]> granicus.if.org Git - libvpx/blob - vp9/encoder/arm/neon/vp9_denoiser_neon.c
Merge changes I92eb4312,Ibb2afe4e
[libvpx] / vp9 / encoder / arm / neon / vp9_denoiser_neon.c
1 /*
2  *  Copyright (c) 2017 The WebM project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10
11 #include <arm_neon.h>
12
13 #include "./vpx_config.h"
14 #include "./vp9_rtcd.h"
15
16 #include "vpx/vpx_integer.h"
17 #include "vp9/common/vp9_reconinter.h"
18 #include "vp9/encoder/vp9_context_tree.h"
19 #include "vp9/encoder/vp9_denoiser.h"
20 #include "vpx_mem/vpx_mem.h"
21
22 // Compute the sum of all pixel differences of this MB.
23 static INLINE int horizontal_add_s8x16(const int8x16_t v_sum_diff_total) {
24   const int16x8_t fe_dc_ba_98_76_54_32_10 = vpaddlq_s8(v_sum_diff_total);
25   const int32x4_t fedc_ba98_7654_3210 = vpaddlq_s16(fe_dc_ba_98_76_54_32_10);
26   const int64x2_t fedcba98_76543210 = vpaddlq_s32(fedc_ba98_7654_3210);
27   const int64x1_t x = vqadd_s64(vget_high_s64(fedcba98_76543210),
28                                 vget_low_s64(fedcba98_76543210));
29   const int sum_diff = vget_lane_s32(vreinterpret_s32_s64(x), 0);
30   return sum_diff;
31 }
32
33 // Denoise a 16x1 vector.
34 static INLINE int8x16_t denoiser_16x1_neon(
35     const uint8_t *sig, const uint8_t *mc_running_avg_y, uint8_t *running_avg_y,
36     const uint8x16_t v_level1_threshold, const uint8x16_t v_level2_threshold,
37     const uint8x16_t v_level3_threshold, const uint8x16_t v_level1_adjustment,
38     const uint8x16_t v_delta_level_1_and_2,
39     const uint8x16_t v_delta_level_2_and_3, int8x16_t v_sum_diff_total) {
40   const uint8x16_t v_sig = vld1q_u8(sig);
41   const uint8x16_t v_mc_running_avg_y = vld1q_u8(mc_running_avg_y);
42
43   /* Calculate absolute difference and sign masks. */
44   const uint8x16_t v_abs_diff = vabdq_u8(v_sig, v_mc_running_avg_y);
45   const uint8x16_t v_diff_pos_mask = vcltq_u8(v_sig, v_mc_running_avg_y);
46   const uint8x16_t v_diff_neg_mask = vcgtq_u8(v_sig, v_mc_running_avg_y);
47
48   /* Figure out which level that put us in. */
49   const uint8x16_t v_level1_mask = vcleq_u8(v_level1_threshold, v_abs_diff);
50   const uint8x16_t v_level2_mask = vcleq_u8(v_level2_threshold, v_abs_diff);
51   const uint8x16_t v_level3_mask = vcleq_u8(v_level3_threshold, v_abs_diff);
52
53   /* Calculate absolute adjustments for level 1, 2 and 3. */
54   const uint8x16_t v_level2_adjustment =
55       vandq_u8(v_level2_mask, v_delta_level_1_and_2);
56   const uint8x16_t v_level3_adjustment =
57       vandq_u8(v_level3_mask, v_delta_level_2_and_3);
58   const uint8x16_t v_level1and2_adjustment =
59       vaddq_u8(v_level1_adjustment, v_level2_adjustment);
60   const uint8x16_t v_level1and2and3_adjustment =
61       vaddq_u8(v_level1and2_adjustment, v_level3_adjustment);
62
63   /* Figure adjustment absolute value by selecting between the absolute
64    * difference if in level0 or the value for level 1, 2 and 3.
65    */
66   const uint8x16_t v_abs_adjustment =
67       vbslq_u8(v_level1_mask, v_level1and2and3_adjustment, v_abs_diff);
68
69   /* Calculate positive and negative adjustments. Apply them to the signal
70    * and accumulate them. Adjustments are less than eight and the maximum
71    * sum of them (7 * 16) can fit in a signed char.
72    */
73   const uint8x16_t v_pos_adjustment =
74       vandq_u8(v_diff_pos_mask, v_abs_adjustment);
75   const uint8x16_t v_neg_adjustment =
76       vandq_u8(v_diff_neg_mask, v_abs_adjustment);
77
78   uint8x16_t v_running_avg_y = vqaddq_u8(v_sig, v_pos_adjustment);
79   v_running_avg_y = vqsubq_u8(v_running_avg_y, v_neg_adjustment);
80
81   /* Store results. */
82   vst1q_u8(running_avg_y, v_running_avg_y);
83
84   /* Sum all the accumulators to have the sum of all pixel differences
85    * for this macroblock.
86    */
87   {
88     const int8x16_t v_sum_diff =
89         vqsubq_s8(vreinterpretq_s8_u8(v_pos_adjustment),
90                   vreinterpretq_s8_u8(v_neg_adjustment));
91     v_sum_diff_total = vaddq_s8(v_sum_diff_total, v_sum_diff);
92   }
93   return v_sum_diff_total;
94 }
95
96 static INLINE int8x16_t denoiser_adjust_16x1_neon(
97     const uint8_t *sig, const uint8_t *mc_running_avg_y, uint8_t *running_avg_y,
98     const uint8x16_t k_delta, int8x16_t v_sum_diff_total) {
99   uint8x16_t v_running_avg_y = vld1q_u8(running_avg_y);
100   const uint8x16_t v_sig = vld1q_u8(sig);
101   const uint8x16_t v_mc_running_avg_y = vld1q_u8(mc_running_avg_y);
102
103   /* Calculate absolute difference and sign masks. */
104   const uint8x16_t v_abs_diff = vabdq_u8(v_sig, v_mc_running_avg_y);
105   const uint8x16_t v_diff_pos_mask = vcltq_u8(v_sig, v_mc_running_avg_y);
106   const uint8x16_t v_diff_neg_mask = vcgtq_u8(v_sig, v_mc_running_avg_y);
107   // Clamp absolute difference to delta to get the adjustment.
108   const uint8x16_t v_abs_adjustment = vminq_u8(v_abs_diff, (k_delta));
109
110   const uint8x16_t v_pos_adjustment =
111       vandq_u8(v_diff_pos_mask, v_abs_adjustment);
112   const uint8x16_t v_neg_adjustment =
113       vandq_u8(v_diff_neg_mask, v_abs_adjustment);
114
115   v_running_avg_y = vqsubq_u8(v_running_avg_y, v_pos_adjustment);
116   v_running_avg_y = vqaddq_u8(v_running_avg_y, v_neg_adjustment);
117
118   /* Store results. */
119   vst1q_u8(running_avg_y, v_running_avg_y);
120
121   {
122     const int8x16_t v_sum_diff =
123         vqsubq_s8(vreinterpretq_s8_u8(v_neg_adjustment),
124                   vreinterpretq_s8_u8(v_pos_adjustment));
125     v_sum_diff_total = vaddq_s8(v_sum_diff_total, v_sum_diff);
126   }
127   return v_sum_diff_total;
128 }
129
130 // Denoise 8x8 and 8x16 blocks.
131 static int vp9_denoiser_8xN_neon(const uint8_t *sig, int sig_stride,
132                                  const uint8_t *mc_running_avg_y,
133                                  int mc_avg_y_stride, uint8_t *running_avg_y,
134                                  int avg_y_stride, int increase_denoising,
135                                  BLOCK_SIZE bs, int motion_magnitude,
136                                  int width) {
137   int sum_diff_thresh, r, sum_diff = 0;
138   const int shift_inc =
139       (increase_denoising && motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD)
140           ? 1
141           : 0;
142   uint8_t sig_buffer[8][16], mc_running_buffer[8][16], running_buffer[8][16];
143
144   const uint8x16_t v_level1_adjustment = vmovq_n_u8(
145       (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) ? 4 + shift_inc : 3);
146   const uint8x16_t v_delta_level_1_and_2 = vdupq_n_u8(1);
147   const uint8x16_t v_delta_level_2_and_3 = vdupq_n_u8(2);
148   const uint8x16_t v_level1_threshold = vdupq_n_u8(4 + shift_inc);
149   const uint8x16_t v_level2_threshold = vdupq_n_u8(8);
150   const uint8x16_t v_level3_threshold = vdupq_n_u8(16);
151
152   const int b_height = (4 << b_height_log2_lookup[bs]) >> 1;
153
154   int8x16_t v_sum_diff_total = vdupq_n_s8(0);
155
156   for (r = 0; r < b_height; ++r) {
157     memcpy(sig_buffer[r], sig, width);
158     memcpy(sig_buffer[r] + width, sig + sig_stride, width);
159     memcpy(mc_running_buffer[r], mc_running_avg_y, width);
160     memcpy(mc_running_buffer[r] + width, mc_running_avg_y + mc_avg_y_stride,
161            width);
162     memcpy(running_buffer[r], running_avg_y, width);
163     memcpy(running_buffer[r] + width, running_avg_y + avg_y_stride, width);
164     v_sum_diff_total = denoiser_16x1_neon(
165         sig_buffer[r], mc_running_buffer[r], running_buffer[r],
166         v_level1_threshold, v_level2_threshold, v_level3_threshold,
167         v_level1_adjustment, v_delta_level_1_and_2, v_delta_level_2_and_3,
168         v_sum_diff_total);
169     {
170       const uint8x16_t v_running_buffer = vld1q_u8(running_buffer[r]);
171       const uint8x8_t v_running_buffer_high = vget_high_u8(v_running_buffer);
172       const uint8x8_t v_running_buffer_low = vget_low_u8(v_running_buffer);
173       vst1_u8(running_avg_y, v_running_buffer_low);
174       vst1_u8(running_avg_y + avg_y_stride, v_running_buffer_high);
175     }
176     // Update pointers for next iteration.
177     sig += (sig_stride << 1);
178     mc_running_avg_y += (mc_avg_y_stride << 1);
179     running_avg_y += (avg_y_stride << 1);
180   }
181
182   {
183     sum_diff = horizontal_add_s8x16(v_sum_diff_total);
184     sum_diff_thresh = total_adj_strong_thresh(bs, increase_denoising);
185     if (abs(sum_diff) > sum_diff_thresh) {
186       // Before returning to copy the block (i.e., apply no denoising),
187       // check if we can still apply some (weaker) temporal filtering to
188       // this block, that would otherwise not be denoised at all. Simplest
189       // is to apply an additional adjustment to running_avg_y to bring it
190       // closer to sig. The adjustment is capped by a maximum delta, and
191       // chosen such that in most cases the resulting sum_diff will be
192       // within the acceptable range given by sum_diff_thresh.
193
194       // The delta is set by the excess of absolute pixel diff over the
195       // threshold.
196       const int delta =
197           ((abs(sum_diff) - sum_diff_thresh) >> num_pels_log2_lookup[bs]) + 1;
198       // Only apply the adjustment for max delta up to 3.
199       if (delta < 4) {
200         const uint8x16_t k_delta = vmovq_n_u8(delta);
201         running_avg_y -= avg_y_stride * (b_height << 1);
202         for (r = 0; r < b_height; ++r) {
203           v_sum_diff_total = denoiser_adjust_16x1_neon(
204               sig_buffer[r], mc_running_buffer[r], running_buffer[r], k_delta,
205               v_sum_diff_total);
206           {
207             const uint8x16_t v_running_buffer = vld1q_u8(running_buffer[r]);
208             const uint8x8_t v_running_buffer_high =
209                 vget_high_u8(v_running_buffer);
210             const uint8x8_t v_running_buffer_low =
211                 vget_low_u8(v_running_buffer);
212             vst1_u8(running_avg_y, v_running_buffer_low);
213             vst1_u8(running_avg_y + avg_y_stride, v_running_buffer_high);
214           }
215           // Update pointers for next iteration.
216           running_avg_y += (avg_y_stride << 1);
217         }
218         sum_diff = horizontal_add_s8x16(v_sum_diff_total);
219         if (abs(sum_diff) > sum_diff_thresh) {
220           return COPY_BLOCK;
221         }
222       } else {
223         return COPY_BLOCK;
224       }
225     }
226   }
227
228   return FILTER_BLOCK;
229 }
230
231 // Denoise 16x16, 16x32, 32x16, 32x32, 32x64, 64x32 and 64x64 blocks.
232 static int vp9_denoiser_NxM_neon(const uint8_t *sig, int sig_stride,
233                                  const uint8_t *mc_running_avg_y,
234                                  int mc_avg_y_stride, uint8_t *running_avg_y,
235                                  int avg_y_stride, int increase_denoising,
236                                  BLOCK_SIZE bs, int motion_magnitude) {
237   const int shift_inc =
238       (increase_denoising && motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD)
239           ? 1
240           : 0;
241   const uint8x16_t v_level1_adjustment = vmovq_n_u8(
242       (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) ? 4 + shift_inc : 3);
243   const uint8x16_t v_delta_level_1_and_2 = vdupq_n_u8(1);
244   const uint8x16_t v_delta_level_2_and_3 = vdupq_n_u8(2);
245   const uint8x16_t v_level1_threshold = vmovq_n_u8(4 + shift_inc);
246   const uint8x16_t v_level2_threshold = vdupq_n_u8(8);
247   const uint8x16_t v_level3_threshold = vdupq_n_u8(16);
248
249   const int b_width = (4 << b_width_log2_lookup[bs]);
250   const int b_height = (4 << b_height_log2_lookup[bs]);
251   const int b_width_shift4 = b_width >> 4;
252
253   int8x16_t v_sum_diff_total[4][4];
254   int r, c, sum_diff = 0;
255
256   for (r = 0; r < 4; ++r) {
257     for (c = 0; c < b_width_shift4; ++c) {
258       v_sum_diff_total[c][r] = vdupq_n_s8(0);
259     }
260   }
261
262   for (r = 0; r < b_height; ++r) {
263     for (c = 0; c < b_width_shift4; ++c) {
264       v_sum_diff_total[c][r >> 4] = denoiser_16x1_neon(
265           sig, mc_running_avg_y, running_avg_y, v_level1_threshold,
266           v_level2_threshold, v_level3_threshold, v_level1_adjustment,
267           v_delta_level_1_and_2, v_delta_level_2_and_3,
268           v_sum_diff_total[c][r >> 4]);
269
270       // Update pointers for next iteration.
271       sig += 16;
272       mc_running_avg_y += 16;
273       running_avg_y += 16;
274     }
275
276     if ((r & 0xf) == 0xf || (bs == BLOCK_16X8 && r == 7)) {
277       for (c = 0; c < b_width_shift4; ++c) {
278         sum_diff += horizontal_add_s8x16(v_sum_diff_total[c][r >> 4]);
279       }
280     }
281
282     // Update pointers for next iteration.
283     sig = sig - b_width + sig_stride;
284     mc_running_avg_y = mc_running_avg_y - b_width + mc_avg_y_stride;
285     running_avg_y = running_avg_y - b_width + avg_y_stride;
286   }
287
288   {
289     const int sum_diff_thresh = total_adj_strong_thresh(bs, increase_denoising);
290     if (abs(sum_diff) > sum_diff_thresh) {
291       const int delta =
292           ((abs(sum_diff) - sum_diff_thresh) >> num_pels_log2_lookup[bs]) + 1;
293       // Only apply the adjustment for max delta up to 3.
294       if (delta < 4) {
295         const uint8x16_t k_delta = vdupq_n_u8(delta);
296         sig -= sig_stride * b_height;
297         mc_running_avg_y -= mc_avg_y_stride * b_height;
298         running_avg_y -= avg_y_stride * b_height;
299         sum_diff = 0;
300
301         for (r = 0; r < b_height; ++r) {
302           for (c = 0; c < b_width_shift4; ++c) {
303             v_sum_diff_total[c][r >> 4] =
304                 denoiser_adjust_16x1_neon(sig, mc_running_avg_y, running_avg_y,
305                                           k_delta, v_sum_diff_total[c][r >> 4]);
306
307             // Update pointers for next iteration.
308             sig += 16;
309             mc_running_avg_y += 16;
310             running_avg_y += 16;
311           }
312           if ((r & 0xf) == 0xf || (bs == BLOCK_16X8 && r == 7)) {
313             for (c = 0; c < b_width_shift4; ++c) {
314               sum_diff += horizontal_add_s8x16(v_sum_diff_total[c][r >> 4]);
315             }
316           }
317
318           sig = sig - b_width + sig_stride;
319           mc_running_avg_y = mc_running_avg_y - b_width + mc_avg_y_stride;
320           running_avg_y = running_avg_y - b_width + avg_y_stride;
321         }
322
323         if (abs(sum_diff) > sum_diff_thresh) {
324           return COPY_BLOCK;
325         }
326       } else {
327         return COPY_BLOCK;
328       }
329     }
330   }
331   return FILTER_BLOCK;
332 }
333
334 int vp9_denoiser_filter_neon(const uint8_t *sig, int sig_stride,
335                              const uint8_t *mc_avg, int mc_avg_stride,
336                              uint8_t *avg, int avg_stride,
337                              int increase_denoising, BLOCK_SIZE bs,
338                              int motion_magnitude) {
339   // Rank by frequency of the block type to have an early termination.
340   if (bs == BLOCK_16X16 || bs == BLOCK_32X32 || bs == BLOCK_64X64 ||
341       bs == BLOCK_16X32 || bs == BLOCK_16X8 || bs == BLOCK_32X16 ||
342       bs == BLOCK_32X64 || bs == BLOCK_64X32) {
343     return vp9_denoiser_NxM_neon(sig, sig_stride, mc_avg, mc_avg_stride, avg,
344                                  avg_stride, increase_denoising, bs,
345                                  motion_magnitude);
346   } else if (bs == BLOCK_8X8 || bs == BLOCK_8X16) {
347     return vp9_denoiser_8xN_neon(sig, sig_stride, mc_avg, mc_avg_stride, avg,
348                                  avg_stride, increase_denoising, bs,
349                                  motion_magnitude, 8);
350   }
351   return COPY_BLOCK;
352 }