]> granicus.if.org Git - libvpx/blob - test/dct32x32_test.cc
Merge "vp9: Make copy partition work for SVC and dynamic resize."
[libvpx] / test / dct32x32_test.cc
1 /*
2  *  Copyright (c) 2012 The WebM project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10
11 #include <math.h>
12 #include <stdlib.h>
13 #include <string.h>
14
15 #include "third_party/googletest/src/include/gtest/gtest.h"
16
17 #include "./vp9_rtcd.h"
18 #include "./vpx_config.h"
19 #include "./vpx_dsp_rtcd.h"
20 #include "test/acm_random.h"
21 #include "test/clear_system_state.h"
22 #include "test/register_state_check.h"
23 #include "test/util.h"
24 #include "vp9/common/vp9_entropy.h"
25 #include "vpx/vpx_codec.h"
26 #include "vpx/vpx_integer.h"
27 #include "vpx_ports/mem.h"
28 #include "vpx_ports/msvc.h"  // for round()
29
30 using libvpx_test::ACMRandom;
31
32 namespace {
33
34 const int kNumCoeffs = 1024;
35 const double kPi = 3.141592653589793238462643383279502884;
36 void reference_32x32_dct_1d(const double in[32], double out[32]) {
37   const double kInvSqrt2 = 0.707106781186547524400844362104;
38   for (int k = 0; k < 32; k++) {
39     out[k] = 0.0;
40     for (int n = 0; n < 32; n++) {
41       out[k] += in[n] * cos(kPi * (2 * n + 1) * k / 64.0);
42     }
43     if (k == 0) out[k] = out[k] * kInvSqrt2;
44   }
45 }
46
47 void reference_32x32_dct_2d(const int16_t input[kNumCoeffs],
48                             double output[kNumCoeffs]) {
49   // First transform columns
50   for (int i = 0; i < 32; ++i) {
51     double temp_in[32], temp_out[32];
52     for (int j = 0; j < 32; ++j) temp_in[j] = input[j * 32 + i];
53     reference_32x32_dct_1d(temp_in, temp_out);
54     for (int j = 0; j < 32; ++j) output[j * 32 + i] = temp_out[j];
55   }
56   // Then transform rows
57   for (int i = 0; i < 32; ++i) {
58     double temp_in[32], temp_out[32];
59     for (int j = 0; j < 32; ++j) temp_in[j] = output[j + i * 32];
60     reference_32x32_dct_1d(temp_in, temp_out);
61     // Scale by some magic number
62     for (int j = 0; j < 32; ++j) output[j + i * 32] = temp_out[j] / 4;
63   }
64 }
65
66 typedef void (*FwdTxfmFunc)(const int16_t *in, tran_low_t *out, int stride);
67 typedef void (*InvTxfmFunc)(const tran_low_t *in, uint8_t *out, int stride);
68
69 typedef std::tr1::tuple<FwdTxfmFunc, InvTxfmFunc, int, vpx_bit_depth_t>
70     Trans32x32Param;
71
72 #if CONFIG_VP9_HIGHBITDEPTH
73 void idct32x32_10(const tran_low_t *in, uint8_t *out, int stride) {
74   vpx_highbd_idct32x32_1024_add_c(in, CAST_TO_SHORTPTR(out), stride, 10);
75 }
76
77 void idct32x32_12(const tran_low_t *in, uint8_t *out, int stride) {
78   vpx_highbd_idct32x32_1024_add_c(in, CAST_TO_SHORTPTR(out), stride, 12);
79 }
80 #endif  // CONFIG_VP9_HIGHBITDEPTH
81
82 class Trans32x32Test : public ::testing::TestWithParam<Trans32x32Param> {
83  public:
84   virtual ~Trans32x32Test() {}
85   virtual void SetUp() {
86     fwd_txfm_ = GET_PARAM(0);
87     inv_txfm_ = GET_PARAM(1);
88     version_ = GET_PARAM(2);  // 0: high precision forward transform
89                               // 1: low precision version for rd loop
90     bit_depth_ = GET_PARAM(3);
91     mask_ = (1 << bit_depth_) - 1;
92   }
93
94   virtual void TearDown() { libvpx_test::ClearSystemState(); }
95
96  protected:
97   int version_;
98   vpx_bit_depth_t bit_depth_;
99   int mask_;
100   FwdTxfmFunc fwd_txfm_;
101   InvTxfmFunc inv_txfm_;
102 };
103
104 TEST_P(Trans32x32Test, AccuracyCheck) {
105   ACMRandom rnd(ACMRandom::DeterministicSeed());
106   uint32_t max_error = 0;
107   int64_t total_error = 0;
108   const int count_test_block = 10000;
109   DECLARE_ALIGNED(16, int16_t, test_input_block[kNumCoeffs]);
110   DECLARE_ALIGNED(16, tran_low_t, test_temp_block[kNumCoeffs]);
111   DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]);
112   DECLARE_ALIGNED(16, uint8_t, src[kNumCoeffs]);
113 #if CONFIG_VP9_HIGHBITDEPTH
114   DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]);
115   DECLARE_ALIGNED(16, uint16_t, src16[kNumCoeffs]);
116 #endif
117
118   for (int i = 0; i < count_test_block; ++i) {
119     // Initialize a test block with input range [-mask_, mask_].
120     for (int j = 0; j < kNumCoeffs; ++j) {
121       if (bit_depth_ == VPX_BITS_8) {
122         src[j] = rnd.Rand8();
123         dst[j] = rnd.Rand8();
124         test_input_block[j] = src[j] - dst[j];
125 #if CONFIG_VP9_HIGHBITDEPTH
126       } else {
127         src16[j] = rnd.Rand16() & mask_;
128         dst16[j] = rnd.Rand16() & mask_;
129         test_input_block[j] = src16[j] - dst16[j];
130 #endif
131       }
132     }
133
134     ASM_REGISTER_STATE_CHECK(fwd_txfm_(test_input_block, test_temp_block, 32));
135     if (bit_depth_ == VPX_BITS_8) {
136       ASM_REGISTER_STATE_CHECK(inv_txfm_(test_temp_block, dst, 32));
137 #if CONFIG_VP9_HIGHBITDEPTH
138     } else {
139       ASM_REGISTER_STATE_CHECK(
140           inv_txfm_(test_temp_block, CAST_TO_BYTEPTR(dst16), 32));
141 #endif
142     }
143
144     for (int j = 0; j < kNumCoeffs; ++j) {
145 #if CONFIG_VP9_HIGHBITDEPTH
146       const int32_t diff =
147           bit_depth_ == VPX_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j];
148 #else
149       const int32_t diff = dst[j] - src[j];
150 #endif
151       const uint32_t error = diff * diff;
152       if (max_error < error) max_error = error;
153       total_error += error;
154     }
155   }
156
157   if (version_ == 1) {
158     max_error /= 2;
159     total_error /= 45;
160   }
161
162   EXPECT_GE(1u << 2 * (bit_depth_ - 8), max_error)
163       << "Error: 32x32 FDCT/IDCT has an individual round-trip error > 1";
164
165   EXPECT_GE(count_test_block << 2 * (bit_depth_ - 8), total_error)
166       << "Error: 32x32 FDCT/IDCT has average round-trip error > 1 per block";
167 }
168
169 TEST_P(Trans32x32Test, CoeffCheck) {
170   ACMRandom rnd(ACMRandom::DeterministicSeed());
171   const int count_test_block = 1000;
172
173   DECLARE_ALIGNED(16, int16_t, input_block[kNumCoeffs]);
174   DECLARE_ALIGNED(16, tran_low_t, output_ref_block[kNumCoeffs]);
175   DECLARE_ALIGNED(16, tran_low_t, output_block[kNumCoeffs]);
176
177   for (int i = 0; i < count_test_block; ++i) {
178     for (int j = 0; j < kNumCoeffs; ++j) {
179       input_block[j] = (rnd.Rand16() & mask_) - (rnd.Rand16() & mask_);
180     }
181
182     const int stride = 32;
183     vpx_fdct32x32_c(input_block, output_ref_block, stride);
184     ASM_REGISTER_STATE_CHECK(fwd_txfm_(input_block, output_block, stride));
185
186     if (version_ == 0) {
187       for (int j = 0; j < kNumCoeffs; ++j)
188         EXPECT_EQ(output_block[j], output_ref_block[j])
189             << "Error: 32x32 FDCT versions have mismatched coefficients";
190     } else {
191       for (int j = 0; j < kNumCoeffs; ++j)
192         EXPECT_GE(6, abs(output_block[j] - output_ref_block[j]))
193             << "Error: 32x32 FDCT rd has mismatched coefficients";
194     }
195   }
196 }
197
198 TEST_P(Trans32x32Test, MemCheck) {
199   ACMRandom rnd(ACMRandom::DeterministicSeed());
200   const int count_test_block = 2000;
201
202   DECLARE_ALIGNED(16, int16_t, input_extreme_block[kNumCoeffs]);
203   DECLARE_ALIGNED(16, tran_low_t, output_ref_block[kNumCoeffs]);
204   DECLARE_ALIGNED(16, tran_low_t, output_block[kNumCoeffs]);
205
206   for (int i = 0; i < count_test_block; ++i) {
207     // Initialize a test block with input range [-mask_, mask_].
208     for (int j = 0; j < kNumCoeffs; ++j) {
209       input_extreme_block[j] = rnd.Rand8() & 1 ? mask_ : -mask_;
210     }
211     if (i == 0) {
212       for (int j = 0; j < kNumCoeffs; ++j) input_extreme_block[j] = mask_;
213     } else if (i == 1) {
214       for (int j = 0; j < kNumCoeffs; ++j) input_extreme_block[j] = -mask_;
215     }
216
217     const int stride = 32;
218     vpx_fdct32x32_c(input_extreme_block, output_ref_block, stride);
219     ASM_REGISTER_STATE_CHECK(
220         fwd_txfm_(input_extreme_block, output_block, stride));
221
222     // The minimum quant value is 4.
223     for (int j = 0; j < kNumCoeffs; ++j) {
224       if (version_ == 0) {
225         EXPECT_EQ(output_block[j], output_ref_block[j])
226             << "Error: 32x32 FDCT versions have mismatched coefficients";
227       } else {
228         EXPECT_GE(6, abs(output_block[j] - output_ref_block[j]))
229             << "Error: 32x32 FDCT rd has mismatched coefficients";
230       }
231       EXPECT_GE(4 * DCT_MAX_VALUE << (bit_depth_ - 8), abs(output_ref_block[j]))
232           << "Error: 32x32 FDCT C has coefficient larger than 4*DCT_MAX_VALUE";
233       EXPECT_GE(4 * DCT_MAX_VALUE << (bit_depth_ - 8), abs(output_block[j]))
234           << "Error: 32x32 FDCT has coefficient larger than "
235           << "4*DCT_MAX_VALUE";
236     }
237   }
238 }
239
240 TEST_P(Trans32x32Test, InverseAccuracy) {
241   ACMRandom rnd(ACMRandom::DeterministicSeed());
242   const int count_test_block = 1000;
243   DECLARE_ALIGNED(16, int16_t, in[kNumCoeffs]);
244   DECLARE_ALIGNED(16, tran_low_t, coeff[kNumCoeffs]);
245   DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]);
246   DECLARE_ALIGNED(16, uint8_t, src[kNumCoeffs]);
247 #if CONFIG_VP9_HIGHBITDEPTH
248   DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]);
249   DECLARE_ALIGNED(16, uint16_t, src16[kNumCoeffs]);
250 #endif
251
252   for (int i = 0; i < count_test_block; ++i) {
253     double out_r[kNumCoeffs];
254
255     // Initialize a test block with input range [-255, 255]
256     for (int j = 0; j < kNumCoeffs; ++j) {
257       if (bit_depth_ == VPX_BITS_8) {
258         src[j] = rnd.Rand8();
259         dst[j] = rnd.Rand8();
260         in[j] = src[j] - dst[j];
261 #if CONFIG_VP9_HIGHBITDEPTH
262       } else {
263         src16[j] = rnd.Rand16() & mask_;
264         dst16[j] = rnd.Rand16() & mask_;
265         in[j] = src16[j] - dst16[j];
266 #endif
267       }
268     }
269
270     reference_32x32_dct_2d(in, out_r);
271     for (int j = 0; j < kNumCoeffs; ++j) {
272       coeff[j] = static_cast<tran_low_t>(round(out_r[j]));
273     }
274     if (bit_depth_ == VPX_BITS_8) {
275       ASM_REGISTER_STATE_CHECK(inv_txfm_(coeff, dst, 32));
276 #if CONFIG_VP9_HIGHBITDEPTH
277     } else {
278       ASM_REGISTER_STATE_CHECK(inv_txfm_(coeff, CAST_TO_BYTEPTR(dst16), 32));
279 #endif
280     }
281     for (int j = 0; j < kNumCoeffs; ++j) {
282 #if CONFIG_VP9_HIGHBITDEPTH
283       const int diff =
284           bit_depth_ == VPX_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j];
285 #else
286       const int diff = dst[j] - src[j];
287 #endif
288       const int error = diff * diff;
289       EXPECT_GE(1, error) << "Error: 32x32 IDCT has error " << error
290                           << " at index " << j;
291     }
292   }
293 }
294
295 class PartialTrans32x32Test
296     : public ::testing::TestWithParam<
297           std::tr1::tuple<FwdTxfmFunc, vpx_bit_depth_t> > {
298  public:
299   virtual ~PartialTrans32x32Test() {}
300   virtual void SetUp() {
301     fwd_txfm_ = GET_PARAM(0);
302     bit_depth_ = GET_PARAM(1);
303   }
304
305   virtual void TearDown() { libvpx_test::ClearSystemState(); }
306
307  protected:
308   vpx_bit_depth_t bit_depth_;
309   FwdTxfmFunc fwd_txfm_;
310 };
311
312 TEST_P(PartialTrans32x32Test, Extremes) {
313 #if CONFIG_VP9_HIGHBITDEPTH
314   const int16_t maxval =
315       static_cast<int16_t>(clip_pixel_highbd(1 << 30, bit_depth_));
316 #else
317   const int16_t maxval = 255;
318 #endif
319   const int minval = -maxval;
320   DECLARE_ALIGNED(16, int16_t, input[kNumCoeffs]);
321   DECLARE_ALIGNED(16, tran_low_t, output[kNumCoeffs]);
322
323   for (int i = 0; i < kNumCoeffs; ++i) input[i] = maxval;
324   output[0] = 0;
325   ASM_REGISTER_STATE_CHECK(fwd_txfm_(input, output, 32));
326   EXPECT_EQ((maxval * kNumCoeffs) >> 3, output[0]);
327
328   for (int i = 0; i < kNumCoeffs; ++i) input[i] = minval;
329   output[0] = 0;
330   ASM_REGISTER_STATE_CHECK(fwd_txfm_(input, output, 32));
331   EXPECT_EQ((minval * kNumCoeffs) >> 3, output[0]);
332 }
333
334 TEST_P(PartialTrans32x32Test, Random) {
335 #if CONFIG_VP9_HIGHBITDEPTH
336   const int16_t maxval =
337       static_cast<int16_t>(clip_pixel_highbd(1 << 30, bit_depth_));
338 #else
339   const int16_t maxval = 255;
340 #endif
341   DECLARE_ALIGNED(16, int16_t, input[kNumCoeffs]);
342   DECLARE_ALIGNED(16, tran_low_t, output[kNumCoeffs]);
343   ACMRandom rnd(ACMRandom::DeterministicSeed());
344
345   int sum = 0;
346   for (int i = 0; i < kNumCoeffs; ++i) {
347     const int val = (i & 1) ? -rnd(maxval + 1) : rnd(maxval + 1);
348     input[i] = val;
349     sum += val;
350   }
351   output[0] = 0;
352   ASM_REGISTER_STATE_CHECK(fwd_txfm_(input, output, 32));
353   EXPECT_EQ(sum >> 3, output[0]);
354 }
355
356 using std::tr1::make_tuple;
357
358 #if CONFIG_VP9_HIGHBITDEPTH
359 INSTANTIATE_TEST_CASE_P(
360     C, Trans32x32Test,
361     ::testing::Values(
362         make_tuple(&vpx_highbd_fdct32x32_c, &idct32x32_10, 0, VPX_BITS_10),
363         make_tuple(&vpx_highbd_fdct32x32_rd_c, &idct32x32_10, 1, VPX_BITS_10),
364         make_tuple(&vpx_highbd_fdct32x32_c, &idct32x32_12, 0, VPX_BITS_12),
365         make_tuple(&vpx_highbd_fdct32x32_rd_c, &idct32x32_12, 1, VPX_BITS_12),
366         make_tuple(&vpx_fdct32x32_c, &vpx_idct32x32_1024_add_c, 0, VPX_BITS_8),
367         make_tuple(&vpx_fdct32x32_rd_c, &vpx_idct32x32_1024_add_c, 1,
368                    VPX_BITS_8)));
369 INSTANTIATE_TEST_CASE_P(
370     C, PartialTrans32x32Test,
371     ::testing::Values(make_tuple(&vpx_highbd_fdct32x32_1_c, VPX_BITS_8),
372                       make_tuple(&vpx_highbd_fdct32x32_1_c, VPX_BITS_10),
373                       make_tuple(&vpx_highbd_fdct32x32_1_c, VPX_BITS_12)));
374 #else
375 INSTANTIATE_TEST_CASE_P(
376     C, Trans32x32Test,
377     ::testing::Values(make_tuple(&vpx_fdct32x32_c, &vpx_idct32x32_1024_add_c, 0,
378                                  VPX_BITS_8),
379                       make_tuple(&vpx_fdct32x32_rd_c, &vpx_idct32x32_1024_add_c,
380                                  1, VPX_BITS_8)));
381 INSTANTIATE_TEST_CASE_P(C, PartialTrans32x32Test,
382                         ::testing::Values(make_tuple(&vpx_fdct32x32_1_c,
383                                                      VPX_BITS_8)));
384 #endif  // CONFIG_VP9_HIGHBITDEPTH
385
386 #if HAVE_NEON && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
387 INSTANTIATE_TEST_CASE_P(
388     NEON, Trans32x32Test,
389     ::testing::Values(make_tuple(&vpx_fdct32x32_c, &vpx_idct32x32_1024_add_neon,
390                                  0, VPX_BITS_8),
391                       make_tuple(&vpx_fdct32x32_rd_c,
392                                  &vpx_idct32x32_1024_add_neon, 1, VPX_BITS_8)));
393 #endif  // HAVE_NEON && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
394
395 #if HAVE_SSE2 && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
396 INSTANTIATE_TEST_CASE_P(
397     SSE2, Trans32x32Test,
398     ::testing::Values(make_tuple(&vpx_fdct32x32_sse2,
399                                  &vpx_idct32x32_1024_add_sse2, 0, VPX_BITS_8),
400                       make_tuple(&vpx_fdct32x32_rd_sse2,
401                                  &vpx_idct32x32_1024_add_sse2, 1, VPX_BITS_8)));
402 INSTANTIATE_TEST_CASE_P(SSE2, PartialTrans32x32Test,
403                         ::testing::Values(make_tuple(&vpx_fdct32x32_1_sse2,
404                                                      VPX_BITS_8)));
405 #endif  // HAVE_SSE2 && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
406
407 #if HAVE_SSE2 && CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
408 INSTANTIATE_TEST_CASE_P(
409     SSE2, Trans32x32Test,
410     ::testing::Values(
411         make_tuple(&vpx_highbd_fdct32x32_sse2, &idct32x32_10, 0, VPX_BITS_10),
412         make_tuple(&vpx_highbd_fdct32x32_rd_sse2, &idct32x32_10, 1,
413                    VPX_BITS_10),
414         make_tuple(&vpx_highbd_fdct32x32_sse2, &idct32x32_12, 0, VPX_BITS_12),
415         make_tuple(&vpx_highbd_fdct32x32_rd_sse2, &idct32x32_12, 1,
416                    VPX_BITS_12),
417         make_tuple(&vpx_fdct32x32_sse2, &vpx_idct32x32_1024_add_c, 0,
418                    VPX_BITS_8),
419         make_tuple(&vpx_fdct32x32_rd_sse2, &vpx_idct32x32_1024_add_c, 1,
420                    VPX_BITS_8)));
421 INSTANTIATE_TEST_CASE_P(SSE2, PartialTrans32x32Test,
422                         ::testing::Values(make_tuple(&vpx_fdct32x32_1_sse2,
423                                                      VPX_BITS_8)));
424 #endif  // HAVE_SSE2 && CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
425
426 #if HAVE_AVX2 && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
427 INSTANTIATE_TEST_CASE_P(
428     AVX2, Trans32x32Test,
429     ::testing::Values(make_tuple(&vpx_fdct32x32_avx2,
430                                  &vpx_idct32x32_1024_add_sse2, 0, VPX_BITS_8),
431                       make_tuple(&vpx_fdct32x32_rd_avx2,
432                                  &vpx_idct32x32_1024_add_sse2, 1, VPX_BITS_8)));
433 #endif  // HAVE_AVX2 && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
434
435 #if HAVE_MSA && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
436 INSTANTIATE_TEST_CASE_P(
437     MSA, Trans32x32Test,
438     ::testing::Values(make_tuple(&vpx_fdct32x32_msa,
439                                  &vpx_idct32x32_1024_add_msa, 0, VPX_BITS_8),
440                       make_tuple(&vpx_fdct32x32_rd_msa,
441                                  &vpx_idct32x32_1024_add_msa, 1, VPX_BITS_8)));
442 INSTANTIATE_TEST_CASE_P(MSA, PartialTrans32x32Test,
443                         ::testing::Values(make_tuple(&vpx_fdct32x32_1_msa,
444                                                      VPX_BITS_8)));
445 #endif  // HAVE_MSA && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
446 }  // namespace