break; } case 'p': case 'P': { if (LocaleCompare("path",keyword) == 0) { primitive_type=PathPrimitive; break; } if (LocaleCompare("point",keyword) == 0) { primitive_type=PointPrimitive; break; } if (LocaleCompare("polyline",keyword) == 0) { primitive_type=PolylinePrimitive; break; } if (LocaleCompare("polygon",keyword) == 0) { primitive_type=PolygonPrimitive; break; } if (LocaleCompare("pop",keyword) == 0) { GetMagickToken(q,&q,token); if (LocaleCompare("clip-path",token) == 0) break; if (LocaleCompare("defs",token) == 0) break; if (LocaleCompare("gradient",token) == 0) break; if (LocaleCompare("graphic-context",token) == 0) { if (n <= 0) { (void) ThrowMagickException(exception,GetMagickModule(), DrawError,"UnbalancedGraphicContextPushPop","`%s'",token); n=0; break; } if (graphic_context[n]->clip_mask != (char *) NULL) if (LocaleCompare(graphic_context[n]->clip_mask, graphic_context[n-1]->clip_mask) != 0) (void) SetImageMask(image,(Image *) NULL,exception); graphic_context[n]=DestroyDrawInfo(graphic_context[n]); n--; break; } if (LocaleCompare("pattern",token) == 0) break; status=MagickFalse; break; } if (LocaleCompare("push",keyword) == 0) { GetMagickToken(q,&q,token); if (LocaleCompare("clip-path",token) == 0) { char name[MaxTextExtent]; GetMagickToken(q,&q,token); (void) FormatLocaleString(name,MaxTextExtent,"%s",token); for (p=q; *q != '\0'; ) { GetMagickToken(q,&q,token); if (LocaleCompare(token,"pop") != 0) continue; GetMagickToken(q,(const char **) NULL,token); if (LocaleCompare(token,"clip-path") != 0) continue; break; } (void) CopyMagickString(token,p,(size_t) (q-p-4+1)); (void) SetImageArtifact(image,name,token); GetMagickToken(q,&q,token); break; } if (LocaleCompare("gradient",token) == 0) { char key[2*MaxTextExtent], name[MaxTextExtent], type[MaxTextExtent]; SegmentInfo segment; GetMagickToken(q,&q,token); (void) CopyMagickString(name,token,MaxTextExtent); GetMagickToken(q,&q,token); (void) CopyMagickString(type,token,MaxTextExtent); GetMagickToken(q,&q,token); segment.x1=StringToDouble(token,(char **) NULL); GetMagickToken(q,&q,token); if (*token == ',') GetMagickToken(q,&q,token); segment.y1=StringToDouble(token,(char **) NULL); GetMagickToken(q,&q,token); if (*token == ',') GetMagickToken(q,&q,token); segment.x2=StringToDouble(token,(char **) NULL); GetMagickToken(q,&q,token); if (*token == ',') GetMagickToken(q,&q,token); segment.y2=StringToDouble(token,(char **) NULL); if (LocaleCompare(type,"radial") == 0) { GetMagickToken(q,&q,token); if (*token == ',') GetMagickToken(q,&q,token); } for (p=q; *q != '\0'; ) { GetMagickToken(q,&q,token); if (LocaleCompare(token,"pop") != 0) continue; GetMagickToken(q,(const char **) NULL,token); if (LocaleCompare(token,"gradient") != 0) continue; break; } (void) CopyMagickString(token,p,(size_t) (q-p-4+1)); bounds.x1=graphic_context[n]->affine.sx*segment.x1+ graphic_context[n]->affine.ry*segment.y1+ graphic_context[n]->affine.tx; bounds.y1=graphic_context[n]->affine.rx*segment.x1+ graphic_context[n]->affine.sy*segment.y1+ graphic_context[n]->affine.ty; bounds.x2=graphic_context[n]->affine.sx*segment.x2+ graphic_context[n]->affine.ry*segment.y2+ graphic_context[n]->affine.tx; bounds.y2=graphic_context[n]->affine.rx*segment.x2+ graphic_context[n]->affine.sy*segment.y2+ graphic_context[n]->affine.ty; (void) FormatLocaleString(key,MaxTextExtent,"%s",name); (void) SetImageArtifact(image,key,token); (void) FormatLocaleString(key,MaxTextExtent,"%s-geometry",name); (void) FormatLocaleString(geometry,MaxTextExtent, "%gx%g%+.15g%+.15g", MagickMax(fabs(bounds.x2-bounds.x1+1.0),1.0), MagickMax(fabs(bounds.y2-bounds.y1+1.0),1.0), bounds.x1,bounds.y1); (void) SetImageArtifact(image,key,geometry); GetMagickToken(q,&q,token); break; } if (LocaleCompare("pattern",token) == 0) { RectangleInfo bounds; GetMagickToken(q,&q,token); (void) CopyMagickString(name,token,MaxTextExtent); GetMagickToken(q,&q,token); bounds.x=(ssize_t) ceil(StringToDouble(token,(char **) NULL)- 0.5); GetMagickToken(q,&q,token); if (*token == ',') GetMagickToken(q,&q,token); bounds.y=(ssize_t) ceil(StringToDouble(token,(char **) NULL)- 0.5); GetMagickToken(q,&q,token); if (*token == ',') GetMagickToken(q,&q,token); bounds.width=(size_t) floor(StringToDouble(token, (char **) NULL)+0.5); GetMagickToken(q,&q,token); if (*token == ',') GetMagickToken(q,&q,token); bounds.height=(size_t) floor(StringToDouble(token, (char **) NULL)+0.5); for (p=q; *q != '\0'; ) { GetMagickToken(q,&q,token); if (LocaleCompare(token,"pop") != 0) continue; GetMagickToken(q,(const char **) NULL,token); if (LocaleCompare(token,"pattern") != 0) continue; break; } (void) CopyMagickString(token,p,(size_t) (q-p-4+1)); (void) FormatLocaleString(key,MaxTextExtent,"%s",name); (void) SetImageArtifact(image,key,token); (void) FormatLocaleString(key,MaxTextExtent,"%s-geometry",name); (void) FormatLocaleString(geometry,MaxTextExtent, "%.20gx%.20g%+.20g%+.20g",(double) bounds.width,(double) bounds.height,(double) bounds.x,(double) bounds.y); (void) SetImageArtifact(image,key,geometry); GetMagickToken(q,&q,token); break; } if (LocaleCompare("graphic-context",token) == 0) { n++; graphic_context=(DrawInfo **) ResizeQuantumMemory( graphic_context,(size_t) (n+1),sizeof(*graphic_context)); if (graphic_context == (DrawInfo **) NULL) { (void) ThrowMagickException(exception,GetMagickModule(), ResourceLimitError,"MemoryAllocationFailed","`%s'", image->filename); break; } graphic_context[n]=CloneDrawInfo((ImageInfo *) NULL, graphic_context[n-1]); break; } if (LocaleCompare("defs",token) == 0) break; status=MagickFalse; break; } status=MagickFalse; break; } case 'r': case 'R': { if (LocaleCompare("rectangle",keyword) == 0) { primitive_type=RectanglePrimitive; break; } if (LocaleCompare("rotate",keyword) == 0) { GetMagickToken(q,&q,token); angle=StringToDouble(token,(char **) NULL); affine.sx=cos(DegreesToRadians(fmod((double) angle,360.0))); affine.rx=sin(DegreesToRadians(fmod((double) angle,360.0))); affine.ry=(-sin(DegreesToRadians(fmod((double) angle,360.0)))); affine.sy=cos(DegreesToRadians(fmod((double) angle,360.0))); break; } if (LocaleCompare("roundRectangle",keyword) == 0) { primitive_type=RoundRectanglePrimitive; break; } status=MagickFalse; break; } case 's': case 'S': { if (LocaleCompare("scale",keyword) == 0) { GetMagickToken(q,&q,token); affine.sx=StringToDouble(token,(char **) NULL); GetMagickToken(q,&q,token); if (*token == ',') GetMagickToken(q,&q,token); affine.sy=StringToDouble(token,(char **) NULL); break; } if (LocaleCompare("skewX",keyword) == 0) { GetMagickToken(q,&q,token); angle=StringToDouble(token,(char **) NULL); affine.ry=sin(DegreesToRadians(angle)); break; } if (LocaleCompare("skewY",keyword) == 0) { GetMagickToken(q,&q,token); angle=StringToDouble(token,(char **) NULL); affine.rx=(-tan(DegreesToRadians(angle)/2.0)); break; } if (LocaleCompare("stop-color",keyword) == 0) { PixelInfo stop_color; GetMagickToken(q,&q,token); (void) QueryColorCompliance(token,AllCompliance,&stop_color, exception); (void) GradientImage(image,LinearGradient,ReflectSpread, &start_color,&stop_color,exception); start_color=stop_color; GetMagickToken(q,&q,token); break; } if (LocaleCompare("stroke",keyword) == 0) { GetMagickToken(q,&q,token); (void) FormatLocaleString(pattern,MaxTextExtent,"%s",token); if (GetImageArtifact(image,pattern) != (const char *) NULL) (void) DrawPatternPath(image,draw_info,token, &graphic_context[n]->stroke_pattern,exception); else { status&=QueryColorCompliance(token,AllCompliance, &graphic_context[n]->stroke,exception); if (status == MagickFalse) { ImageInfo *pattern_info; pattern_info=AcquireImageInfo(); (void) CopyMagickString(pattern_info->filename,token, MaxTextExtent); graphic_context[n]->stroke_pattern=ReadImage(pattern_info, exception); CatchException(exception); pattern_info=DestroyImageInfo(pattern_info); } } break; } if (LocaleCompare("stroke-antialias",keyword) == 0) { GetMagickToken(q,&q,token); graphic_context[n]->stroke_antialias= StringToLong(token) != 0 ? MagickTrue : MagickFalse; break; } if (LocaleCompare("stroke-dasharray",keyword) == 0) { if (graphic_context[n]->dash_pattern != (double *) NULL) graphic_context[n]->dash_pattern=(double *) RelinquishMagickMemory(graphic_context[n]->dash_pattern); if (IsPoint(q) != MagickFalse) { const char *p; p=q; GetMagickToken(p,&p,token); if (*token == ',') GetMagickToken(p,&p,token); for (x=0; IsPoint(token) != MagickFalse; x++) { GetMagickToken(p,&p,token); if (*token == ',') GetMagickToken(p,&p,token); } graphic_context[n]->dash_pattern=(double *) AcquireQuantumMemory((size_t) (2UL*x+1UL), sizeof(*graphic_context[n]->dash_pattern)); if (graphic_context[n]->dash_pattern == (double *) NULL) { (void) ThrowMagickException(exception,GetMagickModule(), ResourceLimitError,"MemoryAllocationFailed","`%s'", image->filename); break; } for (j=0; j < x; j++) { GetMagickToken(q,&q,token); if (*token == ',') GetMagickToken(q,&q,token); graphic_context[n]->dash_pattern[j]=StringToDouble(token, (char **) NULL); } if ((x & 0x01) != 0) for ( ; j < (2*x); j++) graphic_context[n]->dash_pattern[j]= graphic_context[n]->dash_pattern[j-x]; graphic_context[n]->dash_pattern[j]=0.0; break; } GetMagickToken(q,&q,token); break; } if (LocaleCompare("stroke-dashoffset",keyword) == 0) { GetMagickToken(q,&q,token); graphic_context[n]->dash_offset=StringToDouble(token, (char **) NULL); break; } if (LocaleCompare("stroke-linecap",keyword) == 0) { ssize_t linecap; GetMagickToken(q,&q,token); linecap=ParseCommandOption(MagickLineCapOptions,MagickFalse,token); if (linecap == -1) status=MagickFalse; else graphic_context[n]->linecap=(LineCap) linecap; break; } if (LocaleCompare("stroke-linejoin",keyword) == 0) { ssize_t linejoin; GetMagickToken(q,&q,token); linejoin=ParseCommandOption(MagickLineJoinOptions,MagickFalse, token); if (linejoin == -1) status=MagickFalse; else graphic_context[n]->linejoin=(LineJoin) linejoin; break; } if (LocaleCompare("stroke-miterlimit",keyword) == 0) { GetMagickToken(q,&q,token); graphic_context[n]->miterlimit=StringToUnsignedLong(token); break; } if (LocaleCompare("stroke-opacity",keyword) == 0) { GetMagickToken(q,&q,token); factor=strchr(token,'%') != (char *) NULL ? 0.01 : 1.0; graphic_context[n]->stroke.alpha=(double) QuantumRange* factor*StringToDouble(token,(char **) NULL); break; } if (LocaleCompare("stroke-width",keyword) == 0) { GetMagickToken(q,&q,token); graphic_context[n]->stroke_width=StringToDouble(token, (char **) NULL); break; } status=MagickFalse; break; } case 't': case 'T': { if (LocaleCompare("text",keyword) == 0) { primitive_type=TextPrimitive; break; } if (LocaleCompare("text-align",keyword) == 0) { ssize_t align; GetMagickToken(q,&q,token); align=ParseCommandOption(MagickAlignOptions,MagickFalse,token); if (align == -1) status=MagickFalse; else graphic_context[n]->align=(AlignType) align; break; } if (LocaleCompare("text-anchor",keyword) == 0) { ssize_t align; GetMagickToken(q,&q,token); align=ParseCommandOption(MagickAlignOptions,MagickFalse,token); if (align == -1) status=MagickFalse; else graphic_context[n]->align=(AlignType) align; break; } if (LocaleCompare("text-antialias",keyword) == 0) { GetMagickToken(q,&q,token); graphic_context[n]->text_antialias= StringToLong(token) != 0 ? MagickTrue : MagickFalse; break; } if (LocaleCompare("text-undercolor",keyword) == 0) { GetMagickToken(q,&q,token); (void) QueryColorCompliance(token,AllCompliance, &graphic_context[n]->undercolor,exception); break; } if (LocaleCompare("translate",keyword) == 0) { GetMagickToken(q,&q,token); affine.tx=StringToDouble(token,(char **) NULL); GetMagickToken(q,&q,token); if (*token == ',') GetMagickToken(q,&q,token); affine.ty=StringToDouble(token,(char **) NULL); break; } status=MagickFalse; break; } case 'v': case 'V': { if (LocaleCompare("viewbox",keyword) == 0) { GetMagickToken(q,&q,token); graphic_context[n]->viewbox.x=(ssize_t) ceil(StringToDouble(token, (char **) NULL)-0.5); GetMagickToken(q,&q,token); if (*token == ',') GetMagickToken(q,&q,token); graphic_context[n]->viewbox.y=(ssize_t) ceil(StringToDouble(token, (char **) NULL)-0.5); GetMagickToken(q,&q,token); if (*token == ',') GetMagickToken(q,&q,token); graphic_context[n]->viewbox.width=(size_t) floor(StringToDouble( token,(char **) NULL)+0.5); GetMagickToken(q,&q,token); if (*token == ',') GetMagickToken(q,&q,token); graphic_context[n]->viewbox.height=(size_t) floor(StringToDouble( token,(char **) NULL)+0.5); break; } status=MagickFalse; break; } default: { status=MagickFalse; break; } } if (status == MagickFalse) break; if ((affine.sx != 1.0) || (affine.rx != 0.0) || (affine.ry != 0.0) || (affine.sy != 1.0) || (affine.tx != 0.0) || (affine.ty != 0.0)) { graphic_context[n]->affine.sx=current.sx*affine.sx+current.ry*affine.rx; graphic_context[n]->affine.rx=current.rx*affine.sx+current.sy*affine.rx; graphic_context[n]->affine.ry=current.sx*affine.ry+current.ry*affine.sy; graphic_context[n]->affine.sy=current.rx*affine.ry+current.sy*affine.sy; graphic_context[n]->affine.tx=current.sx*affine.tx+current.ry*affine.ty+ current.tx; graphic_context[n]->affine.ty=current.rx*affine.tx+current.sy*affine.ty+ current.ty; } if (primitive_type == UndefinedPrimitive) { if (image->debug != MagickFalse) (void) LogMagickEvent(DrawEvent,GetMagickModule()," %.*s", (int) (q-p),p); continue; } /* Parse the primitive attributes. */ i=0; j=0; primitive_info[0].point.x=0.0; primitive_info[0].point.y=0.0; for (x=0; *q != '\0'; x++) { /* Define points. */ if (IsPoint(q) == MagickFalse) break; GetMagickToken(q,&q,token); point.x=StringToDouble(token,(char **) NULL); GetMagickToken(q,&q,token); if (*token == ',') GetMagickToken(q,&q,token); point.y=StringToDouble(token,(char **) NULL); GetMagickToken(q,(const char **) NULL,token); if (*token == ',') GetMagickToken(q,&q,token); primitive_info[i].primitive=primitive_type; primitive_info[i].point=point; primitive_info[i].coordinates=0; primitive_info[i].method=FloodfillMethod; i++; if (i < (ssize_t) number_points) continue; number_points<<=1; primitive_info=(PrimitiveInfo *) ResizeQuantumMemory(primitive_info, (size_t) number_points,sizeof(*primitive_info)); if (primitive_info == (PrimitiveInfo *) NULL) { (void) ThrowMagickException(exception,GetMagickModule(), ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename); break; } } primitive_info[j].primitive=primitive_type; primitive_info[j].coordinates=(size_t) x; primitive_info[j].method=FloodfillMethod; primitive_info[j].text=(char *) NULL; /* Circumscribe primitive within a circle. */ bounds.x1=primitive_info[j].point.x; bounds.y1=primitive_info[j].point.y; bounds.x2=primitive_info[j].point.x; bounds.y2=primitive_info[j].point.y; for (k=1; k < (ssize_t) primitive_info[j].coordinates; k++) { point=primitive_info[j+k].point; if (point.x < bounds.x1) bounds.x1=point.x; if (point.y < bounds.y1) bounds.y1=point.y; if (point.x > bounds.x2) bounds.x2=point.x; if (point.y > bounds.y2) bounds.y2=point.y; } /* Speculate how many points our primitive might consume. */ length=primitive_info[j].coordinates; switch (primitive_type) { case RectanglePrimitive: { length*=5; break; } case RoundRectanglePrimitive: { length*=5+8*BezierQuantum; break; } case BezierPrimitive: { if (primitive_info[j].coordinates > 107) (void) ThrowMagickException(exception,GetMagickModule(),DrawError, "TooManyBezierCoordinates","`%s'",token); length=BezierQuantum*primitive_info[j].coordinates; break; } case PathPrimitive: { char *s, *t; GetMagickToken(q,&q,token); length=1; t=token; for (s=token; *s != '\0'; s=t) { double value; value=StringToDouble(s,&t); (void) value; if (s == t) { t++; continue; } length++; } length=length*BezierQuantum/2; break; } case CirclePrimitive: case ArcPrimitive: case EllipsePrimitive: { double alpha, beta, radius; alpha=bounds.x2-bounds.x1; beta=bounds.y2-bounds.y1; radius=hypot((double) alpha,(double) beta); length=2*((size_t) ceil((double) MagickPI*radius))+6*BezierQuantum+360; break; } default: break; } if ((size_t) (i+length) >= number_points) { /* Resize based on speculative points required by primitive. */ number_points+=length+1; primitive_info=(PrimitiveInfo *) ResizeQuantumMemory(primitive_info, (size_t) number_points,sizeof(*primitive_info)); if (primitive_info == (PrimitiveInfo *) NULL) { (void) ThrowMagickException(exception,GetMagickModule(), ResourceLimitError,"MemoryAllocationFailed","`%s'", image->filename); break; } } switch (primitive_type) { case PointPrimitive: default: { if (primitive_info[j].coordinates != 1) { status=MagickFalse; break; } TracePoint(primitive_info+j,primitive_info[j].point); i=(ssize_t) (j+primitive_info[j].coordinates); break; } case LinePrimitive: { if (primitive_info[j].coordinates != 2) { status=MagickFalse; break; } TraceLine(primitive_info+j,primitive_info[j].point, primitive_info[j+1].point); i=(ssize_t) (j+primitive_info[j].coordinates); break; } case RectanglePrimitive: { if (primitive_info[j].coordinates != 2) { status=MagickFalse; break; } TraceRectangle(primitive_info+j,primitive_info[j].point, primitive_info[j+1].point); i=(ssize_t) (j+primitive_info[j].coordinates); break; } case RoundRectanglePrimitive: { if (primitive_info[j].coordinates != 3) { status=MagickFalse; break; } TraceRoundRectangle(primitive_info+j,primitive_info[j].point, primitive_info[j+1].point,primitive_info[j+2].point); i=(ssize_t) (j+primitive_info[j].coordinates); break; } case ArcPrimitive: { if (primitive_info[j].coordinates != 3) { primitive_type=UndefinedPrimitive; break; } TraceArc(primitive_info+j,primitive_info[j].point, primitive_info[j+1].point,primitive_info[j+2].point); i=(ssize_t) (j+primitive_info[j].coordinates); break; } case EllipsePrimitive: { if (primitive_info[j].coordinates != 3) { status=MagickFalse; break; } TraceEllipse(primitive_info+j,primitive_info[j].point, primitive_info[j+1].point,primitive_info[j+2].point); i=(ssize_t) (j+primitive_info[j].coordinates); break; } case CirclePrimitive: { if (primitive_info[j].coordinates != 2) { status=MagickFalse; break; } TraceCircle(primitive_info+j,primitive_info[j].point, primitive_info[j+1].point); i=(ssize_t) (j+primitive_info[j].coordinates); break; } case PolylinePrimitive: break; case PolygonPrimitive: { primitive_info[i]=primitive_info[j]; primitive_info[i].coordinates=0; primitive_info[j].coordinates++; i++; break; } case BezierPrimitive: { if (primitive_info[j].coordinates < 3) { status=MagickFalse; break; } TraceBezier(primitive_info+j,primitive_info[j].coordinates); i=(ssize_t) (j+primitive_info[j].coordinates); break; } case PathPrimitive: { i=(ssize_t) (j+TracePath(primitive_info+j,token)); break; } case ColorPrimitive: case MattePrimitive: { ssize_t method; if (primitive_info[j].coordinates != 1) { status=MagickFalse; break; } GetMagickToken(q,&q,token); method=ParseCommandOption(MagickMethodOptions,MagickFalse,token); if (method == -1) status=MagickFalse; else primitive_info[j].method=(PaintMethod) method; break; } case TextPrimitive: { if (primitive_info[j].coordinates != 1) { status=MagickFalse; break; } if (*token != ',') GetMagickToken(q,&q,token); primitive_info[j].text=AcquireString(token); break; } case ImagePrimitive: { if (primitive_info[j].coordinates != 2) { status=MagickFalse; break; } GetMagickToken(q,&q,token); primitive_info[j].text=AcquireString(token); break; } } if (primitive_info == (PrimitiveInfo *) NULL) break; if (image->debug != MagickFalse) (void) LogMagickEvent(DrawEvent,GetMagickModule()," %.*s",(int) (q-p),p); if (status == MagickFalse) break; primitive_info[i].primitive=UndefinedPrimitive; if (i == 0) continue; /* Transform points. */ for (i=0; primitive_info[i].primitive != UndefinedPrimitive; i++) { point=primitive_info[i].point; primitive_info[i].point.x=graphic_context[n]->affine.sx*point.x+ graphic_context[n]->affine.ry*point.y+graphic_context[n]->affine.tx; primitive_info[i].point.y=graphic_context[n]->affine.rx*point.x+ graphic_context[n]->affine.sy*point.y+graphic_context[n]->affine.ty; point=primitive_info[i].point; if (point.x < graphic_context[n]->bounds.x1) graphic_context[n]->bounds.x1=point.x; if (point.y < graphic_context[n]->bounds.y1) graphic_context[n]->bounds.y1=point.y; if (point.x > graphic_context[n]->bounds.x2) graphic_context[n]->bounds.x2=point.x; if (point.y > graphic_context[n]->bounds.y2) graphic_context[n]->bounds.y2=point.y; if (primitive_info[i].primitive == ImagePrimitive) break; if (i >= (ssize_t) number_points) ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed"); } if (graphic_context[n]->render != MagickFalse) { if ((n != 0) && (graphic_context[n]->clip_mask != (char *) NULL) && (LocaleCompare(graphic_context[n]->clip_mask, graphic_context[n-1]->clip_mask) != 0)) status&=DrawClipPath(image,graphic_context[n], graphic_context[n]->clip_mask,exception); status&=DrawPrimitive(image,graphic_context[n],primitive_info, exception); } if (primitive_info->text != (char *) NULL) primitive_info->text=(char *) RelinquishMagickMemory( primitive_info->text); proceed=SetImageProgress(image,RenderImageTag,q-primitive,(MagickSizeType) primitive_extent); if (proceed == MagickFalse) break; if (status == 0) break; } if (image->debug != MagickFalse) (void) LogMagickEvent(DrawEvent,GetMagickModule(),"end draw-image"); /* Relinquish resources. */ token=DestroyString(token); if (primitive_info != (PrimitiveInfo *) NULL) primitive_info=(PrimitiveInfo *) RelinquishMagickMemory(primitive_info); primitive=DestroyString(primitive); for ( ; n >= 0; n--) graphic_context[n]=DestroyDrawInfo(graphic_context[n]); graphic_context=(DrawInfo **) RelinquishMagickMemory(graphic_context); if (status == MagickFalse) ThrowBinaryException(DrawError,"NonconformingDrawingPrimitiveDefinition", keyword); return(status != 0 ? MagickTrue : MagickFalse); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % D r a w G r a d i e n t I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DrawGradientImage() draws a linear gradient on the image. % % The format of the DrawGradientImage method is: % % MagickBooleanType DrawGradientImage(Image *image, % const DrawInfo *draw_info,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o draw_info: the draw info. % % o exception: return any errors or warnings in this structure. % */ static inline double GetStopColorOffset(const GradientInfo *gradient, const ssize_t x,const ssize_t y) { switch (gradient->type) { case UndefinedGradient: case LinearGradient: { double gamma, length, offset, scale; PointInfo p, q; const SegmentInfo *gradient_vector; gradient_vector=(&gradient->gradient_vector); p.x=gradient_vector->x2-gradient_vector->x1; p.y=gradient_vector->y2-gradient_vector->y1; q.x=(double) x-gradient_vector->x1; q.y=(double) y-gradient_vector->y1; length=sqrt(q.x*q.x+q.y*q.y); gamma=sqrt(p.x*p.x+p.y*p.y)*length; gamma=PerceptibleReciprocal(gamma); scale=p.x*q.x+p.y*q.y; offset=gamma*scale*length; return(offset); } case RadialGradient: { double length, offset; PointInfo v; v.x=(double) x-gradient->center.x; v.y=(double) y-gradient->center.y; length=sqrt(v.x*v.x+v.y*v.y); if (gradient->spread == RepeatSpread) return(length); offset=length/gradient->radius; return(offset); } } return(0.0); } MagickExport MagickBooleanType DrawGradientImage(Image *image, const DrawInfo *draw_info,ExceptionInfo *exception) { CacheView *image_view; const GradientInfo *gradient; const SegmentInfo *gradient_vector; double length; MagickBooleanType status; PixelInfo zero; PointInfo point; RectangleInfo bounding_box; ssize_t y; /* Draw linear or radial gradient on image. */ assert(image != (Image *) NULL); assert(image->signature == MagickSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(draw_info != (const DrawInfo *) NULL); gradient=(&draw_info->gradient); gradient_vector=(&gradient->gradient_vector); point.x=gradient_vector->x2-gradient_vector->x1; point.y=gradient_vector->y2-gradient_vector->y1; length=sqrt(point.x*point.x+point.y*point.y); bounding_box=gradient->bounding_box; status=MagickTrue; GetPixelInfo(image,&zero); image_view=AcquireAuthenticCacheView(image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(status) \ magick_threads(image,image,1,1) #endif for (y=bounding_box.y; y < (ssize_t) bounding_box.height; y++) { PixelInfo composite, pixel; double alpha, offset; register Quantum *restrict q; register ssize_t i, x; ssize_t j; if (status == MagickFalse) continue; q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception); if (q == (Quantum *) NULL) { status=MagickFalse; continue; } pixel=zero; composite=zero; offset=GetStopColorOffset(gradient,0,y); if (gradient->type != RadialGradient) offset/=length; for (x=bounding_box.x; x < (ssize_t) bounding_box.width; x++) { GetPixelInfoPixel(image,q,&pixel); switch (gradient->spread) { case UndefinedSpread: case PadSpread: { if ((x != (ssize_t) ceil(gradient_vector->x1-0.5)) || (y != (ssize_t) ceil(gradient_vector->y1-0.5))) { offset=GetStopColorOffset(gradient,x,y); if (gradient->type != RadialGradient) offset/=length; } for (i=0; i < (ssize_t) gradient->number_stops; i++) if (offset < gradient->stops[i].offset) break; if ((offset < 0.0) || (i == 0)) composite=gradient->stops[0].color; else if ((offset > 1.0) || (i == (ssize_t) gradient->number_stops)) composite=gradient->stops[gradient->number_stops-1].color; else { j=i; i--; alpha=(offset-gradient->stops[i].offset)/ (gradient->stops[j].offset-gradient->stops[i].offset); CompositePixelInfoBlend(&gradient->stops[i].color,1.0-alpha, &gradient->stops[j].color,alpha,&composite); } break; } case ReflectSpread: { if ((x != (ssize_t) ceil(gradient_vector->x1-0.5)) || (y != (ssize_t) ceil(gradient_vector->y1-0.5))) { offset=GetStopColorOffset(gradient,x,y); if (gradient->type != RadialGradient) offset/=length; } if (offset < 0.0) offset=(-offset); if ((ssize_t) fmod(offset,2.0) == 0) offset=fmod(offset,1.0); else offset=1.0-fmod(offset,1.0); for (i=0; i < (ssize_t) gradient->number_stops; i++) if (offset < gradient->stops[i].offset) break; if (i == 0) composite=gradient->stops[0].color; else if (i == (ssize_t) gradient->number_stops) composite=gradient->stops[gradient->number_stops-1].color; else { j=i; i--; alpha=(offset-gradient->stops[i].offset)/ (gradient->stops[j].offset-gradient->stops[i].offset); CompositePixelInfoBlend(&gradient->stops[i].color,1.0-alpha, &gradient->stops[j].color,alpha,&composite); } break; } case RepeatSpread: { MagickBooleanType antialias; double repeat; antialias=MagickFalse; repeat=0.0; if ((x != (ssize_t) ceil(gradient_vector->x1-0.5)) || (y != (ssize_t) ceil(gradient_vector->y1-0.5))) { offset=GetStopColorOffset(gradient,x,y); if (gradient->type == LinearGradient) { repeat=fmod(offset,length); if (repeat < 0.0) repeat=length-fmod(-repeat,length); else repeat=fmod(offset,length); antialias=(repeat < length) && ((repeat+1.0) > length) ? MagickTrue : MagickFalse; offset=repeat/length; } else { repeat=fmod(offset,gradient->radius); if (repeat < 0.0) repeat=gradient->radius-fmod(-repeat,gradient->radius); else repeat=fmod(offset,gradient->radius); antialias=repeat+1.0 > gradient->radius ? MagickTrue : MagickFalse; offset=repeat/gradient->radius; } } for (i=0; i < (ssize_t) gradient->number_stops; i++) if (offset < gradient->stops[i].offset) break; if (i == 0) composite=gradient->stops[0].color; else if (i == (ssize_t) gradient->number_stops) composite=gradient->stops[gradient->number_stops-1].color; else { j=i; i--; alpha=(offset-gradient->stops[i].offset)/ (gradient->stops[j].offset-gradient->stops[i].offset); if (antialias != MagickFalse) { if (gradient->type == LinearGradient) alpha=length-repeat; else alpha=gradient->radius-repeat; i=0; j=(ssize_t) gradient->number_stops-1L; } CompositePixelInfoBlend(&gradient->stops[i].color,1.0-alpha, &gradient->stops[j].color,alpha,&composite); } break; } } CompositePixelInfoOver(&composite,composite.alpha,&pixel,pixel.alpha, &pixel); SetPixelInfoPixel(image,&pixel,q); q+=GetPixelChannels(image); } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) status=MagickFalse; } image_view=DestroyCacheView(image_view); return(status); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % D r a w P a t t e r n P a t h % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DrawPatternPath() draws a pattern. % % The format of the DrawPatternPath method is: % % MagickBooleanType DrawPatternPath(Image *image,const DrawInfo *draw_info, % const char *name,Image **pattern,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o draw_info: the draw info. % % o name: the pattern name. % % o image: the image. % % o exception: return any errors or warnings in this structure. % */ MagickExport MagickBooleanType DrawPatternPath(Image *image, const DrawInfo *draw_info,const char *name,Image **pattern, ExceptionInfo *exception) { char property[MaxTextExtent]; const char *geometry, *path; DrawInfo *clone_info; ImageInfo *image_info; MagickBooleanType status; assert(image != (Image *) NULL); assert(image->signature == MagickSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(draw_info != (const DrawInfo *) NULL); assert(name != (const char *) NULL); (void) FormatLocaleString(property,MaxTextExtent,"%s",name); path=GetImageArtifact(image,property); if (path == (const char *) NULL) return(MagickFalse); (void) FormatLocaleString(property,MaxTextExtent,"%s-geometry",name); geometry=GetImageArtifact(image,property); if (geometry == (const char *) NULL) return(MagickFalse); if ((*pattern) != (Image *) NULL) *pattern=DestroyImage(*pattern); image_info=AcquireImageInfo(); image_info->size=AcquireString(geometry); *pattern=AcquireImage(image_info,exception); image_info=DestroyImageInfo(image_info); (void) QueryColorCompliance("#000000ff",AllCompliance, &(*pattern)->background_color,exception); (void) SetImageBackgroundColor(*pattern,exception); if (image->debug != MagickFalse) (void) LogMagickEvent(DrawEvent,GetMagickModule(), "begin pattern-path %s %s",name,geometry); clone_info=CloneDrawInfo((ImageInfo *) NULL,draw_info); clone_info->fill_pattern=NewImageList(); clone_info->stroke_pattern=NewImageList(); (void) CloneString(&clone_info->primitive,path); status=DrawImage(*pattern,clone_info,exception); clone_info=DestroyDrawInfo(clone_info); if (image->debug != MagickFalse) (void) LogMagickEvent(DrawEvent,GetMagickModule(),"end pattern-path"); return(status); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % + D r a w P o l y g o n P r i m i t i v e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DrawPolygonPrimitive() draws a polygon on the image. % % The format of the DrawPolygonPrimitive method is: % % MagickBooleanType DrawPolygonPrimitive(Image *image, % const DrawInfo *draw_info,const PrimitiveInfo *primitive_info, % ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o draw_info: the draw info. % % o primitive_info: Specifies a pointer to a PrimitiveInfo structure. % % o exception: return any errors or warnings in this structure. % */ static PolygonInfo **DestroyPolygonThreadSet(PolygonInfo **polygon_info) { register ssize_t i; assert(polygon_info != (PolygonInfo **) NULL); for (i=0; i < (ssize_t) GetMagickResourceLimit(ThreadResource); i++) if (polygon_info[i] != (PolygonInfo *) NULL) polygon_info[i]=DestroyPolygonInfo(polygon_info[i]); polygon_info=(PolygonInfo **) RelinquishMagickMemory(polygon_info); return(polygon_info); } static PolygonInfo **AcquirePolygonThreadSet(const DrawInfo *draw_info, const PrimitiveInfo *primitive_info) { PathInfo *restrict path_info; PolygonInfo **polygon_info; register ssize_t i; size_t number_threads; number_threads=(size_t) GetMagickResourceLimit(ThreadResource); polygon_info=(PolygonInfo **) AcquireQuantumMemory(number_threads, sizeof(*polygon_info)); if (polygon_info == (PolygonInfo **) NULL) return((PolygonInfo **) NULL); (void) ResetMagickMemory(polygon_info,0,number_threads*sizeof(*polygon_info)); path_info=ConvertPrimitiveToPath(draw_info,primitive_info); if (path_info == (PathInfo *) NULL) return(DestroyPolygonThreadSet(polygon_info)); for (i=0; i < (ssize_t) number_threads; i++) { polygon_info[i]=ConvertPathToPolygon(draw_info,path_info); if (polygon_info[i] == (PolygonInfo *) NULL) return(DestroyPolygonThreadSet(polygon_info)); } path_info=(PathInfo *) RelinquishMagickMemory(path_info); return(polygon_info); } static double GetFillAlpha(PolygonInfo *polygon_info,const double mid, const MagickBooleanType fill,const FillRule fill_rule,const ssize_t x, const ssize_t y,double *stroke_alpha) { double alpha, beta, distance, subpath_alpha; PointInfo delta; register const PointInfo *q; register EdgeInfo *p; register ssize_t i; ssize_t j, winding_number; /* Compute fill & stroke opacity for this (x,y) point. */ *stroke_alpha=0.0; subpath_alpha=0.0; p=polygon_info->edges; for (j=0; j < (ssize_t) polygon_info->number_edges; j++, p++) { if ((double) y <= (p->bounds.y1-mid-0.5)) break; if ((double) y > (p->bounds.y2+mid+0.5)) { (void) DestroyEdge(polygon_info,(size_t) j); continue; } if (((double) x <= (p->bounds.x1-mid-0.5)) || ((double) x > (p->bounds.x2+mid+0.5))) continue; i=(ssize_t) MagickMax((double) p->highwater,1.0); for ( ; i < (ssize_t) p->number_points; i++) { if ((double) y <= (p->points[i-1].y-mid-0.5)) break; if ((double) y > (p->points[i].y+mid+0.5)) continue; if (p->scanline != (double) y) { p->scanline=(double) y; p->highwater=(size_t) i; } /* Compute distance between a point and an edge. */ q=p->points+i-1; delta.x=(q+1)->x-q->x; delta.y=(q+1)->y-q->y; beta=delta.x*(x-q->x)+delta.y*(y-q->y); if (beta < 0.0) { delta.x=(double) x-q->x; delta.y=(double) y-q->y; distance=delta.x*delta.x+delta.y*delta.y; } else { alpha=delta.x*delta.x+delta.y*delta.y; if (beta > alpha) { delta.x=(double) x-(q+1)->x; delta.y=(double) y-(q+1)->y; distance=delta.x*delta.x+delta.y*delta.y; } else { alpha=1.0/alpha; beta=delta.x*(y-q->y)-delta.y*(x-q->x); distance=alpha*beta*beta; } } /* Compute stroke & subpath opacity. */ beta=0.0; if (p->ghostline == MagickFalse) { alpha=mid+0.5; if ((*stroke_alpha < 1.0) && (distance <= ((alpha+0.25)*(alpha+0.25)))) { alpha=mid-0.5; if (distance <= ((alpha+0.25)*(alpha+0.25))) *stroke_alpha=1.0; else { beta=1.0; if (distance != 1.0) beta=sqrt((double) distance); alpha=beta-mid-0.5; if (*stroke_alpha < ((alpha-0.25)*(alpha-0.25))) *stroke_alpha=(alpha-0.25)*(alpha-0.25); } } } if ((fill == MagickFalse) || (distance > 1.0) || (subpath_alpha >= 1.0)) continue; if (distance <= 0.0) { subpath_alpha=1.0; continue; } if (distance > 1.0) continue; if (beta == 0.0) { beta=1.0; if (distance != 1.0) beta=sqrt(distance); } alpha=beta-1.0; if (subpath_alpha < (alpha*alpha)) subpath_alpha=alpha*alpha; } } /* Compute fill opacity. */ if (fill == MagickFalse) return(0.0); if (subpath_alpha >= 1.0) return(1.0); /* Determine winding number. */ winding_number=0; p=polygon_info->edges; for (j=0; j < (ssize_t) polygon_info->number_edges; j++, p++) { if ((double) y <= p->bounds.y1) break; if (((double) y > p->bounds.y2) || ((double) x <= p->bounds.x1)) continue; if ((double) x > p->bounds.x2) { winding_number+=p->direction ? 1 : -1; continue; } i=(ssize_t) MagickMax((double) p->highwater,1.0); for ( ; i < (ssize_t) p->number_points; i++) if ((double) y <= p->points[i].y) break; q=p->points+i-1; if ((((q+1)->x-q->x)*(y-q->y)) <= (((q+1)->y-q->y)*(x-q->x))) winding_number+=p->direction ? 1 : -1; } if (fill_rule != NonZeroRule) { if ((MagickAbsoluteValue(winding_number) & 0x01) != 0) return(1.0); } else if (MagickAbsoluteValue(winding_number) != 0) return(1.0); return(subpath_alpha); } static MagickBooleanType DrawPolygonPrimitive(Image *image, const DrawInfo *draw_info,const PrimitiveInfo *primitive_info, ExceptionInfo *exception) { CacheView *image_view; MagickBooleanType fill, status; double mid; PolygonInfo **restrict polygon_info; register EdgeInfo *p; register ssize_t i; SegmentInfo bounds; ssize_t start, stop, y; /* Compute bounding box. */ assert(image != (Image *) NULL); assert(image->signature == MagickSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(draw_info != (DrawInfo *) NULL); assert(draw_info->signature == MagickSignature); assert(primitive_info != (PrimitiveInfo *) NULL); if (primitive_info->coordinates == 0) return(MagickTrue); polygon_info=AcquirePolygonThreadSet(draw_info,primitive_info); if (polygon_info == (PolygonInfo **) NULL) return(MagickFalse); DisableMSCWarning(4127) if (0) DrawBoundingRectangles(image,draw_info,polygon_info[0],exception); RestoreMSCWarning if (image->debug != MagickFalse) (void) LogMagickEvent(DrawEvent,GetMagickModule()," begin draw-polygon"); fill=(primitive_info->method == FillToBorderMethod) || (primitive_info->method == FloodfillMethod) ? MagickTrue : MagickFalse; mid=ExpandAffine(&draw_info->affine)*draw_info->stroke_width/2.0; bounds=polygon_info[0]->edges[0].bounds; for (i=1; i < (ssize_t) polygon_info[0]->number_edges; i++) { p=polygon_info[0]->edges+i; if (p->bounds.x1 < bounds.x1) bounds.x1=p->bounds.x1; if (p->bounds.y1 < bounds.y1) bounds.y1=p->bounds.y1; if (p->bounds.x2 > bounds.x2) bounds.x2=p->bounds.x2; if (p->bounds.y2 > bounds.y2) bounds.y2=p->bounds.y2; } bounds.x1-=(mid+1.0); bounds.x1=bounds.x1 < 0.0 ? 0.0 : (size_t) ceil(bounds.x1-0.5) >= image->columns ? (double) image->columns-1 : bounds.x1; bounds.y1-=(mid+1.0); bounds.y1=bounds.y1 < 0.0 ? 0.0 : (size_t) ceil(bounds.y1-0.5) >= image->rows ? (double) image->rows-1 : bounds.y1; bounds.x2+=(mid+1.0); bounds.x2=bounds.x2 < 0.0 ? 0.0 : (size_t) floor(bounds.x2+0.5) >= image->columns ? (double) image->columns-1 : bounds.x2; bounds.y2+=(mid+1.0); bounds.y2=bounds.y2 < 0.0 ? 0.0 : (size_t) floor(bounds.y2+0.5) >= image->rows ? (double) image->rows-1 : bounds.y2; status=MagickTrue; image_view=AcquireAuthenticCacheView(image,exception); if (primitive_info->coordinates == 1) { /* Draw point. */ start=(ssize_t) ceil(bounds.y1-0.5); stop=(ssize_t) floor(bounds.y2+0.5); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(status) \ magick_threads(image,image,1,1) #endif for (y=start; y <= stop; y++) { MagickBooleanType sync; PixelInfo pixel; register ssize_t x; register Quantum *restrict q; ssize_t start, stop; if (status == MagickFalse) continue; start=(ssize_t) ceil(bounds.x1-0.5); stop=(ssize_t) floor(bounds.x2+0.5); x=start; q=GetCacheViewAuthenticPixels(image_view,x,y,(size_t) (stop-x+1),1, exception); if (q == (Quantum *) NULL) { status=MagickFalse; continue; } GetPixelInfo(image,&pixel); for ( ; x <= stop; x++) { if ((x == (ssize_t) ceil(primitive_info->point.x-0.5)) && (y == (ssize_t) ceil(primitive_info->point.y-0.5))) { (void) GetStrokeColor(draw_info,x,y,&pixel,exception); SetPixelInfoPixel(image,&pixel,q); } q+=GetPixelChannels(image); } sync=SyncCacheViewAuthenticPixels(image_view,exception); if (sync == MagickFalse) status=MagickFalse; } image_view=DestroyCacheView(image_view); polygon_info=DestroyPolygonThreadSet(polygon_info); if (image->debug != MagickFalse) (void) LogMagickEvent(DrawEvent,GetMagickModule(), " end draw-polygon"); return(status); } /* Draw polygon or line. */ if (image->alpha_trait != BlendPixelTrait) (void) SetImageAlphaChannel(image,OpaqueAlphaChannel,exception); start=(ssize_t) ceil(bounds.y1-0.5); stop=(ssize_t) floor(bounds.y2+0.5); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(status) \ magick_threads(image,image,1,1) #endif for (y=start; y <= stop; y++) { const int id = GetOpenMPThreadId(); double fill_alpha, stroke_alpha; PixelInfo fill_color, stroke_color; register Quantum *restrict q; register ssize_t x; ssize_t start, stop; if (status == MagickFalse) continue; start=(ssize_t) ceil(bounds.x1-0.5); stop=(ssize_t) floor(bounds.x2+0.5); q=GetCacheViewAuthenticPixels(image_view,start,y,(size_t) (stop-start+1),1, exception); if (q == (Quantum *) NULL) { status=MagickFalse; continue; } for (x=start; x <= stop; x++) { /* Fill and/or stroke. */ fill_alpha=GetFillAlpha(polygon_info[id],mid,fill,draw_info->fill_rule, x,y,&stroke_alpha); if (draw_info->stroke_antialias == MagickFalse) { fill_alpha=fill_alpha > 0.25 ? 1.0 : 0.0; stroke_alpha=stroke_alpha > 0.25 ? 1.0 : 0.0; } (void) GetFillColor(draw_info,x,y,&fill_color,exception); fill_alpha=fill_alpha*fill_color.alpha; CompositePixelOver(image,&fill_color,fill_alpha,q,(double) GetPixelAlpha(image,q),q); (void) GetStrokeColor(draw_info,x,y,&stroke_color,exception); stroke_alpha=stroke_alpha*stroke_color.alpha; CompositePixelOver(image,&stroke_color,stroke_alpha,q,(double) GetPixelAlpha(image,q),q); q+=GetPixelChannels(image); } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) status=MagickFalse; } image_view=DestroyCacheView(image_view); polygon_info=DestroyPolygonThreadSet(polygon_info); if (image->debug != MagickFalse) (void) LogMagickEvent(DrawEvent,GetMagickModule()," end draw-polygon"); return(status); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % D r a w P r i m i t i v e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DrawPrimitive() draws a primitive (line, rectangle, ellipse) on the image. % % The format of the DrawPrimitive method is: % % MagickBooleanType DrawPrimitive(Image *image,const DrawInfo *draw_info, % PrimitiveInfo *primitive_info,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o draw_info: the draw info. % % o primitive_info: Specifies a pointer to a PrimitiveInfo structure. % % o exception: return any errors or warnings in this structure. % */ static void LogPrimitiveInfo(const PrimitiveInfo *primitive_info) { const char *methods[] = { "point", "replace", "floodfill", "filltoborder", "reset", "?" }; PointInfo p, q, point; register ssize_t i, x; ssize_t coordinates, y; x=(ssize_t) ceil(primitive_info->point.x-0.5); y=(ssize_t) ceil(primitive_info->point.y-0.5); switch (primitive_info->primitive) { case PointPrimitive: { (void) LogMagickEvent(DrawEvent,GetMagickModule(), "PointPrimitive %.20g,%.20g %s",(double) x,(double) y, methods[primitive_info->method]); return; } case ColorPrimitive: { (void) LogMagickEvent(DrawEvent,GetMagickModule(), "ColorPrimitive %.20g,%.20g %s",(double) x,(double) y, methods[primitive_info->method]); return; } case MattePrimitive: { (void) LogMagickEvent(DrawEvent,GetMagickModule(), "MattePrimitive %.20g,%.20g %s",(double) x,(double) y, methods[primitive_info->method]); return; } case TextPrimitive: { (void) LogMagickEvent(DrawEvent,GetMagickModule(), "TextPrimitive %.20g,%.20g",(double) x,(double) y); return; } case ImagePrimitive: { (void) LogMagickEvent(DrawEvent,GetMagickModule(), "ImagePrimitive %.20g,%.20g",(double) x,(double) y); return; } default: break; } coordinates=0; p=primitive_info[0].point; q.x=(-1.0); q.y=(-1.0); for (i=0; primitive_info[i].primitive != UndefinedPrimitive; i++) { point=primitive_info[i].point; if (coordinates <= 0) { coordinates=(ssize_t) primitive_info[i].coordinates; (void) LogMagickEvent(DrawEvent,GetMagickModule(), " begin open (%.20g)",(double) coordinates); p=point; } point=primitive_info[i].point; if ((fabs(q.x-point.x) >= MagickEpsilon) || (fabs(q.y-point.y) >= MagickEpsilon)) (void) LogMagickEvent(DrawEvent,GetMagickModule(), " %.20g: %.18g,%.18g",(double) coordinates,point.x,point.y); else (void) LogMagickEvent(DrawEvent,GetMagickModule(), " %.20g: %g %g (duplicate)",(double) coordinates,point.x,point.y); q=point; coordinates--; if (coordinates > 0) continue; if ((fabs(p.x-point.x) >= MagickEpsilon) || (fabs(p.y-point.y) >= MagickEpsilon)) (void) LogMagickEvent(DrawEvent,GetMagickModule()," end last (%.20g)", (double) coordinates); else (void) LogMagickEvent(DrawEvent,GetMagickModule()," end open (%.20g)", (double) coordinates); } } MagickExport MagickBooleanType DrawPrimitive(Image *image, const DrawInfo *draw_info,const PrimitiveInfo *primitive_info, ExceptionInfo *exception) { CacheView *image_view; MagickStatusType status; register ssize_t i, x; ssize_t y; if (image->debug != MagickFalse) { (void) LogMagickEvent(DrawEvent,GetMagickModule(), " begin draw-primitive"); (void) LogMagickEvent(DrawEvent,GetMagickModule(), " affine: %g %g %g %g %g %g",draw_info->affine.sx, draw_info->affine.rx,draw_info->affine.ry,draw_info->affine.sy, draw_info->affine.tx,draw_info->affine.ty); } if ((IsGrayColorspace(image->colorspace) != MagickFalse) && ((IsPixelInfoGray(&draw_info->fill) == MagickFalse) || (IsPixelInfoGray(&draw_info->stroke) == MagickFalse))) (void) SetImageColorspace(image,sRGBColorspace,exception); status=MagickTrue; x=(ssize_t) ceil(primitive_info->point.x-0.5); y=(ssize_t) ceil(primitive_info->point.y-0.5); image_view=AcquireAuthenticCacheView(image,exception); switch (primitive_info->primitive) { case PointPrimitive: { PixelInfo fill_color; register Quantum *q; if ((y < 0) || (y >= (ssize_t) image->rows)) break; if ((x < 0) || (x >= (ssize_t) image->columns)) break; q=GetCacheViewAuthenticPixels(image_view,x,y,1,1,exception); if (q == (Quantum *) NULL) break; (void) GetFillColor(draw_info,x,y,&fill_color,exception); CompositePixelOver(image,&fill_color,(double) fill_color.alpha,q, (double) GetPixelAlpha(image,q),q); (void) SyncCacheViewAuthenticPixels(image_view,exception); break; } case ColorPrimitive: { switch (primitive_info->method) { case PointMethod: default: { PixelInfo pixel; register Quantum *q; q=GetCacheViewAuthenticPixels(image_view,x,y,1,1,exception); if (q == (Quantum *) NULL) break; GetPixelInfo(image,&pixel); (void) GetFillColor(draw_info,x,y,&pixel,exception); SetPixelInfoPixel(image,&pixel,q); (void) SyncCacheViewAuthenticPixels(image_view,exception); break; } case ReplaceMethod: { MagickBooleanType sync; PixelInfo pixel, target; (void) GetOneCacheViewVirtualPixelInfo(image_view,x,y,&target, exception); for (y=0; y < (ssize_t) image->rows; y++) { register Quantum *restrict q; q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1, exception); if (q == (Quantum *) NULL) break; for (x=0; x < (ssize_t) image->columns; x++) { GetPixelInfoPixel(image,q,&pixel); if (IsFuzzyEquivalencePixelInfo(&pixel,&target) == MagickFalse) { q+=GetPixelChannels(image); continue; } (void) GetFillColor(draw_info,x,y,&pixel,exception); SetPixelInfoPixel(image,&pixel,q); q+=GetPixelChannels(image); } sync=SyncCacheViewAuthenticPixels(image_view,exception); if (sync == MagickFalse) break; } break; } case FloodfillMethod: case FillToBorderMethod: { PixelInfo target; (void) GetOneVirtualPixelInfo(image,TileVirtualPixelMethod,x,y, &target,exception); if (primitive_info->method == FillToBorderMethod) { target.red=(double) draw_info->border_color.red; target.green=(double) draw_info->border_color.green; target.blue=(double) draw_info->border_color.blue; } status&=FloodfillPaintImage(image,draw_info,&target,x,y, primitive_info->method == FloodfillMethod ? MagickFalse : MagickTrue,exception); break; } case ResetMethod: { MagickBooleanType sync; PixelInfo pixel; GetPixelInfo(image,&pixel); for (y=0; y < (ssize_t) image->rows; y++) { register Quantum *restrict q; register ssize_t x; q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1, exception); if (q == (Quantum *) NULL) break; for (x=0; x < (ssize_t) image->columns; x++) { (void) GetFillColor(draw_info,x,y,&pixel,exception); SetPixelInfoPixel(image,&pixel,q); q+=GetPixelChannels(image); } sync=SyncCacheViewAuthenticPixels(image_view,exception); if (sync == MagickFalse) break; } break; } } break; } case MattePrimitive: { if (image->alpha_trait != BlendPixelTrait) (void) SetImageAlphaChannel(image,OpaqueAlphaChannel,exception); switch (primitive_info->method) { case PointMethod: default: { PixelInfo pixel; register Quantum *q; q=GetCacheViewAuthenticPixels(image_view,x,y,1,1,exception); if (q == (Quantum *) NULL) break; (void) GetFillColor(draw_info,x,y,&pixel,exception); SetPixelAlpha(image,ClampToQuantum(pixel.alpha),q); (void) SyncCacheViewAuthenticPixels(image_view,exception); break; } case ReplaceMethod: { MagickBooleanType sync; PixelInfo pixel, target; (void) GetOneCacheViewVirtualPixelInfo(image_view,x,y,&target, exception); for (y=0; y < (ssize_t) image->rows; y++) { register Quantum *restrict q; register ssize_t x; q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1, exception); if (q == (Quantum *) NULL) break; for (x=0; x < (ssize_t) image->columns; x++) { GetPixelInfoPixel(image,q,&pixel); if (IsFuzzyEquivalencePixelInfo(&pixel,&target) == MagickFalse) { q+=GetPixelChannels(image); continue; } (void) GetFillColor(draw_info,x,y,&pixel,exception); SetPixelAlpha(image,ClampToQuantum(pixel.alpha),q); q+=GetPixelChannels(image); } sync=SyncCacheViewAuthenticPixels(image_view,exception); if (sync == MagickFalse) break; } break; } case FloodfillMethod: case FillToBorderMethod: { ChannelType channel_mask; PixelInfo target; (void) GetOneVirtualPixelInfo(image,TileVirtualPixelMethod,x,y, &target,exception); if (primitive_info->method == FillToBorderMethod) { target.red=(double) draw_info->border_color.red; target.green=(double) draw_info->border_color.green; target.blue=(double) draw_info->border_color.blue; } channel_mask=SetImageChannelMask(image,AlphaChannel); status&=FloodfillPaintImage(image,draw_info,&target,x,y, primitive_info->method == FloodfillMethod ? MagickFalse : MagickTrue,exception); (void) SetImageChannelMask(image,channel_mask); break; } case ResetMethod: { MagickBooleanType sync; PixelInfo pixel; for (y=0; y < (ssize_t) image->rows; y++) { register Quantum *restrict q; register ssize_t x; q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1, exception); if (q == (Quantum *) NULL) break; for (x=0; x < (ssize_t) image->columns; x++) { (void) GetFillColor(draw_info,x,y,&pixel,exception); SetPixelAlpha(image,ClampToQuantum(pixel.alpha),q); q+=GetPixelChannels(image); } sync=SyncCacheViewAuthenticPixels(image_view,exception); if (sync == MagickFalse) break; } break; } } break; } case TextPrimitive: { char geometry[MaxTextExtent]; DrawInfo *clone_info; if (primitive_info->text == (char *) NULL) break; clone_info=CloneDrawInfo((ImageInfo *) NULL,draw_info); (void) CloneString(&clone_info->text,primitive_info->text); (void) FormatLocaleString(geometry,MaxTextExtent,"%+f%+f", primitive_info->point.x,primitive_info->point.y); (void) CloneString(&clone_info->geometry,geometry); status&=AnnotateImage(image,clone_info,exception); clone_info=DestroyDrawInfo(clone_info); break; } case ImagePrimitive: { AffineMatrix affine; char composite_geometry[MaxTextExtent]; Image *composite_image; ImageInfo *clone_info; RectangleInfo geometry; ssize_t x1, y1; if (primitive_info->text == (char *) NULL) break; clone_info=AcquireImageInfo(); if (LocaleNCompare(primitive_info->text,"data:",5) == 0) composite_image=ReadInlineImage(clone_info,primitive_info->text, exception); else { (void) CopyMagickString(clone_info->filename,primitive_info->text, MaxTextExtent); composite_image=ReadImage(clone_info,exception); } clone_info=DestroyImageInfo(clone_info); if (composite_image == (Image *) NULL) break; (void) SetImageProgressMonitor(composite_image,(MagickProgressMonitor) NULL,(void *) NULL); x1=(ssize_t) ceil(primitive_info[1].point.x-0.5); y1=(ssize_t) ceil(primitive_info[1].point.y-0.5); if (((x1 != 0L) && (x1 != (ssize_t) composite_image->columns)) || ((y1 != 0L) && (y1 != (ssize_t) composite_image->rows))) { char geometry[MaxTextExtent]; /* Resize image. */ (void) FormatLocaleString(geometry,MaxTextExtent,"%gx%g!", primitive_info[1].point.x,primitive_info[1].point.y); composite_image->filter=image->filter; (void) TransformImage(&composite_image,(char *) NULL,geometry, exception); } if (composite_image->alpha_trait != BlendPixelTrait) (void) SetImageAlphaChannel(composite_image,OpaqueAlphaChannel, exception); if (draw_info->alpha != OpaqueAlpha) (void) SetImageAlpha(composite_image,draw_info->alpha,exception); SetGeometry(image,&geometry); image->gravity=draw_info->gravity; geometry.x=x; geometry.y=y; (void) FormatLocaleString(composite_geometry,MaxTextExtent, "%.20gx%.20g%+.20g%+.20g",(double) composite_image->columns,(double) composite_image->rows,(double) geometry.x,(double) geometry.y); (void) ParseGravityGeometry(image,composite_geometry,&geometry,exception); affine=draw_info->affine; affine.tx=(double) geometry.x; affine.ty=(double) geometry.y; composite_image->interpolate=image->interpolate; if (draw_info->compose == OverCompositeOp) (void) DrawAffineImage(image,composite_image,&affine,exception); else (void) CompositeImage(image,composite_image,draw_info->compose, MagickTrue,geometry.x,geometry.y,exception); composite_image=DestroyImage(composite_image); break; } default: { double mid, scale; DrawInfo *clone_info; if (IsEventLogging() != MagickFalse) LogPrimitiveInfo(primitive_info); scale=ExpandAffine(&draw_info->affine); if ((draw_info->dash_pattern != (double *) NULL) && (draw_info->dash_pattern[0] != 0.0) && ((scale*draw_info->stroke_width) >= MagickEpsilon) && (draw_info->stroke.alpha != (Quantum) TransparentAlpha)) { /* Draw dash polygon. */ clone_info=CloneDrawInfo((ImageInfo *) NULL,draw_info); clone_info->stroke_width=0.0; clone_info->stroke.alpha=(Quantum) TransparentAlpha; status&=DrawPolygonPrimitive(image,clone_info,primitive_info, exception); clone_info=DestroyDrawInfo(clone_info); (void) DrawDashPolygon(draw_info,primitive_info,image,exception); break; } mid=ExpandAffine(&draw_info->affine)*draw_info->stroke_width/2.0; if ((mid > 1.0) && (draw_info->stroke.alpha != (Quantum) TransparentAlpha)) { MagickBooleanType closed_path; /* Draw strokes while respecting line cap/join attributes. */ for (i=0; primitive_info[i].primitive != UndefinedPrimitive; i++) ; closed_path= (primitive_info[i-1].point.x == primitive_info[0].point.x) && (primitive_info[i-1].point.y == primitive_info[0].point.y) ? MagickTrue : MagickFalse; i=(ssize_t) primitive_info[0].coordinates; if ((((draw_info->linecap == RoundCap) || (closed_path != MagickFalse)) && (draw_info->linejoin == RoundJoin)) || (primitive_info[i].primitive != UndefinedPrimitive)) { (void) DrawPolygonPrimitive(image,draw_info,primitive_info, exception); break; } clone_info=CloneDrawInfo((ImageInfo *) NULL,draw_info); clone_info->stroke_width=0.0; clone_info->stroke.alpha=(Quantum) TransparentAlpha; status&=DrawPolygonPrimitive(image,clone_info,primitive_info, exception); clone_info=DestroyDrawInfo(clone_info); status&=DrawStrokePolygon(image,draw_info,primitive_info,exception); break; } status&=DrawPolygonPrimitive(image,draw_info,primitive_info,exception); break; } } image_view=DestroyCacheView(image_view); if (image->debug != MagickFalse) (void) LogMagickEvent(DrawEvent,GetMagickModule()," end draw-primitive"); return(status != 0 ? MagickTrue : MagickFalse); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % + D r a w S t r o k e P o l y g o n % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DrawStrokePolygon() draws a stroked polygon (line, rectangle, ellipse) on % the image while respecting the line cap and join attributes. % % The format of the DrawStrokePolygon method is: % % MagickBooleanType DrawStrokePolygon(Image *image, % const DrawInfo *draw_info,const PrimitiveInfo *primitive_info) % % A description of each parameter follows: % % o image: the image. % % o draw_info: the draw info. % % o primitive_info: Specifies a pointer to a PrimitiveInfo structure. % % */ static void DrawRoundLinecap(Image *image,const DrawInfo *draw_info, const PrimitiveInfo *primitive_info,ExceptionInfo *exception) { PrimitiveInfo linecap[5]; register ssize_t i; for (i=0; i < 4; i++) linecap[i]=(*primitive_info); linecap[0].coordinates=4; linecap[1].point.x+=(double) (10.0*MagickEpsilon); linecap[2].point.x+=(double) (10.0*MagickEpsilon); linecap[2].point.y+=(double) (10.0*MagickEpsilon); linecap[3].point.y+=(double) (10.0*MagickEpsilon); linecap[4].primitive=UndefinedPrimitive; (void) DrawPolygonPrimitive(image,draw_info,linecap,exception); } static MagickBooleanType DrawStrokePolygon(Image *image, const DrawInfo *draw_info,const PrimitiveInfo *primitive_info, ExceptionInfo *exception) { DrawInfo *clone_info; MagickBooleanType closed_path; MagickStatusType status; PrimitiveInfo *stroke_polygon; register const PrimitiveInfo *p, *q; /* Draw stroked polygon. */ if (image->debug != MagickFalse) (void) LogMagickEvent(DrawEvent,GetMagickModule(), " begin draw-stroke-polygon"); clone_info=CloneDrawInfo((ImageInfo *) NULL,draw_info); clone_info->fill=draw_info->stroke; if (clone_info->fill_pattern != (Image *) NULL) clone_info->fill_pattern=DestroyImage(clone_info->fill_pattern); if (clone_info->stroke_pattern != (Image *) NULL) clone_info->fill_pattern=CloneImage(clone_info->stroke_pattern,0,0, MagickTrue,exception); clone_info->stroke.alpha=(Quantum) TransparentAlpha; clone_info->stroke_width=0.0; clone_info->fill_rule=NonZeroRule; status=MagickTrue; for (p=primitive_info; p->primitive != UndefinedPrimitive; p+=p->coordinates) { stroke_polygon=TraceStrokePolygon(draw_info,p); status&=DrawPolygonPrimitive(image,clone_info,stroke_polygon,exception); if (status == 0) break; stroke_polygon=(PrimitiveInfo *) RelinquishMagickMemory(stroke_polygon); q=p+p->coordinates-1; closed_path=(q->point.x == p->point.x) && (q->point.y == p->point.y) ? MagickTrue : MagickFalse; if ((draw_info->linecap == RoundCap) && (closed_path == MagickFalse)) { DrawRoundLinecap(image,draw_info,p,exception); DrawRoundLinecap(image,draw_info,q,exception); } } clone_info=DestroyDrawInfo(clone_info); if (image->debug != MagickFalse) (void) LogMagickEvent(DrawEvent,GetMagickModule(), " end draw-stroke-polygon"); return(status != 0 ? MagickTrue : MagickFalse); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % G e t A f f i n e M a t r i x % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % GetAffineMatrix() returns an AffineMatrix initialized to the identity % matrix. % % The format of the GetAffineMatrix method is: % % void GetAffineMatrix(AffineMatrix *affine_matrix) % % A description of each parameter follows: % % o affine_matrix: the affine matrix. % */ MagickExport void GetAffineMatrix(AffineMatrix *affine_matrix) { (void) LogMagickEvent(TraceEvent,GetMagickModule(),"..."); assert(affine_matrix != (AffineMatrix *) NULL); (void) ResetMagickMemory(affine_matrix,0,sizeof(*affine_matrix)); affine_matrix->sx=1.0; affine_matrix->sy=1.0; } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % + G e t D r a w I n f o % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % GetDrawInfo() initializes draw_info to default values from image_info. % % The format of the GetDrawInfo method is: % % void GetDrawInfo(const ImageInfo *image_info,DrawInfo *draw_info) % % A description of each parameter follows: % % o image_info: the image info.. % % o draw_info: the draw info. % */ MagickExport void GetDrawInfo(const ImageInfo *image_info,DrawInfo *draw_info) { const char *option; ExceptionInfo *exception; /* Initialize draw attributes. */ (void) LogMagickEvent(TraceEvent,GetMagickModule(),"..."); assert(draw_info != (DrawInfo *) NULL); (void) ResetMagickMemory(draw_info,0,sizeof(*draw_info)); GetAffineMatrix(&draw_info->affine); exception=AcquireExceptionInfo(); (void) QueryColorCompliance("#000F",AllCompliance,&draw_info->fill, exception); (void) QueryColorCompliance("#FFFF",AllCompliance,&draw_info->stroke, exception); draw_info->stroke_width=1.0; draw_info->alpha=OpaqueAlpha; draw_info->fill_rule=EvenOddRule; draw_info->linecap=ButtCap; draw_info->linejoin=MiterJoin; draw_info->miterlimit=10; draw_info->decorate=NoDecoration; draw_info->pointsize=12.0; draw_info->undercolor.alpha=(Quantum) TransparentAlpha; draw_info->compose=OverCompositeOp; draw_info->render=MagickTrue; draw_info->debug=IsEventLogging(); if (image_info != (ImageInfo *) NULL) { draw_info->stroke_antialias=image_info->antialias; if (image_info->font != (char *) NULL) draw_info->font=AcquireString(image_info->font); if (image_info->density != (char *) NULL) draw_info->density=AcquireString(image_info->density); draw_info->text_antialias=image_info->antialias; if (image_info->pointsize != 0.0) draw_info->pointsize=image_info->pointsize; draw_info->border_color=image_info->border_color; if (image_info->server_name != (char *) NULL) draw_info->server_name=AcquireString(image_info->server_name); option=GetImageOption(image_info,"encoding"); if (option != (const char *) NULL) (void) CloneString(&draw_info->encoding,option); option=GetImageOption(image_info,"kerning"); if (option != (const char *) NULL) draw_info->kerning=StringToDouble(option,(char **) NULL); option=GetImageOption(image_info,"interline-spacing"); if (option != (const char *) NULL) draw_info->interline_spacing=StringToDouble(option,(char **) NULL); option=GetImageOption(image_info,"interword-spacing"); if (option != (const char *) NULL) draw_info->interword_spacing=StringToDouble(option,(char **) NULL); option=GetImageOption(image_info,"direction"); if (option != (const char *) NULL) draw_info->direction=(DirectionType) ParseCommandOption( MagickDirectionOptions,MagickFalse,option); else draw_info->direction=UndefinedDirection; option=GetImageOption(image_info,"fill"); if (option != (const char *) NULL) (void) QueryColorCompliance(option,AllCompliance,&draw_info->fill, exception); option=GetImageOption(image_info,"stroke"); if (option != (const char *) NULL) (void) QueryColorCompliance(option,AllCompliance,&draw_info->stroke, exception); option=GetImageOption(image_info,"strokewidth"); if (option != (const char *) NULL) draw_info->stroke_width=StringToDouble(option,(char **) NULL); option=GetImageOption(image_info,"undercolor"); if (option != (const char *) NULL) (void) QueryColorCompliance(option,AllCompliance,&draw_info->undercolor, exception); option=GetImageOption(image_info,"gravity"); if (option != (const char *) NULL) draw_info->gravity=(GravityType) ParseCommandOption( MagickGravityOptions,MagickFalse,option); } exception=DestroyExceptionInfo(exception); draw_info->signature=MagickSignature; } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % + P e r m u t a t e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Permutate() returns the permuation of the (n,k). % % The format of the Permutate method is: % % void Permutate(ssize_t n,ssize_t k) % % A description of each parameter follows: % % o n: % % o k: % % */ static inline double Permutate(const ssize_t n,const ssize_t k) { double r; register ssize_t i; r=1.0; for (i=k+1; i <= n; i++) r*=i; for (i=1; i <= (n-k); i++) r/=i; return(r); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % + T r a c e P r i m i t i v e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % TracePrimitive is a collection of methods for generating graphic % primitives such as arcs, ellipses, paths, etc. % */ static void TraceArc(PrimitiveInfo *primitive_info,const PointInfo start, const PointInfo end,const PointInfo degrees) { PointInfo center, radii; center.x=0.5*(end.x+start.x); center.y=0.5*(end.y+start.y); radii.x=fabs(center.x-start.x); radii.y=fabs(center.y-start.y); TraceEllipse(primitive_info,center,radii,degrees); } static void TraceArcPath(PrimitiveInfo *primitive_info,const PointInfo start, const PointInfo end,const PointInfo arc,const double angle, const MagickBooleanType large_arc,const MagickBooleanType sweep) { double alpha, beta, delta, factor, gamma, theta; PointInfo center, points[3], radii; register double cosine, sine; register PrimitiveInfo *p; register ssize_t i; size_t arc_segments; if ((start.x == end.x) && (start.y == end.y)) { TracePoint(primitive_info,end); return; } radii.x=fabs(arc.x); radii.y=fabs(arc.y); if ((radii.x == 0.0) || (radii.y == 0.0)) { TraceLine(primitive_info,start,end); return; } cosine=cos(DegreesToRadians(fmod((double) angle,360.0))); sine=sin(DegreesToRadians(fmod((double) angle,360.0))); center.x=(double) (cosine*(end.x-start.x)/2+sine*(end.y-start.y)/2); center.y=(double) (cosine*(end.y-start.y)/2-sine*(end.x-start.x)/2); delta=(center.x*center.x)/(radii.x*radii.x)+(center.y*center.y)/ (radii.y*radii.y); if (delta < MagickEpsilon) { TraceLine(primitive_info,start,end); return; } if (delta > 1.0) { radii.x*=sqrt((double) delta); radii.y*=sqrt((double) delta); } points[0].x=(double) (cosine*start.x/radii.x+sine*start.y/radii.x); points[0].y=(double) (cosine*start.y/radii.y-sine*start.x/radii.y); points[1].x=(double) (cosine*end.x/radii.x+sine*end.y/radii.x); points[1].y=(double) (cosine*end.y/radii.y-sine*end.x/radii.y); alpha=points[1].x-points[0].x; beta=points[1].y-points[0].y; factor=PerceptibleReciprocal(alpha*alpha+beta*beta)-0.25; if (factor <= 0.0) factor=0.0; else { factor=sqrt((double) factor); if (sweep == large_arc) factor=(-factor); } center.x=(double) ((points[0].x+points[1].x)/2-factor*beta); center.y=(double) ((points[0].y+points[1].y)/2+factor*alpha); alpha=atan2(points[0].y-center.y,points[0].x-center.x); theta=atan2(points[1].y-center.y,points[1].x-center.x)-alpha; if ((theta < 0.0) && (sweep != MagickFalse)) theta+=(double) (2.0*MagickPI); else if ((theta > 0.0) && (sweep == MagickFalse)) theta-=(double) (2.0*MagickPI); arc_segments=(size_t) ceil(fabs((double) (theta/(0.5*MagickPI+ MagickEpsilon)))); p=primitive_info; for (i=0; i < (ssize_t) arc_segments; i++) { beta=0.5*((alpha+(i+1)*theta/arc_segments)-(alpha+i*theta/arc_segments)); gamma=(8.0/3.0)*sin(fmod((double) (0.5*beta),DegreesToRadians(360.0)))* sin(fmod((double) (0.5*beta),DegreesToRadians(360.0)))/ sin(fmod((double) beta,DegreesToRadians(360.0))); points[0].x=(double) (center.x+cos(fmod((double) (alpha+(double) i*theta/ arc_segments),DegreesToRadians(360.0)))-gamma*sin(fmod((double) (alpha+ (double) i*theta/arc_segments),DegreesToRadians(360.0)))); points[0].y=(double) (center.y+sin(fmod((double) (alpha+(double) i*theta/ arc_segments),DegreesToRadians(360.0)))+gamma*cos(fmod((double) (alpha+ (double) i*theta/arc_segments),DegreesToRadians(360.0)))); points[2].x=(double) (center.x+cos(fmod((double) (alpha+(double) (i+1)* theta/arc_segments),DegreesToRadians(360.0)))); points[2].y=(double) (center.y+sin(fmod((double) (alpha+(double) (i+1)* theta/arc_segments),DegreesToRadians(360.0)))); points[1].x=(double) (points[2].x+gamma*sin(fmod((double) (alpha+(double) (i+1)*theta/arc_segments),DegreesToRadians(360.0)))); points[1].y=(double) (points[2].y-gamma*cos(fmod((double) (alpha+(double) (i+1)*theta/arc_segments),DegreesToRadians(360.0)))); p->point.x=(p == primitive_info) ? start.x : (p-1)->point.x; p->point.y=(p == primitive_info) ? start.y : (p-1)->point.y; (p+1)->point.x=(double) (cosine*radii.x*points[0].x-sine*radii.y* points[0].y); (p+1)->point.y=(double) (sine*radii.x*points[0].x+cosine*radii.y* points[0].y); (p+2)->point.x=(double) (cosine*radii.x*points[1].x-sine*radii.y* points[1].y); (p+2)->point.y=(double) (sine*radii.x*points[1].x+cosine*radii.y* points[1].y); (p+3)->point.x=(double) (cosine*radii.x*points[2].x-sine*radii.y* points[2].y); (p+3)->point.y=(double) (sine*radii.x*points[2].x+cosine*radii.y* points[2].y); if (i == (ssize_t) (arc_segments-1)) (p+3)->point=end; TraceBezier(p,4); p+=p->coordinates; } primitive_info->coordinates=(size_t) (p-primitive_info); for (i=0; i < (ssize_t) primitive_info->coordinates; i++) { p->primitive=primitive_info->primitive; p--; } } static void TraceBezier(PrimitiveInfo *primitive_info, const size_t number_coordinates) { double alpha, *coefficients, weight; PointInfo end, point, *points; register PrimitiveInfo *p; register ssize_t i, j; size_t control_points, quantum; /* Allocate coeficients. */ quantum=number_coordinates; for (i=0; i < (ssize_t) number_coordinates; i++) { for (j=i+1; j < (ssize_t) number_coordinates; j++) { alpha=fabs(primitive_info[j].point.x-primitive_info[i].point.x); if (alpha > (double) quantum) quantum=(size_t) alpha; alpha=fabs(primitive_info[j].point.y-primitive_info[i].point.y); if (alpha > (double) quantum) quantum=(size_t) alpha; } } quantum=(size_t) MagickMin((double) quantum/number_coordinates, (double) BezierQuantum); control_points=quantum*number_coordinates; coefficients=(double *) AcquireQuantumMemory((size_t) number_coordinates,sizeof(*coefficients)); points=(PointInfo *) AcquireQuantumMemory((size_t) control_points, sizeof(*points)); if ((coefficients == (double *) NULL) || (points == (PointInfo *) NULL)) ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed"); /* Compute bezier points. */ end=primitive_info[number_coordinates-1].point; for (i=0; i < (ssize_t) number_coordinates; i++) coefficients[i]=Permutate((ssize_t) number_coordinates-1,i); weight=0.0; for (i=0; i < (ssize_t) control_points; i++) { p=primitive_info; point.x=0.0; point.y=0.0; alpha=pow((double) (1.0-weight),(double) number_coordinates-1.0); for (j=0; j < (ssize_t) number_coordinates; j++) { point.x+=alpha*coefficients[j]*p->point.x; point.y+=alpha*coefficients[j]*p->point.y; alpha*=weight/(1.0-weight); p++; } points[i]=point; weight+=1.0/control_points; } /* Bezier curves are just short segmented polys. */ p=primitive_info; for (i=0; i < (ssize_t) control_points; i++) { TracePoint(p,points[i]); p+=p->coordinates; } TracePoint(p,end); p+=p->coordinates; primitive_info->coordinates=(size_t) (p-primitive_info); for (i=0; i < (ssize_t) primitive_info->coordinates; i++) { p->primitive=primitive_info->primitive; p--; } points=(PointInfo *) RelinquishMagickMemory(points); coefficients=(double *) RelinquishMagickMemory(coefficients); } static void TraceCircle(PrimitiveInfo *primitive_info,const PointInfo start, const PointInfo end) { double alpha, beta, radius; PointInfo offset, degrees; alpha=end.x-start.x; beta=end.y-start.y; radius=hypot((double) alpha,(double) beta); offset.x=(double) radius; offset.y=(double) radius; degrees.x=0.0; degrees.y=360.0; TraceEllipse(primitive_info,start,offset,degrees); } static void TraceEllipse(PrimitiveInfo *primitive_info,const PointInfo start, const PointInfo stop,const PointInfo degrees) { double delta, step, y; PointInfo angle, point; register PrimitiveInfo *p; register ssize_t i; /* Ellipses are just short segmented polys. */ if ((stop.x == 0.0) && (stop.y == 0.0)) { TracePoint(primitive_info,start); return; } delta=2.0/MagickMax(stop.x,stop.y); step=(double) (MagickPI/8.0); if ((delta >= 0.0) && (delta < (double) (MagickPI/8.0))) step=(double) (MagickPI/(4*(MagickPI/delta/2+0.5))); angle.x=DegreesToRadians(degrees.x); y=degrees.y; while (y < degrees.x) y+=360.0; angle.y=(double) DegreesToRadians(y); for (p=primitive_info; angle.x < angle.y; angle.x+=step) { point.x=cos(fmod(angle.x,DegreesToRadians(360.0)))*stop.x+start.x; point.y=sin(fmod(angle.x,DegreesToRadians(360.0)))*stop.y+start.y; TracePoint(p,point); p+=p->coordinates; } point.x=cos(fmod(angle.y,DegreesToRadians(360.0)))*stop.x+start.x; point.y=sin(fmod(angle.y,DegreesToRadians(360.0)))*stop.y+start.y; TracePoint(p,point); p+=p->coordinates; primitive_info->coordinates=(size_t) (p-primitive_info); for (i=0; i < (ssize_t) primitive_info->coordinates; i++) { p->primitive=primitive_info->primitive; p--; } } static void TraceLine(PrimitiveInfo *primitive_info,const PointInfo start, const PointInfo end) { TracePoint(primitive_info,start); if ((fabs(start.x-end.x) < MagickEpsilon) && (fabs(start.y-end.y) < MagickEpsilon)) { primitive_info->primitive=PointPrimitive; primitive_info->coordinates=1; return; } TracePoint(primitive_info+1,end); (primitive_info+1)->primitive=primitive_info->primitive; primitive_info->coordinates=2; } static size_t TracePath(PrimitiveInfo *primitive_info,const char *path) { char token[MaxTextExtent]; const char *p; int attribute, last_attribute; double x, y; PointInfo end, points[4], point, start; PrimitiveType primitive_type; register PrimitiveInfo *q; register ssize_t i; size_t number_coordinates, z_count; attribute=0; end.x=0.0; end.y=0.0; point.x=0.0; point.y=0.0; start.x=0.0; start.y=0.0; number_coordinates=0; z_count=0; (void) ResetMagickMemory(points,0,sizeof(*points)); primitive_type=primitive_info->primitive; q=primitive_info; for (p=path; *p != '\0'; ) { while (isspace((int) ((unsigned char) *p)) != 0) p++; if (*p == '\0') break; last_attribute=attribute; attribute=(int) (*p++); switch (attribute) { case 'a': case 'A': { MagickBooleanType large_arc, sweep; double angle; PointInfo arc; /* Compute arc points. */ do { GetMagickToken(p,&p,token); if (*token == ',') GetMagickToken(p,&p,token); arc.x=StringToDouble(token,(char **) NULL); GetMagickToken(p,&p,token); if (*token == ',') GetMagickToken(p,&p,token); arc.y=StringToDouble(token,(char **) NULL); GetMagickToken(p,&p,token); if (*token == ',') GetMagickToken(p,&p,token); angle=StringToDouble(token,(char **) NULL); GetMagickToken(p,&p,token); if (*token == ',') GetMagickToken(p,&p,token); large_arc=StringToLong(token) != 0 ? MagickTrue : MagickFalse; GetMagickToken(p,&p,token); if (*token == ',') GetMagickToken(p,&p,token); sweep=StringToLong(token) != 0 ? MagickTrue : MagickFalse; GetMagickToken(p,&p,token); if (*token == ',') GetMagickToken(p,&p,token); x=StringToDouble(token,(char **) NULL); GetMagickToken(p,&p,token); if (*token == ',') GetMagickToken(p,&p,token); y=StringToDouble(token,(char **) NULL); end.x=(double) (attribute == (int) 'A' ? x : point.x+x); end.y=(double) (attribute == (int) 'A' ? y : point.y+y); TraceArcPath(q,point,end,arc,angle,large_arc,sweep); q+=q->coordinates; point=end; while (isspace((int) ((unsigned char) *p)) != 0) p++; if (*p == ',') p++; } while (IsPoint(p) != MagickFalse); break; } case 'c': case 'C': { /* Compute bezier points. */ do { points[0]=point; for (i=1; i < 4; i++) { GetMagickToken(p,&p,token); if (*token == ',') GetMagickToken(p,&p,token); x=StringToDouble(token,(char **) NULL); GetMagickToken(p,&p,token); if (*token == ',') GetMagickToken(p,&p,token); y=StringToDouble(token,(char **) NULL); end.x=(double) (attribute == (int) 'C' ? x : point.x+x); end.y=(double) (attribute == (int) 'C' ? y : point.y+y); points[i]=end; } for (i=0; i < 4; i++) (q+i)->point=points[i]; TraceBezier(q,4); q+=q->coordinates; point=end; } while (IsPoint(p) != MagickFalse); break; } case 'H': case 'h': { do { GetMagickToken(p,&p,token); if (*token == ',') GetMagickToken(p,&p,token); x=StringToDouble(token,(char **) NULL); point.x=(double) (attribute == (int) 'H' ? x: point.x+x); TracePoint(q,point); q+=q->coordinates; } while (IsPoint(p) != MagickFalse); break; } case 'l': case 'L': { do { GetMagickToken(p,&p,token); if (*token == ',') GetMagickToken(p,&p,token); x=StringToDouble(token,(char **) NULL); GetMagickToken(p,&p,token); if (*token == ',') GetMagickToken(p,&p,token); y=StringToDouble(token,(char **) NULL); point.x=(double) (attribute == (int) 'L' ? x : point.x+x); point.y=(double) (attribute == (int) 'L' ? y : point.y+y); TracePoint(q,point); q+=q->coordinates; } while (IsPoint(p) != MagickFalse); break; } case 'M': case 'm': { if (q != primitive_info) { primitive_info->coordinates=(size_t) (q-primitive_info); number_coordinates+=primitive_info->coordinates; primitive_info=q; } i=0; do { GetMagickToken(p,&p,token); if (*token == ',') GetMagickToken(p,&p,token); x=StringToDouble(token,(char **) NULL); GetMagickToken(p,&p,token); if (*token == ',') GetMagickToken(p,&p,token); y=StringToDouble(token,(char **) NULL); point.x=(double) (attribute == (int) 'M' ? x : point.x+x); point.y=(double) (attribute == (int) 'M' ? y : point.y+y); if (i == 0) start=point; i++; TracePoint(q,point); q+=q->coordinates; if ((i != 0) && (attribute == (int) 'M')) { TracePoint(q,point); q+=q->coordinates; } } while (IsPoint(p) != MagickFalse); break; } case 'q': case 'Q': { /* Compute bezier points. */ do { points[0]=point; for (i=1; i < 3; i++) { GetMagickToken(p,&p,token); if (*token == ',') GetMagickToken(p,&p,token); x=StringToDouble(token,(char **) NULL); GetMagickToken(p,&p,token); if (*token == ',') GetMagickToken(p,&p,token); y=StringToDouble(token,(char **) NULL); if (*p == ',') p++; end.x=(double) (attribute == (int) 'Q' ? x : point.x+x); end.y=(double) (attribute == (int) 'Q' ? y : point.y+y); points[i]=end; } for (i=0; i < 3; i++) (q+i)->point=points[i]; TraceBezier(q,3); q+=q->coordinates; point=end; } while (IsPoint(p) != MagickFalse); break; } case 's': case 'S': { /* Compute bezier points. */ do { points[0]=points[3]; points[1].x=2.0*points[3].x-points[2].x; points[1].y=2.0*points[3].y-points[2].y; for (i=2; i < 4; i++) { GetMagickToken(p,&p,token); if (*token == ',') GetMagickToken(p,&p,token); x=StringToDouble(token,(char **) NULL); GetMagickToken(p,&p,token); if (*token == ',') GetMagickToken(p,&p,token); y=StringToDouble(token,(char **) NULL); if (*p == ',') p++; end.x=(double) (attribute == (int) 'S' ? x : point.x+x); end.y=(double) (attribute == (int) 'S' ? y : point.y+y); points[i]=end; } if (strchr("CcSs",last_attribute) == (char *) NULL) { points[0]=points[2]; points[1]=points[3]; } for (i=0; i < 4; i++) (q+i)->point=points[i]; TraceBezier(q,4); q+=q->coordinates; point=end; } while (IsPoint(p) != MagickFalse); break; } case 't': case 'T': { /* Compute bezier points. */ do { points[0]=points[2]; points[1].x=2.0*points[2].x-points[1].x; points[1].y=2.0*points[2].y-points[1].y; for (i=2; i < 3; i++) { GetMagickToken(p,&p,token); if (*token == ',') GetMagickToken(p,&p,token); x=StringToDouble(token,(char **) NULL); GetMagickToken(p,&p,token); if (*token == ',') GetMagickToken(p,&p,token); y=StringToDouble(token,(char **) NULL); end.x=(double) (attribute == (int) 'T' ? x : point.x+x); end.y=(double) (attribute == (int) 'T' ? y : point.y+y); points[i]=end; } if (strchr("QqTt",last_attribute) == (char *) NULL) { points[0]=points[2]; points[1]=points[3]; } for (i=0; i < 3; i++) (q+i)->point=points[i]; TraceBezier(q,3); q+=q->coordinates; point=end; } while (IsPoint(p) != MagickFalse); break; } case 'v': case 'V': { do { GetMagickToken(p,&p,token); if (*token == ',') GetMagickToken(p,&p,token); y=StringToDouble(token,(char **) NULL); point.y=(double) (attribute == (int) 'V' ? y : point.y+y); TracePoint(q,point); q+=q->coordinates; } while (IsPoint(p) != MagickFalse); break; } case 'z': case 'Z': { point=start; TracePoint(q,point); q+=q->coordinates; primitive_info->coordinates=(size_t) (q-primitive_info); number_coordinates+=primitive_info->coordinates; primitive_info=q; z_count++; break; } default: { if (isalpha((int) ((unsigned char) attribute)) != 0) (void) FormatLocaleFile(stderr,"attribute not recognized: %c\n", attribute); break; } } } primitive_info->coordinates=(size_t) (q-primitive_info); number_coordinates+=primitive_info->coordinates; for (i=0; i < (ssize_t) number_coordinates; i++) { q--; q->primitive=primitive_type; if (z_count > 1) q->method=FillToBorderMethod; } q=primitive_info; return(number_coordinates); } static void TraceRectangle(PrimitiveInfo *primitive_info,const PointInfo start, const PointInfo end) { PointInfo point; register PrimitiveInfo *p; register ssize_t i; p=primitive_info; TracePoint(p,start); p+=p->coordinates; point.x=start.x; point.y=end.y; TracePoint(p,point); p+=p->coordinates; TracePoint(p,end); p+=p->coordinates; point.x=end.x; point.y=start.y; TracePoint(p,point); p+=p->coordinates; TracePoint(p,start); p+=p->coordinates; primitive_info->coordinates=(size_t) (p-primitive_info); for (i=0; i < (ssize_t) primitive_info->coordinates; i++) { p->primitive=primitive_info->primitive; p--; } } static void TraceRoundRectangle(PrimitiveInfo *primitive_info, const PointInfo start,const PointInfo end,PointInfo arc) { PointInfo degrees, offset, point; register PrimitiveInfo *p; register ssize_t i; p=primitive_info; offset.x=fabs(end.x-start.x); offset.y=fabs(end.y-start.y); if (arc.x > (0.5*offset.x)) arc.x=0.5*offset.x; if (arc.y > (0.5*offset.y)) arc.y=0.5*offset.y; point.x=start.x+offset.x-arc.x; point.y=start.y+arc.y; degrees.x=270.0; degrees.y=360.0; TraceEllipse(p,point,arc,degrees); p+=p->coordinates; point.x=start.x+offset.x-arc.x; point.y=start.y+offset.y-arc.y; degrees.x=0.0; degrees.y=90.0; TraceEllipse(p,point,arc,degrees); p+=p->coordinates; point.x=start.x+arc.x; point.y=start.y+offset.y-arc.y; degrees.x=90.0; degrees.y=180.0; TraceEllipse(p,point,arc,degrees); p+=p->coordinates; point.x=start.x+arc.x; point.y=start.y+arc.y; degrees.x=180.0; degrees.y=270.0; TraceEllipse(p,point,arc,degrees); p+=p->coordinates; TracePoint(p,primitive_info->point); p+=p->coordinates; primitive_info->coordinates=(size_t) (p-primitive_info); for (i=0; i < (ssize_t) primitive_info->coordinates; i++) { p->primitive=primitive_info->primitive; p--; } } static void TraceSquareLinecap(PrimitiveInfo *primitive_info, const size_t number_vertices,const double offset) { double distance; register double dx, dy; register ssize_t i; ssize_t j; dx=0.0; dy=0.0; for (i=1; i < (ssize_t) number_vertices; i++) { dx=primitive_info[0].point.x-primitive_info[i].point.x; dy=primitive_info[0].point.y-primitive_info[i].point.y; if ((fabs((double) dx) >= MagickEpsilon) || (fabs((double) dy) >= MagickEpsilon)) break; } if (i == (ssize_t) number_vertices) i=(ssize_t) number_vertices-1L; distance=hypot((double) dx,(double) dy); primitive_info[0].point.x=(double) (primitive_info[i].point.x+ dx*(distance+offset)/distance); primitive_info[0].point.y=(double) (primitive_info[i].point.y+ dy*(distance+offset)/distance); for (j=(ssize_t) number_vertices-2; j >= 0; j--) { dx=primitive_info[number_vertices-1].point.x-primitive_info[j].point.x; dy=primitive_info[number_vertices-1].point.y-primitive_info[j].point.y; if ((fabs((double) dx) >= MagickEpsilon) || (fabs((double) dy) >= MagickEpsilon)) break; } distance=hypot((double) dx,(double) dy); primitive_info[number_vertices-1].point.x=(double) (primitive_info[j].point.x+ dx*(distance+offset)/distance); primitive_info[number_vertices-1].point.y=(double) (primitive_info[j].point.y+ dy*(distance+offset)/distance); } static inline double DrawEpsilonReciprocal(const double x) { #define DrawEpsilon ((double) 1.0e-10) double sign = x < (double) 0.0 ? (double) -1.0 : (double) 1.0; return((sign*x) >= DrawEpsilon ? (double) 1.0/x : sign*( (double) 1.0/DrawEpsilon)); } static PrimitiveInfo *TraceStrokePolygon(const DrawInfo *draw_info, const PrimitiveInfo *primitive_info) { typedef struct _LineSegment { double p, q; } LineSegment; LineSegment dx, dy, inverse_slope, slope, theta; MagickBooleanType closed_path; double delta_theta, dot_product, mid, miterlimit; PointInfo box_p[5], box_q[5], center, offset, *path_p, *path_q; PrimitiveInfo *polygon_primitive, *stroke_polygon; register ssize_t i; size_t arc_segments, max_strokes, number_vertices; ssize_t j, n, p, q; /* Allocate paths. */ number_vertices=primitive_info->coordinates; max_strokes=2*number_vertices+6*BezierQuantum+360; path_p=(PointInfo *) AcquireQuantumMemory((size_t) max_strokes, sizeof(*path_p)); path_q=(PointInfo *) AcquireQuantumMemory((size_t) max_strokes, sizeof(*path_q)); polygon_primitive=(PrimitiveInfo *) AcquireQuantumMemory((size_t) number_vertices+2UL,sizeof(*polygon_primitive)); if ((path_p == (PointInfo *) NULL) || (path_q == (PointInfo *) NULL) || (polygon_primitive == (PrimitiveInfo *) NULL)) return((PrimitiveInfo *) NULL); (void) CopyMagickMemory(polygon_primitive,primitive_info,(size_t) number_vertices*sizeof(*polygon_primitive)); closed_path= (primitive_info[number_vertices-1].point.x == primitive_info[0].point.x) && (primitive_info[number_vertices-1].point.y == primitive_info[0].point.y) ? MagickTrue : MagickFalse; if ((draw_info->linejoin == RoundJoin) || ((draw_info->linejoin == MiterJoin) && (closed_path != MagickFalse))) { polygon_primitive[number_vertices]=primitive_info[1]; number_vertices++; } polygon_primitive[number_vertices].primitive=UndefinedPrimitive; /* Compute the slope for the first line segment, p. */ dx.p=0.0; dy.p=0.0; for (n=1; n < (ssize_t) number_vertices; n++) { dx.p=polygon_primitive[n].point.x-polygon_primitive[0].point.x; dy.p=polygon_primitive[n].point.y-polygon_primitive[0].point.y; if ((fabs(dx.p) >= MagickEpsilon) || (fabs(dy.p) >= MagickEpsilon)) break; } if (n == (ssize_t) number_vertices) n=(ssize_t) number_vertices-1L; slope.p=DrawEpsilonReciprocal(dx.p)*dy.p; inverse_slope.p=(-1.0*DrawEpsilonReciprocal(slope.p)); mid=ExpandAffine(&draw_info->affine)*draw_info->stroke_width/2.0; miterlimit=(double) (draw_info->miterlimit*draw_info->miterlimit* mid*mid); if ((draw_info->linecap == SquareCap) && (closed_path == MagickFalse)) TraceSquareLinecap(polygon_primitive,number_vertices,mid); offset.x=sqrt((double) (mid*mid/(inverse_slope.p*inverse_slope.p+1.0))); offset.y=(double) (offset.x*inverse_slope.p); if ((dy.p*offset.x-dx.p*offset.y) > 0.0) { box_p[0].x=polygon_primitive[0].point.x-offset.x; box_p[0].y=polygon_primitive[0].point.y-offset.x*inverse_slope.p; box_p[1].x=polygon_primitive[n].point.x-offset.x; box_p[1].y=polygon_primitive[n].point.y-offset.x*inverse_slope.p; box_q[0].x=polygon_primitive[0].point.x+offset.x; box_q[0].y=polygon_primitive[0].point.y+offset.x*inverse_slope.p; box_q[1].x=polygon_primitive[n].point.x+offset.x; box_q[1].y=polygon_primitive[n].point.y+offset.x*inverse_slope.p; } else { box_p[0].x=polygon_primitive[0].point.x+offset.x; box_p[0].y=polygon_primitive[0].point.y+offset.y; box_p[1].x=polygon_primitive[n].point.x+offset.x; box_p[1].y=polygon_primitive[n].point.y+offset.y; box_q[0].x=polygon_primitive[0].point.x-offset.x; box_q[0].y=polygon_primitive[0].point.y-offset.y; box_q[1].x=polygon_primitive[n].point.x-offset.x; box_q[1].y=polygon_primitive[n].point.y-offset.y; } /* Create strokes for the line join attribute: bevel, miter, round. */ p=0; q=0; path_q[p++]=box_q[0]; path_p[q++]=box_p[0]; for (i=(ssize_t) n+1; i < (ssize_t) number_vertices; i++) { /* Compute the slope for this line segment, q. */ dx.q=polygon_primitive[i].point.x-polygon_primitive[n].point.x; dy.q=polygon_primitive[i].point.y-polygon_primitive[n].point.y; dot_product=dx.q*dx.q+dy.q*dy.q; if (dot_product < 0.25) continue; slope.q=DrawEpsilonReciprocal(dx.q)*dy.q; inverse_slope.q=(-1.0*DrawEpsilonReciprocal(slope.q)); offset.x=sqrt((double) (mid*mid/(inverse_slope.q*inverse_slope.q+1.0))); offset.y=(double) (offset.x*inverse_slope.q); dot_product=dy.q*offset.x-dx.q*offset.y; if (dot_product > 0.0) { box_p[2].x=polygon_primitive[n].point.x-offset.x; box_p[2].y=polygon_primitive[n].point.y-offset.y; box_p[3].x=polygon_primitive[i].point.x-offset.x; box_p[3].y=polygon_primitive[i].point.y-offset.y; box_q[2].x=polygon_primitive[n].point.x+offset.x; box_q[2].y=polygon_primitive[n].point.y+offset.y; box_q[3].x=polygon_primitive[i].point.x+offset.x; box_q[3].y=polygon_primitive[i].point.y+offset.y; } else { box_p[2].x=polygon_primitive[n].point.x+offset.x; box_p[2].y=polygon_primitive[n].point.y+offset.y; box_p[3].x=polygon_primitive[i].point.x+offset.x; box_p[3].y=polygon_primitive[i].point.y+offset.y; box_q[2].x=polygon_primitive[n].point.x-offset.x; box_q[2].y=polygon_primitive[n].point.y-offset.y; box_q[3].x=polygon_primitive[i].point.x-offset.x; box_q[3].y=polygon_primitive[i].point.y-offset.y; } if (fabs((double) (slope.p-slope.q)) < MagickEpsilon) { box_p[4]=box_p[1]; box_q[4]=box_q[1]; } else { box_p[4].x=(double) ((slope.p*box_p[0].x-box_p[0].y-slope.q*box_p[3].x+ box_p[3].y)/(slope.p-slope.q)); box_p[4].y=(double) (slope.p*(box_p[4].x-box_p[0].x)+box_p[0].y); box_q[4].x=(double) ((slope.p*box_q[0].x-box_q[0].y-slope.q*box_q[3].x+ box_q[3].y)/(slope.p-slope.q)); box_q[4].y=(double) (slope.p*(box_q[4].x-box_q[0].x)+box_q[0].y); } if (q >= (ssize_t) (max_strokes-6*BezierQuantum-360)) { max_strokes+=6*BezierQuantum+360; path_p=(PointInfo *) ResizeQuantumMemory(path_p,(size_t) max_strokes, sizeof(*path_p)); path_q=(PointInfo *) ResizeQuantumMemory(path_q,(size_t) max_strokes, sizeof(*path_q)); if ((path_p == (PointInfo *) NULL) || (path_q == (PointInfo *) NULL)) { polygon_primitive=(PrimitiveInfo *) RelinquishMagickMemory(polygon_primitive); return((PrimitiveInfo *) NULL); } } dot_product=dx.q*dy.p-dx.p*dy.q; if (dot_product <= 0.0) switch (draw_info->linejoin) { case BevelJoin: { path_q[q++]=box_q[1]; path_q[q++]=box_q[2]; dot_product=(box_q[4].x-box_p[4].x)*(box_q[4].x-box_p[4].x)+ (box_q[4].y-box_p[4].y)*(box_q[4].y-box_p[4].y); if (dot_product <= miterlimit) path_p[p++]=box_p[4]; else { path_p[p++]=box_p[1]; path_p[p++]=box_p[2]; } break; } case MiterJoin: { dot_product=(box_q[4].x-box_p[4].x)*(box_q[4].x-box_p[4].x)+ (box_q[4].y-box_p[4].y)*(box_q[4].y-box_p[4].y); if (dot_product <= miterlimit) { path_q[q++]=box_q[4]; path_p[p++]=box_p[4]; } else { path_q[q++]=box_q[1]; path_q[q++]=box_q[2]; path_p[p++]=box_p[1]; path_p[p++]=box_p[2]; } break; } case RoundJoin: { dot_product=(box_q[4].x-box_p[4].x)*(box_q[4].x-box_p[4].x)+ (box_q[4].y-box_p[4].y)*(box_q[4].y-box_p[4].y); if (dot_product <= miterlimit) path_p[p++]=box_p[4]; else { path_p[p++]=box_p[1]; path_p[p++]=box_p[2]; } center=polygon_primitive[n].point; theta.p=atan2(box_q[1].y-center.y,box_q[1].x-center.x); theta.q=atan2(box_q[2].y-center.y,box_q[2].x-center.x); if (theta.q < theta.p) theta.q+=(double) (2.0*MagickPI); arc_segments=(size_t) ceil((double) ((theta.q-theta.p)/ (2.0*sqrt((double) (1.0/mid))))); path_q[q].x=box_q[1].x; path_q[q].y=box_q[1].y; q++; for (j=1; j < (ssize_t) arc_segments; j++) { delta_theta=(double) (j*(theta.q-theta.p)/arc_segments); path_q[q].x=(double) (center.x+mid*cos(fmod((double) (theta.p+delta_theta),DegreesToRadians(360.0)))); path_q[q].y=(double) (center.y+mid*sin(fmod((double) (theta.p+delta_theta),DegreesToRadians(360.0)))); q++; } path_q[q++]=box_q[2]; break; } default: break; } else switch (draw_info->linejoin) { case BevelJoin: { path_p[p++]=box_p[1]; path_p[p++]=box_p[2]; dot_product=(box_q[4].x-box_p[4].x)*(box_q[4].x-box_p[4].x)+ (box_q[4].y-box_p[4].y)*(box_q[4].y-box_p[4].y); if (dot_product <= miterlimit) path_q[q++]=box_q[4]; else { path_q[q++]=box_q[1]; path_q[q++]=box_q[2]; } break; } case MiterJoin: { dot_product=(box_q[4].x-box_p[4].x)*(box_q[4].x-box_p[4].x)+ (box_q[4].y-box_p[4].y)*(box_q[4].y-box_p[4].y); if (dot_product <= miterlimit) { path_q[q++]=box_q[4]; path_p[p++]=box_p[4]; } else { path_q[q++]=box_q[1]; path_q[q++]=box_q[2]; path_p[p++]=box_p[1]; path_p[p++]=box_p[2]; } break; } case RoundJoin: { dot_product=(box_q[4].x-box_p[4].x)*(box_q[4].x-box_p[4].x)+ (box_q[4].y-box_p[4].y)*(box_q[4].y-box_p[4].y); if (dot_product <= miterlimit) path_q[q++]=box_q[4]; else { path_q[q++]=box_q[1]; path_q[q++]=box_q[2]; } center=polygon_primitive[n].point; theta.p=atan2(box_p[1].y-center.y,box_p[1].x-center.x); theta.q=atan2(box_p[2].y-center.y,box_p[2].x-center.x); if (theta.p < theta.q) theta.p+=(double) (2.0*MagickPI); arc_segments=(size_t) ceil((double) ((theta.p-theta.q)/ (2.0*sqrt((double) (1.0/mid))))); path_p[p++]=box_p[1]; for (j=1; j < (ssize_t) arc_segments; j++) { delta_theta=(double) (j*(theta.q-theta.p)/arc_segments); path_p[p].x=(double) (center.x+mid*cos(fmod((double) (theta.p+delta_theta),DegreesToRadians(360.0)))); path_p[p].y=(double) (center.y+mid*sin(fmod((double) (theta.p+delta_theta),DegreesToRadians(360.0)))); p++; } path_p[p++]=box_p[2]; break; } default: break; } slope.p=slope.q; inverse_slope.p=inverse_slope.q; box_p[0]=box_p[2]; box_p[1]=box_p[3]; box_q[0]=box_q[2]; box_q[1]=box_q[3]; dx.p=dx.q; dy.p=dy.q; n=i; } path_p[p++]=box_p[1]; path_q[q++]=box_q[1]; /* Trace stroked polygon. */ stroke_polygon=(PrimitiveInfo *) AcquireQuantumMemory((size_t) (p+q+2UL*closed_path+2UL),sizeof(*stroke_polygon)); if (stroke_polygon != (PrimitiveInfo *) NULL) { for (i=0; i < (ssize_t) p; i++) { stroke_polygon[i]=polygon_primitive[0]; stroke_polygon[i].point=path_p[i]; } if (closed_path != MagickFalse) { stroke_polygon[i]=polygon_primitive[0]; stroke_polygon[i].point=stroke_polygon[0].point; i++; } for ( ; i < (ssize_t) (p+q+closed_path); i++) { stroke_polygon[i]=polygon_primitive[0]; stroke_polygon[i].point=path_q[p+q+closed_path-(i+1)]; } if (closed_path != MagickFalse) { stroke_polygon[i]=polygon_primitive[0]; stroke_polygon[i].point=stroke_polygon[p+closed_path].point; i++; } stroke_polygon[i]=polygon_primitive[0]; stroke_polygon[i].point=stroke_polygon[0].point; i++; stroke_polygon[i].primitive=UndefinedPrimitive; stroke_polygon[0].coordinates=(size_t) (p+q+2*closed_path+1); } path_p=(PointInfo *) RelinquishMagickMemory(path_p); path_q=(PointInfo *) RelinquishMagickMemory(path_q); polygon_primitive=(PrimitiveInfo *) RelinquishMagickMemory(polygon_primitive); return(stroke_polygon); }