]> granicus.if.org Git - libvpx/blob - vp8/encoder/denoising.c
Merge "Enable fast forward txfm and quant for rate-distortion search"
[libvpx] / vp8 / encoder / denoising.c
1 /*
2  *  Copyright (c) 2012 The WebM project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10
11 #include <limits.h>
12
13 #include "denoising.h"
14
15 #include "vp8/common/reconinter.h"
16 #include "vpx/vpx_integer.h"
17 #include "vpx_mem/vpx_mem.h"
18 #include "vp8_rtcd.h"
19
20 static const unsigned int NOISE_MOTION_THRESHOLD = 25 * 25;
21 /* SSE_DIFF_THRESHOLD is selected as ~95% confidence assuming
22  * var(noise) ~= 100.
23  */
24 static const unsigned int SSE_DIFF_THRESHOLD = 16 * 16 * 20;
25 static const unsigned int SSE_THRESHOLD = 16 * 16 * 40;
26 static const unsigned int SSE_THRESHOLD_HIGH = 16 * 16 * 60;
27
28 /*
29  * The filter function was modified to reduce the computational complexity.
30  * Step 1:
31  * Instead of applying tap coefficients for each pixel, we calculated the
32  * pixel adjustments vs. pixel diff value ahead of time.
33  *     adjustment = filtered_value - current_raw
34  *                = (filter_coefficient * diff + 128) >> 8
35  * where
36  *     filter_coefficient = (255 << 8) / (256 + ((absdiff * 330) >> 3));
37  *     filter_coefficient += filter_coefficient /
38  *                           (3 + motion_magnitude_adjustment);
39  *     filter_coefficient is clamped to 0 ~ 255.
40  *
41  * Step 2:
42  * The adjustment vs. diff curve becomes flat very quick when diff increases.
43  * This allowed us to use only several levels to approximate the curve without
44  * changing the filtering algorithm too much.
45  * The adjustments were further corrected by checking the motion magnitude.
46  * The levels used are:
47  * diff       adjustment w/o motion correction   adjustment w/ motion correction
48  * [-255, -16]           -6                                   -7
49  * [-15, -8]             -4                                   -5
50  * [-7, -4]              -3                                   -4
51  * [-3, 3]               diff                                 diff
52  * [4, 7]                 3                                    4
53  * [8, 15]                4                                    5
54  * [16, 255]              6                                    7
55  */
56
57 int vp8_denoiser_filter_c(unsigned char *mc_running_avg_y, int mc_avg_y_stride,
58                           unsigned char *running_avg_y, int avg_y_stride,
59                           unsigned char *sig, int sig_stride,
60                           unsigned int motion_magnitude,
61                           int increase_denoising)
62 {
63     unsigned char *running_avg_y_start = running_avg_y;
64     unsigned char *sig_start = sig;
65     int sum_diff_thresh;
66     int r, c;
67     int sum_diff = 0;
68     int adj_val[3] = {3, 4, 6};
69     int shift_inc1 = 0;
70     int shift_inc2 = 1;
71     /* If motion_magnitude is small, making the denoiser more aggressive by
72      * increasing the adjustment for each level. Add another increment for
73      * blocks that are labeled for increase denoising. */
74     if (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD)
75     {
76       if (increase_denoising) {
77         shift_inc1 = 1;
78         shift_inc2 = 2;
79       }
80       adj_val[0] += shift_inc2;
81       adj_val[1] += shift_inc2;
82       adj_val[2] += shift_inc2;
83     }
84
85     for (r = 0; r < 16; ++r)
86     {
87         for (c = 0; c < 16; ++c)
88         {
89             int diff = 0;
90             int adjustment = 0;
91             int absdiff = 0;
92
93             diff = mc_running_avg_y[c] - sig[c];
94             absdiff = abs(diff);
95
96             // When |diff| <= |3 + shift_inc1|, use pixel value from
97             // last denoised raw.
98             if (absdiff <= 3 + shift_inc1)
99             {
100                 running_avg_y[c] = mc_running_avg_y[c];
101                 sum_diff += diff;
102             }
103             else
104             {
105                 if (absdiff >= 4 && absdiff <= 7)
106                     adjustment = adj_val[0];
107                 else if (absdiff >= 8 && absdiff <= 15)
108                     adjustment = adj_val[1];
109                 else
110                     adjustment = adj_val[2];
111
112                 if (diff > 0)
113                 {
114                     if ((sig[c] + adjustment) > 255)
115                         running_avg_y[c] = 255;
116                     else
117                         running_avg_y[c] = sig[c] + adjustment;
118
119                     sum_diff += adjustment;
120                 }
121                 else
122                 {
123                     if ((sig[c] - adjustment) < 0)
124                         running_avg_y[c] = 0;
125                     else
126                         running_avg_y[c] = sig[c] - adjustment;
127
128                     sum_diff -= adjustment;
129                 }
130             }
131         }
132
133         /* Update pointers for next iteration. */
134         sig += sig_stride;
135         mc_running_avg_y += mc_avg_y_stride;
136         running_avg_y += avg_y_stride;
137     }
138
139     sum_diff_thresh= SUM_DIFF_THRESHOLD;
140     if (increase_denoising) sum_diff_thresh = SUM_DIFF_THRESHOLD_HIGH;
141     if (abs(sum_diff) > sum_diff_thresh) {
142       // Before returning to copy the block (i.e., apply no denoising), check
143       // if we can still apply some (weaker) temporal filtering to this block,
144       // that would otherwise not be denoised at all. Simplest is to apply
145       // an additional adjustment to running_avg_y to bring it closer to sig.
146       // The adjustment is capped by a maximum delta, and chosen such that
147       // in most cases the resulting sum_diff will be within the
148       // accceptable range given by sum_diff_thresh.
149
150       // The delta is set by the excess of absolute pixel diff over threshold.
151       int delta = ((abs(sum_diff) - sum_diff_thresh) >> 8) + 1;
152       // Only apply the adjustment for max delta up to 3.
153       if (delta < 4) {
154         sig -= sig_stride * 16;
155         mc_running_avg_y -= mc_avg_y_stride * 16;
156         running_avg_y -= avg_y_stride * 16;
157         for (r = 0; r < 16; ++r) {
158           for (c = 0; c < 16; ++c) {
159             int diff = mc_running_avg_y[c] - sig[c];
160             int adjustment = abs(diff);
161             if (adjustment > delta)
162               adjustment = delta;
163             if (diff > 0) {
164               // Bring denoised signal down.
165               if (running_avg_y[c] - adjustment < 0)
166                 running_avg_y[c] = 0;
167               else
168                 running_avg_y[c] = running_avg_y[c] - adjustment;
169               sum_diff -= adjustment;
170             } else if (diff < 0) {
171               // Bring denoised signal up.
172               if (running_avg_y[c] + adjustment > 255)
173                 running_avg_y[c] = 255;
174               else
175                 running_avg_y[c] = running_avg_y[c] + adjustment;
176               sum_diff += adjustment;
177             }
178           }
179           // TODO(marpan): Check here if abs(sum_diff) has gone below the
180           // threshold sum_diff_thresh, and if so, we can exit the row loop.
181           sig += sig_stride;
182           mc_running_avg_y += mc_avg_y_stride;
183           running_avg_y += avg_y_stride;
184         }
185         if (abs(sum_diff) > sum_diff_thresh)
186           return COPY_BLOCK;
187       } else {
188         return COPY_BLOCK;
189       }
190     }
191
192     vp8_copy_mem16x16(running_avg_y_start, avg_y_stride, sig_start, sig_stride);
193     return FILTER_BLOCK;
194 }
195
196 int vp8_denoiser_filter_uv_c(unsigned char *mc_running_avg_uv,
197                              int mc_avg_uv_stride,
198                              unsigned char *running_avg_uv,
199                              int avg_uv_stride,
200                              unsigned char *sig,
201                              int sig_stride,
202                              unsigned int motion_magnitude,
203                              int increase_denoising) {
204     unsigned char *running_avg_uv_start = running_avg_uv;
205     unsigned char *sig_start = sig;
206     int sum_diff_thresh;
207     int r, c;
208     int sum_diff = 0;
209     int sum_block = 0;
210     int adj_val[3] = {3, 4, 6};
211     int shift_inc1 = 0;
212     int shift_inc2 = 1;
213     /* If motion_magnitude is small, making the denoiser more aggressive by
214      * increasing the adjustment for each level. Add another increment for
215      * blocks that are labeled for increase denoising. */
216     if (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD_UV) {
217       if (increase_denoising) {
218         shift_inc1 = 1;
219         shift_inc2 = 2;
220       }
221       adj_val[0] += shift_inc2;
222       adj_val[1] += shift_inc2;
223       adj_val[2] += shift_inc2;
224     }
225
226     // Avoid denoising color signal if its close to average level.
227     for (r = 0; r < 8; ++r) {
228       for (c = 0; c < 8; ++c) {
229         sum_block += sig[c];
230       }
231       sig += sig_stride;
232     }
233     if (abs(sum_block - (128 * 8 * 8)) < SUM_DIFF_FROM_AVG_THRESH_UV) {
234       return COPY_BLOCK;
235     }
236
237     sig -= sig_stride * 8;
238     for (r = 0; r < 8; ++r) {
239       for (c = 0; c < 8; ++c) {
240         int diff = 0;
241         int adjustment = 0;
242         int absdiff = 0;
243
244         diff = mc_running_avg_uv[c] - sig[c];
245         absdiff = abs(diff);
246
247         // When |diff| <= |3 + shift_inc1|, use pixel value from
248         // last denoised raw.
249         if (absdiff <= 3 + shift_inc1) {
250           running_avg_uv[c] = mc_running_avg_uv[c];
251           sum_diff += diff;
252         } else {
253           if (absdiff >= 4 && absdiff <= 7)
254             adjustment = adj_val[0];
255           else if (absdiff >= 8 && absdiff <= 15)
256             adjustment = adj_val[1];
257           else
258             adjustment = adj_val[2];
259           if (diff > 0) {
260             if ((sig[c] + adjustment) > 255)
261               running_avg_uv[c] = 255;
262             else
263               running_avg_uv[c] = sig[c] + adjustment;
264             sum_diff += adjustment;
265           } else {
266             if ((sig[c] - adjustment) < 0)
267               running_avg_uv[c] = 0;
268             else
269               running_avg_uv[c] = sig[c] - adjustment;
270             sum_diff -= adjustment;
271           }
272         }
273       }
274       /* Update pointers for next iteration. */
275       sig += sig_stride;
276       mc_running_avg_uv += mc_avg_uv_stride;
277       running_avg_uv += avg_uv_stride;
278     }
279
280     sum_diff_thresh= SUM_DIFF_THRESHOLD_UV;
281     if (increase_denoising) sum_diff_thresh = SUM_DIFF_THRESHOLD_HIGH_UV;
282     if (abs(sum_diff) > sum_diff_thresh) {
283       // Before returning to copy the block (i.e., apply no denoising), check
284       // if we can still apply some (weaker) temporal filtering to this block,
285       // that would otherwise not be denoised at all. Simplest is to apply
286       // an additional adjustment to running_avg_y to bring it closer to sig.
287       // The adjustment is capped by a maximum delta, and chosen such that
288       // in most cases the resulting sum_diff will be within the
289       // accceptable range given by sum_diff_thresh.
290
291       // The delta is set by the excess of absolute pixel diff over threshold.
292       int delta = ((abs(sum_diff) - sum_diff_thresh) >> 8) + 1;
293       // Only apply the adjustment for max delta up to 3.
294       if (delta < 4) {
295         sig -= sig_stride * 8;
296         mc_running_avg_uv -= mc_avg_uv_stride * 8;
297         running_avg_uv -= avg_uv_stride * 8;
298         for (r = 0; r < 8; ++r) {
299           for (c = 0; c < 8; ++c) {
300             int diff = mc_running_avg_uv[c] - sig[c];
301             int adjustment = abs(diff);
302             if (adjustment > delta)
303               adjustment = delta;
304             if (diff > 0) {
305               // Bring denoised signal down.
306               if (running_avg_uv[c] - adjustment < 0)
307                 running_avg_uv[c] = 0;
308               else
309                 running_avg_uv[c] = running_avg_uv[c] - adjustment;
310               sum_diff -= adjustment;
311             } else if (diff < 0) {
312               // Bring denoised signal up.
313               if (running_avg_uv[c] + adjustment > 255)
314                 running_avg_uv[c] = 255;
315               else
316                 running_avg_uv[c] = running_avg_uv[c] + adjustment;
317               sum_diff += adjustment;
318             }
319           }
320           // TODO(marpan): Check here if abs(sum_diff) has gone below the
321           // threshold sum_diff_thresh, and if so, we can exit the row loop.
322           sig += sig_stride;
323           mc_running_avg_uv += mc_avg_uv_stride;
324           running_avg_uv += avg_uv_stride;
325         }
326         if (abs(sum_diff) > sum_diff_thresh)
327           return COPY_BLOCK;
328       } else {
329         return COPY_BLOCK;
330       }
331     }
332
333     vp8_copy_mem8x8(running_avg_uv_start, avg_uv_stride, sig_start,
334                     sig_stride);
335     return FILTER_BLOCK;
336 }
337
338 void vp8_denoiser_set_parameters(VP8_DENOISER *denoiser, int mode) {
339   assert(mode > 0);  // Denoiser is allocated only if mode > 0.
340   if (mode == 1) {
341     denoiser->denoiser_mode = kDenoiserOnYOnly;
342   } else if (mode == 2) {
343     denoiser->denoiser_mode = kDenoiserOnYUV;
344   } else {
345     denoiser->denoiser_mode = kDenoiserOnYUVAggressive;
346   }
347   if (denoiser->denoiser_mode != kDenoiserOnYUVAggressive) {
348     denoiser->denoise_pars.scale_sse_thresh = 1;
349     denoiser->denoise_pars.scale_motion_thresh = 8;
350     denoiser->denoise_pars.scale_increase_filter = 0;
351     denoiser->denoise_pars.denoise_mv_bias = 95;
352     denoiser->denoise_pars.pickmode_mv_bias = 100;
353     denoiser->denoise_pars.qp_thresh = 0;
354     denoiser->denoise_pars.consec_zerolast = UINT_MAX;
355   } else {
356     denoiser->denoise_pars.scale_sse_thresh = 2;
357     denoiser->denoise_pars.scale_motion_thresh = 16;
358     denoiser->denoise_pars.scale_increase_filter = 1;
359     denoiser->denoise_pars.denoise_mv_bias = 60;
360     denoiser->denoise_pars.pickmode_mv_bias = 60;
361     denoiser->denoise_pars.qp_thresh = 100;
362     denoiser->denoise_pars.consec_zerolast = 10;
363   }
364 }
365
366 int vp8_denoiser_allocate(VP8_DENOISER *denoiser, int width, int height,
367                           int num_mb_rows, int num_mb_cols, int mode)
368 {
369     int i;
370     assert(denoiser);
371     denoiser->num_mb_cols = num_mb_cols;
372
373     for (i = 0; i < MAX_REF_FRAMES; i++)
374     {
375         denoiser->yv12_running_avg[i].flags = 0;
376
377         if (vp8_yv12_alloc_frame_buffer(&(denoiser->yv12_running_avg[i]), width,
378                                         height, VP8BORDERINPIXELS)
379             < 0)
380         {
381             vp8_denoiser_free(denoiser);
382             return 1;
383         }
384         vpx_memset(denoiser->yv12_running_avg[i].buffer_alloc, 0,
385                    denoiser->yv12_running_avg[i].frame_size);
386
387     }
388     denoiser->yv12_mc_running_avg.flags = 0;
389
390     if (vp8_yv12_alloc_frame_buffer(&(denoiser->yv12_mc_running_avg), width,
391                                    height, VP8BORDERINPIXELS) < 0)
392     {
393         vp8_denoiser_free(denoiser);
394         return 1;
395     }
396
397     vpx_memset(denoiser->yv12_mc_running_avg.buffer_alloc, 0,
398                denoiser->yv12_mc_running_avg.frame_size);
399
400     denoiser->denoise_state = vpx_calloc((num_mb_rows * num_mb_cols), 1);
401     vpx_memset(denoiser->denoise_state, 0, (num_mb_rows * num_mb_cols));
402     vp8_denoiser_set_parameters(denoiser, mode);
403     return 0;
404 }
405
406
407 void vp8_denoiser_free(VP8_DENOISER *denoiser)
408 {
409     int i;
410     assert(denoiser);
411
412     for (i = 0; i < MAX_REF_FRAMES ; i++)
413     {
414         vp8_yv12_de_alloc_frame_buffer(&denoiser->yv12_running_avg[i]);
415     }
416     vp8_yv12_de_alloc_frame_buffer(&denoiser->yv12_mc_running_avg);
417     vpx_free(denoiser->denoise_state);
418 }
419
420
421 void vp8_denoiser_denoise_mb(VP8_DENOISER *denoiser,
422                              MACROBLOCK *x,
423                              unsigned int best_sse,
424                              unsigned int zero_mv_sse,
425                              int recon_yoffset,
426                              int recon_uvoffset,
427                              loop_filter_info_n *lfi_n,
428                              int mb_row,
429                              int mb_col,
430                              int block_index)
431
432 {
433     int mv_row;
434     int mv_col;
435     unsigned int motion_threshold;
436     unsigned int motion_magnitude2;
437     unsigned int sse_thresh;
438     int sse_diff_thresh = 0;
439     // Spatial loop filter: only applied selectively based on
440     // temporal filter state of block relative to top/left neighbors.
441     int apply_spatial_loop_filter = 1;
442     MV_REFERENCE_FRAME frame = x->best_reference_frame;
443     MV_REFERENCE_FRAME zero_frame = x->best_zeromv_reference_frame;
444
445     enum vp8_denoiser_decision decision = FILTER_BLOCK;
446     enum vp8_denoiser_decision decision_u = COPY_BLOCK;
447     enum vp8_denoiser_decision decision_v = COPY_BLOCK;
448
449     if (zero_frame)
450     {
451         YV12_BUFFER_CONFIG *src = &denoiser->yv12_running_avg[frame];
452         YV12_BUFFER_CONFIG *dst = &denoiser->yv12_mc_running_avg;
453         YV12_BUFFER_CONFIG saved_pre,saved_dst;
454         MB_MODE_INFO saved_mbmi;
455         MACROBLOCKD *filter_xd = &x->e_mbd;
456         MB_MODE_INFO *mbmi = &filter_xd->mode_info_context->mbmi;
457         int sse_diff = 0;
458         // Bias on zero motion vector sse.
459         const int zero_bias = denoiser->denoise_pars.denoise_mv_bias;
460         zero_mv_sse = (unsigned int)((int64_t)zero_mv_sse * zero_bias / 100);
461         sse_diff = zero_mv_sse - best_sse;
462
463         saved_mbmi = *mbmi;
464
465         /* Use the best MV for the compensation. */
466         mbmi->ref_frame = x->best_reference_frame;
467         mbmi->mode = x->best_sse_inter_mode;
468         mbmi->mv = x->best_sse_mv;
469         mbmi->need_to_clamp_mvs = x->need_to_clamp_best_mvs;
470         mv_col = x->best_sse_mv.as_mv.col;
471         mv_row = x->best_sse_mv.as_mv.row;
472         // Bias to zero_mv if small amount of motion.
473         // Note sse_diff_thresh is intialized to zero, so this ensures
474         // we will always choose zero_mv for denoising if
475         // zero_mv_see <= best_sse (i.e., sse_diff <= 0).
476         if ((unsigned int)(mv_row * mv_row + mv_col * mv_col)
477             <= NOISE_MOTION_THRESHOLD)
478             sse_diff_thresh = (int)SSE_DIFF_THRESHOLD;
479
480         if (frame == INTRA_FRAME ||
481             sse_diff <= sse_diff_thresh)
482         {
483             /*
484              * Handle intra blocks as referring to last frame with zero motion
485              * and let the absolute pixel difference affect the filter factor.
486              * Also consider small amount of motion as being random walk due
487              * to noise, if it doesn't mean that we get a much bigger error.
488              * Note that any changes to the mode info only affects the
489              * denoising.
490              */
491             mbmi->ref_frame =
492                     x->best_zeromv_reference_frame;
493
494             src = &denoiser->yv12_running_avg[zero_frame];
495
496             mbmi->mode = ZEROMV;
497             mbmi->mv.as_int = 0;
498             x->best_sse_inter_mode = ZEROMV;
499             x->best_sse_mv.as_int = 0;
500             best_sse = zero_mv_sse;
501         }
502
503         saved_pre = filter_xd->pre;
504         saved_dst = filter_xd->dst;
505
506         /* Compensate the running average. */
507         filter_xd->pre.y_buffer = src->y_buffer + recon_yoffset;
508         filter_xd->pre.u_buffer = src->u_buffer + recon_uvoffset;
509         filter_xd->pre.v_buffer = src->v_buffer + recon_uvoffset;
510         /* Write the compensated running average to the destination buffer. */
511         filter_xd->dst.y_buffer = dst->y_buffer + recon_yoffset;
512         filter_xd->dst.u_buffer = dst->u_buffer + recon_uvoffset;
513         filter_xd->dst.v_buffer = dst->v_buffer + recon_uvoffset;
514
515         if (!x->skip)
516         {
517             vp8_build_inter_predictors_mb(filter_xd);
518         }
519         else
520         {
521             vp8_build_inter16x16_predictors_mb(filter_xd,
522                                                filter_xd->dst.y_buffer,
523                                                filter_xd->dst.u_buffer,
524                                                filter_xd->dst.v_buffer,
525                                                filter_xd->dst.y_stride,
526                                                filter_xd->dst.uv_stride);
527         }
528         filter_xd->pre = saved_pre;
529         filter_xd->dst = saved_dst;
530         *mbmi = saved_mbmi;
531
532     }
533
534     mv_row = x->best_sse_mv.as_mv.row;
535     mv_col = x->best_sse_mv.as_mv.col;
536     motion_magnitude2 = mv_row * mv_row + mv_col * mv_col;
537     motion_threshold = denoiser->denoise_pars.scale_motion_thresh *
538         NOISE_MOTION_THRESHOLD;
539
540     if (motion_magnitude2 <
541         denoiser->denoise_pars.scale_increase_filter * NOISE_MOTION_THRESHOLD)
542       x->increase_denoising = 1;
543
544     sse_thresh = denoiser->denoise_pars.scale_sse_thresh * SSE_THRESHOLD;
545     if (x->increase_denoising)
546       sse_thresh = denoiser->denoise_pars.scale_sse_thresh * SSE_THRESHOLD_HIGH;
547
548     if (best_sse > sse_thresh || motion_magnitude2 > motion_threshold)
549       decision = COPY_BLOCK;
550
551     if (decision == FILTER_BLOCK)
552     {
553         unsigned char *mc_running_avg_y =
554             denoiser->yv12_mc_running_avg.y_buffer + recon_yoffset;
555         int mc_avg_y_stride = denoiser->yv12_mc_running_avg.y_stride;
556         unsigned char *running_avg_y =
557             denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset;
558         int avg_y_stride = denoiser->yv12_running_avg[INTRA_FRAME].y_stride;
559
560         /* Filter. */
561         decision = vp8_denoiser_filter(mc_running_avg_y, mc_avg_y_stride,
562                                        running_avg_y, avg_y_stride,
563                                        x->thismb, 16, motion_magnitude2,
564                                        x->increase_denoising);
565         denoiser->denoise_state[block_index] = motion_magnitude2 > 0 ?
566             kFilterNonZeroMV : kFilterZeroMV;
567         // Only denoise UV for zero motion, and if y channel was denoised.
568         if (denoiser->denoiser_mode != kDenoiserOnYOnly &&
569             motion_magnitude2 == 0 &&
570             decision == FILTER_BLOCK) {
571           unsigned char *mc_running_avg_u =
572               denoiser->yv12_mc_running_avg.u_buffer + recon_uvoffset;
573           unsigned char *running_avg_u =
574               denoiser->yv12_running_avg[INTRA_FRAME].u_buffer + recon_uvoffset;
575           unsigned char *mc_running_avg_v =
576               denoiser->yv12_mc_running_avg.v_buffer + recon_uvoffset;
577           unsigned char *running_avg_v =
578               denoiser->yv12_running_avg[INTRA_FRAME].v_buffer + recon_uvoffset;
579           int mc_avg_uv_stride = denoiser->yv12_mc_running_avg.uv_stride;
580           int avg_uv_stride = denoiser->yv12_running_avg[INTRA_FRAME].uv_stride;
581           int signal_stride = x->block[16].src_stride;
582           decision_u =
583               vp8_denoiser_filter_uv(mc_running_avg_u, mc_avg_uv_stride,
584                                       running_avg_u, avg_uv_stride,
585                                       x->block[16].src + *x->block[16].base_src,
586                                       signal_stride, motion_magnitude2, 0);
587           decision_v =
588               vp8_denoiser_filter_uv(mc_running_avg_v, mc_avg_uv_stride,
589                                       running_avg_v, avg_uv_stride,
590                                       x->block[20].src + *x->block[20].base_src,
591                                       signal_stride, motion_magnitude2, 0);
592         }
593     }
594     if (decision == COPY_BLOCK)
595     {
596         /* No filtering of this block; it differs too much from the predictor,
597          * or the motion vector magnitude is considered too big.
598          */
599         vp8_copy_mem16x16(
600                 x->thismb, 16,
601                 denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset,
602                 denoiser->yv12_running_avg[INTRA_FRAME].y_stride);
603         denoiser->denoise_state[block_index] = kNoFilter;
604     }
605     if (denoiser->denoiser_mode != kDenoiserOnYOnly) {
606       if (decision_u == COPY_BLOCK) {
607         vp8_copy_mem8x8(
608             x->block[16].src + *x->block[16].base_src, x->block[16].src_stride,
609             denoiser->yv12_running_avg[INTRA_FRAME].u_buffer + recon_uvoffset,
610             denoiser->yv12_running_avg[INTRA_FRAME].uv_stride);
611       }
612       if (decision_v == COPY_BLOCK) {
613         vp8_copy_mem8x8(
614             x->block[20].src + *x->block[20].base_src, x->block[16].src_stride,
615             denoiser->yv12_running_avg[INTRA_FRAME].v_buffer + recon_uvoffset,
616             denoiser->yv12_running_avg[INTRA_FRAME].uv_stride);
617       }
618     }
619     // Option to selectively deblock the denoised signal, for y channel only.
620     if (apply_spatial_loop_filter) {
621       loop_filter_info lfi;
622       int apply_filter_col = 0;
623       int apply_filter_row = 0;
624       int apply_filter = 0;
625       int y_stride = denoiser->yv12_running_avg[INTRA_FRAME].y_stride;
626       int uv_stride =denoiser->yv12_running_avg[INTRA_FRAME].uv_stride;
627
628       // Fix filter level to some nominal value for now.
629       int filter_level = 32;
630
631       int hev_index = lfi_n->hev_thr_lut[INTER_FRAME][filter_level];
632       lfi.mblim = lfi_n->mblim[filter_level];
633       lfi.blim = lfi_n->blim[filter_level];
634       lfi.lim = lfi_n->lim[filter_level];
635       lfi.hev_thr = lfi_n->hev_thr[hev_index];
636
637       // Apply filter if there is a difference in the denoiser filter state
638       // between the current and left/top block, or if non-zero motion vector
639       // is used for the motion-compensated filtering.
640       if (mb_col > 0) {
641         apply_filter_col = !((denoiser->denoise_state[block_index] ==
642             denoiser->denoise_state[block_index - 1]) &&
643             denoiser->denoise_state[block_index] != kFilterNonZeroMV);
644         if (apply_filter_col) {
645           // Filter left vertical edge.
646           apply_filter = 1;
647           vp8_loop_filter_mbv(
648               denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset,
649               NULL, NULL, y_stride, uv_stride, &lfi);
650         }
651       }
652       if (mb_row > 0) {
653         apply_filter_row = !((denoiser->denoise_state[block_index] ==
654             denoiser->denoise_state[block_index - denoiser->num_mb_cols]) &&
655             denoiser->denoise_state[block_index] != kFilterNonZeroMV);
656         if (apply_filter_row) {
657           // Filter top horizontal edge.
658           apply_filter = 1;
659           vp8_loop_filter_mbh(
660               denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset,
661               NULL, NULL, y_stride, uv_stride, &lfi);
662         }
663       }
664       if (apply_filter) {
665         // Update the signal block |x|. Pixel changes are only to top and/or
666         // left boundary pixels: can we avoid full block copy here.
667         vp8_copy_mem16x16(
668             denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset,
669             y_stride, x->thismb, 16);
670       }
671     }
672 }