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In this paper we further develop the POSIX disambiguation algorithm by Okui and
Suzuki. We extend its theoretical foundations on a few important practical cases and
introduce numerous performance improvements. Our algorithm works in worst-case
O(nm2 t) time and O(m2) space, where n is the length of input, m is the size of the
regular expressionwith bounded repetition expanded and t is the number of capturing
groups and subexpressions that contain groups. Benchmarks show that in practice our
algorithm is ~5x slower than leftmost-greedy matching. We present a lazy version
of the algorithm that is much faster, but requires memory proportional to the size of
input. We study other NFA-based algorithms and show that the Kuklewicz algorithm
is slower in practice, and the backward matching algorithm by Cox is incorrect.
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1 INTRODUCTION

In this paper we study NFA-based approaches to the problem of POSIX regular expression parsing and submatch extraction.
A number of algorithms have been proposed in recent years, but not all of them have been properly studied and formalized.
We experimented with different approaches and found that in practice the algorithm by Okui and Suzuki1 is the most efficient
one. In the process, we have discovered a number of improvements that require careful reconstruction of the underlying theory
and introduction of new algorithms and proofs. In our experience, the Okui and Suzuki approach is not easy to understand,
therefore we include illustrative examples and detailed pseudocode of the extended algorithm. It should be noted that there is
a totally different (and very elegant) approach to the problem based on Brzozowski derivatives5. We choose to focus on NFA-
based approach because in our experience, derivative-based approach is slow in practice (we also discuss theoretical bounds
below). Both NFA and derivatives can be used to construct DFA with POSIX longest-match semantics6 7 9. The resulting DFA-
based algorithms are very fast, because there is no run-time overhead on disambiguation. However, DFA construction is not
always viable due to its exponential worst-case complexity, and if viable, it needs to be efficient. Therefore we concentrate on
NFA-based algorithms that can be used directly for matching or serve as a basis for DFA construction. We give an overview of
existing algorithms, including some that are incorrect but interesting.
Laurikari, 2001 (incorrect). Laurikari described an algorithm based on TNFA, which is an �-NFAwith tagged transitions2.
In his algorithm each submatch group is represented with a pair of tags (opening and closing). Disambiguation is based on
minimizing the value of opening tags and maximizing the value of closing tags, where different tags have priority according to
POSIX subexpression hierarchy. Notably, Laurikari used the idea of topological order to avoid worst-case exponential time of
�-closure construction. His algorithm doesn’t track history of iteration subexpressions and gives incorrect result in cases like
(a|aa)* and string aa. Reported computational complexity is O(nm c t log(t)), where n is input length, m is TNFA size, c is
the time for comparing tag values and t is the number of tags. Memory requirement is O(m t).
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Kuklewicz, 2007. Kuklewicz fixed Laurikari algorithm by introducing orbit tags for iteration subexpressions. He gave only
an informal description3, but the algorithm was later formalized in9. It works in the same way as the Laurikari algorithm,
except that comparison of orbit tags is based on their previous history, not just the most recent value. The clever idea is to avoid
recording full history by compressing histories in a matrix of size t×m, where m is TNFA size and t is the number of tags. t-Th
row of the matrix represents ordering of closure states with respect to t-th tag (with possible ties — different states may have
the same order). Matrix is updated at each step using continuations of tag histories. The algorithm requires O(m t) memory and
O(nm t (m + t log(m)) time, where n is the input length (we assume that worst-case optimal O(m2 t) algorithm for �-closure is
used, and matrix update takes O(m log(m) t2) because for t tags we need to sort m states with O(t) comparison function).
Cox, 2009 (incorrect). Cox came up with the idea of backward POSIX matching16, which is based on the observation that
it is easier to maximize submatch on the last iteration than on the first one because we do not need to remember the history of
previous iterations. The algorithm consumes input from right to left and tracks two pairs of offsets for each submatch group:
the active pair of the most recent offsets (used in disambiguation) and the final pair of offsets on the backwards-first (i.e. the
last) iteration. The algorithm gives incorrect results under two conditions: (1) ambiguous matches have equal offsets on some
iteration, and (2) disambiguation happens too late, when active offsets have already been updated and the difference between
ambiguous matches is erased. We found that such situations may occur for two reasons. First, �-closure algorithm sometimes
compares ambiguous paths after their join point, when both paths have a common suffix with tagged transitions. This is the
case with Cox prototype implementation16; for example, it gives incorrect results for (aa|a)* and string aaaaa. Most of such
failures can be repaired by exploring states in topological order, but a topological order does not exist in the presence of �-
loops. The second reason is bounded repetition: ambiguous paths may not have an intermediate join point at all. For example, in
case of (aaaa|aaa|a){3,4} and string aaaaaaaaaa we have matches (aaaa)(aaaa)(a)(a) and (aaaa)(aaa)(aaa) with
different number of iterations. Assuming that bounded repetition is modeled by chaining three non-optional sub-automata for
(aaaa|aaa|a) and the optional fourth one, by the time ambiguous paths meet both have active offsets (0,4). Despite the flaw,
Cox algorithm is interesting: if somehow delayed comparison problem was fixed, it would work. The algorithm requires O(m t)
memory and O(nm2 t) time (assuming worst-case optimal closure algorithm), where n is the length of input, m it the size of the
regular expression and t is the number of submatch groups plus enclosing subexpressions.
Okui and Suzuki, 2013. Okui and Suzuki view the disambiguation problem from the point of comparison of parse trees1.
Ambiguous trees have the same frontier of leaf symbols, but their branching structure is different. Each subtree corresponds
to a subexpression. The norm of a subtree is the number of alphabet symbols in it (a.k.a. submatch length). Longest match
corresponds to a tree in which the norm of each subtree in leftmost in-order traversal is maximized. The clever idea of Okui and
Suzuki is to relate the norm of subtrees to their height (distance from the root). Namely, if we walk through the leaves of two
ambiguous trees, tracking the height of each complete subtree, then at some step heights will diverge: subtree with a smaller
norm will already be complete, but the one with a greater norm will not. Height of subtrees is easy to track by attributing it
to parentheses and encoding in automaton transitions. Okui and Suzuki use PAT — �-free position automaton with transitions
labeled by sequences of parentheses. Disambiguation is based on comparing parentheses along ambiguous PAT paths. Similar
to Kuklewicz, Okui and Suzuki avoid recording full-length paths by pre-comparing them at each step and storing comparison
results in a pair of matrices indexed by PAT states. The authors report complexity O(n(m2 + c)), where n is the input length, m
is the number of occurrences of the most frequent symbol in the regular expression and c is the number of submatch groups and
repetition operators. However, this estimate leaves out the construction of PAT and precomputation of the precedence relation.
Memory requirement is O(m2). Okui-Suzuki disambiguation is combined with Berry-Sethi construction in7 in construction of
parsing DFA.
Sulzmann and Lu, 2013. Sulzmann and Lu based their algorithm on Brzozowski derivatives5 (correctness proof is given
in8). The algorithm unfolds a regular expression into a sequence of derivatives and then folds it back into a parse tree. Each
derivative is obtained from the previous one by consuming input symbols in left-to-right order, and each tree is built from the
next tree by injecting symbols in reversed right-to-left order. In practice, Sulzmann and Lu fuse backward and forward passes,
which allows to avoid potentially unbounded memory usage on keeping all intermediate derivatives. The algorithm is elegant
in that it does not require explicit disambiguation: parse trees are naturally ordered by the longest criterion. Time and space
complexity is not entirely clear. In5 Sulzmann and Lu consider the size of the regular expression as a constant. In6 they give
more precise estimates: O(2m t) space and O(n log(2m) 2m t2) time, where m is the size of the regular expression, n is the length
of input and t the number of submatch groups (the authors do not differentiate betweenm and t). However, this estimate assumes
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worst-case O(2m) derivative size and on-the-fly DFA construction. The authors also mention a better O(m2) theoretical bound
for derivative size. If we adopt this bound and exclude DFA construction, we get O(m2 t) memory requirement and O(nm2 t2)
time, which seems reasonably close to (but worse than) NFA-based approaches.

Undoubtedly, other approaches exist, but many of them produce incorrect results or require memory proportional to the length
of input (e.g. Glibc implementation21). Our contributions are the following:

• We extend Okui-Suzuki algorithm on the case of partially ordered parse trees and introduce the notion of explicit and
implicit submatch groups. This greatly reduces the overhead on disambiguation for regular expressions with only a few
submatch groups, which is a common case in practice.

• We extend Okui-Suzuki algorithm on the case of bounded repetition.
• We combine Okui-Suzuki algorithm with Laurikari TNFA. It allows us to omit the preprocessing step at the cost of
�-closure construction, which may be preferable in cases when preprocessing time is included in match time.

• We introduce negative tags that allow us to handle no-match situation in the same way as match. Negative tags provide a
simple way to reset obsolete offsets from earlier iterations, in cases like (a(b)?)* and string aba.

• We consider �-closure construction as a shortest-path problem and show that path concatenation is right-distributive over
path comparison for the subset of paths considered by closure algorithm. This justifies the use of well-known Goldberg-
Radzik algorithm based on the idea of topological order, which has worst-case optimal quadratic complexity in the size
of closure and guaranteed linear complexity if the closure has no �-loops. This is an improvement over naive exhaustive
depth-first search with backtracking, and also an improvement over Laurikari algorithm9.

• We give a faster algorithm for updating precedence matrices. The straightforward algorithm described by Okui and Suzuki
involves pairwise comparison of all states in closure and takes O(m2 t) time, assuming m states and O(t) comparison
function. We show a pathological example ((a?){0,1000})* where t ≈ m. Our algorithm takes O(m2) time.

• We show how to use our algorithm in order to build either parse trees or POSIX-style offsets.
• We present a lazy version of our algorithm that reduces the overhead on disambiguation at the cost of memory usage that
grows with the length of input. The lazy algorithm is well-suited for small inputs.

• We provide a C++ implementation of different NFA-based algorithms19 and benchmark them against each other and
against leftmost greedy implementation that has no overhead on disambiguation and serves as a baseline. We also provide
a completely independent Java implementation and a web-page for interactive experiments with our algorithms.

The rest of this paper is arranged as follows. In section 2 we present the main idea and the skeleton of our algorithm. In section
3 we provide theoretical foundations for the rest of the paper. After that, we go into specific details: section 4 is concerned with
�-closure construction, section 5 discusses data structures used to represent TNFA paths, section 6 discusses possible output
formats (parse trees or POSIX-style offsets), section 7 gives the core disambiguation algorithms, section 8 presents lazy variation
of our algorithm, and section 9 gives specific TNFA construction. The remaining sections 10, 11 and 12 contain complexity
analysis, benchmarks, conclusions and directions for future work.

2 SKELETON OF THE ALGORITHM

Our algorithm is based on four cornerstone concepts: regular expressions, parse trees, parenthesized expressions and tagged
NFA. As usual, we formalize matching problem by giving the interpretation of regular expressions as sets of parse trees. Then
we define POSIX disambiguation semantics in terms of order on parse trees. This definition reflects the POSIX standard, but it
is too high-level to be used in a practical matching algorithm. Therefore we go from parse trees to their linearized representation
— parenthesized expressions. We define an order on parenthesized expressions and show its equivalence to the order on parse
trees. The latter definition of order is more low-level and can be easily converted to an efficient comparison procedure. Finally, we
construct TNFA andmap parenthesized expressions to its paths, which allows us to compare ambiguous paths using the definition
of order on parenthesized expressions. In this section we give the four basic definitions and the skeleton of the algorithm. In the
following sections we formalize the relation between different representations and fill in all the details.
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Definition 1. Regular expressions (RE) over finite alphabet Σ, denotedΣ:
1. Empty RE � and unit RE � (where � ∈ Σ) are inΣ.
2. If e1, e2 ∈ Σ, then union e1|e2, product e1e2, repetition en,m1 (where 0 ≤ n ≤ m ≤∞), and submatch group (e1) are inΣ.

Definition 2. Parse trees (PT) over finite alphabet Σ, denoted Σ:
1. Nil tree ∅i, empty tree �i and unit tree �i (where � ∈ Σ and i ∈ ℤ) are in Σ.
2. If t1,… , tn ∈ Σ (where n ≥ 1, and i ∈ ℤ), then T i(t1,… , tn) is in Σ.

Definition 3. Parenthesized expressions (PE) over finite alphabet Σ, denoted Σ:
1. Nil expression ⟨⟩, empty expression � and unit expression � (where � ∈ Σ) are in Σ.
2. If e1, e2 ∈ Σ, then e1e2 and ⟨e1⟩ are in Σ.

Definition 4. Tagged Nondeterministic Finite Automaton (TNFA) is a structure (Σ, Q, T ,Δ, q0, qf ), where:
Σ is a finite set of symbols (alphabet)
Q is a finite set of states
T ⊂ ℕ × ℤ × ℕ × ℕ is a mapping of tags to their submatch group, lower nested tag and upper nested tag
Δ = ΔΣ ⊔ Δ� is the transition relation, consisting of two parts:

ΔΣ ⊆ Q × Σ × {�} ×Q (transitions on symbols)
Δ� ⊆ Q × ℕ ×

(
ℤ ∪ {�}

)
×Q (�-transitions, where ∀(q, n, , ), (q, m, , ) ∈ Δ� ∶ n ≠ m)

q0 ∈ Q is the initial state
qf ∈ Q is the final state

As the reader might notice, our definitions are subtly different from the usual ones in literature. Regular expressions are extended
with submatch operator and generalized repetition (note that it is not just syntactic sugar: in POSIX (a)(a) is semantically
different from (a){2}, and (a) in not the same as a). Parse trees have a special nil-tree constructor and an upper index, which
allows us to distinguish between submatch and non-submatch subtrees. Mirroring parse trees, parenthesized expressions also
have a special nil-parenthesis. TNFA is in essence a nondeterministic finite-state transducer in which some of the �-transitions
are marked with tags — integer numbers that denote opening and closing parentheses of submatch groups. For i-th group, the
opening tag is 2i − 1 and the closing tag is 2i (where i ∈ ℕ). Tags can be negative, which represents the absence of match
and corresponds to nil-parenthesis ⟨⟩ and nil-tree ∅. Additionally, all �-transitions are marked with priority which allows us to
impose specific order of TNFA traversal (all �-transitions from the same state have different priority).

1 matcℎ
(
N=(Σ, Q, T ,Δ, q0, qf ), �1…�n

)

2 B,D ∶ uninitialized matrices in ℤ|Q|×|Q|, U ∶ path context
3 r0 = initial result(T )
4 u0 = empty patℎ( )
5 X =

{
(q0,∅, u0, r0)

}
, i = 1

6 while i ≤ n ∧X ≠ ∅ do
7 X = closure(N,X,U, B,D)
8 X = update result(T ,X,U, i, �i)
9 (B,D) = update ptables(N,X,U, B,D)
10 X =

{
(q, o, u0, r) ∣ (o, , , r) ∈ X ∧ (o, �i, �, q) ∈ ΔΣ

}
11 i = i + 1
12 X = closure(N,X,U, B,D)
13 if (qf , , u, r) ∈ X then
14 return final result(T , U, u, r, n)
15 else return ∅

ALGORITHM 1: TNFA simulation on a string.
The algorithm takes an automaton N and string �1…�n as input, and outputs the match result is some form: it can be a parse
tree or a POSIX array of offsets, but for now we leave it unspecified and hide behind functions initial result(), update result()
and final result(). The algorithm works by consuming input symbols, tracking a set of active configurations and updating
precedence tables B and D. Configuration is a tuple (q, o, u, r). The first component q is a TNFA state that is unique for each
configuration in the current set. Components o and u keep information about the path by which q was reached: o is the origin
state used as index in precedence tables, and u is a path fragment constructed by closure(). Specific representation of path
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fragments is hidden behind path context U and function stub empty patℎ(). Finally, r-component is a partial match result asso-
ciated with state q. Most of the real work happens inside of closure() and update ptables(), both of which remain undefined
for now. The closure() function builds �-closure of the current configuration set: it explores all states reachable by �-transitions
from the q-components and tracks the best path to each reachable state. The update ptables() function performs pairwise
comparison of all configurations in the new set, recording results in B and D matrices. On the next step q-components become
o-components. If paths originating from current configurations join on some future step, closure() will use origin states to
lookup comparison results in B and D matrices. If the paths do not join, then comparison performed by update ptables() is
redundant — unfortunately we do not know in advance which configurations will spawn ambiguous paths.

3 FORMALIZATION

In this sectionwe establish the relation between all intermediate representations. For brevity all proofs aremoved to the appendix.
First of all, we rewrite REs in a form that makes submatch information explicit: to each subexpression we assign an implicit
and explicit submatch index. Explicit indices enumerate submatch groups (for all other subexpressions they are zero). Implicit
indices enumerate submatch groups and subexpressions that are not submatch groups, but contain nested or sibling groups and
need to be considered by disambiguation. This form reflects the POSIX standard, which states that submatch extraction applies
only to parenthesized subexpressions, but the longest-match rule applies to all subexpressions regardless of parentheses.
Definition 5. Indexed regular expressions (IRE) over finite alphabet Σ, denoted Σ:

1. Empty IRE (i, j, �) and unit IRE (i, j, �), where � ∈ Σ and i, j ∈ ℤ, are in Σ.
2. If r1, r2 ∈ Σ and i, j ∈ ℤ, then union (i, j, r1 ∣ r2), product (i, j, r1 ⋅ r2) and repetition (i, j, rn,m1 ), where 0 ≤ n ≤ m ≤∞,

are in Σ.
Function IRE transforms RE into IRE. It is defined via a composition of two functions, mark() that transforms RE into IRE
with submatch indices in the boolean range {0, 1}, and enum() that substitutes boolean indices with consecutive numbers. An
example of constructing an IRE from a RE is given on figure 1 .

mark ∶ Σ ←→ Σ

mark(x) ∣x∈{�,�}= (0, 0, x)
mark(e1◦e2) ∣◦∈{|,⋅}= (i, 0, (i, j1, r1)◦(i, j2, r2))

where (i1, j1, r1) = mark(e1)
(i2, j2, r2) = mark(e2)
i = i1 ∨ i2

mark(en,m) ∣e=(e1)= (1, 0, (1, 1, r))
where ( , , r) = mark(e1)

mark(en,m) ∣e≠(e1)= (i, 0, (i, j, r))
where (i, j, r) = mark(e)

mark((e)) = mark((e)1,1)

enum ∶ ℤ × ℤ × Σ ←→ ℤ × ℤ × Σ

enum(ī, j̄, (i, j, x)) ∣x∈{�,�}= (ī + i, j̄ + j, (ī × i, j̄ × j, x))
enum(ī, j̄, (i, j, r1◦r2)) ∣◦∈{|,⋅}= (i2, j2, (ī × i, j̄ × j, r̄1◦r̄2))

where (i1, j1, r̄1) = enum(ī + i, j̄ + j, r1)
(i2, j2, r̄2) = enum(i1, j1, r2)

enum(ī, j̄, (i, j, rn,m)) = (i1, j1, (ī × i, j̄ × j, r̄n,m))
where (i1, j1, r̄) = enum(ī + i, j̄ + j, r)

IRE ∶ Σ → Σ
IRE(e) = r

where ( , , r) = enum(1, 1, mark(e))
The relation between regular expressions and parse trees is given by the operator PT . Each IRE denotes a set of PTs. We write
str(t) to denote the string formed by concatenation of all alphabet symbols in the left-to-right traversal of t, and PT (r, w) denotes
the set {t ∈ PT (r) ∣ str(t) = w} of all PTs for IRE r and a string w.

PT ∶ Σ → 2Σ
PT

(
(i, , �)

)
= {�i}

PT
(
(i, , �)

)
= {�i}

PT
(
(i, , (i1, j1, r1) ∣ (i2, j2, r2))

)
=
{
T i(t,∅i2) ∣ t ∈ PT

(
(i1, j1, r1)

)}
∪
{
T i(∅i1 , t) ∣ t ∈ PT

(
(i2, j2, r2)

)}
PT

(
(i, , (i1, j1, r1) ⋅ (i2, j2, r2))

)
=
{
T i(t1, t2) ∣ t1 ∈ PT

(
(i1, j1, r1)

)
, t2 ∈ PT

(
(i2, j2, r2)

)}

PT
(
(i, , (i1, j1, r1)n,m)

)
=

{{
T i(t1,… , tm) ∣ tk ∈ PT

(
(i1, j1, r1)

)
∀k = 1, m

}
∪ {T i(∅i1)} if n = 0{

T i(tn,… , tm) ∣ tk ∈ PT
(
(i1, j1, r1)

)
∀k = n, m

} if n > 0
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(1, 0, ⋅)Λ

(2, 0, {1, 1})1

(3, 1, |)1.1

(0, 0, �)1.1.1 (0, 0, {0,∞})1.1.2

(0, 0, a)1.1.2.1

4, 0, {0, 3})2

(5, 2, |)2.1

(0, 0, a)2.1.1 (0, 0, �)2.1.2

(1, 0, (2, 0, (3, 1, (0, 0, �) ∣ (0, 0, (0, 0, a)0,∞))1,1) ⋅ (4, 0, (5, 2, (0, 0, a) ∣ (0, 0, �))0,3))

s ∶ T 1
Λ

T 2
1

T 3
1.1

∅0
1.1.1 T 0

1.1.2

a01.1.2.1

T 4
2

∅5
2.1

#1

#1

#1

#∞ #∞

#∞

#0

#−1

T 1(T 2(T 3(∅0, T 0(a0))
)
, T 4(∅5)

)

t ∶ T 1
Λ

T 2
1

T 3
1.1

∅0
1.1.1 T 0

1.1.2

∅0
1.1.2.1

T 4
2

T 5
2.1

a02.1.1 ∅0
2.1.2

#1

#0

#0

#∞ #∞

#∞

#1

#1

#∞ #∞

T 1(T 2(T 3(∅0, T 0(∅0)), ), T 4(T 5(a0,∅0)
))

u ∶ T 1
Λ

T 2
1

T 3
1.1

�01.1.1 ∅0
1.1.2

T 4
2

T 5
2.1

a02.1.1 ∅0
2.1.2

T 5
2.2

∅0
2.2.1 �02.2.2

#1

#0

#0

#∞ #∞

#1

#1

#∞ #∞

#0

#∞ #∞

T 1(T 2(T 3(�0,∅0)), T 4(T 5(a0,∅0), T 5(∅0, �0)
))

FIGURE 1 IRE for RE (�|a0,∞)(a|�)0,3 and examples of PTs for string a. S-norm is marked with #.
Following Okui and Suzuki, we assign positions to the nodes of IRE and PT. The root position is Λ, and position of the i-th
subtree of a tree with position p is p.i (we shorten ‖t‖Λ as ‖t‖). The length of position p, denoted |p|, is defined as 0 for Λ and
|p|+ 1 for p.i. The subtree of a tree t at position p is denoted t|p. Position p is a prefix of position q iff q = p.p′ for some p′, and
a proper prefix if additionally p ≠ q. Position p is a sibling of position q iff q = q′.i, p = q′.j for some q′ and i, j ∈ ℕ. Positions
are ordered lexicographically. The set of all positions of a tree t is denoted Pos(t). Additionally, we define a set of submatch
positions as Sub(t) = {

p ∣ ∃t|p = si ∶ i ≠ 0
} — a subset of Pos(t) that contains positions of subtrees with nonzero implicit

submatch index. Intuitively, this is the set of positions important from disambiguation perspective: in the case of ambiguity we
do not need to consider the full trees, just the relevant parts of them. PTs have two definitions of norm, one for Pos and one for
Sub, which we call p-norm and s-norm respectively:
Definition 6. The p-norm and s-norm of a PT t at position p are:

‖t‖posp =
⎧⎪⎨⎪⎩

−1 if p ∈ Pos(t) and t|p = ∅i

|str(t|p)| if p ∈ Pos(t) and t|p ≠ ∅i

∞ if p ∉ Pos(t)
‖t‖subp =

⎧⎪⎨⎪⎩

−1 if p ∈ Sub(t) and t|p = ∅i

|str(t|p)| if p ∈ Sub(t) and t|p ≠ ∅i

∞ if p ∉ Sub(t)
Generally, the norm of a subtree means the number of alphabet symbols in its leaves, with two exceptions. First, for nil subtrees
the norm is −1: intuitively, they have the lowest “ranking” among all possible subtrees. Second, for nonexistent subtrees (those
with positions not in Pos(t)) the norm is infinite. This may seem counter-intuitive at first, but it makes sense in the presence of
REs with empty repetitions. According to POSIX, optional empty repetitions are not allowed, and our definition reflects this: if
a tree s has a subtree s|p corresponding to an empty repetition, and another tree t has no subtree at position p, then the infinite
norm ‖t‖p “outranks” ‖s‖p. We define two orders on PTs:
Definition 7 (P-order on PTs). Given parse trees t, s ∈ PT (r, w) for some IRE r and string w, we say that t <p s w.r.t. decision
position p iff ‖t‖posp > ‖s‖posp and ‖t‖posq = ‖s‖posq ∀q < p. We say that t < s iff t <p s for some p.
Definition 8 (S-order on PTs). Given parse trees t, s ∈ PT (r, w) for some IRE r and string w, we say that t ≺p s w.r.t. decision
position p iff ‖t‖subp > ‖s‖subp and ‖t‖subq = ‖s‖subq ∀q < p. We say that t ≺ s iff t ≺p s for some p.
Definition 9. PTs t and s are incomparable, denoted t ∼ s, iff neither t ≺ s, nor s ≺ t.

Theorem 1. P-order < is a strict total order on PT (e,w) for any IRE e and string w.
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Theorem 2. S-order ≺ is a strict weak order on PT (e,w) for any IRE e and string w.
The following theorem 3 establishes an important relation between P-order and S-order. P-order is total, and there is a unique <-
minimal tree tmin. S-order is partial, it partitions all trees into equivalence classes and there is a whole class of ≺-minimal trees
Tmin (such trees coincide in submatch positions, but differ in some non-submatch positions). Theorem 3 shows that tmin ∈ Tmin.
This means that P-order and S-order “agree” on the notion of minimal tree: we can continuously narrow down Tmin until we are
left with tmin. In practice, this means that adding more parentheses in RE does not drastically change submatch results. Note that
this doesn’t mean that P-order is an extension of S-order: the two orders may disagree. For example, consider trees t and u on
figure 1 : on one hand t ≺2.2 u, because ‖t‖sub2.2 = ∞ > 0 = ‖u‖sub2.2 and s-norms at all preceding submatch positions agree; on
the other hand u <1.1 t, because ‖t‖pos1.1 = −1 < 0 = ‖u‖pos1.1 and p-norms at all preceding positions agree.
Theorem 3. Let tmin be the <-minimal tree in PT (e,w) for some IRE e and stringw, and let Tmin be the class of the ≺-minimal
trees in PT (e,w). Then tmin ∈ Tmin.
Following the idea of Okui and Suzuki, we go from comparison of parse trees to comparison of their linearized representation
— parenthesized expressions. Parenthesis ⟨ is opening, and parenthesis ⟩ is closing; the nil-parenthesis ⟨⟩ is both opening and
closing. For convenience we sometimes annotate parentheses with height, which we define as the number of preceding opening
parentheses (including this one) minus the number of preceding closing parentheses (including this one). Explicit height anno-
tations allow us to consider PE fragments in isolation without losing the context of the whole expression. However, height is
not a part of parenthesis itself, and it is not taken into account when comparing the elements of PEs. Function Φ transforms PT
at the given height into PE:

Φ ∶ ℤ × Σ → Σ

Φℎ(ti) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

str(ti) if i = 0
⟨⟩ℎ if i ≠ 0 ∧ t = ∅
⟨ℎ+1⟩ℎ if i ≠ 0 ∧ t = �
⟨ℎ+1a⟩ℎ if i ≠ 0 ∧ t = a ∈ Σ
⟨ℎ+1Φℎ+1(t1)…Φℎ+1(tn)⟩ℎ if i ≠ 0 ∧ t = T (t1,… , tn)

For a given IRE r and string w the set of all PEs {Φ0(t) ∣ t ∈ PT (r, w)
} is denoted PE(r, w), and the set of all prefixes in

PE(r, w) is denoted PR(r, w). Each PE � can be represented as �0a1�1… an�n, where �i is the i-th frame — a possibly empty
sequence of parentheses between subsequent alphabet symbols ai and ai+1 (or the beginning and end of �). PE fragments � and
� are comparable if they have the same number of frames and �, � ∈ PR(r, w) for some r and w. For fragments � and �, � ⊓ �
denotes their longest common prefix, �∖� denotes the suffix of � after removing � ⊓ �, lastℎ(�) denotes the height of the last
parenthesis in � (or∞ if � is empty or begins with an alphabet symbol), minℎ(�) denotes the minimal height of parenthesis in �
(or∞ if � is empty or begins with an alphabet symbol), first(�) denotes the first parenthesis in � (or ⊥ if � is empty or begins
with an alphabet symbol). For comparable PE fragments � and � the index of the first distinct pair of frames is called fork.
Definition 10. Let �, � be comparable PE prefixes, such that � = �0a1�1… an�n, � = �0a1�1… an�n and k is the fork. We
define trace(�, �) as the sequence (�0,… , �n), where:

�i =
⎧⎪⎨⎪⎩

−1 if i < k
min(lastℎ(�i ⊓ �i), minℎ(�i∖�i)) if i = k
min(�i−1, minℎ(�i)) if i > k

We write traces(�, �) to denote (trace(�, �), trace(�, �)).
Definition 11. (Longest precedence.) Let �, � be comparable PE prefixes and traces(�, �) = (

(�0,… , �n), (�′0,… , �′n)
). Then

� ⊏ � ⇔ ∃i ≤ n ∶
(
�i > �′i

)
∧
(
�j = �′j ∀j > i

). If neither � ⊏ �, nor � ⊏ �, then �, � are longest-equivalent: � ∼ � (note that
in this case �i = �′i ∀i = 1, n).
Definition 12. (Leftmost precedence.) Let �, � be comparable PE prefixes, and let x = first(�∖�), y = first(�∖�). Then
� ⊂ � ⇔ x < y, where the set of possible values of x and y is ordered as follows: ⊥ <⟩ < ⟨< ⟨⟩.
Definition 13. (Longest-leftmost precedence.) Let �, � be comparable PE prefixes, then � < � ⇔

(
� ⊏ �

)
∨
(
� ∼ � ∧ � ⊂ �

).
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s = T 1(T 2(∅0, T 0(a0, a0)))

T 1

T 2

∅0 T 0

a0 a0

⟨1 ⟩0

⟨2 ⟩1

t = T 1(T 2(a0,∅0), T 2(a0,∅0))

T 1

T 2

a0 ∅0

T 2

a0 ∅0

⟨1 ⟩0

⟨2 ⟩1 ⟨2 ⟩1
� = Φ0(s) =

⎴⎴
⟨1⟨2 a

⎴⎴
a
⎴⎴
⟩1⟩0

� = Φ0(t) =
⎴⎴
⟨1⟨2 a

⎴⎴
⟩1⟨2 a

⎴⎴
⟩1⟩0

traces(�, �) ∶
⎡
⎢⎢⎢⎢⎣

�0 = �′0 = −1
�1 = min(lastℎ(⟨1⟨2), minℎ(�)) = min(2,∞) = 2
�′1 = min(lastℎ(⟨1⟨2), minℎ(⟩1⟨2)) = min(2, 1) = 1
�2 = min(�1, minℎ(⟩1⟩0)) = min(2, 0) = 0
�′2 = min(�′1, minℎ(⟩1⟩0)) = min(1, 0) = 0

�1 > �′1 ∧ �2 = �′2 ⇒ � ⊏ � ⇒ � < �
‖s‖sub1 = 2 > 1 = ‖t‖sub1 ∧ ‖s‖subp = ‖t‖subp ∀p < 1 ⇒ s ≺1 t

(a) – Rule 1: longest precedence, RE (a|aa)0,∞ and string aa.

s = T 1(a2,∅3)

T 1

a2 ∅3

⟨1 ⟩0

⟨2 ⟩1 ⟨⟩1
t = T 1(∅2, a3)

T 1

∅2 a3

⟨1 ⟩0

⟨⟩1 ⟨2 ⟩1

� = Φ0(s) =
⎴⎴
⟨1⟨2 a

⎴⏞⏞⏞⎴
⟩1⟨⟩1⟩0

� = Φ0(t) =
⎴⏞⏞⏞⎴
⟨1⟨⟩1⟨2 a

⎴⎴
⟩1⟩0

traces(�, �) ∶
⎡
⎢⎢⎢⎣

�0 = min(lastℎ(⟨1), minℎ(⟨2)) = min(1, 2) = 1
�′0 = min(lastℎ(⟨1), minℎ(⟨⟩1⟨2)) = min(1, 1) = 1
�1 = min(�0, minℎ(⟩1⟨⟩1⟩0)) = min(1, 0) = 0
�′1 = min(�′0, minℎ(⟩1⟩0)) = min(1, 0) = 0

�i = �′i ∀i ∧ first(�∖�) = ⟨< ⟨⟩ = first(�∖�) ⇒ � ∼ � ∧ � ⊂ � ⇒ � < �
‖s‖sub1 = 1 > −1 = ‖t‖sub1 ∧ ‖s‖subp = ‖t‖subp ∀p < 1 ⇒ s ≺1 t

(b) – Rule 2: leftmost precedence, RE (a)|(a) and string a.

s = T 1(T 2(a0,∅0))

T 1

T 2

a0 ∅0

⟨1 ⟩0

⟨2 ⟩1

⟨2 ⟩1

t = T 1(T 2(a0,∅0), T 2(∅0, �0))

T 1

T 2

a0 ∅0

T 2

∅0 �0

⟨1 ⟩0

⟨2 ⟩1 ⟨2 ⟩1
� = Φ0(s) =

⎴⎴
⟨1⟨2 a

⎴⎴
⟩1⟩0

� = Φ0(t) =
⎴⎴
⟨1⟨2 a

⎴⏞⏞⏞⏞⏞⎴
⟩1⟨2⟩1⟩0

traces(�, �) ∶
⎡⎢⎢⎣

�0 = �′0 = −1
�1 = min(lastℎ(⟩1), minℎ(⟩0)) = min(1, 0) = 0
�′1 = min(lastℎ(⟩1), minℎ(⟨2⟩1⟩0)) = min(1, 0) = 0

�i = �′i ∀i ∧ first(�∖�) =⟩ < ⟨= first(�∖�) ⇒ � ∼ � ∧ � ⊂ � ⇒ � < �
‖s‖sub2 = ∞ > 0 = ‖t‖sub2 ∧ ‖s‖subp = ‖t‖subp ∀p < 2 ⇒ s ≺2 t

(c) – Rule 3: no optional empty repetitions, RE (a|�)0,∞ and string a.

s = T 1(∅2)

T 1

∅2

⟨1 ⟩0

⟨⟩1

t = T 1(T 2(�0))

T 1

T 2

∅0 �0

⟨1 ⟩0

⟨2 ⟩1
� = Φ0(s) =

⎴⏞⏞⏞⎴
⟨1⟨⟩1⟩0

� = Φ0(t) =
⎴⏞⏞⏞⏞⏞⎴
⟨1⟨2⟩1⟩0

traces(�, �) ∶[
�0 = min(lastℎ(⟨1), minℎ(⟨⟩1⟩0)) = min(1, 0) = 0
�′0 = min(lastℎ(⟨1), minℎ(⟨2⟩1⟩0)) = min(1, 0) = 0

�i = �′i ∀i ∧ first(�∖�) = ⟨⟩ > ⟨= first(�∖�) ⇒ � ∼ � ∧ � ⊂ � ⇒ � < �
‖s‖sub2 = 0 > −1 = ‖s‖sub2 ∧ ‖s‖subp = ‖t‖subp ∀p < 2 ⇒ t ≺2 s

(d) – Rule 4: empty match is better than no match, RE (a|�)0,∞ and string �.

t1

a a a

t2

a a a

t3

a a a

t4

a a a

t5

a a a

t6

a a a

t7

a a a

t8

a a a

t9

a a a

Φ0(t1) =
⎴⏞⏞⏞⏞⏞⎴
⟨1⟨2⟨3⟨4 a

⎴⎴
⟩3⟨4 a

⎴⎴
⟩3⟨4 a

⎴⏞⏞⏞⏞⏞⎴
⟩3⟩2⟩1⟩0

Φ0(t2) =
⎴⏞⏞⏞⏞⏞⎴
⟨1⟨2⟨3⟨4 a

⎴⎴
⟩3⟨4 a

⎴⏞⏞⏞⏞⏞⎴
⟩3⟩2⟨3⟨4 a

⎴⏞⏞⏞⏞⏞⎴
⟩3⟩2⟩1⟩0

Φ0(t3) =
⎴⏞⏞⏞⏞⏞⎴
⟨1⟨2⟨3⟨4 a

⎴⏞⏞⏞⏞⏞⎴
⟩3⟩2⟨3⟨4 a

⎴⎴
⟩3⟨4 a

⎴⏞⏞⏞⏞⏞⎴
⟩3⟩2⟩1⟩0

Φ0(t4) =
⎴⏞⏞⏞⏞⏞⎴
⟨1⟨2⟨3⟨4 a

⎴⏞⏞⏞⏞⏞⎴
⟩3⟩2⟨3⟨4 a

⎴⏞⏞⏞⏞⏞⎴
⟩3⟩2⟨3⟨4 a

⎴⏞⏞⏞⏞⏞⎴
⟩3⟩2⟩1⟩0

Φ0(t5) =
⎴⏞⏞⏞⏞⏞⎴
⟨1⟨2⟨3⟨4 a

⎴⎴
⟩3⟨4 a

⎴⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⎴
⟩3⟩2⟩1⟨2⟨3⟨4 a

⎴⏞⏞⏞⏞⏞⎴
⟩3⟩2⟩1⟩0

Φ0(t6) =
⎴⏞⏞⏞⏞⏞⎴
⟨1⟨2⟨3⟨4 a

⎴⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⎴
⟩3⟩2⟩1⟨2⟨3⟨4 a

⎴⎴
⟩3⟨4 a

⎴⏞⏞⏞⏞⏞⎴
⟩3⟩2⟩1⟩0

Φ0(t7) =
⎴⏞⏞⏞⏞⏞⎴
⟨1⟨2⟨3⟨4 a

⎴⏞⏞⏞⏞⏞⎴
⟩3⟩2⟨3⟨4 a

⎴⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⎴
⟩3⟩2⟩1⟨2⟨3⟨4 a

⎴⏞⏞⏞⏞⏞⎴
⟩3⟩2⟩1⟩0

Φ0(t8) =
⎴⏞⏞⏞⏞⏞⎴
⟨1⟨2⟨3⟨4 a

⎴⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⎴
⟩3⟩2⟩1⟨2⟨3⟨4 a

⎴⏞⏞⏞⏞⏞⎴
⟩3⟩2⟨3⟨4 a

⎴⏞⏞⏞⏞⏞⎴
⟩3⟩2⟩1⟩0

Φ0(t9) =
⎴⏞⏞⏞⏞⏞⎴
⟨1⟨2⟨3⟨4 a

⎴⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⎴
⟩3⟩2⟩1⟨2⟨3⟨4 a

⎴⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⎴
⟩3⟩2⟩1⟨2⟨3⟨4 a

⎴⏞⏞⏞⏞⏞⎴
⟩3⟩2⟩1⟩0

t1 ≺ t2 ≺ t3 ≺ t4 ≺ t5 ≺ t7 ≺ t6 ≺ t8 ≺ t9

t2 t3 t4 t5 t6 t7 t8 t9
-1 -1 3 0-1 -1 2 0 -1 3 3 0-1 2 2 0 -1 3 3 0-1 2 2 0 -1 -1 3 0-1 -1 1 0 -1 3 3 0-1 1 1 0 -1 3 3 0-1 2 1 0 -1 3 3 0-1 1 1 0 -1 3 3 0-1 1 1 0 t1

-1 3 2 0-1 2 2 0 -1 3 2 0-1 2 2 0 -1 -1 2 0-1 -1 1 0 -1 3 2 0-1 1 1 0 -1 3 2 0-1 2 1 0 -1 3 2 0-1 1 1 0 -1 3 2 0-1 1 1 0 t2

-1 -1 3 0-1 -1 2 0 -1 2 2 0-1 3 1 0 -1 2 2 0-1 1 1 0 -1 -1 3 0-1 -1 1 0 -1 2 2 0-1 1 1 0 -1 2 2 0-1 1 1 0 t3

-1 2 2 0-1 3 1 0 -1 2 2 0-1 1 1 0 -1 -1 2 0-1 -1 1 0 -1 2 2 0-1 1 1 0 -1 2 2 0-1 1 1 0 t4

-1 3 1 0-1 1 1 0 -1 3 1 0-1 2 1 0 -1 3 1 0-1 1 1 0 -1 3 1 0-1 1 1 0 t5

-1 1 1 0-1 2 1 0 -1 -1 3 0-1 -1 2 0 -1 -1 3 0-1 -1 1 0 t6

-1 2 1 0-1 1 1 0 -1 2 1 0-1 1 1 0 t7

-1 -1 2 0-1 -1 1 0 t8

(e) – Pairwise comparison of all PEs for RE (((a)1,3)1,3)1,3 and string aaa. Table entry (ti, tj) contains traces(Φ0(ti),Φ0(tj)).

FIGURE 2 Examples: (a) – (d): four main rules of POSIX comparison, (e) – pairwise comparison of PEs.
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Theorem 4. If s, t ∈ PT (e,w) for some IRE e and string w, then s ≺ t⇔ Φℎ(s) < Φℎ(t) ∀ℎ.
Next, we go from comparison of PEs to comparison of TNFA paths. A path in TNFA (Σ, Q, T ,Δ, q0, qf ) is a sequence of
transitions {(qi, ai, bi, qi+1)}n−1i=1 ⊆ Δ, where n ∈ ℕ. Every path induces a string of alphabet symbols and a mixed string of
symbols and tags which corresponds to a fragment of PE: positive opening tags map to ⟨, positive closing tags map to ⟩, and
negative tags map to ⟨⟩. We write q1

s|�
⇝ q2 to denote the fact that a path from q1 to q2 induces alphabet string s and PE fragment

�. We extend the notion of order from PEs to paths: given paths �1 = q1
s|�
⇝ q2 and �2 = q1

s|�
⇝ q3 we say that �1 < �2 if

� < �. For a given IRE e we say that a path in TNFA for e is minimal if it induces � = PE(t) for some minimal tree t ∈ PT (e).
Two paths are ambiguous if their start and end states coincide and they induce the same alphabet string. Two paths have a join
point if they have ambiguous prefixes. In order to justify our TNFA simulation algorithm, we need to show that PEs induced by
TNFA paths can be compared incrementally (otherwise we would have to keep full-length PEs, which requires the amount of
memory proportional to the length of input). Justification of incremental comparison consists of two parts: the following lemma
1 justifies comparison between frames, and lemmas 2, 3, 4 in section 4 justify comparison at join points inside of one frame
(this is necessary as the number of paths in closure may be exponential in the number of states).
Lemma 1 (Frame-by-frame comparison of PEs). If �, � are comparable PE prefixes, c is an alphabet symbol and  is a single-
frame PE fragment, then � < � implies �c < �c .

4 CLOSURE CONSTRUCTION

The problem of constructing �-closure with POSIX disambiguation can be formulated as a shortest path problem on directed
graph with weighted arcs. In our case weight is not a number — it is the PE fragment induced by the path. We give two
algorithms for closure construction: GOR1, named after the well-known Goldberg-Radzik algorithm13, and GTOP, named
after “global topological order”. Both have the usual structure of shortest-path finding algorithms. The algorithm starts with a
set of initial configurations, empty queue and empty set of resulting configurations. Initial configurations are enqueued and the
algorithm loops until the queue becomes empty. At each iteration it dequeues configuration (q, o, u, r) and scans �-transitions
from state q. For transition (q, , , p) it constructs a new configuration (p, o, v, r) that combines u and  in an extended path v.
If the resulting set contains another configuration for state p, then the algorithm chooses the configuration which has a better
path from POSIX perspective. Otherwise it adds the new configuration to the resulting set. If the resulting set was changed, the
new configuration is enqueued for further scanning. Eventually all states in �-closure are explored, no improvements can be
made, and the algorithm terminates.

The difference between GOR1 and GTOP is in the order they inspect configurations. Both algorithms are based on the idea
of topological ordering. Unlike other shortest-path algorithms, their queuing discipline is based on graph structure, not on
the distance estimates. This is crucial, because we do not have any distance estimates: paths can be compared, but there is
no absolute “POSIX-ness” value that we can attribute to each path. GOR1 is described in13. It uses two stacks and makes a
number of passes; each pass consists of a depth-first search on the admissible subgraph followed by a linear scan of states that
are topologically ordered by depth-first search. The algorithm is one of the most efficient shortest-path algorithms14. n-Pass
structure guarantees worst-case complexity O(nm) of the Bellman-Ford algorithm, where n is the number of states and m is the
number of transitions in �-closure (both can be approximated by TNFA size)15. GTOP is a simple algorithm that maintains one
global priority queue (e.g. a binary heap) ordered by the topological index of states (for graphs with cycles, we assume reverse
depth-first post-order). Since GTOP does not have the n-pass structure, its worst-case complexity is not clear. However, it is
much simpler to implement and in practice it performs almost identically to GOR1 on graphs induced by TNFA �-closures. On
acyclic graphs, both GOR1 and GTOP have linear O(n + m) complexity.

The general proof of correctness of shortest-path algorithms is out of the scope of this paper. However, we need to justify the
application of these algorithms to our setting. In order to do that, we recall the framework for solving shortest-path algorithms
based on closed semirings described in10 (section 26.4) and show that our problem fits into this framework. A semiring is a
structure (K, ⊕,⊗, 0, 1), where K is a set,⊕∶K ×K → K is an associative and commutative operation with identity element 0,
⊗∶K×K → K is an associative operation with identity element 1,⊗ distributes over⊕ and 0 is annihilator for⊗. Additionally,
closed semiring requires that ⊕ is idempotent, any countable ⊕-sum of K elements is in K, and associativity, commutativity,
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1 closure gor1(N=(Σ, Q, T ,Δ, q0, qf ), X, U, B,D)

2 context: C = (N,U,B,D
3 , topsort, linear ∶ stacks of states q ∈ Q
4 , result ∶ Q→ ℂ ∪ {∅}
5 , status ∶ Q→ {OFF , TOP ,LIN}
6 , indeg ∶ Q→ ℤ // in-degree of state
7 , active ∶ Q→ B // true if state needs rescan
8 , etrans ∶ Q→ 2Δ� // �-transitions ordered by priority
9 , next ∶ Q→ ℤ) // index of current transition
10 result(q) ≡ ∅
11 status(q) ≡ OFF
12 active(q) ≡ false
13 next(q) ≡ 1
14 for x = ( , q, , ) ∈ X sorted by inverted prec( ) do
15 result(q) = x
16 pusℎ(topsort, q)
17 while topsort is not empty do
18 while topsort is not empty do
19 q = pop(topsort)
20 if status(q) ≠ LIN then
21 status(q) = TOP
22 pusℎ(topsort, q)
23 if ¬scan(q, C, false) then
24 status(q) = LIN
25 pop(topsort)
26 pusℎ(linear, q)
27 while linear is not empty do
28 q = pop(linear)
29 if active(q) then
30 next(q) = 1
31 active(q) = false
32 scan(q, C, true)
33 status(q) = OFF
34 return prune(result,N)

35 scan(q, C, all)
36 any = false
37 while next(q) < n do
38 (q, �, �, p) = etrans(q)next(q)
39 next(q) = next(q) + 1
40 x = result(p), (o, q, u, r) = result(q)
41 y = (o, p, extend patℎ(H, u, �), r)
42 if x=∅ ∨ indeg(p)<2 ∨ less(y, x, C) then
43 result(p) = y
44 if status(q) = OFF then
45 any = true
46 next(p) = 1
47 pusℎ(topsort, p)
48 if ¬all then break
49 else active(p) = 1
50 return any

51 closure gtop(N=(Σ, Q, T ,Δ, q0, qf ), X, U, B,D)

52 context: C = (N,U,B,D
53 , queue ∶ priority queue of states q ∈ Q
54 , result ∶ Q→ ℂ ∪ {∅}
55 , status ∶ Q→ {IN,OUT }
56 , indeg ∶ Q→ ℤ // in-degree of state
57 , topord ∶ Q→ ℤ // topological index of state
58 , etrans ∶ Q→ 2Δ� // �-transitions
59 result(q) ≡ ∅
60 status(q) ≡ OUT
61 for x = ( , q, , ) ∈ X do
62 y = result(q)
63 if y=⊥ ∨ less(x, y, C) then
64 result(q) = x
65 if status(q) ≠ IN then
66 insert witℎ priority(queue, q, topord(q))
67 status(q) = IN
68 while queue is not empty do
69 q = extract min(queue)
70 status(q) = OUT
71 for (q, �, �, p) ∈ etrans(q) do
72 x = result(p), (o, q, u, r) = result(q)
73 y = (o, p, extend patℎ(H, u, �), r)
74 if x=∅ ∨ indeg(p)<2 ∨ less(y, x, C) then
75 result(p) = y
76 if status(p) ≠ IN then
77 insert witℎ priority(queue, p, topord(p))
78 status(p) = IN
79 return prune(result,N)

80 prune(X,N)
81 return

{
( , q, , ) ∈ X ∣ q ∈ F ∨ ∃(q, �, , ) ∈ ΔΣ}

82 less(x, y, C)
83 ( , , l) = compare(x, y, U, B,D)
84 return l < 0

85 prec(x, y,D)
86 (q, , , ) = x, (p, , , ) = y
87 return D[q][p] < 0

ALGORITHM 2: Closure algorithms GOR1 (on the left) and GTOP (on the right). Definition of functions of pusℎ(),
pop(), insert witℎ priority(), extract min(), indeg() and topord() is omitted for brevity. Definitions of compare() and
extend patℎ() are given in sections 7 and 5. ℂ is the set of all configurations.
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distributivity and idempotence apply to countable ⊕-sums. Mohri generalizes this definition and notes that either left or right
distributivity is sufficient11. In our case K is the set of closure paths without tagged �-loops: the following lemma 2 and 3 show
that, on one hand, paths with tagged �-loops are not minimal, and on the other hand such paths are discarded by the algorithm,
so they can be removed from consideration. Consequently K is finite. We have semiring (K, min, ⋅,∅, �), where min is POSIX
comparison of ambiguous paths, ⋅ is concatenation of paths at the join points (subject to restriction that paths do not contain
tagged �-loops and remain within TNFA bounds — concatenation of arbitrary paths is not in K), ∅ corresponds to artificial
infinitely long path, and � is the empty path. It is easy to show that min is commutative and associative, ∅ is identity for min
(min(�,∅) = min(∅, �) = �), ⋅ is associative, � is identity for ⋅ (� ⋅ � = � ⋅� = �),∅ is annihilator for ⋅ (� ⋅∅ = ∅ ⋅� = ∅), and
right distributivity of ⋅ overmin for paths with at most one �-loop is given by lemma 4. Idempotence holds becausemin(�, �) = �.
Since K is finite, the properties for⊕-sums over countable subsets are satisfied.
Lemma 2. Minimal paths do not contain tagged �-loops.
Lemma 3. GOR1 and GTOP discard paths with tagged �-loops.
Lemma 4 (Right distributivity of comparison over concatenation for paths without tagged �-loops). Let �� = q0

u|�
⇝ q1 and

�� = q0
u|�
⇝ q1 be ambiguous paths in TNFA f for IRE e, and let � = q1

�|
⇝ q2 be their common �-suffix, such that ��� and

��� do not contain tagged �-loops. If � < � then � < � .

5 TREE REPRESENTATION OF PATHS

In this section we specify the representation of path fragments in configurations and define path context U and functions
empty patℎ() and extend patℎ() used in previous sections. An obvious way to represent tagged path is to use a sequence of
tags, such as a list or an array: in that case empty patℎ() can be implemented as an empty sequence, and extend patℎ() is
just an append operation. However, a more efficient representation is possible if we consider the structure formed by paths in
�-closure. This structure is a prefix tree of tags. Some care is necessary with TNFA construction in order to ensure prefixness,
but that is easy to accommodate and we give the details in section 9. Storing paths in a prefix tree achieves two purposes: first,
we save on the duplicated prefixes, and second, copying paths becomes as simple as copying a pointer to a tree leaf — no need
to copy the full sequence. This technique was used by many researches, e.g. Laurikari mentions a functional data structure2
and Karper describes it as the flyweight pattern12.
1 empty patℎ( )
2 return 0
3 extend patℎ(U, n, �)
4 if � ≠ � then
5 m = |U | + 1
6 append m to succ(U, n)
7 append (n, ∅, �) to U
8 return m
9 else return n

10 unroll patℎ(U, n)
11 u = �
12 while n ≠ 0 do
13 u = u ⋅ tag(U, n)
14 n = pred(U, n)
15 return reverse(u)

ALGORITHM 3: Operations on tag tree.
A convenient representation of tag tree is an indexed sequence of nodes. Each node is a triple (p, s, t) where p is the index of
predecessor node, s is a set of indices of successor nodes and t is a tag (positive or negative). Forward links are only necessary
if the advanced algorithm for update ptables() is used (section 7), otherwise successor component can be omitted. Now we
can represent u-components of configurations with indices in the U -tree: root index is 0 (which corresponds to the empty path),
and each u-component is a tree index from which we can trace predecessors to the root (function unroll patℎ() demonstrates
this). In the implementation, it is important to use numeric indices rather than pointers because it allows to use the “two-fingers”
algorithm to find fork of two paths (section 7). We assume the existence of functions pred(U, n) that returns p-component of
n-th node, succ(U, n) that returns s-component of n-th node and tag(U, n) that returns t-component of n-th node.
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6 REPRESENTATION OF MATCH RESULTS

In this section we show two ways to construct match results: POSIX offsets and a parse tree. In the first case, r-component of
configurations is an array of offset pairs pmatcℎ. Offsets are updated incrementally at each step by scanning the corresponding
path fragment and setting negative tags to −1 and positive tags to the current step number. We need the most recent value of
each tag, therefore we take care to update tags at most once. Negative tags are updated using helper functions low() and upp()
that map each tag to the range of tags covered by it (which includes itself, its pair tag and all nested tags). Helper function sub()
maps each tag to the corresponding submatch group. For a given tag t, functions sub(), low() and upp() are defined as the 2nd,
3rd and 4th components of (t, s, l, u) ∈ T . Section 9 shows how this mapping is constructed.

In the second case, r-component of configurations is a tagged string that is accumulated at each step, and eventually converted
to a parse tree at the end of match. The resulting parse tree is only partially structured: leaves that correspond to subexpressions
with zero implicit submatch index contain “flattened” substring of alphabet symbols. It is possible to construct parse trees
incrementally as well, but this is more complex and the partial trees may require even more space than tagged strings.
1 initial result(T )
2 return uninitialized array of pairs (rm so, rm eo)

3 update result(T ,X,U, k, )
4 return

{
(q, o, u, apply(T , U, u, r, k)) ∣ (q, o, u, r) ∈ X

}

5 final result(T , U, u, r, k)
6 pmatcℎ = apply(T , U, u, r, k)
7 pmatcℎ[0].rm so = 0, pmatcℎ[0].rm eo = k
8 return pmatcℎ

9 apply(T , U, n, pmatcℎ, k)
10 done( ) ≡ false
11 while n ≠ 0 do
12 t = tag(U, n) s = sub(T , |t|)
13 if t < 0 ∧

(
s = 0 ∨ ¬done(s)

)
then

14 for t′ = low(T , |t|), upp(T , |t|) do
15 s′ = sub(T , t′)
16 if s′ ≠ 0 ∧ ¬done(s′) then
17 done(s′) = true
18 set tag(pmatcℎ, t′, s′,−1)
19 else if s ≠ 0 ∧ ¬done(s) then
20 done(s) = true
21 set tag(pmatcℎ, t, s, k)
22 n = pred(U, n)
23 return pmatcℎ

24 set tag(pmatcℎ, t, s, pos)
25 if t mod 2 ≡ 1 then pmatcℎ[s].rm so = pos
26 else pmatcℎ[s].rm eo = pos

27 initial result( )
28 return �

29 update result( , X, U, , �)
30 return

{
(q, o, u, r ⋅ unroll patℎ(U, u) ⋅ �)

31 ∣ (q, o, u, r) ∈ X
}

32 final result( , U , u, r, )
33 return parse tree(r ⋅ unroll patℎ(U, u), 1)

34 parse tree(u, i)
35 if u = (2i−1) ⋅ (2i) then
36 return T i(�)
37 if u = (1−2i) ⋅… then
38 return T i(∅)
39 if u = (2i−1) ⋅ �1… �n ⋅ (2i) ∧ �1,… , �n ∈ Σ then
40 return T i(a1,… , an)
41 if u = (2i−1) ⋅ �1… �m ⋅ (2i) ∧ �1 = 2j−1 ∈ T then
42 n = 0, k = 1
43 while k ≤ m do
44 l = k
45 while |�k+1| > 2j do k = k + 1
46 n = n + 1
47 tn = parse tree(�l… �k, j)
48 return T i(t1,… , tn)
49 return ∅ // ill-formed PE

ALGORITHM 4: Construction of match results: POSIX offsets (on the left) and parse tree (on the right).

7 DISAMBIGUATION PROCEDURES

In this section we define disambiguation procedures compare() and update ptables(). The pseudocode follows definition 13
closely and relies on the prefix tree representation of paths given in section 6. In order to find fork of two paths in compare()
we use so-called “two-fingers” algorithm, which is based on the observation that parent index is always less than child index.
Given two indices n1 and n2, we continuously set the greater index to its parent until the indices become equal, at which point
we have either found fork or the root of U -tree. We track minimal height of each path along the way and memorize the pair of
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indices right after the fork — they are used to determine the leftmost path in case of equal heights. We assume the existence of
helper function ℎeigℎt(T , t) that maps each tag to its height.
1 compare(c1, c2, U , B,D)
2 ( , o1, n1, ) = c1, ( , o2, n2, ) = c2
3 if o1 = o2 ∧ n1 = n2 then return (∞,∞, 0)
4 fork = o1 = o2
5 if fork then ℎ1 = ℎ2 = ∞
6 else ℎ1 = B[o1][o2], ℎ2 = B[o2][o1]
7 m1 = m2 = ⊥
8 while n1 ≠ n2 do
9 if n1 > n2 then
10 ℎ1 = min(ℎ1, ℎeigℎt(T , tag(U, n1)))
11 m1 = n1, n1 = pred(U, n1)
12 else
13 ℎ2 = min(ℎ2, ℎeigℎt(T , tag(U, n2)))
14 m2 = n2, n2 = pred(U, n2)
15 if n1 ≠ ⊥ then
16 ℎ = ℎeigℎt(T , tag(U, n1))
17 ℎ1 = min(ℎ1, ℎ), ℎ2 = min(ℎ2, ℎ)
18 if ℎ1 > ℎ2 then l = −1
19 else if ℎ1 < ℎ2 then l = 1
20 else if ¬fork then l = D[o1][o2]
21 else l = leftprec(m1, m2, U )
22 return (ℎ1, ℎ2, l)

23 leftprec(n1, n2, U )
24 if n1 = n2 then return 0
25 if n1 = ⊥ then return −1
26 if n2 = ⊥ then return 1
27 t1 = tag(U, n1), t2 = tag(U, n2)
28 if t1 < 0 then return 1
29 if t2 < 0 then return −1
30 if t1mod 2 ≡ 0 then return −1
31 if t2mod 2 ≡ 0 then return 1
32 return 0

33 update ptables(N,X,U, B,D)
34 for x1 = (q1, , , ) ∈ X do
35 for x2 = (q2, , , ) ∈ X do
36 (ℎ1, ℎ2, l) = compare(x1, x2, U , B,D)
37 B′[q1][q2] = ℎ1, D′[q1][q2] = l
38 B′[q2][q1] = ℎ2, D′[q2][q1] = −l
39 return (B′, D′)

40 update ptables(N,X,U, B,D)
41 i = 0, next(n) ≡ 1, empty stack S, empty array L
42 pusℎ(S, 0)
43 while S is not empty do
44 n = pop(S)
45 if next(n) < k then
46 pusℎ(S, n)
47 pusℎ(S, succ(U, n)next(n))
48 next(n) = next(n) + 1
49 continue
50 ℎ = ℎeigℎt(T , tag(U, n)), i1 = i
51 for (q, o, n1, ) ∈ X ∣ n1 = n do
52 i = i + 1, L[i] = (q, o, ⊥, ℎ)
53 for j1 = i1 + 1, i do
54 for j2 = j1, i do
55 (q1, o1, , ) = L[j1]
56 (q2, o2, , ) = L[j2]
57 if n = 0 ∧ o1 ≠ o2 then
58 ℎ1 = B[o1][o2], ℎ2 = B[o2][o1]
59 l = D[o1][o2]
60 else ℎ1 = ℎ2 = ℎ, l = 0
61 B′[q1][q2] = ℎ1, D′[q1][q2] = l
62 B′[q2][q1] = ℎ2, D′[q2][q1] = −l
63 for m ∈ succ(U, n) in reverse do
64 i2 = i1
65 while i2 > 0 ∧ L[i2].n = m do i2 = i2 − 1

66 for j1 = i2, i1 do
67 L[j1].ℎ = min(L[j1].ℎ, ℎ);
68 for j2 = i1, i do
69 (q1, o1, n1, ℎ1) = L[j1]
70 (q2, o2, n2, ℎ2) = L[j2]
71 if n = 0 ∧ o1 ≠ o2 then
72 ℎ1 = min(ℎ1, B[o1][o2])
73 ℎ2 = min(ℎ2, B[o2][o1])
74 if ℎ1 > ℎ2 then l = −1
75 else if ℎ1 < ℎ2 then l = 1
76 else if o1 ≠ o2 then l = D[o1][o2]
77 else l = leftprec(n1, n2, U )
78 B′[q1][q2] = ℎ1, D′[q1][q2] = l
79 B′[q2][q1] = ℎ2, D′[q2][q1] = −l
80 i1 = i2
81 for j = i1, i do L[j].n = n
82 return (B′, D′)

ALGORITHM 5: Disambiguation procedures.
We give two alternative algorithms for update ptables(): a simple one with O(m2 t) complexity (on the left) and a complex
one with O(m2) complexity (on the right). Worst case is demonstrated by RE ((a|�)0,k)0,∞ where n ∈ ℕ, for which the simple
algorithm takes O(k3) time and the complex algorithm takes O(k2) time. The idea of complex algorithm is to avoid repeated re-
scanning of path prefixes in theU -tree. It makes one pass over the tree, constructing an arrayL of level items (q, o, u, ℎ), where q
and o are state and origin as in configurations, u is the current tree index and ℎ is the current minimal height. One item is added
per each closure configuration (q, o, u, r) when traversal reaches the tree node with index u. After a subtree has been traversed,
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the algorithm scans level items added during traversal of this subtree (such items are distinguished by their u-component), sets
their ℎ-component to the minimum of ℎ and the height of tag at the current node, and computes the new value of B and D
matrices for each pair of q-states in items from different branches. After that, u-component of all scanned items is downgraded
to the tree index of the current node (erasing the difference between items from different branches).

8 LAZY DISAMBIGUATION

Most of the overhead in our algorithm comes from updating B and D matrices at each step. It is all the more unfortunate since
many comparisons performed by update ptables() are useless — the compared paths may never meet. In fact, if the input is
unambiguous, all comparisons are useless. A natural idea, therefore, is to compare paths only in case of real ambiguity (when
they meet in closure) and avoid computation of precedence matrices altogether. We can do it with a few modifications to our
original algorithm. First, we no longer need B and D matrices and update ptables() function. Instead, we introduce cache C
that maps a pair of tree indices (n1, n2) to a triple of precedence values (ℎ1, ℎ2, l). Cache stores the “useful” part of B and D
matrices on multiple preceding steps. It is populated lazily during disambiguation and allows us to avoid re-computing the
same values multiple times. Second, we need to modify the tree representation of paths in the following way: forward links are
no longer needed (parent links are sufficient), and tree nodes must be augmented with information about current step and origin
state (we assume the existence of helper functions step() and origin()). Third, instead of using empty patℎ() to initialize path
fragments in configurations we need to set them to path fragments of their parent configurations, so that paths are accumulated
rather than reset at each step. Fourth, we no longer need to call update result() at each step — this can be done once at the end
of match. Below is the modified lazy version of compare(), the only part of the algorithm that requires non-trivial change.
1 compare(c1, c2, U , C)
2 ( , , n1, ) = c1, ( , , n2, ) = c2
3 return compare1(n1, n2, U , C)

4 compare1(n1, n2, U , C)
5 if C(n1, n2) = ∅ then
6 C(n1, n2) = compare2(n1, n2, U , C)
7 return C(n1, n2)

8 compare2(n1, n2, U , C)
9 if n1 = n2 then return (∞,∞, 0)

10 ℎ1 = ℎ2 = ∞
11 o1 = origin(U, n1), o2 = origin(U, n2)
12 s1 = step(U, n1), s2 = step(U, n2), s = max(s1, s2)
13 fork = o1 = o2 ∧ s1 = s2
14 m1 = m2 = ⊥
15 while n1 ≠ n2 ∧ (s1 ≥ s ∨ s2 ≥ s) do
16 if s1 ≥ s ∧ (n1 > n2 ∨ s2 < s) then
17 ℎ1 = min(ℎ1, ℎeigℎt(T , tag(U, n1)))
18 m1 = n1, n1 = pred(U, n1), s1 = step(U, n1)
19 else
20 ℎ2 = min(ℎ2, ℎeigℎt(T , tag(U, n2)))
21 m2 = n2, n2 = pred(U, n2), s2 = step(U, n2)
22 if ¬fork then
23 (ℎ′1, ℎ

′
2, l) = compare1(n1, n2, U , C)

24 ℎ1 = min(ℎ1, ℎ′1), ℎ2 = min(ℎ2, ℎ
′
2)

25 else if n1 ≠ ⊥ then
26 ℎ = ℎeigℎt(T , tag(U, n1))
27 ℎ1 = min(ℎ1, ℎ), ℎ2 = min(ℎ2, ℎ)
28 if ℎ1 > ℎ2 then l = −1
29 else if ℎ1 < ℎ2 then l = 1
30 else if fork then l = leftprec(m1, m2, U )
31 return (ℎ1, ℎ2, l)

ALGORITHM 6: Lazy disambiguation procedures (we assume that cache C is modified in-place).
The problem with this approach is that we need to keep full-length history of each active path: at the point of ambiguity we may
need to look an arbitrary number of steps back in order to find the fork of ambiguous paths. This may be acceptable for small
inputs (and memory footprint may even be smaller due to reduction of precedence matrices), but it is definitely infeasible for
very long or streaming inputs. A possible solution may be a hybrid approach that uses lazy disambiguation, but every k steps
fully calculates precedence matrices and “forgets” path prefixes. Another possible solution is to keep both algorithms and choose
between them depending on the length of input.
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9 TNFA CONSTRUCTION

TNFA construction is given by the function tnfa() that accepts IRE r and state y and returns TNFA for r with final state y
(algorithm 7). This precise construction is not necessary for the algorithms to work, but it has a number of important properties.

• Non-essential �-transitions are removed, as they make closure algorithms slower.
• Bounded repetition rn,m is unrolled in a way that duplicates r exactly m times and factors out common path prefixes:
subautomaton for (k+1)-th iteration is only reachable from subautomaton for k-th iteration. For example, a2,5 is unrolled
as aa(�|a(�|a(�|a))), not as aa(�|a|aa|aaa). This ensures that the tag tree build by �-closure is a prefix tree.

• Priorities are assigned so as to make it more likely that depth-first traversal of the �-closure finds short paths before long
paths. This is an optimization that makes GOR1much faster in specific cases with many ambiguous paths that are longest-
equivalent and must be compared by the leftmost criterion. An example of such case is (((�)0,k)0,k)0,k) for some large k.
Because GOR1 has a depth-first component, it is sensitive to the order of transitions in TNFA. If it finds the shortest path
early, then all other paths are just canceled at the first join point with the shortest path (because there is no improvement
and further scanning is pointless). In the opposite case GOR1 finds long paths before short ones, and whenever it finds an
improved (shorter) path, it has to schedule configurations for re-scan on the next pass. This causes GOR1 to make more
passes and scan more configurations on each pass, which makes it significantly slower. Arguably this bias is a weakness
of GOR1 — GTOP is more robust in this respect.

• When adding negative tags, we add a single transition for the topmost closing tag (it corresponds to the nil-parenthesis,
which has the height of a closing parenthesis). Then we map this tag to the full range of its nested tags, including itself
and the pair opening tag. An alternative approach is to add all nested negative tags as TNFA transitions and get rid of the
mapping, but this may result in significant increase of TNFA size and major slowdown (we observed 2x slowdown on
large tests with hundreds of submatch groups).

• Compact representation of nested tags as ranges in T is possible because nested tags occupy consecutive numbers.
• Passing the final state y in tnfa() function allows to link subautomata in a simple and efficient way. It allows to avoid
tracking and patching of subautomaton transitions that go to the final state (when this final state needs to be changed).

10 COMPLEXITY ANALYSIS

Our algorithm consists of three steps: conversion of RE to IRE, construction of TNFA from IRE and simulation of TNFA on
the input string. We discuss time and space complexity of each step in term of the following parameters: n — the length of
input, m — the size of RE with counted repetition subexpressions expanded (each subexpression duplicated the number of
times equal to the repetition counter), and t— the number of capturing groups and subexpressions that contain them.

The first step, conversion of RE to IRE, is given by the functions mark() and enum() from section 3. For each sub-RE, mark()
constructs a corresponding sub-IRE, and enum() performs a linear visit of the IRE (which doesn’t change its structure), there-
fore IRE size is O(m). Each subexpression is processed twice (once by mark() and once by enum()) and processing takes O(1)
time, therefore total time is O(m).

The second step, TNFA construction, is given by the tnfa() function (algorithm 7). At this step counted repetition is unrolled,
so TNFA may be much larger than IRE. For each subexpressions of the form (i, j, rn,m) automaton for r is duplicated exactly m
times if m ≠ ∞, or max(1, n) times otherwise (at each step of recursion the counter is decremented and one copy of automaton
is constructed). Other tnfa() clauses are in one-to-one correspondence with sub-IRE. Each clause adds only a constant number
of states and transitions (including calls to ntags() and excluding recursive calls). Therefore TNFA contains O(m) states and
transitions. The size of mapping T is O(t), which is O(m). Therefore total TNFA size is O(m). Time complexity is O(m),
because each clause takes O(1) time (excluding recursive calls), and total O(m) clauses are executed.

The third step, TNFA simulation, is given by algorithm 1. Initialization at lines 2-5 takes O(1) time. Main loop at lines 6-11 is
executed at most n times. The size of closure is bounded by TNFA size, which is O(m) (typically closure is much smaller than
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1 tnfa(r, y)
2 if r = (0, 0, �) then
3 return (Σ, {y}, ∅, ∅, y, y)
4 else if r = (0, 0, �) ∣�∈Σ then
5 return (Σ, {x, y}, ∅, {(x, �, �, y)}, x, y)
6 else if r = (0, 0, r1 ⋅ r2) then
7 (Σ, Q2, T2,Δ2, x, y) = tnfa(r2, y)
8 (Σ, Qu, Tu,Δ2, z, x) = tnfa(r1, x)
9 return (Σ, Q1 ∪Q2, T1 ∪ T2,Δ1 ∪ Δ2, z, y)
10 else if r = (0, 0, r1 ∣ r2) then
11 (Σ, Q2, T2,Δ2, x2, y) = tnfa(r2, y)
12 (Σ, Q′

2, T2,Δ
′
2, x

′
2, y) = ntags(T2, y)

13 (Σ, Q1, T1,Δ1, x1, x′2) = tnfa(r2, x
′
2)

14 (Σ, Q′
1, T1,Δ

′
1, x

′
1, x2) = ntags(T1, x2)

15 Q = Q1 ∪Q′
1 ∪Q2 ∪Q′

2 ∪ {x}
16 Δ = Δ1 ∪ Δ′1 ∪ Δ2 ∪ Δ

′
2 ∪

{
(x, 1, �, x1), (x, 2, �, x′1)

}
17 return (Σ, Q, T1 ∪ T2,Δ, x, y)
18 else if r = (0, 0, rn,m1 ) ∣1<n≤m≤∞ then
19 (Σ, Q1, T1,Δ1, x, y) = tnfa((0, 0, r

n−1,m−1
1 ), y)

20 (Σ, Q2, T2,Δ2, z, x) = tnfa(r1, x)
21 return (Σ, Q1 ∪Q2, T1 ∪ T2,Δ1 ∪ Δ2, z, y)

22 else if r = (0, 0, r0,m1 ) then
23 (Σ, Q1, T1,Δ1, x1, y) = tnfa((0, 0, r

1,m
1 ), y)

24 (Σ, Q′
1, T1,Δ

′
1, x

′
1, y) = ntags(T1, y)

25 Q = Q1 ∪Q′
1 ∪ {x}

26 Δ = Δ1 ∪ Δ′1 ∪
{
(x, 1, �, x1), (x, 2, �, x′1)

}
27 return (Σ, Q, T1,Δ, x, y)

28 else if r = (0, 0, r1,∞1 ) then
29 (Σ, Q1, T1,Δ1, z, x) = tnfa(r1, )
30 Q = Q1 ∪ {y}
31 Δ = Δ1 ∪

{
(x, 1, �, z), (x, 2, �, y)

}
32 return (Σ, Q, T1,Δ, z, y)

33 else if r = (0, 0, r1,11 ) then
34 return tnfa(r1, y)

35 else if r = (0, 0, r1,m1 ) ∣1<m<∞ then
36 (Σ, Q1, T1,Δ1, x, y) = tnfa((0, 0, r

1,m−1
1 ), y)

37 (Σ, Q2, T2,Δ2, w, z) = tnfa(r1, z)
38 Δ = Δ1 ∪ Δ2 ∪

{
(z, 1, �, y), (z, 2, �, x)

}
39 return (Σ, Q1 ∪Q2, T1 ∪ T2,Δ, w, y)
40 else if r = (i, j, r1) ∣i≠0 then
41 (Σ, Q1, T1,Δ1, z, x) = tnfa((0, 0, r1), x)
42 Q = Q1 ∪ {w, y}
43 T = T1 ∪

{
(2i−1, j, 0,−1), (2i, j, 0,−1)

}
44 Δ = Δ1 ∪

{
(w, 1, 2i−1, z), (x, 1, 2i, y)

}
45 return (Σ, Q, T ,Δ, w, y)

46 ntags(T , y)
47 (topen, tlast) = min max

{
t ∣ (t, , , ) ∈ T

}
48 (tclos, s, , ) = (t, , , ) ∈ T ∣ t = topen + 1
49 T ′ =

{
(t, , , ) ∈ T ∣ t ≠ tclos

}
∪
{
(tclos, s, topen, tlast)

}
50 Δ =

{
(x, 1,−tclos, y)

}
51 return (Σ, {x, y}, T ′,Δ, x, y)

y

(a) tnfa
(
(0, 0, �), y

)

x y
�∕�

(b) tnfa
(
(0, 0, a), y

)

z tnfa(r1, x) x tnfa(r2, y) y

(c) tnfa
(
(0, 0, r1 ⋅ r2), y

)

x

x1 tnfa(r1, x′2) x′2 ntags(T2 , y)

x′1 ntags(T1, x2) x2
tnfa(r2

, y)
y

1∕�

2∕�

(d) tnfa
(
(0, 0, r1 ∣ r2), y

)

z tnfa(r1, x) x tnfa((0, 0, rn−1,m−11 ), y) y

(e) tnfa
(
(0, 0, rn,m1 ), y

)
∣1<n≤m≤∞

x

x1 tnfa((0, 0, r 1,m
1 ), y)

x′1
ntags(

T1, y)
y

1∕�

2∕�

(f) tnfa
(
(0, 0, r0,m1 ), y

)

z tnfa(r1, x) x y
2∕�

1∕�

(g) tnfa
(
(0, 0, r1,∞1 ), y

)

w tnfa(r1, z) z x tnfa((0, 0, r1,m−11 ), y) y
2∕�

1∕�

(h) tnfa
(
(0, 0, r1,m1 ), y

)
∣1<m<∞

w z tnfa((0, 0, r1), x) x y
1∕2i−1 1∕2i

(i) tnfa
(
(i, j, r1), y

)
∣i≠ 0

x y
1∕ − tclos

(j) ntags
(
T , y

)

ALGORITHM 7: TNFA construction.
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that). Each iteration of the loop includes the following steps. At line 7 the call to closure() takes O(m2 t) time if GOR1 from
section 4 is used, because GOR1 makes O(m2) scans (closure contains O(m) states and O(m) transitions), and at each scan we
may need to compare the tag sequences using compare() from section 7, which takes O(t) time (there is O(t) unique tags and
we consider paths with at most one �-loop, so the number of occurrences of each tag is bounded by the repetition counters,
which amounts to a constant factor). At line 8 the call to update result() takes O(m t) time, because closure size is O(m), and
the length of the tag sequence is O(t) as argued above. At line 9 the call to update ptables() takes O(m2) time if the advanced
algorithm from section 7 is used. At line 10 scanning the closure for reachable states takes O(m) time, because closure size is
O(m). The sum of the above steps is O(m2 t), so the total time of loop at lines 6-11 is O(nm2 t). The final call to closure() at
line 12 takes O(m2 t), and final result() at line 14 takes O(m t). The total time taken by matcℎ() is therefore O(nm2 t).

Space complexity of matcℎ() is as follows. The size of the closure is O(m). Precedence matrices B and D take O(m2) space.
Match results take O(m t) space in case of POSIX-style offsets, because the number of parallel results is bounded by the closure
size, and each result takes O(t) space. In case of parse trees, match results take O(mn) space, because each result accumulates
all loop iterations. The size of the path contextU isO(m2) because GOR1 makesO(m2) scans and thus adds no more thanO(m2)
tags in the tree. The total space taken by matcℎ() is therefore O(m2) for POSIX-style offsets and O(m(m + n)) for parse trees.

11 BENCHMARKS

In order to present benchmark results in a meaningful way, we show the time of each algorithm relative to the “baseline” leftmost
greedy algorithm, which has no overhead on disambiguation and thus represents best-case matching time. We measure the speed
of each algorithm in characters per second and divide it by the speed of leftmost greedy algorithm. This allows us to show the
net overhead on POSIX disambiguation. To relate our implementations to the real world, we include Google RE2 library (it
uses leftmost greedy disambiguation and serves as a reference, not as a competing implementation). All implementations can
be found in RE2C source code19. Our set of benchmarks consists of three subsets:

1. Real-world benchmarks. These include very large REs containing thousands of characters and hundreds of capturing
groups (parser for HTTP message headers conforming to RFC-7230, URI parser conforming to RFC-3986, IPv6 address
parser); medium-sized REs containing hundreds of characters and dozens of capturing groups (simplified parsers for
HTTP headers and URI, IPv4 address parser, simple date parser); and small REs with less than a hundred characters and
about five capturing groups (simplified parsers for IPv4 and date).

2. Artificial benchmarks with high level of ambiguity. All these REs are restricted to a single alphabet symbol used with
various combinations of RE operators (union, product, iteration and bounded repetition).

3. A series of pathological examples that demonstrates worst-case behavior of the naive update ptables() algorithm.
We benchmark four variations of our algorithm: “Okui-Suzuki” is the main variation (it uses advanced update ptables()
algorithm and GOR1), “GTOP Okui-Suzuki” uses GTOP, “naive Okui-Suzuki” uses naive update ptables() algorithm, and
“lazy Okui-Suzuki” differs from the main variation as described in section 8. Besides our algorithm, we also benchmark Kuk-
lewicz and Cox algorithms. Kuklewicz algorithm is described in detail in9. As for the Cox algorithm, the only description we
are aware of is the prototype implementation16. We found a number of flaws in it, as described in the introduction. Our imple-
mentation, therefore, differs from the original: we add support for bounded repetition, we use GOR1 for closure construction,
and we use a fast forward pre-processing phase to find the matching string prefix before running the backward phase (forward
phase ignores submatch and merely performs recognition). Benchmark results show the following:

• Okui-Suzuki algorithm degrades with increased closure size. This is understandable, as the algorithm performs pairwise
comparison of closure states to compute precedence matrices. Naive update ptables() algorithm degrades extremely fast,
and the advanced algorithm behaves much better (though it may incur slight overhead in simple cases).

• Kuklewicz algorithms degrades with increased closure size and increased number of tags. This is not surprising, as the
algorithm has per-state and per-tag loop used to compute precedence matrix. On real-world tests with many capturing
groups Kuklewicz algorithm is much slower than Okui-Suzuki algorithm.
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FIGURE 3 Benchmarks.
Real-world tests have labels of the form “title m,k”, where m is RE size and k is the number of capturing groups.

• Cox algorithm degrades with increased number of tags. The bottleneck of the algorithm is copying of offset arrays (each
array contains a pair of offsets per tag). Using GOR1 instead of naive depth-first search increases the amount of copying
(though asymptotically faster), because depth-first scan order allows to use a single buffer array that is updated and restored
in-place. However, copying is required elsewhere in the algorithm, and in general it is not suited for RE with many
submatch groups. On real-world tests the Cox algorithm is so slow that it did not fit into the plot space.
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• Lazy variation of Okui-Suzuki degrades with increased cache size and the size of path context. This may happen because
of long input strings and because of high level of ambiguity in RE (in such cases lazy algorithm does all the work of non-
lazy algorithm, but with the additional overhead on cache lookups/insertions and accumulation of data from the previous
steps). On real-world tests lazy variation of Okui-Suzuki is fast.

• GOR1 and GTOP performance is similar.
• RE2 performance is close to our leftmost greedy implementation.

One particularly interesting group of tests that show the above points are RE of the form (ak1 |… |akn)0,∞ (artificial tests
1-4) and their variations with more capturing groups (artificial tests 5-8). For example, consider (a{2}|a{3}|a{5})* and
(((a){2})|((a){3})|((a){5}))*. Given input string a...a, submatch on the last iteration varies with the length of input:
it equals aaaaa for 5n-character string, aa for strings of length 5n − 3 and 5n − 1, and aaa for strings of length 5n − 2 and
5n + 1 (n ∈ ℕ). Variation continues infinitely with a period of five characters. We can increase variation period and the range
of possible submatch results by choosing larger counter values. This causes increased closure size — hence the slowdown of
Okui-Suzuki algorithm on tests 1 to 4 and 5 to 8 (especially pronounced for the “naive Okui-Suzuki” variation), and the more
gentle slowdown of Kuklewicz algorithm on the same ranges. Adding more capturing groups increases the number of tags —
hence the slowdown of Kuklewicz and Cox algorithms on 5-8 group compared to 1-4 group.

In closing, we would like to point out that correctness of all benchmarked implementations has been tested on a subset of Glenn
Fowler test suite18 (we removed tests for backreferences and start/end anchors), extended by Kuklewicz and further extended by
ourselves to some 500 tests. All algorithms except Cox algorithm have passed the tests (Cox algorithm fails in about 10 cases
for the reasons discussed in the introduction).

12 CONCLUSIONS AND FUTUREWORK

The main result of our work is a practical POSIX matching algorithm that can be used on real-world regular expressions, does
not require complex preprocessing and incurs relatively modest disambiguation overhead compared to other algorithms. We
tried to present the algorithm in full, with a few useful variations, in order to make implementation easy for the reader.

We see a certain tradeoff between speed and memory usage: bounded-memory version of the algorithm performs a lot of
redundant work, and the lazy version avoids redundant work at the expense of potentially unbounded memory usage. Both
approaches seem not ideal; perhaps in practice a hybrid approach can be used.

It is still an open question to us whether it is possible to combine the elegance of the derivative-based approach to POSIX
disambiguation with the practical efficiency of NFA-based methods. The derivative-based approach constructs match results in
such order that longest-leftmost result is always first. We experimented with recursive descent parsers that embrace the same
ordering idea and construsted a prototype implementation.

It would be interesting to apply our approach to automata with counters instead of unrolling bounded repetition.
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APPENDIX

Proof of theorem 1
Lemma 5 (Unique position mapping from all PTs to IRE). If t, s ∈ PT (r) for some IRE r and there is a common position
p ∈ Pos(t) ∩ Pos(s), then p corresponds to the same position p′ ∈ Pos(r) for both t and s.
Proof. The proof is by induction on the length of p. Induction basis: p = p′ = Λ (the roots of t and s correspond to the root of
e). Induction step: suppose that for any position p of length |p| < ℎ the lemma is true. We will show that if exists a k ∈ ℕ such
that p.k ∈ Pos(t) ∩ Pos(s), then p.k corresponds to the same position p′.k′ in r for both t and s (for some k′ ∈ ℕ). If r|p′ is
an elementary IRE of the form (i, j, �) or (i, j, �), or if at least one of t|p and s|p is ∅, then k doesn’t exist. Otherwise r|p′ is a
compound IRE and both t|p and s|p are not∅. If r|p′ is a union (i, j, (i1, j1, r1)|(i2, r2, j2)) or a product (i, j, (i1, j1, r1) ⋅(i2, r2, j2)),
then both t|p and s|p have exactly two subtrees, and positions p.1 and p.2 in t and s correspond to positions p′.1 and p′.2 in r.
Otherwise, r|p′ is a repetition (i, j, rn,m1 ) and for any k ≥ 1 position p.k in t and s corresponds to position p′.1 in r.
Theorem 1. P-order < is a strict total order on PT (e,w) for any IRE e and string w.

Proof. We need to show that < is transitive and trichotomous.
(1) Transitivity: we need to show that ∀t, s, u ∈ PT (e,w) ∶ (t < s ∧ s < u) ⇐⇒ t < u.

Let t <p s and s <q u for some positions p, q, and let r = min(p, q).
First, we show that ‖t‖posr > ‖u‖posr . If p ≤ q, we have ‖t‖posp > ‖s‖posp (implied by t <p s) and ‖s‖posp ≥ ‖u‖posp (implied
by s <q u ∧ p ≤ q), therefore ‖t‖posp > ‖u‖posp . Otherwise p > q, we have ‖t‖posq > ‖u‖posq (implied by s <q u) and
‖t‖posq = ‖s‖posq (implied by t <p s ∧ q < p), therefore ‖t‖posq > ‖u‖posq .
Second, we show that ∀r′ < r ∶ ‖t‖posr′ = ‖u‖posr′ . We have ‖t‖posr′ = ‖s‖posr′ (implied by t <p s∧r′ < p) and ‖s‖posr′ = ‖u‖posr′(implied by s <q u ∧ r′ < q), therefore ‖t‖posr′ = ‖u‖posr′ .

(2) Trichotomy: we need to show that ∀t, s ∈ PT (e,w) exactly one of t < s, s < t or t = s holds. Consider the set of positions
where norms of t and s disagree P = {p ∈ Pos(t) ∪ Pos(s) ∶ ‖t‖posp ≠ ‖s‖posp }.
(2.1) First case: P ≠ ∅. We show that in this case exactly one of t < s or s < t is true (t ≠ s is obvious).

First, we show that at least one of t < s or s < t is true. Let p = min(P ); it is well-defined since P is non-
empty, finite and lexicographically ordered. For all q < p we have ‖t‖posq = ‖s‖posq (by definition of p and because
‖t‖posq = ∞ = ‖s‖posq if q ∉ Pos(t) ∪ Pos(s)). Since ‖t‖posp ≠ ‖s‖posp , we have either t <p s or t <p s.
Second, we show that at most one of t < s or s < t is true, i.e. < is asymmetric: ∀t, s ∈ PT (e,w) ∶ t < s ⇐⇒ s ≮ t.
Suppose, on the contrary, that t <p s and s <q t for some p, q. Without loss of generality let p ≤ q. On one hand
t <p s implies ‖t‖posp > ‖s‖posp . But on the other hand s <q t ∧ p ≤ q implies ‖t‖posp ≤ ‖s‖posp . Contradiction.

(2.2) Second case: P = ∅. We show that in this case t = s.
We have Pos(t) = Pos(s)— otherwise there is a position with norm∞ in only one of the trees. Therefore t and s
have identical node structure. By lemma 5 any position in t and s corresponds to the same position in e. Since any
position in e corresponds to a unique explicit submatch index, it must be that submatch indices of all nodes in t and
s coincide. Consider some position p ∈ Pos(t). If p corresponds to an inner node, then both t|p and s|p are of the
form T i(…). Otherwise, p corresponds to a leaf node, which can be either ∅ or � or �. Since all three have different
norms (−1, 0 and 1 respectively), and since ‖t‖posp = ‖s‖posp , it must be that t|p and s|p are identical.

Proof of theorem 2
Lemma 6. If t, s ∈ PT (e,w) for some IRE e and string w, then t ∼ s⇔ ∀p ∶ ‖t‖subp = ‖s‖subp .
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Proof. Forward implication: let t ∼ s and suppose, on the contrary, that ∃p = min{q ∣ ‖t‖subq ≠ ‖s‖subq }, then either t ≺p s (if
‖t‖subp > ‖s‖subp ) or s ≺p t (if ‖t‖subp < ‖s‖subp ), both cases contradict t ∼ s. Backward implication: ∀p ∶ ‖t‖subp = ‖s‖subp implies
∄p ∶ t ≺p s and ∄q ∶ s ≺q t, which implies t ∼ s.
Theorem 2. S-order ≺ is a strict weak order on PT (e,w) for any IRE e and string w.

Proof. We need to show that ≺ is asymmetric and transitive, and incomparability relation ∼ is transitive.
(1) Asymmetry: we need to show that ∀t, s ∈ PT (e,w) ∶ t ≺ s ⇐⇒ s ⊀ t.

Suppose, on the contrary, that t ≺p s and s ≺q t for some p, q. Without loss of generality let p ≤ q. On one hand t ≺p s
implies ‖t‖subp > ‖s‖subp . But on the other hand s ≺q t ∧ p ≤ q implies ‖t‖subp ≤ ‖s‖subp . Contradiction.

(2) Transitivity: we need to show that ∀t, s, u ∈ PT (e,w) ∶ (t ≺ s ∧ s ≺ u) ⇐⇒ t ≺ u.
Let t ≺p s and s ≺q u for some positions p, q, and let r = min(p, q).
First, we show that ‖t‖subr > ‖u‖subr . If p ≤ q, we have ‖t‖subp > ‖s‖subp (implied by t ≺p s) and ‖s‖subp ≥ ‖u‖subp (implied
by s ≺q u ∧ p ≤ q), therefore ‖t‖subp > ‖u‖subp . Otherwise p > q, we have ‖t‖subq > ‖u‖subq (implied by s ≺q u) and
‖t‖subq = ‖s‖subq (implied by t ≺p s ∧ q < p), therefore ‖t‖subq > ‖u‖subq .
Second, we show that ∀r′ < r ∶ ‖t‖subr′ = ‖u‖subr′ . We have ‖t‖subr′ = ‖s‖subr′ (implied by t ≺p s∧r′ < p) and ‖s‖subr′ = ‖u‖subr′(implied by s ≺q u ∧ r′ < q), therefore ‖t‖subr′ = ‖u‖subr′ .

(3) Transitivity of incomparability: we need to show that ∀t, s ∈ PT (e,w) ∶ (t ∼ s ∧ s ∼ u) ⇐⇒ t ∼ u.
By forward implication of lemma 6 t ∼ s ⇒ ∀p ∶ ‖t‖subp = ‖s‖subp and s ∼ u ⇒ ∀p ∶ ‖s‖subp = ‖u‖subp , therefore
(t ∼ s ∧ s ∼ u)⇒ ∀p ∶ ‖t‖subp = ‖u‖subp ⇒ t ∼ u by backward implication of lemma 6.

Proof of Theorem 3
Lemma 7 (Comparability of subtrees). For a given IRE e, string w and position p, if t, s ∈ PT (e,w), p ∈ Sub(t) ∪Sub(s) and
‖t‖subq = ‖s‖subq ∀q ≤ p, then ∃e′, w′ ∶ t|p, s|p ∈ PT (e′, w′).
Proof. By induction on the length of p. Induction basis: p = Λ, let e′ = e and w′ = w. Induction step: suppose that the lemma
is true for any position p of length |p| < ℎ, we will show that it is true for any position p.k of length ℎ (k ∈ ℕ). Assume that
p.k ∈ Sub(t) ∩ Sub(s) (otherwise either p.k ∉ Sub(t) ∪ Sub(s), or exactly one of ‖t‖subp.k , ‖s‖subp.k is∞— in both cases lemma
conditions are not satisfied). Then both t|p and s|p have at least one subtree: let t|p = T (t1,… , tn) and s|p = T (s1,… , sm), where
n, m ≥ k. By induction hypothesis ∃e′, w′ ∶ t|p, s|p ∈ PT (e′, w′). We havew′ = str(t1)… str(tn) = str(s1)… str(sm). We show
that str(tk) = str(sk). Consider positions p.j for j ≤ k. By definition the set of submatch positions contains siblings, therefore
p.j ∈ Sub(t) ∩ Sub(s). By lemma conditions ‖t‖subp.j = ‖s‖subp.j (because p.j ≤ p.k), therefore |str(t1)… str(tk−1)| = ∑k−1

j=1 ‖t‖subj
=

∑k−1
j=1 ‖s‖subj = |str(s1)… str(sk−1)| and |str(tk)| = |str(sk)|. Consequently, str(tk) and str(sk) start and end at the same

character in w′ and therefore are equal. Finally, have t|p.k, s|p.k ∈ PT (r|p.k, str(tk)) and induction step is complete.
Theorem 3. Let tmin be the <-minimal tree in PT (e,w) for some IRE e and stringw, and let Tmin be the class of the ≺-minimal
trees in PT (e,w). Then tmin ∈ Tmin.

Proof. Consider any t ∈ Tmin. From t we can construct another tree t′ in the following way. Consider all positions p ∈ Sub(t)
which are not proper prefixes of another position in Sub(t). For each such position, t|p is itself a PT for some sub-IRE r′ and
substringw′: t|p ∈ PT (r′, w′). Let t′min be the<-minimal tree in PT (r′, w′) and substitute t|p with t′min. Let t′ be the tree resultingfrom all such substitutions (note that they are independent of the order in which we consider positions p). Since substitutions
preserve s-norm at submatch positions, we have t′ ∈ Tmin. We will show that t′ = tmin.
Suppose, on the contrary, that t′ ≠ tmin. Then tmin <p t′ for some decision position p. It must be that p ∉ Sub(t′) ∪ Sub(tmin),
because otherwise ‖tmin‖subp = ‖tmin‖posp > ‖t′‖posp = ‖t′‖subp and ‖tmin‖posp = ‖t′‖posp ∀q < p implies ‖tmin‖subp = ‖t′‖subp ∀q < p,
which means that tmin ≺p t′, which contradicts to t′ ∈ Tmin. Thus p is a non-submatch position. Let p = p′.p′′, where p′ is the



23

longest proper prefix of p in Sub(u) ∪ Sub(tmin). For all q ≤ p′ it must be that ‖u‖subq = ‖tmin‖subq , otherwise ‖u‖subq ≠ ‖tmin‖subqimplies ‖u‖posq ≠ ‖tmin‖posq , which contradicts to tmin <p t′ because q ≤ p′ < p. By lemma 7, subtrees t′p′ and tmin|p′ arecomparable: ∃r′, w′ ∶ t′|p′ , tmin|p′ ∈ PT (r′, w′). By construction of t′, subtree t′p′ is <-minimal in PT (r′, w′), but at the same
time tmin <p′.p′′ u implies tmin|p′ <p′′ u|p′ . Contradiction.

Proof of Theorem 4
Lemma 8. Let s, t ∈ PT (e,w) for some IRE e and string w. If s ∼ t, then Φℎ(s) = Φℎ(t) ∀ℎ.
Proof. By induction on the height of e. Induction basis: for height 1 we have |PT (e,w)| ≤ 1 ∀w, therefore s = t and Φℎ(s) =
Φℎ(t). Induction step: height is greater than 1, therefore s = T d(s1,… , sn) and t = T d(t1,… , tm). If d = 0, then Φℎ(s) =
str(s) = w = str(t) = Φℎ(t). Otherwise d ≠ 0. By lemma 6 we have s ∼ t⇒ ‖s‖subp = ‖t‖subp ∀p. This implies n = m (otherwise
the norm of subtree at position min(n, m) + 1 is ∞ for only one of s, t). Therefore Φℎ(s) = ⟨ℎ+1Φℎ+1(s1),… ,Φℎ+1(sn)⟩ℎ and
Φℎ(t) = ⟨ℎ+1Φℎ+1(t1),… ,Φℎ+1(tn)⟩ℎ. It suffices to show that ∀i ≤ n ∶ Φℎ+1(si) = Φℎ+1(ti). We have ‖si‖subp = ‖ti‖subp ∀p
(implied by ‖s‖subp = ‖t‖subp ∀p), therefore by lemma 6 si ∼ ti, and by lemma 7 ∃e′, w′ ∶ si, ti ∈ PT (e′, w′), where the height
of e′ is less than the height of e. By induction hypothesis Φℎ+1(si) = Φℎ+1(ti).

Lemma 9. Let s, t ∈ PT (e,w) for some IRE e and string w. If s ≺p t and |p| = 1, then Φℎ(s) < Φℎ(t) ∀ℎ.
Proof. By lemma conditions |p| = 1, therefore p ∈ ℕ. At least one of s|p and t|p must exist (otherwise ‖s‖subp = ∞ = ‖t‖subpwhich contradicts s ≺p t), therefore e is a compound IRE and s, t can be represented as s = T d(s1,… , sn) and t = T d(t1,… , tm)
where d ≠ 0 because Λ is a prefix of decision position p. Let k be the number of frames and let j be the fork, then:

Φℎ(s) = ⟨ℎ+1Φℎ+1(s1)…Φℎ+1(sn)⟩ℎ = �0a1… aj�j
||| jaj+1… akk

Φℎ(t) = ⟨ℎ+1Φℎ+1(t1) …Φℎ+1(tm)⟩ℎ = �0a1… aj�j
||| �jaj+1… ak�k

Consider any i < p (i ∈ ℕ). By lemma conditions s ≺p t, therefore ‖s‖subq = ‖t‖subq ∀q < p, and in particular ‖si‖subq = ‖ti‖subq ∀q,
therefore by lemma 6 si ∼ ti, therefore by lemma 8 Φℎ+1(si) = Φℎ+1(ti). Let traces(Φℎ(s),Φℎ(t)) =

(
(�0,… , �k), (�′0,… , �′k)

).
(1) Case∞ = ‖s‖subp > ‖t‖subp . In this case sp does not exist and fork happens immediately after Φℎ+1(sp−1), Φℎ+1(tp−1):

Φℎ(s) = ⟨ℎ+1Φℎ+1(s1)…Φℎ+1(sp−1)
||| ⟩ℎ

Φℎ(t) = ⟨ℎ+1Φℎ+1(t1) …Φℎ+1(tp−1)
||| Φℎ+1(tp)…Φℎ+1(tm)⟩ℎ

Fork frame is the last one, therefore both j and �j contain the closing parenthesis ⟩ℎ and we have �j = �′j = ℎ. For all
i < j we have �i = �′i = −1. Therefore �i = �′i ∀i and Φℎ(s) ∼ Φℎ(t). Since first(j) is ⟩ and first(�j) is one of ⟨ and ⟨⟩,
we have Φℎ(s) ⊂ Φℎ(t). Therefore Φℎ(s) < Φℎ(t).

(2) Case∞ > ‖s‖subp > ‖t‖subp = −1. In this case both sp and tp exist, sp is not ∅ and tp is ∅, and fork happens immediately
after Φℎ+1(sp−1), Φℎ+1(tp−1):

Φℎ(s) = ⟨ℎ+1Φℎ+1(s1)…Φℎ+1(sp−1)
||| ⟨ℎ+2 x ⟩ℎ+1 Φℎ+1(sp+1)…Φℎ+1(sn)⟩ℎ

Φℎ(t) = ⟨ℎ+1Φℎ+1(t1) …Φℎ+1(tp−1)
||| ⟨⟩ℎ+1 Φℎ+1(tp+1) …Φℎ+1(tm)⟩ℎ

(2.1) If the fork frame is the last one, then both j and �j contain the closing parenthesis ⟩ℎ and we have �j = �′j = ℎ.(2.2) Otherwise the fork frame is not the last one. We have minℎ(j), minℎ(�j) ≥ ℎ + 1 and lastℎ(�j) = ℎ + 1 (the last
parenthesis in �j is either ⟨ℎ+1 if p = 1 and sp−1 does not exist, or else one of ⟩ℎ+1 and ⟨⟩ℎ+1), therefore �j = �′j = ℎ+1.For subsequent frames i such that j < i < k we have �i = �′i = ℎ + 1 (on one hand �i, �′i ≤ ℎ + 1 because
�j = �′j = ℎ+1, but on the other hand minℎ(i), minℎ(�i) ≥ ℎ+1). For the last pair of frames we have �k = �′k = ℎ(they both contain the closing parenthesis ⟩ℎ).

In both cases �i = �′i ∀i ≥ j. Since �i = �′i = −1 ∀i < j, we have �i = �′i ∀i and therefore Φℎ(s) ∼ Φℎ(t). Since
first(j) = ⟨< ⟨⟩ = first(�j) we have Φℎ(s) ⊂ Φℎ(t). Therefore Φℎ(s) < Φℎ(t).
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(3) Case∞ > ‖s‖subp > ‖t‖subp ≥ 0. In this case both sp and tp exist and none of them is ∅, and fork happens somewhere after
the opening parenthesis ⟨ℎ+2 and before the closing parenthesis ⟩ℎ+1 in Φℎ(sp), Φℎ(tp):

Φℎ(s) = ⟨ℎ+1Φℎ+1(s1)…Φℎ+1(sp−1) ⟨ℎ+2 x ||| y ⟩ℎ+1 Φℎ+1(sp+1)…Φℎ+1(sn)⟩ℎ
Φℎ(t) = ⟨ℎ+1Φℎ+1(t1) …Φℎ+1(tp−1) ⟨ℎ+2 x ||| z ⟩ℎ+1 Φℎ+1(tp+1) …Φℎ+1(tm)⟩ℎ

From ‖s‖subp > ‖t‖subp ≥ 0 it follows that sp contains more alphabet symbols than tp. ConsequentlyΦℎ+1(sp) contains more
alphabet symbols, and thus spans more frames than Φℎ+1(tp). Let l be the index of the frame �l that contains the closing
parenthesis ⟩ℎ+1 of Φℎ+1(tp). By the above reasoning Φℎ+1(sp) does not end in frame l, therefore l does not contain the
closing parenthesis ⟩ℎ+1 and we have minℎ(l) ≥ ℎ + 2 and minℎ(�l) = ℎ + 1. Furthermore, note that minℎ(x), minℎ(y),
minℎ(z) ≥ ℎ+2, therefore lastℎ(�j) ≥ ℎ+2 (including the case when x is empty), and for all frames i such that j ≤ i < l
(if any) we have �i, �′i ≥ ℎ+2. Consequently, for l-th frame we have �l ≥ ℎ+2 and �′l = ℎ+1, thus �l > �′l. For subsequentframes i such that l < i < k we have minℎ(i), minℎ(�i) ≥ ℎ + 1, therefore �i ≥ ℎ + 1 and �′i = ℎ + 1, thus �i ≥ �′i. Forthe last pair of frames we have �k = �′k = ℎ, as they both contain the closing parenthesis ⟩ℎ. Therefore Φℎ(s) ⊏ Φℎ(t),
which implies Φℎ(s) < Φℎ(t).

Lemma 10. Let s, t ∈ PT (r, w) for some IRE r and string w. If s ≺p t, then Φℎ(s) < Φℎ(t) ∀ℎ.
Proof. The proof is by induction on the length of p. Induction basis for |p| = 1 is given by lemma 9. Induction step: suppose
that the lemma is correct for all p of length |p| < ℎ and let |p| = ℎ (ℎ ≥ 2). Let p = p′.p′′ where p′ ∈ ℕ. At least one of s|p and
t|p must exist (otherwise ‖s‖subp = ∞ = ‖t‖subp which contradicts s ≺p t), therefore both e and e|p′ are compound IREs and s, t
can be represented as s = T d(s1,… , sn) and t = T d(t1,… , tm) where s′ = sp′ = T d′(s′1,… , s′n′) and t′ = tp′ = T d′(t′1,… , t′m′)and both d, d′ ≠ 0 (because Λ and p′ are prefixes of decision position p). Therefore Φℎ(s), Φℎ(t) can be represented as follows:

Φℎ(s) = ⟨ℎ+1Φℎ+1(s1)…Φℎ+1(sp′−1)

Φℎ+1(s′)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
⟨ℎ+2Φℎ+2(s′1)…Φℎ+2(s′n′)⟩ℎ+1 Φℎ+1(sp′+1)Φℎ+1(sn)⟩ℎ

Φℎ(t) = ⟨ℎ+1Φℎ+1(t1)…Φℎ+1(tp′−1) ⟨ℎ+2Φℎ+2(t′1)…Φℎ+2(t′m′)⟩ℎ+1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Φℎ+1(t′)

Φℎ+1(tp′+1)Φℎ+1(tm)⟩ℎ

Consider any i < p′. By lemma conditions s ≺p t, therefore ‖s‖subq = ‖t‖subq ∀q < p, and in particular ‖si‖subq = ‖ti‖subq ∀q,
therefore by lemma 6 si ∼ ti, therefore by lemma 8 Φℎ+1(si) = Φℎ+1(ti). Since p′ < p we have ‖s‖subq = ‖t‖subq ∀q ≤ p′ and by
lemma 7 ∃e′, w′ ∶ s′, t′ ∈ PT (e′, w′). Since ‖s′‖subq = ‖s‖subp′.q ∀q and ‖t′‖subq = ‖t‖subp′.q ∀q, we have s′ ≺p′′ t′. Since |p′′| < |p|
by induction hypothesis we have Φℎ+1(s′) < Φℎ+1(t′). If j is the fork and f ≤ j ≤ k, then Φℎ(s), Φℎ(t) can be represented as:

Φℎ(s) = �0a1… af�
1
f

Φℎ+1(s′)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

�2faf+1… aj�j
||| jaj+1… ak

1
k 

2
kak+1… all

Φℎ(t) = �0a1… af�
1
f �2faf+1… aj�j

||| �jaj+1… ak�
1
k

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Φℎ+1(t′)

�2kak+1… al�l

Let traces(Φℎ(s),Φℎ(t)) =
(
(�0,… , �l), (�′0,… , �′l)

) and traces(Φℎ+1(s′),Φℎ+1(t′)) =
(
(�ℎ,… , �k), (�′ℎ,… , �′k)

). We show
that for frames i such that j ≤ i < k we have �i = �i ∧ �′i = �′i and for subsequent frames k ≤ i ≤ l we have �i = �′i.
(1) Case i = j < k ≤ l (the fork frame). Since we have shown that Φℎ+1(si) = Φℎ+1(ti) ∀i < p′, and since Φℎ+1(s′) and

Φℎ+1(t′) have nonempty common prefix ⟨ℎ+2, it follows that lasℎt(Φℎ(s) ⊓ Φℎ(t)) = lastℎ(Φℎ+1(s′) ⊓ Φℎ+1(t′)). From
j < k it follows that j and �j end before ak and are not changed by appending 2k and �2k. Therefore �j = �j ∧ �′j = �′j .

(2) Case j < i < k ≤ l. The computation of �i, �′i depends only on �j , �′j , or which we have shown �j = �j ∧ �′j = �′j in case(1), and on Φℎ+1(s′), Φℎ+1(t′), which are not changed by appending 2k and �2k since i < k. Therefore �i = �i ∧ �′i = �′i .
(3) Case j ≤ i = k < l. We have minℎ(1k ) = minℎ(�1k) = ℎ + 1 and minℎ(2k ) = minℎ(�2k) ≥ ℎ + 1. None of the preceding

frames after the fork contain parentheses with height less than ℎ + 1, therefore �k = �′k = ℎ + 1.
(4) Case j ≤ k < i < l. We have �i = �′i = ℎ + 1, because �k = �′k = ℎ + 1 and minℎ(i), minℎ(�i) ≥ ℎ + 1.
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(5) Case j ≤ k ≤ i = l. We have �l = �′l = ℎ, because both l and �l contain the closing parenthesis ⟩ℎ.
We have shown that �i = �i ∧ �′i = �′i ∀i ∶ j ≤ i < k and �i = �′i ∀i ∶ k ≤ i ≤ l. It trivially follows that Φℎ+1(s′) ⊏ Φℎ+1(t′)
⇒ Φℎ(s) ⊏ Φℎ(t) and Φℎ+1(s′) ∼ Φℎ+1(t′)⇒ Φℎ(s) ∼ Φℎ(t). Because none of Φℎ+1(s′), Φℎ+1(t′) is a proper prefix of another,
Φℎ+1(s′) ⊂ Φℎ+1(t′)⇒ Φℎ(s) ⊂ Φℎ(t). Therefore Φℎ+1(s′) < Φℎ+1(t′)⇒ Φℎ(s) < Φℎ(t) (the premise has been shown).
Theorem 4. If s, t ∈ PT (e,w) for some IRE e and string w, then s ≺ t⇔ Φℎ(s) < Φℎ(t) ∀ℎ.

Proof. Forward implication is given by lemma 10. Backward implication: suppose, on the contrary, that Φℎ(s) < Φℎ(t) ∀ℎ, but
s ⊀ t. Since ≺ is a strict weak order (by theorem 2), it must be that either s ∼ t (then Φℎ(s) = Φℎ(t) ∀ℎ by lemma 8), or t ≺ s
(then Φℎ(t) < Φℎ(s) ∀ℎ by lemma 10). Both cases contradict Φℎ(s) < Φℎ(t) ∀ℎ, therefore assumption s ⊀ t is incorrect.

Correctness of incremental path comparison
Lemma 1 (Frame-by-frame comparison of PEs). If �, � are comparable PE prefixes, c is an alphabet symbol and  is a single-
frame PE fragment, then � < � implies �c < �c .

Proof. Let ((�1,… , �n), (�′1,… , �′n)
)
= traces(�, �) where n ≥ 1. Since �c , �c have one more frame than �, � and the first

n frames are identical to frames of �, �, we can represent traces(�c, �c) as ((�1,… , �n, �n+1), (�′1,… , �′n, �
′
n+1)

).
(1) Case � ∼ � ∧� ⊂ �. In this case �i = �′i ∀i ≤ n, therefore �n+1 = min(�n, minℎ()) = min(�′n, minℎ()) = �′n+1 and �c ∼

�c . Furthermore, first(�c∖�c) = first(�∖�) and first(�c∖�c) = first(�∖�), therefore � ⊂ � ⇐⇒ �c ⊂ �c .
(2) Case � ⊏ �. In this case ∃j ≤ n such that �j > �′j and �i = �′i ∀j < i ≤ n. We show that ∃l ≤ n + 1 such that �l > �′l and

�i = �′i ∀l < i ≤ n + 1, which by definition means that �c ⊏ �c .
(2a) Case j < n. In this case �n = �′n and �n+1 = min(�n, minℎ()) = min(�′n, minℎ()) = �′n+1, therefore l = j.(2b) Case j = n and minℎ() > �′n. In this case �n > �′n and we have �n+1 = min(�n, minℎ()) > �′n and �′n+1 =

min(�′n, minℎ()) = �
′
n, therefore �n+1 > �′n+1 and l = n + 1.(2c) Case j = n and minℎ() ≤ �′n. In this case �n > �′n and we have �n+1 = min(�n, minℎ()) = minℎ() and �′n+1 =

min(�′n, minℎ()) = minℎ(), therefore �n+1 = �′n+1 and l = n.
In both cases �c < �c .
Lemma 2. Minimal paths do not contain tagged �-loops.

Proof. Suppose, on the contrary, that � is a minimal path in some TNFA and that � contains at least one tagged �-loop. We
show that it is possible to construct another path �′ such that �′ < �. Path � can be represented as � = �1�2�3, where
�1 = q0

u|�
⇝ q, �2 = q

�|�
⇝ q is the last tagged �-loop on � and �3 = q

v|
⇝ qf . Let �′ = �1�3 be the path that is obtained

from � by removing the loop �2. Paths � and �′ consume the same input string uv and induce comparable PEs �� and � .
Let ((�1,… , �n), (�′1,… , �′n)

)
= traces(��, �) and let k be the index of the fork frame. By construction of TNFA the loop

�2 must be contained in a sub-TNFA f for sub-IRE of the form e = ( , , e1,∞1 ), as this is the only looping TNFA construct —
see algorithm 7. Let f1 be the sub-TNFA for e1. Path � enters f and iterates through f1 at least twice before leaving f (single
iteration is not enough to create a loop by TNFA construction). Let j be the total number of iterations through f1, and let i be
the index of the last �-loop iteration (note that not all iterations are necessarily �-loops). Consider two possible cases:
(1) Case i = j. In this case fork of �� and � happens immediately after (i − 1)-th iteration:

�� = x0⟨ℎ−1 ⟨ℎx1⟩ℎ… ⟨ℎxi−1⟩ℎ ||| ⟨ℎxi⟩ℎ ⟩ℎ−1xj+1
� = x0⟨ℎ−1 ⟨ℎx1⟩ℎ… ⟨ℎxi−1⟩ℎ ||| ⟩ℎ−1xj+1

Since xi is an �-loop, it is contained in the fork frame of �� . We have minℎ(�) = ℎ and minℎ() ≤ ℎ − 1, therefore
�k = �′k ≤ ℎ−1. Subsequent frames l > k (if any) are identical and thus �l = �′l. Furthermore, first() =⟩ < ⟨= first(�).
Therefore �� ∼ � and � ⊂ �� .
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(2) Case i < j. In this case (i + 1)-th iteration cannot be an �-loop (because we assumed that i-th iteration is the last �-loop),
therefore the fork of �� and � happens inside of i-th iteration of �� and (i + 1)-th iteration of �:

�� = x0⟨ℎ−1 ⟨ℎx1⟩ℎ… ⟨ℎxi−1⟩ℎ⟨ℎy1 ||| y2⟩ℎ⟨ℎxi+1⟩ℎ⟨ℎxi+2⟩ℎ… ⟨ℎxj⟩ℎ ⟩ℎ−1xj+1
� = x0⟨ℎ−1 ⟨ℎx1⟩ℎ… ⟨ℎxi−1⟩ℎ⟨ℎy1 ||| y3 ⟩ℎ⟨ℎxi+2⟩ℎ… ⟨ℎxj⟩ℎ ⟩ℎ−1xj+1

Here y1y2 = xi and y1y3 = xi+1 (i-th iteration is missing from � by construction of �′). Fragment y2 is part of the �-
loop, therefore fork frame of �� contains a parenthesis ⟩ℎ and we have �k = ℎ. On the other hand, y3 contains alphabet
symbols, because xi+1 is not an �-loop and y1 is a part of the �-loop. Therefore fork frame of � ends in y3 and we have
�′k > ℎ. All subsequent frames l > k are identical: if they contain parentheses of height less than ℎ, then �l = �′l < ℎ;
otherwise �l ≤ ℎ and �′l > ℎ. Therefore � ⊏ �� .

In both cases � < �� , which contradicts the fact that � is a minimal path.
Lemma 3. GOR1 and GTOP discard paths with tagged �-loops.

Proof. Suppose that GOR1/GTOP finds path �1�2 where �1 = q0
s|�
⇝ q1 and �2 = q1

�|
⇝ q1 is a tagged �-loop. Both algorithms

construct new paths by exploring transitions from the end state of existing paths, so they can only find �1�2 after they find
�1. Therefore when GOR1/GTOP finds �1�2, it already has some shortest-path candidate �′1 = q0

s|�′
⇝ q1 and must compare

ambiguous paths �1�2 and �′1. There are two possibilities: either �′ = � or �′ < � (the latter means that the algorithm has found
a shorter path to q1 in between finding �1 and �1�2). Let

(
(�1,… , �k), (�′1,… , �′k)

)
= traces(�′, �).

(1) Case �′ = �. Because � is a proper prefix of � , fork happens at the last frame and we have �k = lastℎ(�) and �′k =
min(lastℎ(�), minℎ()). If lastℎ(�) > minℎ(), then �k > �′k and � ⊏ � . Otherwise �k = �′k and � ∼ � , and we have
first(�∖�) = ⊥ and first(�∖�) ≠ ⊥, therefore � ⊂ � . In both cases � < � .

(2) Case �′ < �. Let ((�1,… , �k), (�′1,… , �′k)
)
= traces(�′, �). We have �k = �k and �′k = min(�′k, minℎ()) ≤ �k. If

minℎ() < �′k then �k > �′k and �′ ⊏ � . Otherwise �′k = �′k. If �′ ⊏ � then �′ ⊏ � . Otherwise �′ ∼ � and �′ ⊂ �. None
of � and �′ is a proper prefix of the other because otherwise the longer path has an �-loop through q1, which contradicts
our assumption about �1 and �′1. Therefore first(�′∖�) = first(�′∖�) and first(�∖�′) = first(�∖�′). Consequently
�′ ⊂ � ⇐⇒ �′ ⊂ � . Thus �′ < � .

In both cases �′ < � , therefore path �1�2 is discarded.
Lemma 4 (Right distributivity of comparison over concatenation for paths without tagged �-loops). Let �� = q0

u|�
⇝ q1 and

�� = q0
u|�
⇝ q1 be ambiguous paths in TNFA f for IRE e, and let � = q1

�|
⇝ q2 be their common �-suffix, such that ��� and

��� do not contain tagged �-loops. If � < � then � < � .

Proof. Let ((�1,… , �k), (�′1,… , �′k)
)
= traces(�, �) and ((�1,… , �k), (�′1,… , �′k)

)
= traces(�, �). Appending  to � and �

changes only the last frame, therefore for frames i < k we have �i = �i and �′i = �′i . Consider two possible cases.
(1) Case � ∼ � ∧ � ⊂ �. We show that � ∼ � ∧ � ⊂ � . We have �i = �′i ∀i (implied by � ∼ �), therefore �i = �′i ∀iand consequently � ∼ � . Let x = first(�∖�), y = first(�∖�), x′ = first(�∖�) and y′ = first(�∖�). If one of

�� and �� is a proper prefix of another, then the longer path contains tagged �-loop through q1, which contradicts lemma
conditions (the suffix of the longer path must be an �-path, because � and � have the same number of frames and the suffix
is contained in the last frame). Therefore none of �� and �� is a proper prefix of another. Consequently x = x′ and y = y′,
and we have � ⊂ � ⇐⇒ x < y ⇐⇒ x′ < y′ ⇐⇒ � ⊂ � .

(2) Case � ⊏ �: by definition this means that ∃j ≤ k such that �j > �′j and �i = �′i ∀i > j. We show that � ⊏ � .
(2a) Case j < k. In this case �k = �′k and appending  does not change relation on the last frame: �k = min(�k, minℎ()) =

min(�′k, minℎ()) = �
′
k. Since �i = �i and �′i = �′i for all preceding frames i < k, we have � ⊏ � .

(2b) Case j = k andminℎ() > �′k. In this case �k > �′k and again appending  does not change relation on the last frame:
�k = min(�k, minℎ()) > �′k and �′k = min(�′k, minℎ()) = �′k, therefore �k > �′k. Therefore � ⊏ � .(2c) Case j = k and minℎ() ≤ �′k and ∃l < k such that �l > �′l and �i = �′i for l < i < k. In this case  contains
parentheses of low height and appending it makes height on the last frame equal: �k = �′k = minℎ(). However, therelation on the last preceding differing frame is the same: �l = �l > �′l = �′l . Therefore � ⊏ � .
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(2d) Case j = k and minℎ() ≤ �′k and ∄l < k such that �l > �′l and �i = �′i for l < i < k. In this case  contains
parentheses of low height, appending it makes height on the last frame equal: �k = �′k = minℎ(), and this may
change comparison result as the relation on the last preceding differing frame may be different. We show that in
this case the extended path ��� contains a tagged �-loop. Consider the fragments of paths �� and �� from fork
to join, including (if it exists) the common �-transition to the fork state: �′� and �′� . Minimal parenthesis height on
�′� is �k. By TNFA construction this means that �′� is contained in a sub-TNFA f ′ for e|p at some position p with
length |p| = �k. As for �′� , its start state coincides with �′� and thus is in f ′. The minimal height of all but the last
frames of �′� is at least �k: by conditions of (2d) either k = 1 and there are no such frames, or �′k−1 ≥ �k−1 which
implies �′k−1 ≥ �k (because by definition �k = min(�k−1, minℎ(�k)) ≤ �k−1). On the last frame of �′� minimal height
is �′k < �k. Therefore all but the last frames of �′� are contained in f ′, but the the last frame is not. Now consider
� : by conditions of (2d) its minimal height is less than �k, therefore it is not contained in f ′, but its start state is the
join point of �′� and �′� and thus in f ′. Taken together, above facts imply that the last frame of ��� starts in f ′, then
leaves f ′, then returns to f ′ and joins with ��� , and then leaves f ′ second time. Since the end state of f ′ is unique
(by TNFA construction), ��� must contain a tagged �-loop through it, which contradicts lemma conditions.

(Note that in the presence of tagged �-loops right distributivity may not hold: we may have paths �1, �2 and �3 such that �2 and
�3 are two different �-loops through the same subautomaton and �1�2 < �1�3, in which case �1�2�3 < �1�3, but �1 < �1�2
because the first is a proper prefix of the second.)
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