]> granicus.if.org Git - postgresql/blob - src/backend/utils/sort/tuplesort.c
Remove should_free arguments to tuplesort routines.
[postgresql] / src / backend / utils / sort / tuplesort.c
1 /*-------------------------------------------------------------------------
2  *
3  * tuplesort.c
4  *        Generalized tuple sorting routines.
5  *
6  * This module handles sorting of heap tuples, index tuples, or single
7  * Datums (and could easily support other kinds of sortable objects,
8  * if necessary).  It works efficiently for both small and large amounts
9  * of data.  Small amounts are sorted in-memory using qsort().  Large
10  * amounts are sorted using temporary files and a standard external sort
11  * algorithm.
12  *
13  * See Knuth, volume 3, for more than you want to know about the external
14  * sorting algorithm.  Historically, we divided the input into sorted runs
15  * using replacement selection, in the form of a priority tree implemented
16  * as a heap (essentially his Algorithm 5.2.3H), but now we only do that
17  * for the first run, and only if the run would otherwise end up being very
18  * short.  We merge the runs using polyphase merge, Knuth's Algorithm
19  * 5.4.2D.  The logical "tapes" used by Algorithm D are implemented by
20  * logtape.c, which avoids space wastage by recycling disk space as soon
21  * as each block is read from its "tape".
22  *
23  * We do not use Knuth's recommended data structure (Algorithm 5.4.1R) for
24  * the replacement selection, because it uses a fixed number of records
25  * in memory at all times.  Since we are dealing with tuples that may vary
26  * considerably in size, we want to be able to vary the number of records
27  * kept in memory to ensure full utilization of the allowed sort memory
28  * space.  So, we keep the tuples in a variable-size heap, with the next
29  * record to go out at the top of the heap.  Like Algorithm 5.4.1R, each
30  * record is stored with the run number that it must go into, and we use
31  * (run number, key) as the ordering key for the heap.  When the run number
32  * at the top of the heap changes, we know that no more records of the prior
33  * run are left in the heap.  Note that there are in practice only ever two
34  * distinct run numbers, because since PostgreSQL 9.6, we only use
35  * replacement selection to form the first run.
36  *
37  * In PostgreSQL 9.6, a heap (based on Knuth's Algorithm H, with some small
38  * customizations) is only used with the aim of producing just one run,
39  * thereby avoiding all merging.  Only the first run can use replacement
40  * selection, which is why there are now only two possible valid run
41  * numbers, and why heapification is customized to not distinguish between
42  * tuples in the second run (those will be quicksorted).  We generally
43  * prefer a simple hybrid sort-merge strategy, where runs are sorted in much
44  * the same way as the entire input of an internal sort is sorted (using
45  * qsort()).  The replacement_sort_tuples GUC controls the limited remaining
46  * use of replacement selection for the first run.
47  *
48  * There are several reasons to favor a hybrid sort-merge strategy.
49  * Maintaining a priority tree/heap has poor CPU cache characteristics.
50  * Furthermore, the growth in main memory sizes has greatly diminished the
51  * value of having runs that are larger than available memory, even in the
52  * case where there is partially sorted input and runs can be made far
53  * larger by using a heap.  In most cases, a single-pass merge step is all
54  * that is required even when runs are no larger than available memory.
55  * Avoiding multiple merge passes was traditionally considered to be the
56  * major advantage of using replacement selection.
57  *
58  * The approximate amount of memory allowed for any one sort operation
59  * is specified in kilobytes by the caller (most pass work_mem).  Initially,
60  * we absorb tuples and simply store them in an unsorted array as long as
61  * we haven't exceeded workMem.  If we reach the end of the input without
62  * exceeding workMem, we sort the array using qsort() and subsequently return
63  * tuples just by scanning the tuple array sequentially.  If we do exceed
64  * workMem, we begin to emit tuples into sorted runs in temporary tapes.
65  * When tuples are dumped in batch after quicksorting, we begin a new run
66  * with a new output tape (selected per Algorithm D).  After the end of the
67  * input is reached, we dump out remaining tuples in memory into a final run
68  * (or two, when replacement selection is still used), then merge the runs
69  * using Algorithm D.
70  *
71  * When merging runs, we use a heap containing just the frontmost tuple from
72  * each source run; we repeatedly output the smallest tuple and replace it
73  * with the next tuple from its source tape (if any).  When the heap empties,
74  * the merge is complete.  The basic merge algorithm thus needs very little
75  * memory --- only M tuples for an M-way merge, and M is constrained to a
76  * small number.  However, we can still make good use of our full workMem
77  * allocation by pre-reading additional blocks from each source tape.  Without
78  * prereading, our access pattern to the temporary file would be very erratic;
79  * on average we'd read one block from each of M source tapes during the same
80  * time that we're writing M blocks to the output tape, so there is no
81  * sequentiality of access at all, defeating the read-ahead methods used by
82  * most Unix kernels.  Worse, the output tape gets written into a very random
83  * sequence of blocks of the temp file, ensuring that things will be even
84  * worse when it comes time to read that tape.  A straightforward merge pass
85  * thus ends up doing a lot of waiting for disk seeks.  We can improve matters
86  * by prereading from each source tape sequentially, loading about workMem/M
87  * bytes from each tape in turn, and making the sequential blocks immediately
88  * available for reuse.  This approach helps to localize both read and write
89  * accesses.  The pre-reading is handled by logtape.c, we just tell it how
90  * much memory to use for the buffers.
91  *
92  * When the caller requests random access to the sort result, we form
93  * the final sorted run on a logical tape which is then "frozen", so
94  * that we can access it randomly.  When the caller does not need random
95  * access, we return from tuplesort_performsort() as soon as we are down
96  * to one run per logical tape.  The final merge is then performed
97  * on-the-fly as the caller repeatedly calls tuplesort_getXXX; this
98  * saves one cycle of writing all the data out to disk and reading it in.
99  *
100  * Before Postgres 8.2, we always used a seven-tape polyphase merge, on the
101  * grounds that 7 is the "sweet spot" on the tapes-to-passes curve according
102  * to Knuth's figure 70 (section 5.4.2).  However, Knuth is assuming that
103  * tape drives are expensive beasts, and in particular that there will always
104  * be many more runs than tape drives.  In our implementation a "tape drive"
105  * doesn't cost much more than a few Kb of memory buffers, so we can afford
106  * to have lots of them.  In particular, if we can have as many tape drives
107  * as sorted runs, we can eliminate any repeated I/O at all.  In the current
108  * code we determine the number of tapes M on the basis of workMem: we want
109  * workMem/M to be large enough that we read a fair amount of data each time
110  * we preread from a tape, so as to maintain the locality of access described
111  * above.  Nonetheless, with large workMem we can have many tapes (but not
112  * too many -- see the comments in tuplesort_merge_order).
113  *
114  *
115  * Portions Copyright (c) 1996-2016, PostgreSQL Global Development Group
116  * Portions Copyright (c) 1994, Regents of the University of California
117  *
118  * IDENTIFICATION
119  *        src/backend/utils/sort/tuplesort.c
120  *
121  *-------------------------------------------------------------------------
122  */
123
124 #include "postgres.h"
125
126 #include <limits.h>
127
128 #include "access/htup_details.h"
129 #include "access/nbtree.h"
130 #include "catalog/index.h"
131 #include "catalog/pg_am.h"
132 #include "commands/tablespace.h"
133 #include "executor/executor.h"
134 #include "miscadmin.h"
135 #include "pg_trace.h"
136 #include "utils/datum.h"
137 #include "utils/logtape.h"
138 #include "utils/lsyscache.h"
139 #include "utils/memutils.h"
140 #include "utils/pg_rusage.h"
141 #include "utils/rel.h"
142 #include "utils/sortsupport.h"
143 #include "utils/tuplesort.h"
144
145
146 /* sort-type codes for sort__start probes */
147 #define HEAP_SORT               0
148 #define INDEX_SORT              1
149 #define DATUM_SORT              2
150 #define CLUSTER_SORT    3
151
152 /* GUC variables */
153 #ifdef TRACE_SORT
154 bool            trace_sort = false;
155 #endif
156
157 #ifdef DEBUG_BOUNDED_SORT
158 bool            optimize_bounded_sort = true;
159 #endif
160
161
162 /*
163  * The objects we actually sort are SortTuple structs.  These contain
164  * a pointer to the tuple proper (might be a MinimalTuple or IndexTuple),
165  * which is a separate palloc chunk --- we assume it is just one chunk and
166  * can be freed by a simple pfree() (except during merge, when we use a
167  * simple slab allocator).  SortTuples also contain the tuple's first key
168  * column in Datum/nullflag format, and an index integer.
169  *
170  * Storing the first key column lets us save heap_getattr or index_getattr
171  * calls during tuple comparisons.  We could extract and save all the key
172  * columns not just the first, but this would increase code complexity and
173  * overhead, and wouldn't actually save any comparison cycles in the common
174  * case where the first key determines the comparison result.  Note that
175  * for a pass-by-reference datatype, datum1 points into the "tuple" storage.
176  *
177  * There is one special case: when the sort support infrastructure provides an
178  * "abbreviated key" representation, where the key is (typically) a pass by
179  * value proxy for a pass by reference type.  In this case, the abbreviated key
180  * is stored in datum1 in place of the actual first key column.
181  *
182  * When sorting single Datums, the data value is represented directly by
183  * datum1/isnull1 for pass by value types (or null values).  If the datatype is
184  * pass-by-reference and isnull1 is false, then "tuple" points to a separately
185  * palloc'd data value, otherwise "tuple" is NULL.  The value of datum1 is then
186  * either the same pointer as "tuple", or is an abbreviated key value as
187  * described above.  Accordingly, "tuple" is always used in preference to
188  * datum1 as the authoritative value for pass-by-reference cases.
189  *
190  * While building initial runs, tupindex holds the tuple's run number.
191  * Historically, the run number could meaningfully distinguish many runs, but
192  * it now only distinguishes RUN_FIRST and HEAP_RUN_NEXT, since replacement
193  * selection is always abandoned after the first run; no other run number
194  * should be represented here.  During merge passes, we re-use it to hold the
195  * input tape number that each tuple in the heap was read from.  tupindex goes
196  * unused if the sort occurs entirely in memory.
197  */
198 typedef struct
199 {
200         void       *tuple;                      /* the tuple itself */
201         Datum           datum1;                 /* value of first key column */
202         bool            isnull1;                /* is first key column NULL? */
203         int                     tupindex;               /* see notes above */
204 } SortTuple;
205
206 /*
207  * During merge, we use a pre-allocated set of fixed-size slots to hold
208  * tuples.  To avoid palloc/pfree overhead.
209  *
210  * Merge doesn't require a lot of memory, so we can afford to waste some,
211  * by using gratuitously-sized slots.  If a tuple is larger than 1 kB, the
212  * palloc() overhead is not significant anymore.
213  *
214  * 'nextfree' is valid when this chunk is in the free list.  When in use, the
215  * slot holds a tuple.
216  */
217 #define SLAB_SLOT_SIZE 1024
218
219 typedef union SlabSlot
220 {
221         union SlabSlot *nextfree;
222         char            buffer[SLAB_SLOT_SIZE];
223 } SlabSlot;
224
225 /*
226  * Possible states of a Tuplesort object.  These denote the states that
227  * persist between calls of Tuplesort routines.
228  */
229 typedef enum
230 {
231         TSS_INITIAL,                            /* Loading tuples; still within memory limit */
232         TSS_BOUNDED,                            /* Loading tuples into bounded-size heap */
233         TSS_BUILDRUNS,                          /* Loading tuples; writing to tape */
234         TSS_SORTEDINMEM,                        /* Sort completed entirely in memory */
235         TSS_SORTEDONTAPE,                       /* Sort completed, final run is on tape */
236         TSS_FINALMERGE                          /* Performing final merge on-the-fly */
237 } TupSortStatus;
238
239 /*
240  * Parameters for calculation of number of tapes to use --- see inittapes()
241  * and tuplesort_merge_order().
242  *
243  * In this calculation we assume that each tape will cost us about 3 blocks
244  * worth of buffer space (which is an underestimate for very large data
245  * volumes, but it's probably close enough --- see logtape.c).
246  *
247  * MERGE_BUFFER_SIZE is how much data we'd like to read from each input
248  * tape during a preread cycle (see discussion at top of file).
249  */
250 #define MINORDER                6               /* minimum merge order */
251 #define MAXORDER                500             /* maximum merge order */
252 #define TAPE_BUFFER_OVERHEAD            (BLCKSZ * 3)
253 #define MERGE_BUFFER_SIZE                       (BLCKSZ * 32)
254
255  /*
256   * Run numbers, used during external sort operations.
257   *
258   * HEAP_RUN_NEXT is only used for SortTuple.tupindex, never state.currentRun.
259   */
260 #define RUN_FIRST               0
261 #define HEAP_RUN_NEXT   INT_MAX
262 #define RUN_SECOND              1
263
264 typedef int (*SortTupleComparator) (const SortTuple *a, const SortTuple *b,
265                                                                                                 Tuplesortstate *state);
266
267 /*
268  * Private state of a Tuplesort operation.
269  */
270 struct Tuplesortstate
271 {
272         TupSortStatus status;           /* enumerated value as shown above */
273         int                     nKeys;                  /* number of columns in sort key */
274         bool            randomAccess;   /* did caller request random access? */
275         bool            bounded;                /* did caller specify a maximum number of
276                                                                  * tuples to return? */
277         bool            boundUsed;              /* true if we made use of a bounded heap */
278         int                     bound;                  /* if bounded, the maximum number of tuples */
279         bool            tuples;                 /* Can SortTuple.tuple ever be set? */
280         int64           availMem;               /* remaining memory available, in bytes */
281         int64           allowedMem;             /* total memory allowed, in bytes */
282         int                     maxTapes;               /* number of tapes (Knuth's T) */
283         int                     tapeRange;              /* maxTapes-1 (Knuth's P) */
284         MemoryContext sortcontext;      /* memory context holding most sort data */
285         MemoryContext tuplecontext; /* sub-context of sortcontext for tuple data */
286         LogicalTapeSet *tapeset;        /* logtape.c object for tapes in a temp file */
287
288         /*
289          * These function pointers decouple the routines that must know what kind
290          * of tuple we are sorting from the routines that don't need to know it.
291          * They are set up by the tuplesort_begin_xxx routines.
292          *
293          * Function to compare two tuples; result is per qsort() convention, ie:
294          * <0, 0, >0 according as a<b, a=b, a>b.  The API must match
295          * qsort_arg_comparator.
296          */
297         SortTupleComparator comparetup;
298
299         /*
300          * Function to copy a supplied input tuple into palloc'd space and set up
301          * its SortTuple representation (ie, set tuple/datum1/isnull1).  Also,
302          * state->availMem must be decreased by the amount of space used for the
303          * tuple copy (note the SortTuple struct itself is not counted).
304          */
305         void            (*copytup) (Tuplesortstate *state, SortTuple *stup, void *tup);
306
307         /*
308          * Function to write a stored tuple onto tape.  The representation of the
309          * tuple on tape need not be the same as it is in memory; requirements on
310          * the tape representation are given below.  Unless the slab allocator is
311          * used, after writing the tuple, pfree() the out-of-line data (not the
312          * SortTuple struct!), and increase state->availMem by the amount of
313          * memory space thereby released.
314          */
315         void            (*writetup) (Tuplesortstate *state, int tapenum,
316                                                                                  SortTuple *stup);
317
318         /*
319          * Function to read a stored tuple from tape back into memory. 'len' is
320          * the already-read length of the stored tuple.  The tuple is allocated
321          * from the slab memory arena, or is palloc'd, see readtup_alloc().
322          */
323         void            (*readtup) (Tuplesortstate *state, SortTuple *stup,
324                                                                                 int tapenum, unsigned int len);
325
326         /*
327          * This array holds the tuples now in sort memory.  If we are in state
328          * INITIAL, the tuples are in no particular order; if we are in state
329          * SORTEDINMEM, the tuples are in final sorted order; in states BUILDRUNS
330          * and FINALMERGE, the tuples are organized in "heap" order per Algorithm
331          * H.  In state SORTEDONTAPE, the array is not used.
332          */
333         SortTuple  *memtuples;          /* array of SortTuple structs */
334         int                     memtupcount;    /* number of tuples currently present */
335         int                     memtupsize;             /* allocated length of memtuples array */
336         bool            growmemtuples;  /* memtuples' growth still underway? */
337
338         /*
339          * Memory for tuples is sometimes allocated using a simple slab allocator,
340          * rather than with palloc().  Currently, we switch to slab allocation
341          * when we start merging.  Merging only needs to keep a small, fixed
342          * number of tuples in memory at any time, so we can avoid the
343          * palloc/pfree overhead by recycling a fixed number of fixed-size slots
344          * to hold the tuples.
345          *
346          * For the slab, we use one large allocation, divided into SLAB_SLOT_SIZE
347          * slots.  The allocation is sized to have one slot per tape, plus one
348          * additional slot.  We need that many slots to hold all the tuples kept
349          * in the heap during merge, plus the one we have last returned from the
350          * sort, with tuplesort_gettuple.
351          *
352          * Initially, all the slots are kept in a linked list of free slots.  When
353          * a tuple is read from a tape, it is put to the next available slot, if
354          * it fits.  If the tuple is larger than SLAB_SLOT_SIZE, it is palloc'd
355          * instead.
356          *
357          * When we're done processing a tuple, we return the slot back to the free
358          * list, or pfree() if it was palloc'd.  We know that a tuple was
359          * allocated from the slab, if its pointer value is between
360          * slabMemoryBegin and -End.
361          *
362          * When the slab allocator is used, the USEMEM/LACKMEM mechanism of
363          * tracking memory usage is not used.
364          */
365         bool            slabAllocatorUsed;
366
367         char       *slabMemoryBegin;    /* beginning of slab memory arena */
368         char       *slabMemoryEnd;      /* end of slab memory arena */
369         SlabSlot   *slabFreeHead;       /* head of free list */
370
371         /* Buffer size to use for reading input tapes, during merge. */
372         size_t          read_buffer_size;
373
374         /*
375          * When we return a tuple to the caller in tuplesort_gettuple_XXX, that
376          * came from a tape (that is, in TSS_SORTEDONTAPE or TSS_FINALMERGE
377          * modes), we remember the tuple in 'lastReturnedTuple', so that we can
378          * recycle the memory on next gettuple call.
379          */
380         void       *lastReturnedTuple;
381
382         /*
383          * While building initial runs, this indicates if the replacement
384          * selection strategy is in use.  When it isn't, then a simple hybrid
385          * sort-merge strategy is in use instead (runs are quicksorted).
386          */
387         bool            replaceActive;
388
389         /*
390          * While building initial runs, this is the current output run number
391          * (starting at RUN_FIRST).  Afterwards, it is the number of initial runs
392          * we made.
393          */
394         int                     currentRun;
395
396         /*
397          * Unless otherwise noted, all pointer variables below are pointers to
398          * arrays of length maxTapes, holding per-tape data.
399          */
400
401         /*
402          * This variable is only used during merge passes.  mergeactive[i] is true
403          * if we are reading an input run from (actual) tape number i and have not
404          * yet exhausted that run.
405          */
406         bool       *mergeactive;        /* active input run source? */
407
408         /*
409          * Variables for Algorithm D.  Note that destTape is a "logical" tape
410          * number, ie, an index into the tp_xxx[] arrays.  Be careful to keep
411          * "logical" and "actual" tape numbers straight!
412          */
413         int                     Level;                  /* Knuth's l */
414         int                     destTape;               /* current output tape (Knuth's j, less 1) */
415         int                *tp_fib;                     /* Target Fibonacci run counts (A[]) */
416         int                *tp_runs;            /* # of real runs on each tape */
417         int                *tp_dummy;           /* # of dummy runs for each tape (D[]) */
418         int                *tp_tapenum;         /* Actual tape numbers (TAPE[]) */
419         int                     activeTapes;    /* # of active input tapes in merge pass */
420
421         /*
422          * These variables are used after completion of sorting to keep track of
423          * the next tuple to return.  (In the tape case, the tape's current read
424          * position is also critical state.)
425          */
426         int                     result_tape;    /* actual tape number of finished output */
427         int                     current;                /* array index (only used if SORTEDINMEM) */
428         bool            eof_reached;    /* reached EOF (needed for cursors) */
429
430         /* markpos_xxx holds marked position for mark and restore */
431         long            markpos_block;  /* tape block# (only used if SORTEDONTAPE) */
432         int                     markpos_offset; /* saved "current", or offset in tape block */
433         bool            markpos_eof;    /* saved "eof_reached" */
434
435         /*
436          * The sortKeys variable is used by every case other than the hash index
437          * case; it is set by tuplesort_begin_xxx.  tupDesc is only used by the
438          * MinimalTuple and CLUSTER routines, though.
439          */
440         TupleDesc       tupDesc;
441         SortSupport sortKeys;           /* array of length nKeys */
442
443         /*
444          * This variable is shared by the single-key MinimalTuple case and the
445          * Datum case (which both use qsort_ssup()).  Otherwise it's NULL.
446          */
447         SortSupport onlyKey;
448
449         /*
450          * Additional state for managing "abbreviated key" sortsupport routines
451          * (which currently may be used by all cases except the hash index case).
452          * Tracks the intervals at which the optimization's effectiveness is
453          * tested.
454          */
455         int64           abbrevNext;             /* Tuple # at which to next check
456                                                                  * applicability */
457
458         /*
459          * These variables are specific to the CLUSTER case; they are set by
460          * tuplesort_begin_cluster.
461          */
462         IndexInfo  *indexInfo;          /* info about index being used for reference */
463         EState     *estate;                     /* for evaluating index expressions */
464
465         /*
466          * These variables are specific to the IndexTuple case; they are set by
467          * tuplesort_begin_index_xxx and used only by the IndexTuple routines.
468          */
469         Relation        heapRel;                /* table the index is being built on */
470         Relation        indexRel;               /* index being built */
471
472         /* These are specific to the index_btree subcase: */
473         bool            enforceUnique;  /* complain if we find duplicate tuples */
474
475         /* These are specific to the index_hash subcase: */
476         uint32          hash_mask;              /* mask for sortable part of hash code */
477
478         /*
479          * These variables are specific to the Datum case; they are set by
480          * tuplesort_begin_datum and used only by the DatumTuple routines.
481          */
482         Oid                     datumType;
483         /* we need typelen in order to know how to copy the Datums. */
484         int                     datumTypeLen;
485
486         /*
487          * Resource snapshot for time of sort start.
488          */
489 #ifdef TRACE_SORT
490         PGRUsage        ru_start;
491 #endif
492 };
493
494 /*
495  * Is the given tuple allocated from the slab memory arena?
496  */
497 #define IS_SLAB_SLOT(state, tuple) \
498         ((char *) (tuple) >= (state)->slabMemoryBegin && \
499          (char *) (tuple) < (state)->slabMemoryEnd)
500
501 /*
502  * Return the given tuple to the slab memory free list, or free it
503  * if it was palloc'd.
504  */
505 #define RELEASE_SLAB_SLOT(state, tuple) \
506         do { \
507                 SlabSlot *buf = (SlabSlot *) tuple; \
508                 \
509                 if (IS_SLAB_SLOT((state), buf)) \
510                 { \
511                         buf->nextfree = (state)->slabFreeHead; \
512                         (state)->slabFreeHead = buf; \
513                 } else \
514                         pfree(buf); \
515         } while(0)
516
517 #define COMPARETUP(state,a,b)   ((*(state)->comparetup) (a, b, state))
518 #define COPYTUP(state,stup,tup) ((*(state)->copytup) (state, stup, tup))
519 #define WRITETUP(state,tape,stup)       ((*(state)->writetup) (state, tape, stup))
520 #define READTUP(state,stup,tape,len) ((*(state)->readtup) (state, stup, tape, len))
521 #define LACKMEM(state)          ((state)->availMem < 0 && !(state)->slabAllocatorUsed)
522 #define USEMEM(state,amt)       ((state)->availMem -= (amt))
523 #define FREEMEM(state,amt)      ((state)->availMem += (amt))
524
525 /*
526  * NOTES about on-tape representation of tuples:
527  *
528  * We require the first "unsigned int" of a stored tuple to be the total size
529  * on-tape of the tuple, including itself (so it is never zero; an all-zero
530  * unsigned int is used to delimit runs).  The remainder of the stored tuple
531  * may or may not match the in-memory representation of the tuple ---
532  * any conversion needed is the job of the writetup and readtup routines.
533  *
534  * If state->randomAccess is true, then the stored representation of the
535  * tuple must be followed by another "unsigned int" that is a copy of the
536  * length --- so the total tape space used is actually sizeof(unsigned int)
537  * more than the stored length value.  This allows read-backwards.  When
538  * randomAccess is not true, the write/read routines may omit the extra
539  * length word.
540  *
541  * writetup is expected to write both length words as well as the tuple
542  * data.  When readtup is called, the tape is positioned just after the
543  * front length word; readtup must read the tuple data and advance past
544  * the back length word (if present).
545  *
546  * The write/read routines can make use of the tuple description data
547  * stored in the Tuplesortstate record, if needed.  They are also expected
548  * to adjust state->availMem by the amount of memory space (not tape space!)
549  * released or consumed.  There is no error return from either writetup
550  * or readtup; they should ereport() on failure.
551  *
552  *
553  * NOTES about memory consumption calculations:
554  *
555  * We count space allocated for tuples against the workMem limit, plus
556  * the space used by the variable-size memtuples array.  Fixed-size space
557  * is not counted; it's small enough to not be interesting.
558  *
559  * Note that we count actual space used (as shown by GetMemoryChunkSpace)
560  * rather than the originally-requested size.  This is important since
561  * palloc can add substantial overhead.  It's not a complete answer since
562  * we won't count any wasted space in palloc allocation blocks, but it's
563  * a lot better than what we were doing before 7.3.  As of 9.6, a
564  * separate memory context is used for caller passed tuples.  Resetting
565  * it at certain key increments significantly ameliorates fragmentation.
566  * Note that this places a responsibility on readtup and copytup routines
567  * to use the right memory context for these tuples (and to not use the
568  * reset context for anything whose lifetime needs to span multiple
569  * external sort runs).
570  */
571
572 /* When using this macro, beware of double evaluation of len */
573 #define LogicalTapeReadExact(tapeset, tapenum, ptr, len) \
574         do { \
575                 if (LogicalTapeRead(tapeset, tapenum, ptr, len) != (size_t) (len)) \
576                         elog(ERROR, "unexpected end of data"); \
577         } while(0)
578
579
580 static Tuplesortstate *tuplesort_begin_common(int workMem, bool randomAccess);
581 static void puttuple_common(Tuplesortstate *state, SortTuple *tuple);
582 static bool consider_abort_common(Tuplesortstate *state);
583 static bool useselection(Tuplesortstate *state);
584 static void inittapes(Tuplesortstate *state);
585 static void selectnewtape(Tuplesortstate *state);
586 static void init_slab_allocator(Tuplesortstate *state, int numSlots);
587 static void mergeruns(Tuplesortstate *state);
588 static void mergeonerun(Tuplesortstate *state);
589 static void beginmerge(Tuplesortstate *state);
590 static bool mergereadnext(Tuplesortstate *state, int srcTape, SortTuple *stup);
591 static void dumptuples(Tuplesortstate *state, bool alltuples);
592 static void dumpbatch(Tuplesortstate *state, bool alltuples);
593 static void make_bounded_heap(Tuplesortstate *state);
594 static void sort_bounded_heap(Tuplesortstate *state);
595 static void tuplesort_sort_memtuples(Tuplesortstate *state);
596 static void tuplesort_heap_insert(Tuplesortstate *state, SortTuple *tuple,
597                                           bool checkIndex);
598 static void tuplesort_heap_replace_top(Tuplesortstate *state, SortTuple *tuple,
599                                                    bool checkIndex);
600 static void tuplesort_heap_delete_top(Tuplesortstate *state, bool checkIndex);
601 static void reversedirection(Tuplesortstate *state);
602 static unsigned int getlen(Tuplesortstate *state, int tapenum, bool eofOK);
603 static void markrunend(Tuplesortstate *state, int tapenum);
604 static void *readtup_alloc(Tuplesortstate *state, Size tuplen);
605 static int comparetup_heap(const SortTuple *a, const SortTuple *b,
606                                 Tuplesortstate *state);
607 static void copytup_heap(Tuplesortstate *state, SortTuple *stup, void *tup);
608 static void writetup_heap(Tuplesortstate *state, int tapenum,
609                           SortTuple *stup);
610 static void readtup_heap(Tuplesortstate *state, SortTuple *stup,
611                          int tapenum, unsigned int len);
612 static int comparetup_cluster(const SortTuple *a, const SortTuple *b,
613                                    Tuplesortstate *state);
614 static void copytup_cluster(Tuplesortstate *state, SortTuple *stup, void *tup);
615 static void writetup_cluster(Tuplesortstate *state, int tapenum,
616                                  SortTuple *stup);
617 static void readtup_cluster(Tuplesortstate *state, SortTuple *stup,
618                                 int tapenum, unsigned int len);
619 static int comparetup_index_btree(const SortTuple *a, const SortTuple *b,
620                                            Tuplesortstate *state);
621 static int comparetup_index_hash(const SortTuple *a, const SortTuple *b,
622                                           Tuplesortstate *state);
623 static void copytup_index(Tuplesortstate *state, SortTuple *stup, void *tup);
624 static void writetup_index(Tuplesortstate *state, int tapenum,
625                            SortTuple *stup);
626 static void readtup_index(Tuplesortstate *state, SortTuple *stup,
627                           int tapenum, unsigned int len);
628 static int comparetup_datum(const SortTuple *a, const SortTuple *b,
629                                  Tuplesortstate *state);
630 static void copytup_datum(Tuplesortstate *state, SortTuple *stup, void *tup);
631 static void writetup_datum(Tuplesortstate *state, int tapenum,
632                            SortTuple *stup);
633 static void readtup_datum(Tuplesortstate *state, SortTuple *stup,
634                           int tapenum, unsigned int len);
635 static void free_sort_tuple(Tuplesortstate *state, SortTuple *stup);
636
637 /*
638  * Special versions of qsort just for SortTuple objects.  qsort_tuple() sorts
639  * any variant of SortTuples, using the appropriate comparetup function.
640  * qsort_ssup() is specialized for the case where the comparetup function
641  * reduces to ApplySortComparator(), that is single-key MinimalTuple sorts
642  * and Datum sorts.
643  */
644 #include "qsort_tuple.c"
645
646
647 /*
648  *              tuplesort_begin_xxx
649  *
650  * Initialize for a tuple sort operation.
651  *
652  * After calling tuplesort_begin, the caller should call tuplesort_putXXX
653  * zero or more times, then call tuplesort_performsort when all the tuples
654  * have been supplied.  After performsort, retrieve the tuples in sorted
655  * order by calling tuplesort_getXXX until it returns false/NULL.  (If random
656  * access was requested, rescan, markpos, and restorepos can also be called.)
657  * Call tuplesort_end to terminate the operation and release memory/disk space.
658  *
659  * Each variant of tuplesort_begin has a workMem parameter specifying the
660  * maximum number of kilobytes of RAM to use before spilling data to disk.
661  * (The normal value of this parameter is work_mem, but some callers use
662  * other values.)  Each variant also has a randomAccess parameter specifying
663  * whether the caller needs non-sequential access to the sort result.
664  */
665
666 static Tuplesortstate *
667 tuplesort_begin_common(int workMem, bool randomAccess)
668 {
669         Tuplesortstate *state;
670         MemoryContext sortcontext;
671         MemoryContext tuplecontext;
672         MemoryContext oldcontext;
673
674         /*
675          * Create a working memory context for this sort operation. All data
676          * needed by the sort will live inside this context.
677          */
678         sortcontext = AllocSetContextCreate(CurrentMemoryContext,
679                                                                                 "TupleSort main",
680                                                                                 ALLOCSET_DEFAULT_SIZES);
681
682         /*
683          * Caller tuple (e.g. IndexTuple) memory context.
684          *
685          * A dedicated child context used exclusively for caller passed tuples
686          * eases memory management.  Resetting at key points reduces
687          * fragmentation. Note that the memtuples array of SortTuples is allocated
688          * in the parent context, not this context, because there is no need to
689          * free memtuples early.
690          */
691         tuplecontext = AllocSetContextCreate(sortcontext,
692                                                                                  "Caller tuples",
693                                                                                  ALLOCSET_DEFAULT_SIZES);
694
695         /*
696          * Make the Tuplesortstate within the per-sort context.  This way, we
697          * don't need a separate pfree() operation for it at shutdown.
698          */
699         oldcontext = MemoryContextSwitchTo(sortcontext);
700
701         state = (Tuplesortstate *) palloc0(sizeof(Tuplesortstate));
702
703 #ifdef TRACE_SORT
704         if (trace_sort)
705                 pg_rusage_init(&state->ru_start);
706 #endif
707
708         state->status = TSS_INITIAL;
709         state->randomAccess = randomAccess;
710         state->bounded = false;
711         state->tuples = true;
712         state->boundUsed = false;
713         state->allowedMem = workMem * (int64) 1024;
714         state->availMem = state->allowedMem;
715         state->sortcontext = sortcontext;
716         state->tuplecontext = tuplecontext;
717         state->tapeset = NULL;
718
719         state->memtupcount = 0;
720
721         /*
722          * Initial size of array must be more than ALLOCSET_SEPARATE_THRESHOLD;
723          * see comments in grow_memtuples().
724          */
725         state->memtupsize = Max(1024,
726                                                 ALLOCSET_SEPARATE_THRESHOLD / sizeof(SortTuple) + 1);
727
728         state->growmemtuples = true;
729         state->slabAllocatorUsed = false;
730         state->memtuples = (SortTuple *) palloc(state->memtupsize * sizeof(SortTuple));
731
732         USEMEM(state, GetMemoryChunkSpace(state->memtuples));
733
734         /* workMem must be large enough for the minimal memtuples array */
735         if (LACKMEM(state))
736                 elog(ERROR, "insufficient memory allowed for sort");
737
738         state->currentRun = RUN_FIRST;
739
740         /*
741          * maxTapes, tapeRange, and Algorithm D variables will be initialized by
742          * inittapes(), if needed
743          */
744
745         state->result_tape = -1;        /* flag that result tape has not been formed */
746
747         MemoryContextSwitchTo(oldcontext);
748
749         return state;
750 }
751
752 Tuplesortstate *
753 tuplesort_begin_heap(TupleDesc tupDesc,
754                                          int nkeys, AttrNumber *attNums,
755                                          Oid *sortOperators, Oid *sortCollations,
756                                          bool *nullsFirstFlags,
757                                          int workMem, bool randomAccess)
758 {
759         Tuplesortstate *state = tuplesort_begin_common(workMem, randomAccess);
760         MemoryContext oldcontext;
761         int                     i;
762
763         oldcontext = MemoryContextSwitchTo(state->sortcontext);
764
765         AssertArg(nkeys > 0);
766
767 #ifdef TRACE_SORT
768         if (trace_sort)
769                 elog(LOG,
770                          "begin tuple sort: nkeys = %d, workMem = %d, randomAccess = %c",
771                          nkeys, workMem, randomAccess ? 't' : 'f');
772 #endif
773
774         state->nKeys = nkeys;
775
776         TRACE_POSTGRESQL_SORT_START(HEAP_SORT,
777                                                                 false,  /* no unique check */
778                                                                 nkeys,
779                                                                 workMem,
780                                                                 randomAccess);
781
782         state->comparetup = comparetup_heap;
783         state->copytup = copytup_heap;
784         state->writetup = writetup_heap;
785         state->readtup = readtup_heap;
786
787         state->tupDesc = tupDesc;       /* assume we need not copy tupDesc */
788         state->abbrevNext = 10;
789
790         /* Prepare SortSupport data for each column */
791         state->sortKeys = (SortSupport) palloc0(nkeys * sizeof(SortSupportData));
792
793         for (i = 0; i < nkeys; i++)
794         {
795                 SortSupport sortKey = state->sortKeys + i;
796
797                 AssertArg(attNums[i] != 0);
798                 AssertArg(sortOperators[i] != 0);
799
800                 sortKey->ssup_cxt = CurrentMemoryContext;
801                 sortKey->ssup_collation = sortCollations[i];
802                 sortKey->ssup_nulls_first = nullsFirstFlags[i];
803                 sortKey->ssup_attno = attNums[i];
804                 /* Convey if abbreviation optimization is applicable in principle */
805                 sortKey->abbreviate = (i == 0);
806
807                 PrepareSortSupportFromOrderingOp(sortOperators[i], sortKey);
808         }
809
810         /*
811          * The "onlyKey" optimization cannot be used with abbreviated keys, since
812          * tie-breaker comparisons may be required.  Typically, the optimization
813          * is only of value to pass-by-value types anyway, whereas abbreviated
814          * keys are typically only of value to pass-by-reference types.
815          */
816         if (nkeys == 1 && !state->sortKeys->abbrev_converter)
817                 state->onlyKey = state->sortKeys;
818
819         MemoryContextSwitchTo(oldcontext);
820
821         return state;
822 }
823
824 Tuplesortstate *
825 tuplesort_begin_cluster(TupleDesc tupDesc,
826                                                 Relation indexRel,
827                                                 int workMem, bool randomAccess)
828 {
829         Tuplesortstate *state = tuplesort_begin_common(workMem, randomAccess);
830         ScanKey         indexScanKey;
831         MemoryContext oldcontext;
832         int                     i;
833
834         Assert(indexRel->rd_rel->relam == BTREE_AM_OID);
835
836         oldcontext = MemoryContextSwitchTo(state->sortcontext);
837
838 #ifdef TRACE_SORT
839         if (trace_sort)
840                 elog(LOG,
841                          "begin tuple sort: nkeys = %d, workMem = %d, randomAccess = %c",
842                          RelationGetNumberOfAttributes(indexRel),
843                          workMem, randomAccess ? 't' : 'f');
844 #endif
845
846         state->nKeys = RelationGetNumberOfAttributes(indexRel);
847
848         TRACE_POSTGRESQL_SORT_START(CLUSTER_SORT,
849                                                                 false,  /* no unique check */
850                                                                 state->nKeys,
851                                                                 workMem,
852                                                                 randomAccess);
853
854         state->comparetup = comparetup_cluster;
855         state->copytup = copytup_cluster;
856         state->writetup = writetup_cluster;
857         state->readtup = readtup_cluster;
858         state->abbrevNext = 10;
859
860         state->indexInfo = BuildIndexInfo(indexRel);
861
862         state->tupDesc = tupDesc;       /* assume we need not copy tupDesc */
863
864         indexScanKey = _bt_mkscankey_nodata(indexRel);
865
866         if (state->indexInfo->ii_Expressions != NULL)
867         {
868                 TupleTableSlot *slot;
869                 ExprContext *econtext;
870
871                 /*
872                  * We will need to use FormIndexDatum to evaluate the index
873                  * expressions.  To do that, we need an EState, as well as a
874                  * TupleTableSlot to put the table tuples into.  The econtext's
875                  * scantuple has to point to that slot, too.
876                  */
877                 state->estate = CreateExecutorState();
878                 slot = MakeSingleTupleTableSlot(tupDesc);
879                 econtext = GetPerTupleExprContext(state->estate);
880                 econtext->ecxt_scantuple = slot;
881         }
882
883         /* Prepare SortSupport data for each column */
884         state->sortKeys = (SortSupport) palloc0(state->nKeys *
885                                                                                         sizeof(SortSupportData));
886
887         for (i = 0; i < state->nKeys; i++)
888         {
889                 SortSupport sortKey = state->sortKeys + i;
890                 ScanKey         scanKey = indexScanKey + i;
891                 int16           strategy;
892
893                 sortKey->ssup_cxt = CurrentMemoryContext;
894                 sortKey->ssup_collation = scanKey->sk_collation;
895                 sortKey->ssup_nulls_first =
896                         (scanKey->sk_flags & SK_BT_NULLS_FIRST) != 0;
897                 sortKey->ssup_attno = scanKey->sk_attno;
898                 /* Convey if abbreviation optimization is applicable in principle */
899                 sortKey->abbreviate = (i == 0);
900
901                 AssertState(sortKey->ssup_attno != 0);
902
903                 strategy = (scanKey->sk_flags & SK_BT_DESC) != 0 ?
904                         BTGreaterStrategyNumber : BTLessStrategyNumber;
905
906                 PrepareSortSupportFromIndexRel(indexRel, strategy, sortKey);
907         }
908
909         _bt_freeskey(indexScanKey);
910
911         MemoryContextSwitchTo(oldcontext);
912
913         return state;
914 }
915
916 Tuplesortstate *
917 tuplesort_begin_index_btree(Relation heapRel,
918                                                         Relation indexRel,
919                                                         bool enforceUnique,
920                                                         int workMem, bool randomAccess)
921 {
922         Tuplesortstate *state = tuplesort_begin_common(workMem, randomAccess);
923         ScanKey         indexScanKey;
924         MemoryContext oldcontext;
925         int                     i;
926
927         oldcontext = MemoryContextSwitchTo(state->sortcontext);
928
929 #ifdef TRACE_SORT
930         if (trace_sort)
931                 elog(LOG,
932                          "begin index sort: unique = %c, workMem = %d, randomAccess = %c",
933                          enforceUnique ? 't' : 'f',
934                          workMem, randomAccess ? 't' : 'f');
935 #endif
936
937         state->nKeys = RelationGetNumberOfAttributes(indexRel);
938
939         TRACE_POSTGRESQL_SORT_START(INDEX_SORT,
940                                                                 enforceUnique,
941                                                                 state->nKeys,
942                                                                 workMem,
943                                                                 randomAccess);
944
945         state->comparetup = comparetup_index_btree;
946         state->copytup = copytup_index;
947         state->writetup = writetup_index;
948         state->readtup = readtup_index;
949         state->abbrevNext = 10;
950
951         state->heapRel = heapRel;
952         state->indexRel = indexRel;
953         state->enforceUnique = enforceUnique;
954
955         indexScanKey = _bt_mkscankey_nodata(indexRel);
956         state->nKeys = RelationGetNumberOfAttributes(indexRel);
957
958         /* Prepare SortSupport data for each column */
959         state->sortKeys = (SortSupport) palloc0(state->nKeys *
960                                                                                         sizeof(SortSupportData));
961
962         for (i = 0; i < state->nKeys; i++)
963         {
964                 SortSupport sortKey = state->sortKeys + i;
965                 ScanKey         scanKey = indexScanKey + i;
966                 int16           strategy;
967
968                 sortKey->ssup_cxt = CurrentMemoryContext;
969                 sortKey->ssup_collation = scanKey->sk_collation;
970                 sortKey->ssup_nulls_first =
971                         (scanKey->sk_flags & SK_BT_NULLS_FIRST) != 0;
972                 sortKey->ssup_attno = scanKey->sk_attno;
973                 /* Convey if abbreviation optimization is applicable in principle */
974                 sortKey->abbreviate = (i == 0);
975
976                 AssertState(sortKey->ssup_attno != 0);
977
978                 strategy = (scanKey->sk_flags & SK_BT_DESC) != 0 ?
979                         BTGreaterStrategyNumber : BTLessStrategyNumber;
980
981                 PrepareSortSupportFromIndexRel(indexRel, strategy, sortKey);
982         }
983
984         _bt_freeskey(indexScanKey);
985
986         MemoryContextSwitchTo(oldcontext);
987
988         return state;
989 }
990
991 Tuplesortstate *
992 tuplesort_begin_index_hash(Relation heapRel,
993                                                    Relation indexRel,
994                                                    uint32 hash_mask,
995                                                    int workMem, bool randomAccess)
996 {
997         Tuplesortstate *state = tuplesort_begin_common(workMem, randomAccess);
998         MemoryContext oldcontext;
999
1000         oldcontext = MemoryContextSwitchTo(state->sortcontext);
1001
1002 #ifdef TRACE_SORT
1003         if (trace_sort)
1004                 elog(LOG,
1005                 "begin index sort: hash_mask = 0x%x, workMem = %d, randomAccess = %c",
1006                          hash_mask,
1007                          workMem, randomAccess ? 't' : 'f');
1008 #endif
1009
1010         state->nKeys = 1;                       /* Only one sort column, the hash code */
1011
1012         state->comparetup = comparetup_index_hash;
1013         state->copytup = copytup_index;
1014         state->writetup = writetup_index;
1015         state->readtup = readtup_index;
1016
1017         state->heapRel = heapRel;
1018         state->indexRel = indexRel;
1019
1020         state->hash_mask = hash_mask;
1021
1022         MemoryContextSwitchTo(oldcontext);
1023
1024         return state;
1025 }
1026
1027 Tuplesortstate *
1028 tuplesort_begin_datum(Oid datumType, Oid sortOperator, Oid sortCollation,
1029                                           bool nullsFirstFlag,
1030                                           int workMem, bool randomAccess)
1031 {
1032         Tuplesortstate *state = tuplesort_begin_common(workMem, randomAccess);
1033         MemoryContext oldcontext;
1034         int16           typlen;
1035         bool            typbyval;
1036
1037         oldcontext = MemoryContextSwitchTo(state->sortcontext);
1038
1039 #ifdef TRACE_SORT
1040         if (trace_sort)
1041                 elog(LOG,
1042                          "begin datum sort: workMem = %d, randomAccess = %c",
1043                          workMem, randomAccess ? 't' : 'f');
1044 #endif
1045
1046         state->nKeys = 1;                       /* always a one-column sort */
1047
1048         TRACE_POSTGRESQL_SORT_START(DATUM_SORT,
1049                                                                 false,  /* no unique check */
1050                                                                 1,
1051                                                                 workMem,
1052                                                                 randomAccess);
1053
1054         state->comparetup = comparetup_datum;
1055         state->copytup = copytup_datum;
1056         state->writetup = writetup_datum;
1057         state->readtup = readtup_datum;
1058         state->abbrevNext = 10;
1059
1060         state->datumType = datumType;
1061
1062         /* lookup necessary attributes of the datum type */
1063         get_typlenbyval(datumType, &typlen, &typbyval);
1064         state->datumTypeLen = typlen;
1065         state->tuples = !typbyval;
1066
1067         /* Prepare SortSupport data */
1068         state->sortKeys = (SortSupport) palloc0(sizeof(SortSupportData));
1069
1070         state->sortKeys->ssup_cxt = CurrentMemoryContext;
1071         state->sortKeys->ssup_collation = sortCollation;
1072         state->sortKeys->ssup_nulls_first = nullsFirstFlag;
1073
1074         /*
1075          * Abbreviation is possible here only for by-reference types.  In theory,
1076          * a pass-by-value datatype could have an abbreviated form that is cheaper
1077          * to compare.  In a tuple sort, we could support that, because we can
1078          * always extract the original datum from the tuple is needed.  Here, we
1079          * can't, because a datum sort only stores a single copy of the datum; the
1080          * "tuple" field of each sortTuple is NULL.
1081          */
1082         state->sortKeys->abbreviate = !typbyval;
1083
1084         PrepareSortSupportFromOrderingOp(sortOperator, state->sortKeys);
1085
1086         /*
1087          * The "onlyKey" optimization cannot be used with abbreviated keys, since
1088          * tie-breaker comparisons may be required.  Typically, the optimization
1089          * is only of value to pass-by-value types anyway, whereas abbreviated
1090          * keys are typically only of value to pass-by-reference types.
1091          */
1092         if (!state->sortKeys->abbrev_converter)
1093                 state->onlyKey = state->sortKeys;
1094
1095         MemoryContextSwitchTo(oldcontext);
1096
1097         return state;
1098 }
1099
1100 /*
1101  * tuplesort_set_bound
1102  *
1103  *      Advise tuplesort that at most the first N result tuples are required.
1104  *
1105  * Must be called before inserting any tuples.  (Actually, we could allow it
1106  * as long as the sort hasn't spilled to disk, but there seems no need for
1107  * delayed calls at the moment.)
1108  *
1109  * This is a hint only. The tuplesort may still return more tuples than
1110  * requested.
1111  */
1112 void
1113 tuplesort_set_bound(Tuplesortstate *state, int64 bound)
1114 {
1115         /* Assert we're called before loading any tuples */
1116         Assert(state->status == TSS_INITIAL);
1117         Assert(state->memtupcount == 0);
1118         Assert(!state->bounded);
1119
1120 #ifdef DEBUG_BOUNDED_SORT
1121         /* Honor GUC setting that disables the feature (for easy testing) */
1122         if (!optimize_bounded_sort)
1123                 return;
1124 #endif
1125
1126         /* We want to be able to compute bound * 2, so limit the setting */
1127         if (bound > (int64) (INT_MAX / 2))
1128                 return;
1129
1130         state->bounded = true;
1131         state->bound = (int) bound;
1132
1133         /*
1134          * Bounded sorts are not an effective target for abbreviated key
1135          * optimization.  Disable by setting state to be consistent with no
1136          * abbreviation support.
1137          */
1138         state->sortKeys->abbrev_converter = NULL;
1139         if (state->sortKeys->abbrev_full_comparator)
1140                 state->sortKeys->comparator = state->sortKeys->abbrev_full_comparator;
1141
1142         /* Not strictly necessary, but be tidy */
1143         state->sortKeys->abbrev_abort = NULL;
1144         state->sortKeys->abbrev_full_comparator = NULL;
1145 }
1146
1147 /*
1148  * tuplesort_end
1149  *
1150  *      Release resources and clean up.
1151  *
1152  * NOTE: after calling this, any pointers returned by tuplesort_getXXX are
1153  * pointing to garbage.  Be careful not to attempt to use or free such
1154  * pointers afterwards!
1155  */
1156 void
1157 tuplesort_end(Tuplesortstate *state)
1158 {
1159         /* context swap probably not needed, but let's be safe */
1160         MemoryContext oldcontext = MemoryContextSwitchTo(state->sortcontext);
1161
1162 #ifdef TRACE_SORT
1163         long            spaceUsed;
1164
1165         if (state->tapeset)
1166                 spaceUsed = LogicalTapeSetBlocks(state->tapeset);
1167         else
1168                 spaceUsed = (state->allowedMem - state->availMem + 1023) / 1024;
1169 #endif
1170
1171         /*
1172          * Delete temporary "tape" files, if any.
1173          *
1174          * Note: want to include this in reported total cost of sort, hence need
1175          * for two #ifdef TRACE_SORT sections.
1176          */
1177         if (state->tapeset)
1178                 LogicalTapeSetClose(state->tapeset);
1179
1180 #ifdef TRACE_SORT
1181         if (trace_sort)
1182         {
1183                 if (state->tapeset)
1184                         elog(LOG, "external sort ended, %ld disk blocks used: %s",
1185                                  spaceUsed, pg_rusage_show(&state->ru_start));
1186                 else
1187                         elog(LOG, "internal sort ended, %ld KB used: %s",
1188                                  spaceUsed, pg_rusage_show(&state->ru_start));
1189         }
1190
1191         TRACE_POSTGRESQL_SORT_DONE(state->tapeset != NULL, spaceUsed);
1192 #else
1193
1194         /*
1195          * If you disabled TRACE_SORT, you can still probe sort__done, but you
1196          * ain't getting space-used stats.
1197          */
1198         TRACE_POSTGRESQL_SORT_DONE(state->tapeset != NULL, 0L);
1199 #endif
1200
1201         /* Free any execution state created for CLUSTER case */
1202         if (state->estate != NULL)
1203         {
1204                 ExprContext *econtext = GetPerTupleExprContext(state->estate);
1205
1206                 ExecDropSingleTupleTableSlot(econtext->ecxt_scantuple);
1207                 FreeExecutorState(state->estate);
1208         }
1209
1210         MemoryContextSwitchTo(oldcontext);
1211
1212         /*
1213          * Free the per-sort memory context, thereby releasing all working memory,
1214          * including the Tuplesortstate struct itself.
1215          */
1216         MemoryContextDelete(state->sortcontext);
1217 }
1218
1219 /*
1220  * Grow the memtuples[] array, if possible within our memory constraint.  We
1221  * must not exceed INT_MAX tuples in memory or the caller-provided memory
1222  * limit.  Return TRUE if we were able to enlarge the array, FALSE if not.
1223  *
1224  * Normally, at each increment we double the size of the array.  When doing
1225  * that would exceed a limit, we attempt one last, smaller increase (and then
1226  * clear the growmemtuples flag so we don't try any more).  That allows us to
1227  * use memory as fully as permitted; sticking to the pure doubling rule could
1228  * result in almost half going unused.  Because availMem moves around with
1229  * tuple addition/removal, we need some rule to prevent making repeated small
1230  * increases in memtupsize, which would just be useless thrashing.  The
1231  * growmemtuples flag accomplishes that and also prevents useless
1232  * recalculations in this function.
1233  */
1234 static bool
1235 grow_memtuples(Tuplesortstate *state)
1236 {
1237         int                     newmemtupsize;
1238         int                     memtupsize = state->memtupsize;
1239         int64           memNowUsed = state->allowedMem - state->availMem;
1240
1241         /* Forget it if we've already maxed out memtuples, per comment above */
1242         if (!state->growmemtuples)
1243                 return false;
1244
1245         /* Select new value of memtupsize */
1246         if (memNowUsed <= state->availMem)
1247         {
1248                 /*
1249                  * We've used no more than half of allowedMem; double our usage,
1250                  * clamping at INT_MAX tuples.
1251                  */
1252                 if (memtupsize < INT_MAX / 2)
1253                         newmemtupsize = memtupsize * 2;
1254                 else
1255                 {
1256                         newmemtupsize = INT_MAX;
1257                         state->growmemtuples = false;
1258                 }
1259         }
1260         else
1261         {
1262                 /*
1263                  * This will be the last increment of memtupsize.  Abandon doubling
1264                  * strategy and instead increase as much as we safely can.
1265                  *
1266                  * To stay within allowedMem, we can't increase memtupsize by more
1267                  * than availMem / sizeof(SortTuple) elements.  In practice, we want
1268                  * to increase it by considerably less, because we need to leave some
1269                  * space for the tuples to which the new array slots will refer.  We
1270                  * assume the new tuples will be about the same size as the tuples
1271                  * we've already seen, and thus we can extrapolate from the space
1272                  * consumption so far to estimate an appropriate new size for the
1273                  * memtuples array.  The optimal value might be higher or lower than
1274                  * this estimate, but it's hard to know that in advance.  We again
1275                  * clamp at INT_MAX tuples.
1276                  *
1277                  * This calculation is safe against enlarging the array so much that
1278                  * LACKMEM becomes true, because the memory currently used includes
1279                  * the present array; thus, there would be enough allowedMem for the
1280                  * new array elements even if no other memory were currently used.
1281                  *
1282                  * We do the arithmetic in float8, because otherwise the product of
1283                  * memtupsize and allowedMem could overflow.  Any inaccuracy in the
1284                  * result should be insignificant; but even if we computed a
1285                  * completely insane result, the checks below will prevent anything
1286                  * really bad from happening.
1287                  */
1288                 double          grow_ratio;
1289
1290                 grow_ratio = (double) state->allowedMem / (double) memNowUsed;
1291                 if (memtupsize * grow_ratio < INT_MAX)
1292                         newmemtupsize = (int) (memtupsize * grow_ratio);
1293                 else
1294                         newmemtupsize = INT_MAX;
1295
1296                 /* We won't make any further enlargement attempts */
1297                 state->growmemtuples = false;
1298         }
1299
1300         /* Must enlarge array by at least one element, else report failure */
1301         if (newmemtupsize <= memtupsize)
1302                 goto noalloc;
1303
1304         /*
1305          * On a 32-bit machine, allowedMem could exceed MaxAllocHugeSize.  Clamp
1306          * to ensure our request won't be rejected.  Note that we can easily
1307          * exhaust address space before facing this outcome.  (This is presently
1308          * impossible due to guc.c's MAX_KILOBYTES limitation on work_mem, but
1309          * don't rely on that at this distance.)
1310          */
1311         if ((Size) newmemtupsize >= MaxAllocHugeSize / sizeof(SortTuple))
1312         {
1313                 newmemtupsize = (int) (MaxAllocHugeSize / sizeof(SortTuple));
1314                 state->growmemtuples = false;   /* can't grow any more */
1315         }
1316
1317         /*
1318          * We need to be sure that we do not cause LACKMEM to become true, else
1319          * the space management algorithm will go nuts.  The code above should
1320          * never generate a dangerous request, but to be safe, check explicitly
1321          * that the array growth fits within availMem.  (We could still cause
1322          * LACKMEM if the memory chunk overhead associated with the memtuples
1323          * array were to increase.  That shouldn't happen because we chose the
1324          * initial array size large enough to ensure that palloc will be treating
1325          * both old and new arrays as separate chunks.  But we'll check LACKMEM
1326          * explicitly below just in case.)
1327          */
1328         if (state->availMem < (int64) ((newmemtupsize - memtupsize) * sizeof(SortTuple)))
1329                 goto noalloc;
1330
1331         /* OK, do it */
1332         FREEMEM(state, GetMemoryChunkSpace(state->memtuples));
1333         state->memtupsize = newmemtupsize;
1334         state->memtuples = (SortTuple *)
1335                 repalloc_huge(state->memtuples,
1336                                           state->memtupsize * sizeof(SortTuple));
1337         USEMEM(state, GetMemoryChunkSpace(state->memtuples));
1338         if (LACKMEM(state))
1339                 elog(ERROR, "unexpected out-of-memory situation in tuplesort");
1340         return true;
1341
1342 noalloc:
1343         /* If for any reason we didn't realloc, shut off future attempts */
1344         state->growmemtuples = false;
1345         return false;
1346 }
1347
1348 /*
1349  * Accept one tuple while collecting input data for sort.
1350  *
1351  * Note that the input data is always copied; the caller need not save it.
1352  */
1353 void
1354 tuplesort_puttupleslot(Tuplesortstate *state, TupleTableSlot *slot)
1355 {
1356         MemoryContext oldcontext = MemoryContextSwitchTo(state->sortcontext);
1357         SortTuple       stup;
1358
1359         /*
1360          * Copy the given tuple into memory we control, and decrease availMem.
1361          * Then call the common code.
1362          */
1363         COPYTUP(state, &stup, (void *) slot);
1364
1365         puttuple_common(state, &stup);
1366
1367         MemoryContextSwitchTo(oldcontext);
1368 }
1369
1370 /*
1371  * Accept one tuple while collecting input data for sort.
1372  *
1373  * Note that the input data is always copied; the caller need not save it.
1374  */
1375 void
1376 tuplesort_putheaptuple(Tuplesortstate *state, HeapTuple tup)
1377 {
1378         MemoryContext oldcontext = MemoryContextSwitchTo(state->sortcontext);
1379         SortTuple       stup;
1380
1381         /*
1382          * Copy the given tuple into memory we control, and decrease availMem.
1383          * Then call the common code.
1384          */
1385         COPYTUP(state, &stup, (void *) tup);
1386
1387         puttuple_common(state, &stup);
1388
1389         MemoryContextSwitchTo(oldcontext);
1390 }
1391
1392 /*
1393  * Collect one index tuple while collecting input data for sort, building
1394  * it from caller-supplied values.
1395  */
1396 void
1397 tuplesort_putindextuplevalues(Tuplesortstate *state, Relation rel,
1398                                                           ItemPointer self, Datum *values,
1399                                                           bool *isnull)
1400 {
1401         MemoryContext oldcontext = MemoryContextSwitchTo(state->tuplecontext);
1402         SortTuple       stup;
1403         Datum           original;
1404         IndexTuple      tuple;
1405
1406         stup.tuple = index_form_tuple(RelationGetDescr(rel), values, isnull);
1407         tuple = ((IndexTuple) stup.tuple);
1408         tuple->t_tid = *self;
1409         USEMEM(state, GetMemoryChunkSpace(stup.tuple));
1410         /* set up first-column key value */
1411         original = index_getattr(tuple,
1412                                                          1,
1413                                                          RelationGetDescr(state->indexRel),
1414                                                          &stup.isnull1);
1415
1416         MemoryContextSwitchTo(state->sortcontext);
1417
1418         if (!state->sortKeys || !state->sortKeys->abbrev_converter || stup.isnull1)
1419         {
1420                 /*
1421                  * Store ordinary Datum representation, or NULL value.  If there is a
1422                  * converter it won't expect NULL values, and cost model is not
1423                  * required to account for NULL, so in that case we avoid calling
1424                  * converter and just set datum1 to zeroed representation (to be
1425                  * consistent, and to support cheap inequality tests for NULL
1426                  * abbreviated keys).
1427                  */
1428                 stup.datum1 = original;
1429         }
1430         else if (!consider_abort_common(state))
1431         {
1432                 /* Store abbreviated key representation */
1433                 stup.datum1 = state->sortKeys->abbrev_converter(original,
1434                                                                                                                 state->sortKeys);
1435         }
1436         else
1437         {
1438                 /* Abort abbreviation */
1439                 int                     i;
1440
1441                 stup.datum1 = original;
1442
1443                 /*
1444                  * Set state to be consistent with never trying abbreviation.
1445                  *
1446                  * Alter datum1 representation in already-copied tuples, so as to
1447                  * ensure a consistent representation (current tuple was just
1448                  * handled).  It does not matter if some dumped tuples are already
1449                  * sorted on tape, since serialized tuples lack abbreviated keys
1450                  * (TSS_BUILDRUNS state prevents control reaching here in any case).
1451                  */
1452                 for (i = 0; i < state->memtupcount; i++)
1453                 {
1454                         SortTuple  *mtup = &state->memtuples[i];
1455
1456                         tuple = mtup->tuple;
1457                         mtup->datum1 = index_getattr(tuple,
1458                                                                                  1,
1459                                                                                  RelationGetDescr(state->indexRel),
1460                                                                                  &mtup->isnull1);
1461                 }
1462         }
1463
1464         puttuple_common(state, &stup);
1465
1466         MemoryContextSwitchTo(oldcontext);
1467 }
1468
1469 /*
1470  * Accept one Datum while collecting input data for sort.
1471  *
1472  * If the Datum is pass-by-ref type, the value will be copied.
1473  */
1474 void
1475 tuplesort_putdatum(Tuplesortstate *state, Datum val, bool isNull)
1476 {
1477         MemoryContext oldcontext = MemoryContextSwitchTo(state->tuplecontext);
1478         SortTuple       stup;
1479
1480         /*
1481          * Pass-by-value types or null values are just stored directly in
1482          * stup.datum1 (and stup.tuple is not used and set to NULL).
1483          *
1484          * Non-null pass-by-reference values need to be copied into memory we
1485          * control, and possibly abbreviated. The copied value is pointed to by
1486          * stup.tuple and is treated as the canonical copy (e.g. to return via
1487          * tuplesort_getdatum or when writing to tape); stup.datum1 gets the
1488          * abbreviated value if abbreviation is happening, otherwise it's
1489          * identical to stup.tuple.
1490          */
1491
1492         if (isNull || !state->tuples)
1493         {
1494                 /*
1495                  * Set datum1 to zeroed representation for NULLs (to be consistent,
1496                  * and to support cheap inequality tests for NULL abbreviated keys).
1497                  */
1498                 stup.datum1 = !isNull ? val : (Datum) 0;
1499                 stup.isnull1 = isNull;
1500                 stup.tuple = NULL;              /* no separate storage */
1501                 MemoryContextSwitchTo(state->sortcontext);
1502         }
1503         else
1504         {
1505                 Datum           original = datumCopy(val, false, state->datumTypeLen);
1506
1507                 stup.isnull1 = false;
1508                 stup.tuple = DatumGetPointer(original);
1509                 USEMEM(state, GetMemoryChunkSpace(stup.tuple));
1510                 MemoryContextSwitchTo(state->sortcontext);
1511
1512                 if (!state->sortKeys->abbrev_converter)
1513                 {
1514                         stup.datum1 = original;
1515                 }
1516                 else if (!consider_abort_common(state))
1517                 {
1518                         /* Store abbreviated key representation */
1519                         stup.datum1 = state->sortKeys->abbrev_converter(original,
1520                                                                                                                         state->sortKeys);
1521                 }
1522                 else
1523                 {
1524                         /* Abort abbreviation */
1525                         int                     i;
1526
1527                         stup.datum1 = original;
1528
1529                         /*
1530                          * Set state to be consistent with never trying abbreviation.
1531                          *
1532                          * Alter datum1 representation in already-copied tuples, so as to
1533                          * ensure a consistent representation (current tuple was just
1534                          * handled).  It does not matter if some dumped tuples are already
1535                          * sorted on tape, since serialized tuples lack abbreviated keys
1536                          * (TSS_BUILDRUNS state prevents control reaching here in any
1537                          * case).
1538                          */
1539                         for (i = 0; i < state->memtupcount; i++)
1540                         {
1541                                 SortTuple  *mtup = &state->memtuples[i];
1542
1543                                 mtup->datum1 = PointerGetDatum(mtup->tuple);
1544                         }
1545                 }
1546         }
1547
1548         puttuple_common(state, &stup);
1549
1550         MemoryContextSwitchTo(oldcontext);
1551 }
1552
1553 /*
1554  * Shared code for tuple and datum cases.
1555  */
1556 static void
1557 puttuple_common(Tuplesortstate *state, SortTuple *tuple)
1558 {
1559         switch (state->status)
1560         {
1561                 case TSS_INITIAL:
1562
1563                         /*
1564                          * Save the tuple into the unsorted array.  First, grow the array
1565                          * as needed.  Note that we try to grow the array when there is
1566                          * still one free slot remaining --- if we fail, there'll still be
1567                          * room to store the incoming tuple, and then we'll switch to
1568                          * tape-based operation.
1569                          */
1570                         if (state->memtupcount >= state->memtupsize - 1)
1571                         {
1572                                 (void) grow_memtuples(state);
1573                                 Assert(state->memtupcount < state->memtupsize);
1574                         }
1575                         state->memtuples[state->memtupcount++] = *tuple;
1576
1577                         /*
1578                          * Check if it's time to switch over to a bounded heapsort. We do
1579                          * so if the input tuple count exceeds twice the desired tuple
1580                          * count (this is a heuristic for where heapsort becomes cheaper
1581                          * than a quicksort), or if we've just filled workMem and have
1582                          * enough tuples to meet the bound.
1583                          *
1584                          * Note that once we enter TSS_BOUNDED state we will always try to
1585                          * complete the sort that way.  In the worst case, if later input
1586                          * tuples are larger than earlier ones, this might cause us to
1587                          * exceed workMem significantly.
1588                          */
1589                         if (state->bounded &&
1590                                 (state->memtupcount > state->bound * 2 ||
1591                                  (state->memtupcount > state->bound && LACKMEM(state))))
1592                         {
1593 #ifdef TRACE_SORT
1594                                 if (trace_sort)
1595                                         elog(LOG, "switching to bounded heapsort at %d tuples: %s",
1596                                                  state->memtupcount,
1597                                                  pg_rusage_show(&state->ru_start));
1598 #endif
1599                                 make_bounded_heap(state);
1600                                 return;
1601                         }
1602
1603                         /*
1604                          * Done if we still fit in available memory and have array slots.
1605                          */
1606                         if (state->memtupcount < state->memtupsize && !LACKMEM(state))
1607                                 return;
1608
1609                         /*
1610                          * Nope; time to switch to tape-based operation.
1611                          */
1612                         inittapes(state);
1613
1614                         /*
1615                          * Dump tuples until we are back under the limit.
1616                          */
1617                         dumptuples(state, false);
1618                         break;
1619
1620                 case TSS_BOUNDED:
1621
1622                         /*
1623                          * We don't want to grow the array here, so check whether the new
1624                          * tuple can be discarded before putting it in.  This should be a
1625                          * good speed optimization, too, since when there are many more
1626                          * input tuples than the bound, most input tuples can be discarded
1627                          * with just this one comparison.  Note that because we currently
1628                          * have the sort direction reversed, we must check for <= not >=.
1629                          */
1630                         if (COMPARETUP(state, tuple, &state->memtuples[0]) <= 0)
1631                         {
1632                                 /* new tuple <= top of the heap, so we can discard it */
1633                                 free_sort_tuple(state, tuple);
1634                                 CHECK_FOR_INTERRUPTS();
1635                         }
1636                         else
1637                         {
1638                                 /* discard top of heap, replacing it with the new tuple */
1639                                 free_sort_tuple(state, &state->memtuples[0]);
1640                                 tuple->tupindex = 0;    /* not used */
1641                                 tuplesort_heap_replace_top(state, tuple, false);
1642                         }
1643                         break;
1644
1645                 case TSS_BUILDRUNS:
1646
1647                         /*
1648                          * Insert the tuple into the heap, with run number currentRun if
1649                          * it can go into the current run, else HEAP_RUN_NEXT.  The tuple
1650                          * can go into the current run if it is >= the first
1651                          * not-yet-output tuple.  (Actually, it could go into the current
1652                          * run if it is >= the most recently output tuple ... but that
1653                          * would require keeping around the tuple we last output, and it's
1654                          * simplest to let writetup free each tuple as soon as it's
1655                          * written.)
1656                          *
1657                          * Note that this only applies when:
1658                          *
1659                          * - currentRun is RUN_FIRST
1660                          *
1661                          * - Replacement selection is in use (typically it is never used).
1662                          *
1663                          * When these two conditions are not both true, all tuples are
1664                          * appended indifferently, much like the TSS_INITIAL case.
1665                          *
1666                          * There should always be room to store the incoming tuple.
1667                          */
1668                         Assert(!state->replaceActive || state->memtupcount > 0);
1669                         if (state->replaceActive &&
1670                                 COMPARETUP(state, tuple, &state->memtuples[0]) >= 0)
1671                         {
1672                                 Assert(state->currentRun == RUN_FIRST);
1673
1674                                 /*
1675                                  * Insert tuple into first, fully heapified run.
1676                                  *
1677                                  * Unlike classic replacement selection, which this module was
1678                                  * previously based on, only RUN_FIRST tuples are fully
1679                                  * heapified.  Any second/next run tuples are appended
1680                                  * indifferently.  While HEAP_RUN_NEXT tuples may be sifted
1681                                  * out of the way of first run tuples, COMPARETUP() will never
1682                                  * be called for the run's tuples during sifting (only our
1683                                  * initial COMPARETUP() call is required for the tuple, to
1684                                  * determine that the tuple does not belong in RUN_FIRST).
1685                                  */
1686                                 tuple->tupindex = state->currentRun;
1687                                 tuplesort_heap_insert(state, tuple, true);
1688                         }
1689                         else
1690                         {
1691                                 /*
1692                                  * Tuple was determined to not belong to heapified RUN_FIRST,
1693                                  * or replacement selection not in play.  Append the tuple to
1694                                  * memtuples indifferently.
1695                                  *
1696                                  * dumptuples() does not trust that the next run's tuples are
1697                                  * heapified.  Anything past the first run will always be
1698                                  * quicksorted even when replacement selection is initially
1699                                  * used.  (When it's never used, every tuple still takes this
1700                                  * path.)
1701                                  */
1702                                 tuple->tupindex = HEAP_RUN_NEXT;
1703                                 state->memtuples[state->memtupcount++] = *tuple;
1704                         }
1705
1706                         /*
1707                          * If we are over the memory limit, dump tuples till we're under.
1708                          */
1709                         dumptuples(state, false);
1710                         break;
1711
1712                 default:
1713                         elog(ERROR, "invalid tuplesort state");
1714                         break;
1715         }
1716 }
1717
1718 static bool
1719 consider_abort_common(Tuplesortstate *state)
1720 {
1721         Assert(state->sortKeys[0].abbrev_converter != NULL);
1722         Assert(state->sortKeys[0].abbrev_abort != NULL);
1723         Assert(state->sortKeys[0].abbrev_full_comparator != NULL);
1724
1725         /*
1726          * Check effectiveness of abbreviation optimization.  Consider aborting
1727          * when still within memory limit.
1728          */
1729         if (state->status == TSS_INITIAL &&
1730                 state->memtupcount >= state->abbrevNext)
1731         {
1732                 state->abbrevNext *= 2;
1733
1734                 /*
1735                  * Check opclass-supplied abbreviation abort routine.  It may indicate
1736                  * that abbreviation should not proceed.
1737                  */
1738                 if (!state->sortKeys->abbrev_abort(state->memtupcount,
1739                                                                                    state->sortKeys))
1740                         return false;
1741
1742                 /*
1743                  * Finally, restore authoritative comparator, and indicate that
1744                  * abbreviation is not in play by setting abbrev_converter to NULL
1745                  */
1746                 state->sortKeys[0].comparator = state->sortKeys[0].abbrev_full_comparator;
1747                 state->sortKeys[0].abbrev_converter = NULL;
1748                 /* Not strictly necessary, but be tidy */
1749                 state->sortKeys[0].abbrev_abort = NULL;
1750                 state->sortKeys[0].abbrev_full_comparator = NULL;
1751
1752                 /* Give up - expect original pass-by-value representation */
1753                 return true;
1754         }
1755
1756         return false;
1757 }
1758
1759 /*
1760  * All tuples have been provided; finish the sort.
1761  */
1762 void
1763 tuplesort_performsort(Tuplesortstate *state)
1764 {
1765         MemoryContext oldcontext = MemoryContextSwitchTo(state->sortcontext);
1766
1767 #ifdef TRACE_SORT
1768         if (trace_sort)
1769                 elog(LOG, "performsort starting: %s",
1770                          pg_rusage_show(&state->ru_start));
1771 #endif
1772
1773         switch (state->status)
1774         {
1775                 case TSS_INITIAL:
1776
1777                         /*
1778                          * We were able to accumulate all the tuples within the allowed
1779                          * amount of memory.  Just qsort 'em and we're done.
1780                          */
1781                         tuplesort_sort_memtuples(state);
1782                         state->current = 0;
1783                         state->eof_reached = false;
1784                         state->markpos_offset = 0;
1785                         state->markpos_eof = false;
1786                         state->status = TSS_SORTEDINMEM;
1787                         break;
1788
1789                 case TSS_BOUNDED:
1790
1791                         /*
1792                          * We were able to accumulate all the tuples required for output
1793                          * in memory, using a heap to eliminate excess tuples.  Now we
1794                          * have to transform the heap to a properly-sorted array.
1795                          */
1796                         sort_bounded_heap(state);
1797                         state->current = 0;
1798                         state->eof_reached = false;
1799                         state->markpos_offset = 0;
1800                         state->markpos_eof = false;
1801                         state->status = TSS_SORTEDINMEM;
1802                         break;
1803
1804                 case TSS_BUILDRUNS:
1805
1806                         /*
1807                          * Finish tape-based sort.  First, flush all tuples remaining in
1808                          * memory out to tape; then merge until we have a single remaining
1809                          * run (or, if !randomAccess, one run per tape). Note that
1810                          * mergeruns sets the correct state->status.
1811                          */
1812                         dumptuples(state, true);
1813                         mergeruns(state);
1814                         state->eof_reached = false;
1815                         state->markpos_block = 0L;
1816                         state->markpos_offset = 0;
1817                         state->markpos_eof = false;
1818                         break;
1819
1820                 default:
1821                         elog(ERROR, "invalid tuplesort state");
1822                         break;
1823         }
1824
1825 #ifdef TRACE_SORT
1826         if (trace_sort)
1827         {
1828                 if (state->status == TSS_FINALMERGE)
1829                         elog(LOG, "performsort done (except %d-way final merge): %s",
1830                                  state->activeTapes,
1831                                  pg_rusage_show(&state->ru_start));
1832                 else
1833                         elog(LOG, "performsort done: %s",
1834                                  pg_rusage_show(&state->ru_start));
1835         }
1836 #endif
1837
1838         MemoryContextSwitchTo(oldcontext);
1839 }
1840
1841 /*
1842  * Internal routine to fetch the next tuple in either forward or back
1843  * direction into *stup.  Returns FALSE if no more tuples.
1844  * Returned tuple belongs to tuplesort memory context, and must not be freed
1845  * by caller.  Caller should not use tuple following next call here.
1846  */
1847 static bool
1848 tuplesort_gettuple_common(Tuplesortstate *state, bool forward,
1849                                                   SortTuple *stup)
1850 {
1851         unsigned int tuplen;
1852
1853         switch (state->status)
1854         {
1855                 case TSS_SORTEDINMEM:
1856                         Assert(forward || state->randomAccess);
1857                         Assert(!state->slabAllocatorUsed);
1858                         if (forward)
1859                         {
1860                                 if (state->current < state->memtupcount)
1861                                 {
1862                                         *stup = state->memtuples[state->current++];
1863                                         return true;
1864                                 }
1865                                 state->eof_reached = true;
1866
1867                                 /*
1868                                  * Complain if caller tries to retrieve more tuples than
1869                                  * originally asked for in a bounded sort.  This is because
1870                                  * returning EOF here might be the wrong thing.
1871                                  */
1872                                 if (state->bounded && state->current >= state->bound)
1873                                         elog(ERROR, "retrieved too many tuples in a bounded sort");
1874
1875                                 return false;
1876                         }
1877                         else
1878                         {
1879                                 if (state->current <= 0)
1880                                         return false;
1881
1882                                 /*
1883                                  * if all tuples are fetched already then we return last
1884                                  * tuple, else - tuple before last returned.
1885                                  */
1886                                 if (state->eof_reached)
1887                                         state->eof_reached = false;
1888                                 else
1889                                 {
1890                                         state->current--;       /* last returned tuple */
1891                                         if (state->current <= 0)
1892                                                 return false;
1893                                 }
1894                                 *stup = state->memtuples[state->current - 1];
1895                                 return true;
1896                         }
1897                         break;
1898
1899                 case TSS_SORTEDONTAPE:
1900                         Assert(forward || state->randomAccess);
1901                         Assert(state->slabAllocatorUsed);
1902
1903                         /*
1904                          * The slot that held the tuple that we returned in previous
1905                          * gettuple call can now be reused.
1906                          */
1907                         if (state->lastReturnedTuple)
1908                         {
1909                                 RELEASE_SLAB_SLOT(state, state->lastReturnedTuple);
1910                                 state->lastReturnedTuple = NULL;
1911                         }
1912
1913                         if (forward)
1914                         {
1915                                 if (state->eof_reached)
1916                                         return false;
1917
1918                                 if ((tuplen = getlen(state, state->result_tape, true)) != 0)
1919                                 {
1920                                         READTUP(state, stup, state->result_tape, tuplen);
1921
1922                                         /*
1923                                          * Remember the tuple we return, so that we can recycle
1924                                          * its memory on next call.  (This can be NULL, in the
1925                                          * !state->tuples case).
1926                                          */
1927                                         state->lastReturnedTuple = stup->tuple;
1928
1929                                         return true;
1930                                 }
1931                                 else
1932                                 {
1933                                         state->eof_reached = true;
1934                                         return false;
1935                                 }
1936                         }
1937
1938                         /*
1939                          * Backward.
1940                          *
1941                          * if all tuples are fetched already then we return last tuple,
1942                          * else - tuple before last returned.
1943                          */
1944                         if (state->eof_reached)
1945                         {
1946                                 /*
1947                                  * Seek position is pointing just past the zero tuplen at the
1948                                  * end of file; back up to fetch last tuple's ending length
1949                                  * word.  If seek fails we must have a completely empty file.
1950                                  */
1951                                 if (!LogicalTapeBackspace(state->tapeset,
1952                                                                                   state->result_tape,
1953                                                                                   2 * sizeof(unsigned int)))
1954                                         return false;
1955                                 state->eof_reached = false;
1956                         }
1957                         else
1958                         {
1959                                 /*
1960                                  * Back up and fetch previously-returned tuple's ending length
1961                                  * word.  If seek fails, assume we are at start of file.
1962                                  */
1963                                 if (!LogicalTapeBackspace(state->tapeset,
1964                                                                                   state->result_tape,
1965                                                                                   sizeof(unsigned int)))
1966                                         return false;
1967                                 tuplen = getlen(state, state->result_tape, false);
1968
1969                                 /*
1970                                  * Back up to get ending length word of tuple before it.
1971                                  */
1972                                 if (!LogicalTapeBackspace(state->tapeset,
1973                                                                                   state->result_tape,
1974                                                                                   tuplen + 2 * sizeof(unsigned int)))
1975                                 {
1976                                         /*
1977                                          * If that fails, presumably the prev tuple is the first
1978                                          * in the file.  Back up so that it becomes next to read
1979                                          * in forward direction (not obviously right, but that is
1980                                          * what in-memory case does).
1981                                          */
1982                                         if (!LogicalTapeBackspace(state->tapeset,
1983                                                                                           state->result_tape,
1984                                                                                           tuplen + sizeof(unsigned int)))
1985                                                 elog(ERROR, "bogus tuple length in backward scan");
1986                                         return false;
1987                                 }
1988                         }
1989
1990                         tuplen = getlen(state, state->result_tape, false);
1991
1992                         /*
1993                          * Now we have the length of the prior tuple, back up and read it.
1994                          * Note: READTUP expects we are positioned after the initial
1995                          * length word of the tuple, so back up to that point.
1996                          */
1997                         if (!LogicalTapeBackspace(state->tapeset,
1998                                                                           state->result_tape,
1999                                                                           tuplen))
2000                                 elog(ERROR, "bogus tuple length in backward scan");
2001                         READTUP(state, stup, state->result_tape, tuplen);
2002
2003                         /*
2004                          * Remember the tuple we return, so that we can recycle its memory
2005                          * on next call. (This can be NULL, in the Datum case).
2006                          */
2007                         state->lastReturnedTuple = stup->tuple;
2008
2009                         return true;
2010
2011                 case TSS_FINALMERGE:
2012                         Assert(forward);
2013                         /* We are managing memory ourselves, with the slab allocator. */
2014                         Assert(state->slabAllocatorUsed);
2015
2016                         /*
2017                          * The slab slot holding the tuple that we returned in previous
2018                          * gettuple call can now be reused.
2019                          */
2020                         if (state->lastReturnedTuple)
2021                         {
2022                                 RELEASE_SLAB_SLOT(state, state->lastReturnedTuple);
2023                                 state->lastReturnedTuple = NULL;
2024                         }
2025
2026                         /*
2027                          * This code should match the inner loop of mergeonerun().
2028                          */
2029                         if (state->memtupcount > 0)
2030                         {
2031                                 int                     srcTape = state->memtuples[0].tupindex;
2032                                 SortTuple       newtup;
2033
2034                                 *stup = state->memtuples[0];
2035
2036                                 /*
2037                                  * Remember the tuple we return, so that we can recycle its
2038                                  * memory on next call. (This can be NULL, in the Datum case).
2039                                  */
2040                                 state->lastReturnedTuple = stup->tuple;
2041
2042                                 /*
2043                                  * Pull next tuple from tape, and replace the returned tuple
2044                                  * at top of the heap with it.
2045                                  */
2046                                 if (!mergereadnext(state, srcTape, &newtup))
2047                                 {
2048                                         /*
2049                                          * If no more data, we've reached end of run on this tape.
2050                                          * Remove the top node from the heap.
2051                                          */
2052                                         tuplesort_heap_delete_top(state, false);
2053
2054                                         /*
2055                                          * Rewind to free the read buffer.  It'd go away at the
2056                                          * end of the sort anyway, but better to release the
2057                                          * memory early.
2058                                          */
2059                                         LogicalTapeRewindForWrite(state->tapeset, srcTape);
2060                                         return true;
2061                                 }
2062                                 newtup.tupindex = srcTape;
2063                                 tuplesort_heap_replace_top(state, &newtup, false);
2064                                 return true;
2065                         }
2066                         return false;
2067
2068                 default:
2069                         elog(ERROR, "invalid tuplesort state");
2070                         return false;           /* keep compiler quiet */
2071         }
2072 }
2073
2074 /*
2075  * Fetch the next tuple in either forward or back direction.
2076  * If successful, put tuple in slot and return TRUE; else, clear the slot
2077  * and return FALSE.
2078  *
2079  * Caller may optionally be passed back abbreviated value (on TRUE return
2080  * value) when abbreviation was used, which can be used to cheaply avoid
2081  * equality checks that might otherwise be required.  Caller can safely make a
2082  * determination of "non-equal tuple" based on simple binary inequality.  A
2083  * NULL value in leading attribute will set abbreviated value to zeroed
2084  * representation, which caller may rely on in abbreviated inequality check.
2085  *
2086  * The slot receives a copied tuple (sometimes allocated in caller memory
2087  * context) that will stay valid regardless of future manipulations of the
2088  * tuplesort's state.
2089  */
2090 bool
2091 tuplesort_gettupleslot(Tuplesortstate *state, bool forward,
2092                                            TupleTableSlot *slot, Datum *abbrev)
2093 {
2094         MemoryContext oldcontext = MemoryContextSwitchTo(state->sortcontext);
2095         SortTuple       stup;
2096
2097         if (!tuplesort_gettuple_common(state, forward, &stup))
2098                 stup.tuple = NULL;
2099
2100         MemoryContextSwitchTo(oldcontext);
2101
2102         if (stup.tuple)
2103         {
2104                 /* Record abbreviated key for caller */
2105                 if (state->sortKeys->abbrev_converter && abbrev)
2106                         *abbrev = stup.datum1;
2107
2108                 stup.tuple = heap_copy_minimal_tuple((MinimalTuple) stup.tuple);
2109                 ExecStoreMinimalTuple((MinimalTuple) stup.tuple, slot, true);
2110                 return true;
2111         }
2112         else
2113         {
2114                 ExecClearTuple(slot);
2115                 return false;
2116         }
2117 }
2118
2119 /*
2120  * Fetch the next tuple in either forward or back direction.
2121  * Returns NULL if no more tuples.  Returned tuple belongs to tuplesort memory
2122  * context, and must not be freed by caller.  Caller should not use tuple
2123  * following next call here.
2124  */
2125 HeapTuple
2126 tuplesort_getheaptuple(Tuplesortstate *state, bool forward)
2127 {
2128         MemoryContext oldcontext = MemoryContextSwitchTo(state->sortcontext);
2129         SortTuple       stup;
2130
2131         if (!tuplesort_gettuple_common(state, forward, &stup))
2132                 stup.tuple = NULL;
2133
2134         MemoryContextSwitchTo(oldcontext);
2135
2136         return stup.tuple;
2137 }
2138
2139 /*
2140  * Fetch the next index tuple in either forward or back direction.
2141  * Returns NULL if no more tuples.  Returned tuple belongs to tuplesort memory
2142  * context, and must not be freed by caller.  Caller should not use tuple
2143  * following next call here.
2144  */
2145 IndexTuple
2146 tuplesort_getindextuple(Tuplesortstate *state, bool forward)
2147 {
2148         MemoryContext oldcontext = MemoryContextSwitchTo(state->sortcontext);
2149         SortTuple       stup;
2150
2151         if (!tuplesort_gettuple_common(state, forward, &stup))
2152                 stup.tuple = NULL;
2153
2154         MemoryContextSwitchTo(oldcontext);
2155
2156         return (IndexTuple) stup.tuple;
2157 }
2158
2159 /*
2160  * Fetch the next Datum in either forward or back direction.
2161  * Returns FALSE if no more datums.
2162  *
2163  * If the Datum is pass-by-ref type, the returned value is freshly palloc'd
2164  * and is now owned by the caller (this differs from similar routines for
2165  * other types of tuplesorts).
2166  *
2167  * Caller may optionally be passed back abbreviated value (on TRUE return
2168  * value) when abbreviation was used, which can be used to cheaply avoid
2169  * equality checks that might otherwise be required.  Caller can safely make a
2170  * determination of "non-equal tuple" based on simple binary inequality.  A
2171  * NULL value will have a zeroed abbreviated value representation, which caller
2172  * may rely on in abbreviated inequality check.
2173  */
2174 bool
2175 tuplesort_getdatum(Tuplesortstate *state, bool forward,
2176                                    Datum *val, bool *isNull, Datum *abbrev)
2177 {
2178         MemoryContext oldcontext = MemoryContextSwitchTo(state->sortcontext);
2179         SortTuple       stup;
2180
2181         if (!tuplesort_gettuple_common(state, forward, &stup))
2182         {
2183                 MemoryContextSwitchTo(oldcontext);
2184                 return false;
2185         }
2186
2187         /* Record abbreviated key for caller */
2188         if (state->sortKeys->abbrev_converter && abbrev)
2189                 *abbrev = stup.datum1;
2190
2191         if (stup.isnull1 || !state->tuples)
2192         {
2193                 *val = stup.datum1;
2194                 *isNull = stup.isnull1;
2195         }
2196         else
2197         {
2198                 /* use stup.tuple because stup.datum1 may be an abbreviation */
2199                 *val = datumCopy(PointerGetDatum(stup.tuple), false, state->datumTypeLen);
2200                 *isNull = false;
2201         }
2202
2203         MemoryContextSwitchTo(oldcontext);
2204
2205         return true;
2206 }
2207
2208 /*
2209  * Advance over N tuples in either forward or back direction,
2210  * without returning any data.  N==0 is a no-op.
2211  * Returns TRUE if successful, FALSE if ran out of tuples.
2212  */
2213 bool
2214 tuplesort_skiptuples(Tuplesortstate *state, int64 ntuples, bool forward)
2215 {
2216         MemoryContext oldcontext;
2217
2218         /*
2219          * We don't actually support backwards skip yet, because no callers need
2220          * it.  The API is designed to allow for that later, though.
2221          */
2222         Assert(forward);
2223         Assert(ntuples >= 0);
2224
2225         switch (state->status)
2226         {
2227                 case TSS_SORTEDINMEM:
2228                         if (state->memtupcount - state->current >= ntuples)
2229                         {
2230                                 state->current += ntuples;
2231                                 return true;
2232                         }
2233                         state->current = state->memtupcount;
2234                         state->eof_reached = true;
2235
2236                         /*
2237                          * Complain if caller tries to retrieve more tuples than
2238                          * originally asked for in a bounded sort.  This is because
2239                          * returning EOF here might be the wrong thing.
2240                          */
2241                         if (state->bounded && state->current >= state->bound)
2242                                 elog(ERROR, "retrieved too many tuples in a bounded sort");
2243
2244                         return false;
2245
2246                 case TSS_SORTEDONTAPE:
2247                 case TSS_FINALMERGE:
2248
2249                         /*
2250                          * We could probably optimize these cases better, but for now it's
2251                          * not worth the trouble.
2252                          */
2253                         oldcontext = MemoryContextSwitchTo(state->sortcontext);
2254                         while (ntuples-- > 0)
2255                         {
2256                                 SortTuple       stup;
2257
2258                                 if (!tuplesort_gettuple_common(state, forward, &stup))
2259                                 {
2260                                         MemoryContextSwitchTo(oldcontext);
2261                                         return false;
2262                                 }
2263                                 CHECK_FOR_INTERRUPTS();
2264                         }
2265                         MemoryContextSwitchTo(oldcontext);
2266                         return true;
2267
2268                 default:
2269                         elog(ERROR, "invalid tuplesort state");
2270                         return false;           /* keep compiler quiet */
2271         }
2272 }
2273
2274 /*
2275  * tuplesort_merge_order - report merge order we'll use for given memory
2276  * (note: "merge order" just means the number of input tapes in the merge).
2277  *
2278  * This is exported for use by the planner.  allowedMem is in bytes.
2279  */
2280 int
2281 tuplesort_merge_order(int64 allowedMem)
2282 {
2283         int                     mOrder;
2284
2285         /*
2286          * We need one tape for each merge input, plus another one for the output,
2287          * and each of these tapes needs buffer space.  In addition we want
2288          * MERGE_BUFFER_SIZE workspace per input tape (but the output tape doesn't
2289          * count).
2290          *
2291          * Note: you might be thinking we need to account for the memtuples[]
2292          * array in this calculation, but we effectively treat that as part of the
2293          * MERGE_BUFFER_SIZE workspace.
2294          */
2295         mOrder = (allowedMem - TAPE_BUFFER_OVERHEAD) /
2296                 (MERGE_BUFFER_SIZE + TAPE_BUFFER_OVERHEAD);
2297
2298         /*
2299          * Even in minimum memory, use at least a MINORDER merge.  On the other
2300          * hand, even when we have lots of memory, do not use more than a MAXORDER
2301          * merge.  Tapes are pretty cheap, but they're not entirely free.  Each
2302          * additional tape reduces the amount of memory available to build runs,
2303          * which in turn can cause the same sort to need more runs, which makes
2304          * merging slower even if it can still be done in a single pass.  Also,
2305          * high order merges are quite slow due to CPU cache effects; it can be
2306          * faster to pay the I/O cost of a polyphase merge than to perform a single
2307          * merge pass across many hundreds of tapes.
2308          */
2309         mOrder = Max(mOrder, MINORDER);
2310         mOrder = Min(mOrder, MAXORDER);
2311
2312         return mOrder;
2313 }
2314
2315 /*
2316  * useselection - determine algorithm to use to sort first run.
2317  *
2318  * It can sometimes be useful to use the replacement selection algorithm if it
2319  * results in one large run, and there is little available workMem.  See
2320  * remarks on RUN_SECOND optimization within dumptuples().
2321  */
2322 static bool
2323 useselection(Tuplesortstate *state)
2324 {
2325         /*
2326          * memtupsize might be noticeably higher than memtupcount here in atypical
2327          * cases.  It seems slightly preferable to not allow recent outliers to
2328          * impact this determination.  Note that caller's trace_sort output
2329          * reports memtupcount instead.
2330          */
2331         if (state->memtupsize <= replacement_sort_tuples)
2332                 return true;
2333
2334         return false;
2335 }
2336
2337 /*
2338  * inittapes - initialize for tape sorting.
2339  *
2340  * This is called only if we have found we don't have room to sort in memory.
2341  */
2342 static void
2343 inittapes(Tuplesortstate *state)
2344 {
2345         int                     maxTapes,
2346                                 j;
2347         int64           tapeSpace;
2348
2349         /* Compute number of tapes to use: merge order plus 1 */
2350         maxTapes = tuplesort_merge_order(state->allowedMem) + 1;
2351
2352         state->maxTapes = maxTapes;
2353         state->tapeRange = maxTapes - 1;
2354
2355 #ifdef TRACE_SORT
2356         if (trace_sort)
2357                 elog(LOG, "switching to external sort with %d tapes: %s",
2358                          maxTapes, pg_rusage_show(&state->ru_start));
2359 #endif
2360
2361         /*
2362          * Decrease availMem to reflect the space needed for tape buffers, when
2363          * writing the initial runs; but don't decrease it to the point that we
2364          * have no room for tuples.  (That case is only likely to occur if sorting
2365          * pass-by-value Datums; in all other scenarios the memtuples[] array is
2366          * unlikely to occupy more than half of allowedMem.  In the pass-by-value
2367          * case it's not important to account for tuple space, so we don't care if
2368          * LACKMEM becomes inaccurate.)
2369          */
2370         tapeSpace = (int64) maxTapes *TAPE_BUFFER_OVERHEAD;
2371
2372         if (tapeSpace + GetMemoryChunkSpace(state->memtuples) < state->allowedMem)
2373                 USEMEM(state, tapeSpace);
2374
2375         /*
2376          * Make sure that the temp file(s) underlying the tape set are created in
2377          * suitable temp tablespaces.
2378          */
2379         PrepareTempTablespaces();
2380
2381         /*
2382          * Create the tape set and allocate the per-tape data arrays.
2383          */
2384         state->tapeset = LogicalTapeSetCreate(maxTapes);
2385
2386         state->mergeactive = (bool *) palloc0(maxTapes * sizeof(bool));
2387         state->tp_fib = (int *) palloc0(maxTapes * sizeof(int));
2388         state->tp_runs = (int *) palloc0(maxTapes * sizeof(int));
2389         state->tp_dummy = (int *) palloc0(maxTapes * sizeof(int));
2390         state->tp_tapenum = (int *) palloc0(maxTapes * sizeof(int));
2391
2392         /*
2393          * Give replacement selection a try based on user setting.  There will be
2394          * a switch to a simple hybrid sort-merge strategy after the first run
2395          * (iff we could not output one long run).
2396          */
2397         state->replaceActive = useselection(state);
2398
2399         if (state->replaceActive)
2400         {
2401                 /*
2402                  * Convert the unsorted contents of memtuples[] into a heap. Each
2403                  * tuple is marked as belonging to run number zero.
2404                  *
2405                  * NOTE: we pass false for checkIndex since there's no point in
2406                  * comparing indexes in this step, even though we do intend the
2407                  * indexes to be part of the sort key...
2408                  */
2409                 int                     ntuples = state->memtupcount;
2410
2411 #ifdef TRACE_SORT
2412                 if (trace_sort)
2413                         elog(LOG, "replacement selection will sort %d first run tuples",
2414                                  state->memtupcount);
2415 #endif
2416                 state->memtupcount = 0; /* make the heap empty */
2417
2418                 for (j = 0; j < ntuples; j++)
2419                 {
2420                         /* Must copy source tuple to avoid possible overwrite */
2421                         SortTuple       stup = state->memtuples[j];
2422
2423                         stup.tupindex = RUN_FIRST;
2424                         tuplesort_heap_insert(state, &stup, false);
2425                 }
2426                 Assert(state->memtupcount == ntuples);
2427         }
2428
2429         state->currentRun = RUN_FIRST;
2430
2431         /*
2432          * Initialize variables of Algorithm D (step D1).
2433          */
2434         for (j = 0; j < maxTapes; j++)
2435         {
2436                 state->tp_fib[j] = 1;
2437                 state->tp_runs[j] = 0;
2438                 state->tp_dummy[j] = 1;
2439                 state->tp_tapenum[j] = j;
2440         }
2441         state->tp_fib[state->tapeRange] = 0;
2442         state->tp_dummy[state->tapeRange] = 0;
2443
2444         state->Level = 1;
2445         state->destTape = 0;
2446
2447         state->status = TSS_BUILDRUNS;
2448 }
2449
2450 /*
2451  * selectnewtape -- select new tape for new initial run.
2452  *
2453  * This is called after finishing a run when we know another run
2454  * must be started.  This implements steps D3, D4 of Algorithm D.
2455  */
2456 static void
2457 selectnewtape(Tuplesortstate *state)
2458 {
2459         int                     j;
2460         int                     a;
2461
2462         /* Step D3: advance j (destTape) */
2463         if (state->tp_dummy[state->destTape] < state->tp_dummy[state->destTape + 1])
2464         {
2465                 state->destTape++;
2466                 return;
2467         }
2468         if (state->tp_dummy[state->destTape] != 0)
2469         {
2470                 state->destTape = 0;
2471                 return;
2472         }
2473
2474         /* Step D4: increase level */
2475         state->Level++;
2476         a = state->tp_fib[0];
2477         for (j = 0; j < state->tapeRange; j++)
2478         {
2479                 state->tp_dummy[j] = a + state->tp_fib[j + 1] - state->tp_fib[j];
2480                 state->tp_fib[j] = a + state->tp_fib[j + 1];
2481         }
2482         state->destTape = 0;
2483 }
2484
2485 /*
2486  * Initialize the slab allocation arena, for the given number of slots.
2487  */
2488 static void
2489 init_slab_allocator(Tuplesortstate *state, int numSlots)
2490 {
2491         if (numSlots > 0)
2492         {
2493                 char       *p;
2494                 int                     i;
2495
2496                 state->slabMemoryBegin = palloc(numSlots * SLAB_SLOT_SIZE);
2497                 state->slabMemoryEnd = state->slabMemoryBegin +
2498                         numSlots * SLAB_SLOT_SIZE;
2499                 state->slabFreeHead = (SlabSlot *) state->slabMemoryBegin;
2500                 USEMEM(state, numSlots * SLAB_SLOT_SIZE);
2501
2502                 p = state->slabMemoryBegin;
2503                 for (i = 0; i < numSlots - 1; i++)
2504                 {
2505                         ((SlabSlot *) p)->nextfree = (SlabSlot *) (p + SLAB_SLOT_SIZE);
2506                         p += SLAB_SLOT_SIZE;
2507                 }
2508                 ((SlabSlot *) p)->nextfree = NULL;
2509         }
2510         else
2511         {
2512                 state->slabMemoryBegin = state->slabMemoryEnd = NULL;
2513                 state->slabFreeHead = NULL;
2514         }
2515         state->slabAllocatorUsed = true;
2516 }
2517
2518 /*
2519  * mergeruns -- merge all the completed initial runs.
2520  *
2521  * This implements steps D5, D6 of Algorithm D.  All input data has
2522  * already been written to initial runs on tape (see dumptuples).
2523  */
2524 static void
2525 mergeruns(Tuplesortstate *state)
2526 {
2527         int                     tapenum,
2528                                 svTape,
2529                                 svRuns,
2530                                 svDummy;
2531         int                     numTapes;
2532         int                     numInputTapes;
2533
2534         Assert(state->status == TSS_BUILDRUNS);
2535         Assert(state->memtupcount == 0);
2536
2537         if (state->sortKeys != NULL && state->sortKeys->abbrev_converter != NULL)
2538         {
2539                 /*
2540                  * If there are multiple runs to be merged, when we go to read back
2541                  * tuples from disk, abbreviated keys will not have been stored, and
2542                  * we don't care to regenerate them.  Disable abbreviation from this
2543                  * point on.
2544                  */
2545                 state->sortKeys->abbrev_converter = NULL;
2546                 state->sortKeys->comparator = state->sortKeys->abbrev_full_comparator;
2547
2548                 /* Not strictly necessary, but be tidy */
2549                 state->sortKeys->abbrev_abort = NULL;
2550                 state->sortKeys->abbrev_full_comparator = NULL;
2551         }
2552
2553         /*
2554          * Reset tuple memory.  We've freed all the tuples that we previously
2555          * allocated.  We will use the slab allocator from now on.
2556          */
2557         MemoryContextDelete(state->tuplecontext);
2558         state->tuplecontext = NULL;
2559
2560         /*
2561          * We no longer need a large memtuples array.  (We will allocate a smaller
2562          * one for the heap later.)
2563          */
2564         FREEMEM(state, GetMemoryChunkSpace(state->memtuples));
2565         pfree(state->memtuples);
2566         state->memtuples = NULL;
2567
2568         /*
2569          * If we had fewer runs than tapes, refund the memory that we imagined we
2570          * would need for the tape buffers of the unused tapes.
2571          *
2572          * numTapes and numInputTapes reflect the actual number of tapes we will
2573          * use.  Note that the output tape's tape number is maxTapes - 1, so the
2574          * tape numbers of the used tapes are not consecutive, and you cannot just
2575          * loop from 0 to numTapes to visit all used tapes!
2576          */
2577         if (state->Level == 1)
2578         {
2579                 numInputTapes = state->currentRun;
2580                 numTapes = numInputTapes + 1;
2581                 FREEMEM(state, (state->maxTapes - numTapes) * TAPE_BUFFER_OVERHEAD);
2582         }
2583         else
2584         {
2585                 numInputTapes = state->tapeRange;
2586                 numTapes = state->maxTapes;
2587         }
2588
2589         /*
2590          * Initialize the slab allocator.  We need one slab slot per input tape,
2591          * for the tuples in the heap, plus one to hold the tuple last returned
2592          * from tuplesort_gettuple.  (If we're sorting pass-by-val Datums,
2593          * however, we don't need to do allocate anything.)
2594          *
2595          * From this point on, we no longer use the USEMEM()/LACKMEM() mechanism
2596          * to track memory usage of individual tuples.
2597          */
2598         if (state->tuples)
2599                 init_slab_allocator(state, numInputTapes + 1);
2600         else
2601                 init_slab_allocator(state, 0);
2602
2603         /*
2604          * If we produced only one initial run (quite likely if the total data
2605          * volume is between 1X and 2X workMem when replacement selection is used,
2606          * but something we particular count on when input is presorted), we can
2607          * just use that tape as the finished output, rather than doing a useless
2608          * merge.  (This obvious optimization is not in Knuth's algorithm.)
2609          */
2610         if (state->currentRun == RUN_SECOND)
2611         {
2612                 state->result_tape = state->tp_tapenum[state->destTape];
2613                 /* must freeze and rewind the finished output tape */
2614                 LogicalTapeFreeze(state->tapeset, state->result_tape);
2615                 state->status = TSS_SORTEDONTAPE;
2616                 return;
2617         }
2618
2619         /*
2620          * Allocate a new 'memtuples' array, for the heap.  It will hold one tuple
2621          * from each input tape.
2622          */
2623         state->memtupsize = numInputTapes;
2624         state->memtuples = (SortTuple *) palloc(numInputTapes * sizeof(SortTuple));
2625         USEMEM(state, GetMemoryChunkSpace(state->memtuples));
2626
2627         /*
2628          * Use all the remaining memory we have available for read buffers among
2629          * the input tapes.
2630          *
2631          * We do this only after checking for the case that we produced only one
2632          * initial run, because there is no need to use a large read buffer when
2633          * we're reading from a single tape.  With one tape, the I/O pattern will
2634          * be the same regardless of the buffer size.
2635          *
2636          * We don't try to "rebalance" the memory among tapes, when we start a new
2637          * merge phase, even if some tapes are inactive in the new phase.  That
2638          * would be hard, because logtape.c doesn't know where one run ends and
2639          * another begins.  When a new merge phase begins, and a tape doesn't
2640          * participate in it, its buffer nevertheless already contains tuples from
2641          * the next run on same tape, so we cannot release the buffer.  That's OK
2642          * in practice, merge performance isn't that sensitive to the amount of
2643          * buffers used, and most merge phases use all or almost all tapes,
2644          * anyway.
2645          */
2646 #ifdef TRACE_SORT
2647         if (trace_sort)
2648                 elog(LOG, "using " INT64_FORMAT " KB of memory for read buffers among %d input tapes",
2649                          (state->availMem) / 1024, numInputTapes);
2650 #endif
2651
2652         state->read_buffer_size = Max(state->availMem / numInputTapes, 0);
2653         USEMEM(state, state->read_buffer_size * numInputTapes);
2654
2655         /* End of step D2: rewind all output tapes to prepare for merging */
2656         for (tapenum = 0; tapenum < state->tapeRange; tapenum++)
2657                 LogicalTapeRewindForRead(state->tapeset, tapenum, state->read_buffer_size);
2658
2659         for (;;)
2660         {
2661                 /*
2662                  * At this point we know that tape[T] is empty.  If there's just one
2663                  * (real or dummy) run left on each input tape, then only one merge
2664                  * pass remains.  If we don't have to produce a materialized sorted
2665                  * tape, we can stop at this point and do the final merge on-the-fly.
2666                  */
2667                 if (!state->randomAccess)
2668                 {
2669                         bool            allOneRun = true;
2670
2671                         Assert(state->tp_runs[state->tapeRange] == 0);
2672                         for (tapenum = 0; tapenum < state->tapeRange; tapenum++)
2673                         {
2674                                 if (state->tp_runs[tapenum] + state->tp_dummy[tapenum] != 1)
2675                                 {
2676                                         allOneRun = false;
2677                                         break;
2678                                 }
2679                         }
2680                         if (allOneRun)
2681                         {
2682                                 /* Tell logtape.c we won't be writing anymore */
2683                                 LogicalTapeSetForgetFreeSpace(state->tapeset);
2684                                 /* Initialize for the final merge pass */
2685                                 beginmerge(state);
2686                                 state->status = TSS_FINALMERGE;
2687                                 return;
2688                         }
2689                 }
2690
2691                 /* Step D5: merge runs onto tape[T] until tape[P] is empty */
2692                 while (state->tp_runs[state->tapeRange - 1] ||
2693                            state->tp_dummy[state->tapeRange - 1])
2694                 {
2695                         bool            allDummy = true;
2696
2697                         for (tapenum = 0; tapenum < state->tapeRange; tapenum++)
2698                         {
2699                                 if (state->tp_dummy[tapenum] == 0)
2700                                 {
2701                                         allDummy = false;
2702                                         break;
2703                                 }
2704                         }
2705
2706                         if (allDummy)
2707                         {
2708                                 state->tp_dummy[state->tapeRange]++;
2709                                 for (tapenum = 0; tapenum < state->tapeRange; tapenum++)
2710                                         state->tp_dummy[tapenum]--;
2711                         }
2712                         else
2713                                 mergeonerun(state);
2714                 }
2715
2716                 /* Step D6: decrease level */
2717                 if (--state->Level == 0)
2718                         break;
2719                 /* rewind output tape T to use as new input */
2720                 LogicalTapeRewindForRead(state->tapeset, state->tp_tapenum[state->tapeRange],
2721                                                                  state->read_buffer_size);
2722                 /* rewind used-up input tape P, and prepare it for write pass */
2723                 LogicalTapeRewindForWrite(state->tapeset, state->tp_tapenum[state->tapeRange - 1]);
2724                 state->tp_runs[state->tapeRange - 1] = 0;
2725
2726                 /*
2727                  * reassign tape units per step D6; note we no longer care about A[]
2728                  */
2729                 svTape = state->tp_tapenum[state->tapeRange];
2730                 svDummy = state->tp_dummy[state->tapeRange];
2731                 svRuns = state->tp_runs[state->tapeRange];
2732                 for (tapenum = state->tapeRange; tapenum > 0; tapenum--)
2733                 {
2734                         state->tp_tapenum[tapenum] = state->tp_tapenum[tapenum - 1];
2735                         state->tp_dummy[tapenum] = state->tp_dummy[tapenum - 1];
2736                         state->tp_runs[tapenum] = state->tp_runs[tapenum - 1];
2737                 }
2738                 state->tp_tapenum[0] = svTape;
2739                 state->tp_dummy[0] = svDummy;
2740                 state->tp_runs[0] = svRuns;
2741         }
2742
2743         /*
2744          * Done.  Knuth says that the result is on TAPE[1], but since we exited
2745          * the loop without performing the last iteration of step D6, we have not
2746          * rearranged the tape unit assignment, and therefore the result is on
2747          * TAPE[T].  We need to do it this way so that we can freeze the final
2748          * output tape while rewinding it.  The last iteration of step D6 would be
2749          * a waste of cycles anyway...
2750          */
2751         state->result_tape = state->tp_tapenum[state->tapeRange];
2752         LogicalTapeFreeze(state->tapeset, state->result_tape);
2753         state->status = TSS_SORTEDONTAPE;
2754
2755         /* Release the read buffers of all the other tapes, by rewinding them. */
2756         for (tapenum = 0; tapenum < state->maxTapes; tapenum++)
2757         {
2758                 if (tapenum != state->result_tape)
2759                         LogicalTapeRewindForWrite(state->tapeset, tapenum);
2760         }
2761 }
2762
2763 /*
2764  * Merge one run from each input tape, except ones with dummy runs.
2765  *
2766  * This is the inner loop of Algorithm D step D5.  We know that the
2767  * output tape is TAPE[T].
2768  */
2769 static void
2770 mergeonerun(Tuplesortstate *state)
2771 {
2772         int                     destTape = state->tp_tapenum[state->tapeRange];
2773         int                     srcTape;
2774
2775         /*
2776          * Start the merge by loading one tuple from each active source tape into
2777          * the heap.  We can also decrease the input run/dummy run counts.
2778          */
2779         beginmerge(state);
2780
2781         /*
2782          * Execute merge by repeatedly extracting lowest tuple in heap, writing it
2783          * out, and replacing it with next tuple from same tape (if there is
2784          * another one).
2785          */
2786         while (state->memtupcount > 0)
2787         {
2788                 SortTuple       stup;
2789
2790                 /* write the tuple to destTape */
2791                 srcTape = state->memtuples[0].tupindex;
2792                 WRITETUP(state, destTape, &state->memtuples[0]);
2793
2794                 /* recycle the slot of the tuple we just wrote out, for the next read */
2795                 RELEASE_SLAB_SLOT(state, state->memtuples[0].tuple);
2796
2797                 /*
2798                  * pull next tuple from the tape, and replace the written-out tuple in
2799                  * the heap with it.
2800                  */
2801                 if (mergereadnext(state, srcTape, &stup))
2802                 {
2803                         stup.tupindex = srcTape;
2804                         tuplesort_heap_replace_top(state, &stup, false);
2805
2806                 }
2807                 else
2808                         tuplesort_heap_delete_top(state, false);
2809         }
2810
2811         /*
2812          * When the heap empties, we're done.  Write an end-of-run marker on the
2813          * output tape, and increment its count of real runs.
2814          */
2815         markrunend(state, destTape);
2816         state->tp_runs[state->tapeRange]++;
2817
2818 #ifdef TRACE_SORT
2819         if (trace_sort)
2820                 elog(LOG, "finished %d-way merge step: %s", state->activeTapes,
2821                          pg_rusage_show(&state->ru_start));
2822 #endif
2823 }
2824
2825 /*
2826  * beginmerge - initialize for a merge pass
2827  *
2828  * We decrease the counts of real and dummy runs for each tape, and mark
2829  * which tapes contain active input runs in mergeactive[].  Then, fill the
2830  * merge heap with the first tuple from each active tape.
2831  */
2832 static void
2833 beginmerge(Tuplesortstate *state)
2834 {
2835         int                     activeTapes;
2836         int                     tapenum;
2837         int                     srcTape;
2838
2839         /* Heap should be empty here */
2840         Assert(state->memtupcount == 0);
2841
2842         /* Adjust run counts and mark the active tapes */
2843         memset(state->mergeactive, 0,
2844                    state->maxTapes * sizeof(*state->mergeactive));
2845         activeTapes = 0;
2846         for (tapenum = 0; tapenum < state->tapeRange; tapenum++)
2847         {
2848                 if (state->tp_dummy[tapenum] > 0)
2849                         state->tp_dummy[tapenum]--;
2850                 else
2851                 {
2852                         Assert(state->tp_runs[tapenum] > 0);
2853                         state->tp_runs[tapenum]--;
2854                         srcTape = state->tp_tapenum[tapenum];
2855                         state->mergeactive[srcTape] = true;
2856                         activeTapes++;
2857                 }
2858         }
2859         Assert(activeTapes > 0);
2860         state->activeTapes = activeTapes;
2861
2862         /* Load the merge heap with the first tuple from each input tape */
2863         for (srcTape = 0; srcTape < state->maxTapes; srcTape++)
2864         {
2865                 SortTuple       tup;
2866
2867                 if (mergereadnext(state, srcTape, &tup))
2868                 {
2869                         tup.tupindex = srcTape;
2870                         tuplesort_heap_insert(state, &tup, false);
2871                 }
2872         }
2873 }
2874
2875 /*
2876  * mergereadnext - read next tuple from one merge input tape
2877  *
2878  * Returns false on EOF.
2879  */
2880 static bool
2881 mergereadnext(Tuplesortstate *state, int srcTape, SortTuple *stup)
2882 {
2883         unsigned int tuplen;
2884
2885         if (!state->mergeactive[srcTape])
2886                 return false;                   /* tape's run is already exhausted */
2887
2888         /* read next tuple, if any */
2889         if ((tuplen = getlen(state, srcTape, true)) == 0)
2890         {
2891                 state->mergeactive[srcTape] = false;
2892                 return false;
2893         }
2894         READTUP(state, stup, srcTape, tuplen);
2895
2896         return true;
2897 }
2898
2899 /*
2900  * dumptuples - remove tuples from memtuples and write to tape
2901  *
2902  * This is used during initial-run building, but not during merging.
2903  *
2904  * When alltuples = false and replacement selection is still active, dump
2905  * only enough tuples to get under the availMem limit (and leave at least
2906  * one tuple in memtuples, since puttuple will then assume it is a heap that
2907  * has a tuple to compare to).  We always insist there be at least one free
2908  * slot in the memtuples[] array.
2909  *
2910  * When alltuples = true, dump everything currently in memory.  (This
2911  * case is only used at end of input data, although in practice only the
2912  * first run could fail to dump all tuples when we LACKMEM(), and only
2913  * when replacement selection is active.)
2914  *
2915  * If, when replacement selection is active, we see that the tuple run
2916  * number at the top of the heap has changed, start a new run.  This must be
2917  * the first run, because replacement selection is always abandoned for all
2918  * further runs.
2919  */
2920 static void
2921 dumptuples(Tuplesortstate *state, bool alltuples)
2922 {
2923         while (alltuples ||
2924                    (LACKMEM(state) && state->memtupcount > 1) ||
2925                    state->memtupcount >= state->memtupsize)
2926         {
2927                 if (state->replaceActive)
2928                 {
2929                         /*
2930                          * Still holding out for a case favorable to replacement
2931                          * selection. Still incrementally spilling using heap.
2932                          *
2933                          * Dump the heap's frontmost entry, and remove it from the heap.
2934                          */
2935                         Assert(state->memtupcount > 0);
2936                         WRITETUP(state, state->tp_tapenum[state->destTape],
2937                                          &state->memtuples[0]);
2938                         tuplesort_heap_delete_top(state, true);
2939                 }
2940                 else
2941                 {
2942                         /*
2943                          * Once committed to quicksorting runs, never incrementally spill
2944                          */
2945                         dumpbatch(state, alltuples);
2946                         break;
2947                 }
2948
2949                 /*
2950                  * If top run number has changed, we've finished the current run (this
2951                  * can only be the first run), and will no longer spill incrementally.
2952                  */
2953                 if (state->memtupcount == 0 ||
2954                         state->memtuples[0].tupindex == HEAP_RUN_NEXT)
2955                 {
2956                         markrunend(state, state->tp_tapenum[state->destTape]);
2957                         Assert(state->currentRun == RUN_FIRST);
2958                         state->currentRun++;
2959                         state->tp_runs[state->destTape]++;
2960                         state->tp_dummy[state->destTape]--; /* per Alg D step D2 */
2961
2962 #ifdef TRACE_SORT
2963                         if (trace_sort)
2964                                 elog(LOG, "finished incrementally writing %s run %d to tape %d: %s",
2965                                          (state->memtupcount == 0) ? "only" : "first",
2966                                          state->currentRun, state->destTape,
2967                                          pg_rusage_show(&state->ru_start));
2968 #endif
2969
2970                         /*
2971                          * Done if heap is empty, which is possible when there is only one
2972                          * long run.
2973                          */
2974                         Assert(state->currentRun == RUN_SECOND);
2975                         if (state->memtupcount == 0)
2976                         {
2977                                 /*
2978                                  * Replacement selection best case; no final merge required,
2979                                  * because there was only one initial run (second run has no
2980                                  * tuples).  See RUN_SECOND case in mergeruns().
2981                                  */
2982                                 break;
2983                         }
2984
2985                         /*
2986                          * Abandon replacement selection for second run (as well as any
2987                          * subsequent runs).
2988                          */
2989                         state->replaceActive = false;
2990
2991                         /*
2992                          * First tuple of next run should not be heapified, and so will
2993                          * bear placeholder run number.  In practice this must actually be
2994                          * the second run, which just became the currentRun, so we're
2995                          * clear to quicksort and dump the tuples in batch next time
2996                          * memtuples becomes full.
2997                          */
2998                         Assert(state->memtuples[0].tupindex == HEAP_RUN_NEXT);
2999                         selectnewtape(state);
3000                 }
3001         }
3002 }
3003
3004 /*
3005  * dumpbatch - sort and dump all memtuples, forming one run on tape
3006  *
3007  * Second or subsequent runs are never heapified by this module (although
3008  * heapification still respects run number differences between the first and
3009  * second runs), and a heap (replacement selection priority queue) is often
3010  * avoided in the first place.
3011  */
3012 static void
3013 dumpbatch(Tuplesortstate *state, bool alltuples)
3014 {
3015         int                     memtupwrite;
3016         int                     i;
3017
3018         /*
3019          * Final call might require no sorting, in rare cases where we just so
3020          * happen to have previously LACKMEM()'d at the point where exactly all
3021          * remaining tuples are loaded into memory, just before input was
3022          * exhausted.
3023          *
3024          * In general, short final runs are quite possible.  Rather than allowing
3025          * a special case where there was a superfluous selectnewtape() call (i.e.
3026          * a call with no subsequent run actually written to destTape), we prefer
3027          * to write out a 0 tuple run.
3028          *
3029          * mergereadnext() is prepared for 0 tuple runs, and will reliably mark
3030          * the tape inactive for the merge when called from beginmerge().  This
3031          * case is therefore similar to the case where mergeonerun() finds a dummy
3032          * run for the tape, and so doesn't need to merge a run from the tape (or
3033          * conceptually "merges" the dummy run, if you prefer).  According to
3034          * Knuth, Algorithm D "isn't strictly optimal" in its method of
3035          * distribution and dummy run assignment; this edge case seems very
3036          * unlikely to make that appreciably worse.
3037          */
3038         Assert(state->status == TSS_BUILDRUNS);
3039
3040         /*
3041          * It seems unlikely that this limit will ever be exceeded, but take no
3042          * chances
3043          */
3044         if (state->currentRun == INT_MAX)
3045                 ereport(ERROR,
3046                                 (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
3047                                  errmsg("cannot have more than %d runs for an external sort",
3048                                                 INT_MAX)));
3049
3050         state->currentRun++;
3051
3052 #ifdef TRACE_SORT
3053         if (trace_sort)
3054                 elog(LOG, "starting quicksort of run %d: %s",
3055                          state->currentRun, pg_rusage_show(&state->ru_start));
3056 #endif
3057
3058         /*
3059          * Sort all tuples accumulated within the allowed amount of memory for
3060          * this run using quicksort
3061          */
3062         tuplesort_sort_memtuples(state);
3063
3064 #ifdef TRACE_SORT
3065         if (trace_sort)
3066                 elog(LOG, "finished quicksort of run %d: %s",
3067                          state->currentRun, pg_rusage_show(&state->ru_start));
3068 #endif
3069
3070         memtupwrite = state->memtupcount;
3071         for (i = 0; i < memtupwrite; i++)
3072         {
3073                 WRITETUP(state, state->tp_tapenum[state->destTape],
3074                                  &state->memtuples[i]);
3075                 state->memtupcount--;
3076         }
3077
3078         /*
3079          * Reset tuple memory.  We've freed all of the tuples that we previously
3080          * allocated.  It's important to avoid fragmentation when there is a stark
3081          * change in the sizes of incoming tuples.  Fragmentation due to
3082          * AllocSetFree's bucketing by size class might be particularly bad if
3083          * this step wasn't taken.
3084          */
3085         MemoryContextReset(state->tuplecontext);
3086
3087         markrunend(state, state->tp_tapenum[state->destTape]);
3088         state->tp_runs[state->destTape]++;
3089         state->tp_dummy[state->destTape]--; /* per Alg D step D2 */
3090
3091 #ifdef TRACE_SORT
3092         if (trace_sort)
3093                 elog(LOG, "finished writing run %d to tape %d: %s",
3094                          state->currentRun, state->destTape,
3095                          pg_rusage_show(&state->ru_start));
3096 #endif
3097
3098         if (!alltuples)
3099                 selectnewtape(state);
3100 }
3101
3102 /*
3103  * tuplesort_rescan             - rewind and replay the scan
3104  */
3105 void
3106 tuplesort_rescan(Tuplesortstate *state)
3107 {
3108         MemoryContext oldcontext = MemoryContextSwitchTo(state->sortcontext);
3109
3110         Assert(state->randomAccess);
3111
3112         switch (state->status)
3113         {
3114                 case TSS_SORTEDINMEM:
3115                         state->current = 0;
3116                         state->eof_reached = false;
3117                         state->markpos_offset = 0;
3118                         state->markpos_eof = false;
3119                         break;
3120                 case TSS_SORTEDONTAPE:
3121                         LogicalTapeRewindForRead(state->tapeset,
3122                                                                          state->result_tape,
3123                                                                          0);
3124                         state->eof_reached = false;
3125                         state->markpos_block = 0L;
3126                         state->markpos_offset = 0;
3127                         state->markpos_eof = false;
3128                         break;
3129                 default:
3130                         elog(ERROR, "invalid tuplesort state");
3131                         break;
3132         }
3133
3134         MemoryContextSwitchTo(oldcontext);
3135 }
3136
3137 /*
3138  * tuplesort_markpos    - saves current position in the merged sort file
3139  */
3140 void
3141 tuplesort_markpos(Tuplesortstate *state)
3142 {
3143         MemoryContext oldcontext = MemoryContextSwitchTo(state->sortcontext);
3144
3145         Assert(state->randomAccess);
3146
3147         switch (state->status)
3148         {
3149                 case TSS_SORTEDINMEM:
3150                         state->markpos_offset = state->current;
3151                         state->markpos_eof = state->eof_reached;
3152                         break;
3153                 case TSS_SORTEDONTAPE:
3154                         LogicalTapeTell(state->tapeset,
3155                                                         state->result_tape,
3156                                                         &state->markpos_block,
3157                                                         &state->markpos_offset);
3158                         state->markpos_eof = state->eof_reached;
3159                         break;
3160                 default:
3161                         elog(ERROR, "invalid tuplesort state");
3162                         break;
3163         }
3164
3165         MemoryContextSwitchTo(oldcontext);
3166 }
3167
3168 /*
3169  * tuplesort_restorepos - restores current position in merged sort file to
3170  *                                                last saved position
3171  */
3172 void
3173 tuplesort_restorepos(Tuplesortstate *state)
3174 {
3175         MemoryContext oldcontext = MemoryContextSwitchTo(state->sortcontext);
3176
3177         Assert(state->randomAccess);
3178
3179         switch (state->status)
3180         {
3181                 case TSS_SORTEDINMEM:
3182                         state->current = state->markpos_offset;
3183                         state->eof_reached = state->markpos_eof;
3184                         break;
3185                 case TSS_SORTEDONTAPE:
3186                         if (!LogicalTapeSeek(state->tapeset,
3187                                                                  state->result_tape,
3188                                                                  state->markpos_block,
3189                                                                  state->markpos_offset))
3190                                 elog(ERROR, "tuplesort_restorepos failed");
3191                         state->eof_reached = state->markpos_eof;
3192                         break;
3193                 default:
3194                         elog(ERROR, "invalid tuplesort state");
3195                         break;
3196         }
3197
3198         MemoryContextSwitchTo(oldcontext);
3199 }
3200
3201 /*
3202  * tuplesort_get_stats - extract summary statistics
3203  *
3204  * This can be called after tuplesort_performsort() finishes to obtain
3205  * printable summary information about how the sort was performed.
3206  * spaceUsed is measured in kilobytes.
3207  */
3208 void
3209 tuplesort_get_stats(Tuplesortstate *state,
3210                                         const char **sortMethod,
3211                                         const char **spaceType,
3212                                         long *spaceUsed)
3213 {
3214         /*
3215          * Note: it might seem we should provide both memory and disk usage for a
3216          * disk-based sort.  However, the current code doesn't track memory space
3217          * accurately once we have begun to return tuples to the caller (since we
3218          * don't account for pfree's the caller is expected to do), so we cannot
3219          * rely on availMem in a disk sort.  This does not seem worth the overhead
3220          * to fix.  Is it worth creating an API for the memory context code to
3221          * tell us how much is actually used in sortcontext?
3222          */
3223         if (state->tapeset)
3224         {
3225                 *spaceType = "Disk";
3226                 *spaceUsed = LogicalTapeSetBlocks(state->tapeset) * (BLCKSZ / 1024);
3227         }
3228         else
3229         {
3230                 *spaceType = "Memory";
3231                 *spaceUsed = (state->allowedMem - state->availMem + 1023) / 1024;
3232         }
3233
3234         switch (state->status)
3235         {
3236                 case TSS_SORTEDINMEM:
3237                         if (state->boundUsed)
3238                                 *sortMethod = "top-N heapsort";
3239                         else
3240                                 *sortMethod = "quicksort";
3241                         break;
3242                 case TSS_SORTEDONTAPE:
3243                         *sortMethod = "external sort";
3244                         break;
3245                 case TSS_FINALMERGE:
3246                         *sortMethod = "external merge";
3247                         break;
3248                 default:
3249                         *sortMethod = "still in progress";
3250                         break;
3251         }
3252 }
3253
3254
3255 /*
3256  * Heap manipulation routines, per Knuth's Algorithm 5.2.3H.
3257  *
3258  * Compare two SortTuples.  If checkIndex is true, use the tuple index
3259  * as the front of the sort key; otherwise, no.
3260  *
3261  * Note that for checkIndex callers, the heap invariant is never
3262  * maintained beyond the first run, and so there are no COMPARETUP()
3263  * calls needed to distinguish tuples in HEAP_RUN_NEXT.
3264  */
3265
3266 #define HEAPCOMPARE(tup1,tup2) \
3267         (checkIndex && ((tup1)->tupindex != (tup2)->tupindex || \
3268                                         (tup1)->tupindex == HEAP_RUN_NEXT) ? \
3269          ((tup1)->tupindex) - ((tup2)->tupindex) : \
3270          COMPARETUP(state, tup1, tup2))
3271
3272 /*
3273  * Convert the existing unordered array of SortTuples to a bounded heap,
3274  * discarding all but the smallest "state->bound" tuples.
3275  *
3276  * When working with a bounded heap, we want to keep the largest entry
3277  * at the root (array entry zero), instead of the smallest as in the normal
3278  * sort case.  This allows us to discard the largest entry cheaply.
3279  * Therefore, we temporarily reverse the sort direction.
3280  *
3281  * We assume that all entries in a bounded heap will always have tupindex
3282  * zero; it therefore doesn't matter that HEAPCOMPARE() doesn't reverse
3283  * the direction of comparison for tupindexes.
3284  */
3285 static void
3286 make_bounded_heap(Tuplesortstate *state)
3287 {
3288         int                     tupcount = state->memtupcount;
3289         int                     i;
3290
3291         Assert(state->status == TSS_INITIAL);
3292         Assert(state->bounded);
3293         Assert(tupcount >= state->bound);
3294
3295         /* Reverse sort direction so largest entry will be at root */
3296         reversedirection(state);
3297
3298         state->memtupcount = 0;         /* make the heap empty */
3299         for (i = 0; i < tupcount; i++)
3300         {
3301                 if (state->memtupcount < state->bound)
3302                 {
3303                         /* Insert next tuple into heap */
3304                         /* Must copy source tuple to avoid possible overwrite */
3305                         SortTuple       stup = state->memtuples[i];
3306
3307                         stup.tupindex = 0;      /* not used */
3308                         tuplesort_heap_insert(state, &stup, false);
3309                 }
3310                 else
3311                 {
3312                         /*
3313                          * The heap is full.  Replace the largest entry with the new
3314                          * tuple, or just discard it, if it's larger than anything already
3315                          * in the heap.
3316                          */
3317                         if (COMPARETUP(state, &state->memtuples[i], &state->memtuples[0]) <= 0)
3318                         {
3319                                 free_sort_tuple(state, &state->memtuples[i]);
3320                                 CHECK_FOR_INTERRUPTS();
3321                         }
3322                         else
3323                                 tuplesort_heap_replace_top(state, &state->memtuples[i], false);
3324                 }
3325         }
3326
3327         Assert(state->memtupcount == state->bound);
3328         state->status = TSS_BOUNDED;
3329 }
3330
3331 /*
3332  * Convert the bounded heap to a properly-sorted array
3333  */
3334 static void
3335 sort_bounded_heap(Tuplesortstate *state)
3336 {
3337         int                     tupcount = state->memtupcount;
3338
3339         Assert(state->status == TSS_BOUNDED);
3340         Assert(state->bounded);
3341         Assert(tupcount == state->bound);
3342
3343         /*
3344          * We can unheapify in place because each delete-top call will remove the
3345          * largest entry, which we can promptly store in the newly freed slot at
3346          * the end.  Once we're down to a single-entry heap, we're done.
3347          */
3348         while (state->memtupcount > 1)
3349         {
3350                 SortTuple       stup = state->memtuples[0];
3351
3352                 /* this sifts-up the next-largest entry and decreases memtupcount */
3353                 tuplesort_heap_delete_top(state, false);
3354                 state->memtuples[state->memtupcount] = stup;
3355         }
3356         state->memtupcount = tupcount;
3357
3358         /*
3359          * Reverse sort direction back to the original state.  This is not
3360          * actually necessary but seems like a good idea for tidiness.
3361          */
3362         reversedirection(state);
3363
3364         state->status = TSS_SORTEDINMEM;
3365         state->boundUsed = true;
3366 }
3367
3368 /*
3369  * Sort all memtuples using specialized qsort() routines.
3370  *
3371  * Quicksort is used for small in-memory sorts.  Quicksort is also generally
3372  * preferred to replacement selection for generating runs during external sort
3373  * operations, although replacement selection is sometimes used for the first
3374  * run.
3375  */
3376 static void
3377 tuplesort_sort_memtuples(Tuplesortstate *state)
3378 {
3379         if (state->memtupcount > 1)
3380         {
3381                 /* Can we use the single-key sort function? */
3382                 if (state->onlyKey != NULL)
3383                         qsort_ssup(state->memtuples, state->memtupcount,
3384                                            state->onlyKey);
3385                 else
3386                         qsort_tuple(state->memtuples,
3387                                                 state->memtupcount,
3388                                                 state->comparetup,
3389                                                 state);
3390         }
3391 }
3392
3393 /*
3394  * Insert a new tuple into an empty or existing heap, maintaining the
3395  * heap invariant.  Caller is responsible for ensuring there's room.
3396  *
3397  * Note: For some callers, tuple points to a memtuples[] entry above the
3398  * end of the heap.  This is safe as long as it's not immediately adjacent
3399  * to the end of the heap (ie, in the [memtupcount] array entry) --- if it
3400  * is, it might get overwritten before being moved into the heap!
3401  */
3402 static void
3403 tuplesort_heap_insert(Tuplesortstate *state, SortTuple *tuple,
3404                                           bool checkIndex)
3405 {
3406         SortTuple  *memtuples;
3407         int                     j;
3408
3409         memtuples = state->memtuples;
3410         Assert(state->memtupcount < state->memtupsize);
3411         Assert(!checkIndex || tuple->tupindex == RUN_FIRST);
3412
3413         CHECK_FOR_INTERRUPTS();
3414
3415         /*
3416          * Sift-up the new entry, per Knuth 5.2.3 exercise 16. Note that Knuth is
3417          * using 1-based array indexes, not 0-based.
3418          */
3419         j = state->memtupcount++;
3420         while (j > 0)
3421         {
3422                 int                     i = (j - 1) >> 1;
3423
3424                 if (HEAPCOMPARE(tuple, &memtuples[i]) >= 0)
3425                         break;
3426                 memtuples[j] = memtuples[i];
3427                 j = i;
3428         }
3429         memtuples[j] = *tuple;
3430 }
3431
3432 /*
3433  * Remove the tuple at state->memtuples[0] from the heap.  Decrement
3434  * memtupcount, and sift up to maintain the heap invariant.
3435  *
3436  * The caller has already free'd the tuple the top node points to,
3437  * if necessary.
3438  */
3439 static void
3440 tuplesort_heap_delete_top(Tuplesortstate *state, bool checkIndex)
3441 {
3442         SortTuple  *memtuples = state->memtuples;
3443         SortTuple  *tuple;
3444
3445         Assert(!checkIndex || state->currentRun == RUN_FIRST);
3446         if (--state->memtupcount <= 0)
3447                 return;
3448
3449         /*
3450          * Remove the last tuple in the heap, and re-insert it, by replacing the
3451          * current top node with it.
3452          */
3453         tuple = &memtuples[state->memtupcount];
3454         tuplesort_heap_replace_top(state, tuple, checkIndex);
3455 }
3456
3457 /*
3458  * Replace the tuple at state->memtuples[0] with a new tuple.  Sift up to
3459  * maintain the heap invariant.
3460  *
3461  * This corresponds to Knuth's "sift-up" algorithm (Algorithm 5.2.3H,
3462  * Heapsort, steps H3-H8).
3463  */
3464 static void
3465 tuplesort_heap_replace_top(Tuplesortstate *state, SortTuple *tuple,
3466                                                    bool checkIndex)
3467 {
3468         SortTuple  *memtuples = state->memtuples;
3469         int                     i,
3470                                 n;
3471
3472         Assert(!checkIndex || state->currentRun == RUN_FIRST);
3473         Assert(state->memtupcount >= 1);
3474
3475         CHECK_FOR_INTERRUPTS();
3476
3477         n = state->memtupcount;
3478         i = 0;                                          /* i is where the "hole" is */
3479         for (;;)
3480         {
3481                 int                     j = 2 * i + 1;
3482
3483                 if (j >= n)
3484                         break;
3485                 if (j + 1 < n &&
3486                         HEAPCOMPARE(&memtuples[j], &memtuples[j + 1]) > 0)
3487                         j++;
3488                 if (HEAPCOMPARE(tuple, &memtuples[j]) <= 0)
3489                         break;
3490                 memtuples[i] = memtuples[j];
3491                 i = j;
3492         }
3493         memtuples[i] = *tuple;
3494 }
3495
3496 /*
3497  * Function to reverse the sort direction from its current state
3498  *
3499  * It is not safe to call this when performing hash tuplesorts
3500  */
3501 static void
3502 reversedirection(Tuplesortstate *state)
3503 {
3504         SortSupport sortKey = state->sortKeys;
3505         int                     nkey;
3506
3507         for (nkey = 0; nkey < state->nKeys; nkey++, sortKey++)
3508         {
3509                 sortKey->ssup_reverse = !sortKey->ssup_reverse;
3510                 sortKey->ssup_nulls_first = !sortKey->ssup_nulls_first;
3511         }
3512 }
3513
3514
3515 /*
3516  * Tape interface routines
3517  */
3518
3519 static unsigned int
3520 getlen(Tuplesortstate *state, int tapenum, bool eofOK)
3521 {
3522         unsigned int len;
3523
3524         if (LogicalTapeRead(state->tapeset, tapenum,
3525                                                 &len, sizeof(len)) != sizeof(len))
3526                 elog(ERROR, "unexpected end of tape");
3527         if (len == 0 && !eofOK)
3528                 elog(ERROR, "unexpected end of data");
3529         return len;
3530 }
3531
3532 static void
3533 markrunend(Tuplesortstate *state, int tapenum)
3534 {
3535         unsigned int len = 0;
3536
3537         LogicalTapeWrite(state->tapeset, tapenum, (void *) &len, sizeof(len));
3538 }
3539
3540 /*
3541  * Get memory for tuple from within READTUP() routine.
3542  *
3543  * We use next free slot from the slab allocator, or palloc() if the tuple
3544  * is too large for that.
3545  */
3546 static void *
3547 readtup_alloc(Tuplesortstate *state, Size tuplen)
3548 {
3549         SlabSlot   *buf;
3550
3551         /*
3552          * We pre-allocate enough slots in the slab arena that we should never run
3553          * out.
3554          */
3555         Assert(state->slabFreeHead);
3556
3557         if (tuplen > SLAB_SLOT_SIZE || !state->slabFreeHead)
3558                 return MemoryContextAlloc(state->sortcontext, tuplen);
3559         else
3560         {
3561                 buf = state->slabFreeHead;
3562                 /* Reuse this slot */
3563                 state->slabFreeHead = buf->nextfree;
3564
3565                 return buf;
3566         }
3567 }
3568
3569
3570 /*
3571  * Routines specialized for HeapTuple (actually MinimalTuple) case
3572  */
3573
3574 static int
3575 comparetup_heap(const SortTuple *a, const SortTuple *b, Tuplesortstate *state)
3576 {
3577         SortSupport sortKey = state->sortKeys;
3578         HeapTupleData ltup;
3579         HeapTupleData rtup;
3580         TupleDesc       tupDesc;
3581         int                     nkey;
3582         int32           compare;
3583         AttrNumber      attno;
3584         Datum           datum1,
3585                                 datum2;
3586         bool            isnull1,
3587                                 isnull2;
3588
3589
3590         /* Compare the leading sort key */
3591         compare = ApplySortComparator(a->datum1, a->isnull1,
3592                                                                   b->datum1, b->isnull1,
3593                                                                   sortKey);
3594         if (compare != 0)
3595                 return compare;
3596
3597         /* Compare additional sort keys */
3598         ltup.t_len = ((MinimalTuple) a->tuple)->t_len + MINIMAL_TUPLE_OFFSET;
3599         ltup.t_data = (HeapTupleHeader) ((char *) a->tuple - MINIMAL_TUPLE_OFFSET);
3600         rtup.t_len = ((MinimalTuple) b->tuple)->t_len + MINIMAL_TUPLE_OFFSET;
3601         rtup.t_data = (HeapTupleHeader) ((char *) b->tuple - MINIMAL_TUPLE_OFFSET);
3602         tupDesc = state->tupDesc;
3603
3604         if (sortKey->abbrev_converter)
3605         {
3606                 attno = sortKey->ssup_attno;
3607
3608                 datum1 = heap_getattr(&ltup, attno, tupDesc, &isnull1);
3609                 datum2 = heap_getattr(&rtup, attno, tupDesc, &isnull2);
3610
3611                 compare = ApplySortAbbrevFullComparator(datum1, isnull1,
3612                                                                                                 datum2, isnull2,
3613                                                                                                 sortKey);
3614                 if (compare != 0)
3615                         return compare;
3616         }
3617
3618         sortKey++;
3619         for (nkey = 1; nkey < state->nKeys; nkey++, sortKey++)
3620         {
3621                 attno = sortKey->ssup_attno;
3622
3623                 datum1 = heap_getattr(&ltup, attno, tupDesc, &isnull1);
3624                 datum2 = heap_getattr(&rtup, attno, tupDesc, &isnull2);
3625
3626                 compare = ApplySortComparator(datum1, isnull1,
3627                                                                           datum2, isnull2,
3628                                                                           sortKey);
3629                 if (compare != 0)
3630                         return compare;
3631         }
3632
3633         return 0;
3634 }
3635
3636 static void
3637 copytup_heap(Tuplesortstate *state, SortTuple *stup, void *tup)
3638 {
3639         /*
3640          * We expect the passed "tup" to be a TupleTableSlot, and form a
3641          * MinimalTuple using the exported interface for that.
3642          */
3643         TupleTableSlot *slot = (TupleTableSlot *) tup;
3644         Datum           original;
3645         MinimalTuple tuple;
3646         HeapTupleData htup;
3647         MemoryContext oldcontext = MemoryContextSwitchTo(state->tuplecontext);
3648
3649         /* copy the tuple into sort storage */
3650         tuple = ExecCopySlotMinimalTuple(slot);
3651         stup->tuple = (void *) tuple;
3652         USEMEM(state, GetMemoryChunkSpace(tuple));
3653         /* set up first-column key value */
3654         htup.t_len = tuple->t_len + MINIMAL_TUPLE_OFFSET;
3655         htup.t_data = (HeapTupleHeader) ((char *) tuple - MINIMAL_TUPLE_OFFSET);
3656         original = heap_getattr(&htup,
3657                                                         state->sortKeys[0].ssup_attno,
3658                                                         state->tupDesc,
3659                                                         &stup->isnull1);
3660
3661         MemoryContextSwitchTo(oldcontext);
3662
3663         if (!state->sortKeys->abbrev_converter || stup->isnull1)
3664         {
3665                 /*
3666                  * Store ordinary Datum representation, or NULL value.  If there is a
3667                  * converter it won't expect NULL values, and cost model is not
3668                  * required to account for NULL, so in that case we avoid calling
3669                  * converter and just set datum1 to zeroed representation (to be
3670                  * consistent, and to support cheap inequality tests for NULL
3671                  * abbreviated keys).
3672                  */
3673                 stup->datum1 = original;
3674         }
3675         else if (!consider_abort_common(state))
3676         {
3677                 /* Store abbreviated key representation */
3678                 stup->datum1 = state->sortKeys->abbrev_converter(original,
3679                                                                                                                  state->sortKeys);
3680         }
3681         else
3682         {
3683                 /* Abort abbreviation */
3684                 int                     i;
3685
3686                 stup->datum1 = original;
3687
3688                 /*
3689                  * Set state to be consistent with never trying abbreviation.
3690                  *
3691                  * Alter datum1 representation in already-copied tuples, so as to
3692                  * ensure a consistent representation (current tuple was just
3693                  * handled).  It does not matter if some dumped tuples are already
3694                  * sorted on tape, since serialized tuples lack abbreviated keys
3695                  * (TSS_BUILDRUNS state prevents control reaching here in any case).
3696                  */
3697                 for (i = 0; i < state->memtupcount; i++)
3698                 {
3699                         SortTuple  *mtup = &state->memtuples[i];
3700
3701                         htup.t_len = ((MinimalTuple) mtup->tuple)->t_len +
3702                                 MINIMAL_TUPLE_OFFSET;
3703                         htup.t_data = (HeapTupleHeader) ((char *) mtup->tuple -
3704                                                                                          MINIMAL_TUPLE_OFFSET);
3705
3706                         mtup->datum1 = heap_getattr(&htup,
3707                                                                                 state->sortKeys[0].ssup_attno,
3708                                                                                 state->tupDesc,
3709                                                                                 &mtup->isnull1);
3710                 }
3711         }
3712 }
3713
3714 static void
3715 writetup_heap(Tuplesortstate *state, int tapenum, SortTuple *stup)
3716 {
3717         MinimalTuple tuple = (MinimalTuple) stup->tuple;
3718
3719         /* the part of the MinimalTuple we'll write: */
3720         char       *tupbody = (char *) tuple + MINIMAL_TUPLE_DATA_OFFSET;
3721         unsigned int tupbodylen = tuple->t_len - MINIMAL_TUPLE_DATA_OFFSET;
3722
3723         /* total on-disk footprint: */
3724         unsigned int tuplen = tupbodylen + sizeof(int);
3725
3726         LogicalTapeWrite(state->tapeset, tapenum,
3727                                          (void *) &tuplen, sizeof(tuplen));
3728         LogicalTapeWrite(state->tapeset, tapenum,
3729                                          (void *) tupbody, tupbodylen);
3730         if (state->randomAccess)        /* need trailing length word? */
3731                 LogicalTapeWrite(state->tapeset, tapenum,
3732                                                  (void *) &tuplen, sizeof(tuplen));
3733
3734         if (!state->slabAllocatorUsed)
3735         {
3736                 FREEMEM(state, GetMemoryChunkSpace(tuple));
3737                 heap_free_minimal_tuple(tuple);
3738         }
3739 }
3740
3741 static void
3742 readtup_heap(Tuplesortstate *state, SortTuple *stup,
3743                          int tapenum, unsigned int len)
3744 {
3745         unsigned int tupbodylen = len - sizeof(int);
3746         unsigned int tuplen = tupbodylen + MINIMAL_TUPLE_DATA_OFFSET;
3747         MinimalTuple tuple = (MinimalTuple) readtup_alloc(state, tuplen);
3748         char       *tupbody = (char *) tuple + MINIMAL_TUPLE_DATA_OFFSET;
3749         HeapTupleData htup;
3750
3751         /* read in the tuple proper */
3752         tuple->t_len = tuplen;
3753         LogicalTapeReadExact(state->tapeset, tapenum,
3754                                                  tupbody, tupbodylen);
3755         if (state->randomAccess)        /* need trailing length word? */
3756                 LogicalTapeReadExact(state->tapeset, tapenum,
3757                                                          &tuplen, sizeof(tuplen));
3758         stup->tuple = (void *) tuple;
3759         /* set up first-column key value */
3760         htup.t_len = tuple->t_len + MINIMAL_TUPLE_OFFSET;
3761         htup.t_data = (HeapTupleHeader) ((char *) tuple - MINIMAL_TUPLE_OFFSET);
3762         stup->datum1 = heap_getattr(&htup,
3763                                                                 state->sortKeys[0].ssup_attno,
3764                                                                 state->tupDesc,
3765                                                                 &stup->isnull1);
3766 }
3767
3768 /*
3769  * Routines specialized for the CLUSTER case (HeapTuple data, with
3770  * comparisons per a btree index definition)
3771  */
3772
3773 static int
3774 comparetup_cluster(const SortTuple *a, const SortTuple *b,
3775                                    Tuplesortstate *state)
3776 {
3777         SortSupport sortKey = state->sortKeys;
3778         HeapTuple       ltup;
3779         HeapTuple       rtup;
3780         TupleDesc       tupDesc;
3781         int                     nkey;
3782         int32           compare;
3783         Datum           datum1,
3784                                 datum2;
3785         bool            isnull1,
3786                                 isnull2;
3787         AttrNumber      leading = state->indexInfo->ii_KeyAttrNumbers[0];
3788
3789         /* Be prepared to compare additional sort keys */
3790         ltup = (HeapTuple) a->tuple;
3791         rtup = (HeapTuple) b->tuple;
3792         tupDesc = state->tupDesc;
3793
3794         /* Compare the leading sort key, if it's simple */
3795         if (leading != 0)
3796         {
3797                 compare = ApplySortComparator(a->datum1, a->isnull1,
3798                                                                           b->datum1, b->isnull1,
3799                                                                           sortKey);
3800                 if (compare != 0)
3801                         return compare;
3802
3803                 if (sortKey->abbrev_converter)
3804                 {
3805                         datum1 = heap_getattr(ltup, leading, tupDesc, &isnull1);
3806                         datum2 = heap_getattr(rtup, leading, tupDesc, &isnull2);
3807
3808                         compare = ApplySortAbbrevFullComparator(datum1, isnull1,
3809                                                                                                         datum2, isnull2,
3810                                                                                                         sortKey);
3811                 }
3812                 if (compare != 0 || state->nKeys == 1)
3813                         return compare;
3814                 /* Compare additional columns the hard way */
3815                 sortKey++;
3816                 nkey = 1;
3817         }
3818         else
3819         {
3820                 /* Must compare all keys the hard way */
3821                 nkey = 0;
3822         }
3823
3824         if (state->indexInfo->ii_Expressions == NULL)
3825         {
3826                 /* If not expression index, just compare the proper heap attrs */
3827
3828                 for (; nkey < state->nKeys; nkey++, sortKey++)
3829                 {
3830                         AttrNumber      attno = state->indexInfo->ii_KeyAttrNumbers[nkey];
3831
3832                         datum1 = heap_getattr(ltup, attno, tupDesc, &isnull1);
3833                         datum2 = heap_getattr(rtup, attno, tupDesc, &isnull2);
3834
3835                         compare = ApplySortComparator(datum1, isnull1,
3836                                                                                   datum2, isnull2,
3837                                                                                   sortKey);
3838                         if (compare != 0)
3839                                 return compare;
3840                 }
3841         }
3842         else
3843         {
3844                 /*
3845                  * In the expression index case, compute the whole index tuple and
3846                  * then compare values.  It would perhaps be faster to compute only as
3847                  * many columns as we need to compare, but that would require
3848                  * duplicating all the logic in FormIndexDatum.
3849                  */
3850                 Datum           l_index_values[INDEX_MAX_KEYS];
3851                 bool            l_index_isnull[INDEX_MAX_KEYS];
3852                 Datum           r_index_values[INDEX_MAX_KEYS];
3853                 bool            r_index_isnull[INDEX_MAX_KEYS];
3854                 TupleTableSlot *ecxt_scantuple;
3855
3856                 /* Reset context each time to prevent memory leakage */
3857                 ResetPerTupleExprContext(state->estate);
3858
3859                 ecxt_scantuple = GetPerTupleExprContext(state->estate)->ecxt_scantuple;
3860
3861                 ExecStoreTuple(ltup, ecxt_scantuple, InvalidBuffer, false);
3862                 FormIndexDatum(state->indexInfo, ecxt_scantuple, state->estate,
3863                                            l_index_values, l_index_isnull);
3864
3865                 ExecStoreTuple(rtup, ecxt_scantuple, InvalidBuffer, false);
3866                 FormIndexDatum(state->indexInfo, ecxt_scantuple, state->estate,
3867                                            r_index_values, r_index_isnull);
3868
3869                 for (; nkey < state->nKeys; nkey++, sortKey++)
3870                 {
3871                         compare = ApplySortComparator(l_index_values[nkey],
3872                                                                                   l_index_isnull[nkey],
3873                                                                                   r_index_values[nkey],
3874                                                                                   r_index_isnull[nkey],
3875                                                                                   sortKey);
3876                         if (compare != 0)
3877                                 return compare;
3878                 }
3879         }
3880
3881         return 0;
3882 }
3883
3884 static void
3885 copytup_cluster(Tuplesortstate *state, SortTuple *stup, void *tup)
3886 {
3887         HeapTuple       tuple = (HeapTuple) tup;
3888         Datum           original;
3889         MemoryContext oldcontext = MemoryContextSwitchTo(state->tuplecontext);
3890
3891         /* copy the tuple into sort storage */
3892         tuple = heap_copytuple(tuple);
3893         stup->tuple = (void *) tuple;
3894         USEMEM(state, GetMemoryChunkSpace(tuple));
3895
3896         MemoryContextSwitchTo(oldcontext);
3897
3898         /*
3899          * set up first-column key value, and potentially abbreviate, if it's a
3900          * simple column
3901          */
3902         if (state->indexInfo->ii_KeyAttrNumbers[0] == 0)
3903                 return;
3904
3905         original = heap_getattr(tuple,
3906                                                         state->indexInfo->ii_KeyAttrNumbers[0],
3907                                                         state->tupDesc,
3908                                                         &stup->isnull1);
3909
3910         if (!state->sortKeys->abbrev_converter || stup->isnull1)
3911         {
3912                 /*
3913                  * Store ordinary Datum representation, or NULL value.  If there is a
3914                  * converter it won't expect NULL values, and cost model is not
3915                  * required to account for NULL, so in that case we avoid calling
3916                  * converter and just set datum1 to zeroed representation (to be
3917                  * consistent, and to support cheap inequality tests for NULL
3918                  * abbreviated keys).
3919                  */
3920                 stup->datum1 = original;
3921         }
3922         else if (!consider_abort_common(state))
3923         {
3924                 /* Store abbreviated key representation */
3925                 stup->datum1 = state->sortKeys->abbrev_converter(original,
3926                                                                                                                  state->sortKeys);
3927         }
3928         else
3929         {
3930                 /* Abort abbreviation */
3931                 int                     i;
3932
3933                 stup->datum1 = original;
3934
3935                 /*
3936                  * Set state to be consistent with never trying abbreviation.
3937                  *
3938                  * Alter datum1 representation in already-copied tuples, so as to
3939                  * ensure a consistent representation (current tuple was just
3940                  * handled).  It does not matter if some dumped tuples are already
3941                  * sorted on tape, since serialized tuples lack abbreviated keys
3942                  * (TSS_BUILDRUNS state prevents control reaching here in any case).
3943                  */
3944                 for (i = 0; i < state->memtupcount; i++)
3945                 {
3946                         SortTuple  *mtup = &state->memtuples[i];
3947
3948                         tuple = (HeapTuple) mtup->tuple;
3949                         mtup->datum1 = heap_getattr(tuple,
3950                                                                           state->indexInfo->ii_KeyAttrNumbers[0],
3951                                                                                 state->tupDesc,
3952                                                                                 &mtup->isnull1);
3953                 }
3954         }
3955 }
3956
3957 static void
3958 writetup_cluster(Tuplesortstate *state, int tapenum, SortTuple *stup)
3959 {
3960         HeapTuple       tuple = (HeapTuple) stup->tuple;
3961         unsigned int tuplen = tuple->t_len + sizeof(ItemPointerData) + sizeof(int);
3962
3963         /* We need to store t_self, but not other fields of HeapTupleData */
3964         LogicalTapeWrite(state->tapeset, tapenum,
3965                                          &tuplen, sizeof(tuplen));
3966         LogicalTapeWrite(state->tapeset, tapenum,
3967                                          &tuple->t_self, sizeof(ItemPointerData));
3968         LogicalTapeWrite(state->tapeset, tapenum,
3969                                          tuple->t_data, tuple->t_len);
3970         if (state->randomAccess)        /* need trailing length word? */
3971                 LogicalTapeWrite(state->tapeset, tapenum,
3972                                                  &tuplen, sizeof(tuplen));
3973
3974         if (!state->slabAllocatorUsed)
3975         {
3976                 FREEMEM(state, GetMemoryChunkSpace(tuple));
3977                 heap_freetuple(tuple);
3978         }
3979 }
3980
3981 static void
3982 readtup_cluster(Tuplesortstate *state, SortTuple *stup,
3983                                 int tapenum, unsigned int tuplen)
3984 {
3985         unsigned int t_len = tuplen - sizeof(ItemPointerData) - sizeof(int);
3986         HeapTuple       tuple = (HeapTuple) readtup_alloc(state,
3987                                                                                                   t_len + HEAPTUPLESIZE);
3988
3989         /* Reconstruct the HeapTupleData header */
3990         tuple->t_data = (HeapTupleHeader) ((char *) tuple + HEAPTUPLESIZE);
3991         tuple->t_len = t_len;
3992         LogicalTapeReadExact(state->tapeset, tapenum,
3993                                                  &tuple->t_self, sizeof(ItemPointerData));
3994         /* We don't currently bother to reconstruct t_tableOid */
3995         tuple->t_tableOid = InvalidOid;
3996         /* Read in the tuple body */
3997         LogicalTapeReadExact(state->tapeset, tapenum,
3998                                                  tuple->t_data, tuple->t_len);
3999         if (state->randomAccess)        /* need trailing length word? */
4000                 LogicalTapeReadExact(state->tapeset, tapenum,
4001                                                          &tuplen, sizeof(tuplen));
4002         stup->tuple = (void *) tuple;
4003         /* set up first-column key value, if it's a simple column */
4004         if (state->indexInfo->ii_KeyAttrNumbers[0] != 0)
4005                 stup->datum1 = heap_getattr(tuple,
4006                                                                         state->indexInfo->ii_KeyAttrNumbers[0],
4007                                                                         state->tupDesc,
4008                                                                         &stup->isnull1);
4009 }
4010
4011 /*
4012  * Routines specialized for IndexTuple case
4013  *
4014  * The btree and hash cases require separate comparison functions, but the
4015  * IndexTuple representation is the same so the copy/write/read support
4016  * functions can be shared.
4017  */
4018
4019 static int
4020 comparetup_index_btree(const SortTuple *a, const SortTuple *b,
4021                                            Tuplesortstate *state)
4022 {
4023         /*
4024          * This is similar to comparetup_heap(), but expects index tuples.  There
4025          * is also special handling for enforcing uniqueness, and special
4026          * treatment for equal keys at the end.
4027          */
4028         SortSupport sortKey = state->sortKeys;
4029         IndexTuple      tuple1;
4030         IndexTuple      tuple2;
4031         int                     keysz;
4032         TupleDesc       tupDes;
4033         bool            equal_hasnull = false;
4034         int                     nkey;
4035         int32           compare;
4036         Datum           datum1,
4037                                 datum2;
4038         bool            isnull1,
4039                                 isnull2;
4040
4041
4042         /* Compare the leading sort key */
4043         compare = ApplySortComparator(a->datum1, a->isnull1,
4044                                                                   b->datum1, b->isnull1,
4045                                                                   sortKey);
4046         if (compare != 0)
4047                 return compare;
4048
4049         /* Compare additional sort keys */
4050         tuple1 = (IndexTuple) a->tuple;
4051         tuple2 = (IndexTuple) b->tuple;
4052         keysz = state->nKeys;
4053         tupDes = RelationGetDescr(state->indexRel);
4054
4055         if (sortKey->abbrev_converter)
4056         {
4057                 datum1 = index_getattr(tuple1, 1, tupDes, &isnull1);
4058                 datum2 = index_getattr(tuple2, 1, tupDes, &isnull2);
4059
4060                 compare = ApplySortAbbrevFullComparator(datum1, isnull1,
4061                                                                                                 datum2, isnull2,
4062                                                                                                 sortKey);
4063                 if (compare != 0)
4064                         return compare;
4065         }
4066
4067         /* they are equal, so we only need to examine one null flag */
4068         if (a->isnull1)
4069                 equal_hasnull = true;
4070
4071         sortKey++;
4072         for (nkey = 2; nkey <= keysz; nkey++, sortKey++)
4073         {
4074                 datum1 = index_getattr(tuple1, nkey, tupDes, &isnull1);
4075                 datum2 = index_getattr(tuple2, nkey, tupDes, &isnull2);
4076
4077                 compare = ApplySortComparator(datum1, isnull1,
4078                                                                           datum2, isnull2,
4079                                                                           sortKey);
4080                 if (compare != 0)
4081                         return compare;         /* done when we find unequal attributes */
4082
4083                 /* they are equal, so we only need to examine one null flag */
4084                 if (isnull1)
4085                         equal_hasnull = true;
4086         }
4087
4088         /*
4089          * If btree has asked us to enforce uniqueness, complain if two equal
4090          * tuples are detected (unless there was at least one NULL field).
4091          *
4092          * It is sufficient to make the test here, because if two tuples are equal
4093          * they *must* get compared at some stage of the sort --- otherwise the
4094          * sort algorithm wouldn't have checked whether one must appear before the
4095          * other.
4096          */
4097         if (state->enforceUnique && !equal_hasnull)
4098         {
4099                 Datum           values[INDEX_MAX_KEYS];
4100                 bool            isnull[INDEX_MAX_KEYS];
4101                 char       *key_desc;
4102
4103                 /*
4104                  * Some rather brain-dead implementations of qsort (such as the one in
4105                  * QNX 4) will sometimes call the comparison routine to compare a
4106                  * value to itself, but we always use our own implementation, which
4107                  * does not.
4108                  */
4109                 Assert(tuple1 != tuple2);
4110
4111                 index_deform_tuple(tuple1, tupDes, values, isnull);
4112
4113                 key_desc = BuildIndexValueDescription(state->indexRel, values, isnull);
4114
4115                 ereport(ERROR,
4116                                 (errcode(ERRCODE_UNIQUE_VIOLATION),
4117                                  errmsg("could not create unique index \"%s\"",
4118                                                 RelationGetRelationName(state->indexRel)),
4119                                  key_desc ? errdetail("Key %s is duplicated.", key_desc) :
4120                                  errdetail("Duplicate keys exist."),
4121                                  errtableconstraint(state->heapRel,
4122                                                                  RelationGetRelationName(state->indexRel))));
4123         }
4124
4125         /*
4126          * If key values are equal, we sort on ItemPointer.  This does not affect
4127          * validity of the finished index, but it may be useful to have index
4128          * scans in physical order.
4129          */
4130         {
4131                 BlockNumber blk1 = ItemPointerGetBlockNumber(&tuple1->t_tid);
4132                 BlockNumber blk2 = ItemPointerGetBlockNumber(&tuple2->t_tid);
4133
4134                 if (blk1 != blk2)
4135                         return (blk1 < blk2) ? -1 : 1;
4136         }
4137         {
4138                 OffsetNumber pos1 = ItemPointerGetOffsetNumber(&tuple1->t_tid);
4139                 OffsetNumber pos2 = ItemPointerGetOffsetNumber(&tuple2->t_tid);
4140
4141                 if (pos1 != pos2)
4142                         return (pos1 < pos2) ? -1 : 1;
4143         }
4144
4145         return 0;
4146 }
4147
4148 static int
4149 comparetup_index_hash(const SortTuple *a, const SortTuple *b,
4150                                           Tuplesortstate *state)
4151 {
4152         uint32          hash1;
4153         uint32          hash2;
4154         IndexTuple      tuple1;
4155         IndexTuple      tuple2;
4156
4157         /*
4158          * Fetch hash keys and mask off bits we don't want to sort by. We know
4159          * that the first column of the index tuple is the hash key.
4160          */
4161         Assert(!a->isnull1);
4162         hash1 = DatumGetUInt32(a->datum1) & state->hash_mask;
4163         Assert(!b->isnull1);
4164         hash2 = DatumGetUInt32(b->datum1) & state->hash_mask;
4165
4166         if (hash1 > hash2)
4167                 return 1;
4168         else if (hash1 < hash2)
4169                 return -1;
4170
4171         /*
4172          * If hash values are equal, we sort on ItemPointer.  This does not affect
4173          * validity of the finished index, but it may be useful to have index
4174          * scans in physical order.
4175          */
4176         tuple1 = (IndexTuple) a->tuple;
4177         tuple2 = (IndexTuple) b->tuple;
4178
4179         {
4180                 BlockNumber blk1 = ItemPointerGetBlockNumber(&tuple1->t_tid);
4181                 BlockNumber blk2 = ItemPointerGetBlockNumber(&tuple2->t_tid);
4182
4183                 if (blk1 != blk2)
4184                         return (blk1 < blk2) ? -1 : 1;
4185         }
4186         {
4187                 OffsetNumber pos1 = ItemPointerGetOffsetNumber(&tuple1->t_tid);
4188                 OffsetNumber pos2 = ItemPointerGetOffsetNumber(&tuple2->t_tid);
4189
4190                 if (pos1 != pos2)
4191                         return (pos1 < pos2) ? -1 : 1;
4192         }
4193
4194         return 0;
4195 }
4196
4197 static void
4198 copytup_index(Tuplesortstate *state, SortTuple *stup, void *tup)
4199 {
4200         IndexTuple      tuple = (IndexTuple) tup;
4201         unsigned int tuplen = IndexTupleSize(tuple);
4202         IndexTuple      newtuple;
4203         Datum           original;
4204
4205         /* copy the tuple into sort storage */
4206         newtuple = (IndexTuple) MemoryContextAlloc(state->tuplecontext, tuplen);
4207         memcpy(newtuple, tuple, tuplen);
4208         USEMEM(state, GetMemoryChunkSpace(newtuple));
4209         stup->tuple = (void *) newtuple;
4210         /* set up first-column key value */
4211         original = index_getattr(newtuple,
4212                                                          1,
4213                                                          RelationGetDescr(state->indexRel),
4214                                                          &stup->isnull1);
4215
4216         if (!state->sortKeys->abbrev_converter || stup->isnull1)
4217         {
4218                 /*
4219                  * Store ordinary Datum representation, or NULL value.  If there is a
4220                  * converter it won't expect NULL values, and cost model is not
4221                  * required to account for NULL, so in that case we avoid calling
4222                  * converter and just set datum1 to zeroed representation (to be
4223                  * consistent, and to support cheap inequality tests for NULL
4224                  * abbreviated keys).
4225                  */
4226                 stup->datum1 = original;
4227         }
4228         else if (!consider_abort_common(state))
4229         {
4230                 /* Store abbreviated key representation */
4231                 stup->datum1 = state->sortKeys->abbrev_converter(original,
4232                                                                                                                  state->sortKeys);
4233         }
4234         else
4235         {
4236                 /* Abort abbreviation */
4237                 int                     i;
4238
4239                 stup->datum1 = original;
4240
4241                 /*
4242                  * Set state to be consistent with never trying abbreviation.
4243                  *
4244                  * Alter datum1 representation in already-copied tuples, so as to
4245                  * ensure a consistent representation (current tuple was just
4246                  * handled).  It does not matter if some dumped tuples are already
4247                  * sorted on tape, since serialized tuples lack abbreviated keys
4248                  * (TSS_BUILDRUNS state prevents control reaching here in any case).
4249                  */
4250                 for (i = 0; i < state->memtupcount; i++)
4251                 {
4252                         SortTuple  *mtup = &state->memtuples[i];
4253
4254                         tuple = (IndexTuple) mtup->tuple;
4255                         mtup->datum1 = index_getattr(tuple,
4256                                                                                  1,
4257                                                                                  RelationGetDescr(state->indexRel),
4258                                                                                  &mtup->isnull1);
4259                 }
4260         }
4261 }
4262
4263 static void
4264 writetup_index(Tuplesortstate *state, int tapenum, SortTuple *stup)
4265 {
4266         IndexTuple      tuple = (IndexTuple) stup->tuple;
4267         unsigned int tuplen;
4268
4269         tuplen = IndexTupleSize(tuple) + sizeof(tuplen);
4270         LogicalTapeWrite(state->tapeset, tapenum,
4271                                          (void *) &tuplen, sizeof(tuplen));
4272         LogicalTapeWrite(state->tapeset, tapenum,
4273                                          (void *) tuple, IndexTupleSize(tuple));
4274         if (state->randomAccess)        /* need trailing length word? */
4275                 LogicalTapeWrite(state->tapeset, tapenum,
4276                                                  (void *) &tuplen, sizeof(tuplen));
4277
4278         if (!state->slabAllocatorUsed)
4279         {
4280                 FREEMEM(state, GetMemoryChunkSpace(tuple));
4281                 pfree(tuple);
4282         }
4283 }
4284
4285 static void
4286 readtup_index(Tuplesortstate *state, SortTuple *stup,
4287                           int tapenum, unsigned int len)
4288 {
4289         unsigned int tuplen = len - sizeof(unsigned int);
4290         IndexTuple      tuple = (IndexTuple) readtup_alloc(state, tuplen);
4291
4292         LogicalTapeReadExact(state->tapeset, tapenum,
4293                                                  tuple, tuplen);
4294         if (state->randomAccess)        /* need trailing length word? */
4295                 LogicalTapeReadExact(state->tapeset, tapenum,
4296                                                          &tuplen, sizeof(tuplen));
4297         stup->tuple = (void *) tuple;
4298         /* set up first-column key value */
4299         stup->datum1 = index_getattr(tuple,
4300                                                                  1,
4301                                                                  RelationGetDescr(state->indexRel),
4302                                                                  &stup->isnull1);
4303 }
4304
4305 /*
4306  * Routines specialized for DatumTuple case
4307  */
4308
4309 static int
4310 comparetup_datum(const SortTuple *a, const SortTuple *b, Tuplesortstate *state)
4311 {
4312         int                     compare;
4313
4314         compare = ApplySortComparator(a->datum1, a->isnull1,
4315                                                                   b->datum1, b->isnull1,
4316                                                                   state->sortKeys);
4317         if (compare != 0)
4318                 return compare;
4319
4320         /* if we have abbreviations, then "tuple" has the original value */
4321
4322         if (state->sortKeys->abbrev_converter)
4323                 compare = ApplySortAbbrevFullComparator(PointerGetDatum(a->tuple), a->isnull1,
4324                                                                            PointerGetDatum(b->tuple), b->isnull1,
4325                                                                                                 state->sortKeys);
4326
4327         return compare;
4328 }
4329
4330 static void
4331 copytup_datum(Tuplesortstate *state, SortTuple *stup, void *tup)
4332 {
4333         /* Not currently needed */
4334         elog(ERROR, "copytup_datum() should not be called");
4335 }
4336
4337 static void
4338 writetup_datum(Tuplesortstate *state, int tapenum, SortTuple *stup)
4339 {
4340         void       *waddr;
4341         unsigned int tuplen;
4342         unsigned int writtenlen;
4343
4344         if (stup->isnull1)
4345         {
4346                 waddr = NULL;
4347                 tuplen = 0;
4348         }
4349         else if (!state->tuples)
4350         {
4351                 waddr = &stup->datum1;
4352                 tuplen = sizeof(Datum);
4353         }
4354         else
4355         {
4356                 waddr = stup->tuple;
4357                 tuplen = datumGetSize(PointerGetDatum(stup->tuple), false, state->datumTypeLen);
4358                 Assert(tuplen != 0);
4359         }
4360
4361         writtenlen = tuplen + sizeof(unsigned int);
4362
4363         LogicalTapeWrite(state->tapeset, tapenum,
4364                                          (void *) &writtenlen, sizeof(writtenlen));
4365         LogicalTapeWrite(state->tapeset, tapenum,
4366                                          waddr, tuplen);
4367         if (state->randomAccess)        /* need trailing length word? */
4368                 LogicalTapeWrite(state->tapeset, tapenum,
4369                                                  (void *) &writtenlen, sizeof(writtenlen));
4370
4371         if (!state->slabAllocatorUsed && stup->tuple)
4372         {
4373                 FREEMEM(state, GetMemoryChunkSpace(stup->tuple));
4374                 pfree(stup->tuple);
4375         }
4376 }
4377
4378 static void
4379 readtup_datum(Tuplesortstate *state, SortTuple *stup,
4380                           int tapenum, unsigned int len)
4381 {
4382         unsigned int tuplen = len - sizeof(unsigned int);
4383
4384         if (tuplen == 0)
4385         {
4386                 /* it's NULL */
4387                 stup->datum1 = (Datum) 0;
4388                 stup->isnull1 = true;
4389                 stup->tuple = NULL;
4390         }
4391         else if (!state->tuples)
4392         {
4393                 Assert(tuplen == sizeof(Datum));
4394                 LogicalTapeReadExact(state->tapeset, tapenum,
4395                                                          &stup->datum1, tuplen);
4396                 stup->isnull1 = false;
4397                 stup->tuple = NULL;
4398         }
4399         else
4400         {
4401                 void       *raddr = readtup_alloc(state, tuplen);
4402
4403                 LogicalTapeReadExact(state->tapeset, tapenum,
4404                                                          raddr, tuplen);
4405                 stup->datum1 = PointerGetDatum(raddr);
4406                 stup->isnull1 = false;
4407                 stup->tuple = raddr;
4408         }
4409
4410         if (state->randomAccess)        /* need trailing length word? */
4411                 LogicalTapeReadExact(state->tapeset, tapenum,
4412                                                          &tuplen, sizeof(tuplen));
4413 }
4414
4415 /*
4416  * Convenience routine to free a tuple previously loaded into sort memory
4417  */
4418 static void
4419 free_sort_tuple(Tuplesortstate *state, SortTuple *stup)
4420 {
4421         FREEMEM(state, GetMemoryChunkSpace(stup->tuple));
4422         pfree(stup->tuple);
4423 }