]> granicus.if.org Git - postgresql/blob - src/backend/utils/adt/geo_spgist.c
Refactor geometric functions and operators
[postgresql] / src / backend / utils / adt / geo_spgist.c
1 /*-------------------------------------------------------------------------
2  *
3  * geo_spgist.c
4  *        SP-GiST implementation of 4-dimensional quad tree over boxes
5  *
6  * This module provides SP-GiST implementation for boxes using quad tree
7  * analogy in 4-dimensional space.  SP-GiST doesn't allow indexing of
8  * overlapping objects.  We are making 2D objects never-overlapping in
9  * 4D space.  This technique has some benefits compared to traditional
10  * R-Tree which is implemented as GiST.  The performance tests reveal
11  * that this technique especially beneficial with too much overlapping
12  * objects, so called "spaghetti data".
13  *
14  * Unlike the original quad tree, we are splitting the tree into 16
15  * quadrants in 4D space.  It is easier to imagine it as splitting space
16  * two times into 4:
17  *
18  *                              |          |
19  *                              |          |
20  *                              | -----+-----
21  *                              |          |
22  *                              |          |
23  * -------------+-------------
24  *                              |
25  *                              |
26  *                              |
27  *                              |
28  *                              |
29  *
30  * We are using box datatype as the prefix, but we are treating them
31  * as points in 4-dimensional space, because 2D boxes are not enough
32  * to represent the quadrant boundaries in 4D space.  They however are
33  * sufficient to point out the additional boundaries of the next
34  * quadrant.
35  *
36  * We are using traversal values provided by SP-GiST to calculate and
37  * to store the bounds of the quadrants, while traversing into the tree.
38  * Traversal value has all the boundaries in the 4D space, and is is
39  * capable of transferring the required boundaries to the following
40  * traversal values.  In conclusion, three things are necessary
41  * to calculate the next traversal value:
42  *
43  *      (1) the traversal value of the parent
44  *      (2) the quadrant of the current node
45  *      (3) the prefix of the current node
46  *
47  * If we visualize them on our simplified drawing (see the drawing above);
48  * transferred boundaries of (1) would be the outer axis, relevant part
49  * of (2) would be the up right part of the other axis, and (3) would be
50  * the inner axis.
51  *
52  * For example, consider the case of overlapping.  When recursion
53  * descends deeper and deeper down the tree, all quadrants in
54  * the current node will be checked for overlapping.  The boundaries
55  * will be re-calculated for all quadrants.  Overlap check answers
56  * the question: can any box from this quadrant overlap with the given
57  * box?  If yes, then this quadrant will be walked.  If no, then this
58  * quadrant will be skipped.
59  *
60  * This method provides restrictions for minimum and maximum values of
61  * every dimension of every corner of the box on every level of the tree
62  * except the root.  For the root node, we are setting the boundaries
63  * that we don't yet have as infinity.
64  *
65  * Portions Copyright (c) 1996-2018, PostgreSQL Global Development Group
66  * Portions Copyright (c) 1994, Regents of the University of California
67  *
68  * IDENTIFICATION
69  *                      src/backend/utils/adt/geo_spgist.c
70  *
71  *-------------------------------------------------------------------------
72  */
73
74 #include "postgres.h"
75
76 #include "access/spgist.h"
77 #include "access/stratnum.h"
78 #include "catalog/pg_type.h"
79 #include "utils/builtins.h"
80 #include "utils/geo_decls.h"
81
82 /*
83  * Comparator for qsort
84  *
85  * We don't need to use the floating point macros in here, because this
86  * is going only going to be used in a place to effect the performance
87  * of the index, not the correctness.
88  */
89 static int
90 compareDoubles(const void *a, const void *b)
91 {
92         double          x = *(double *) a;
93         double          y = *(double *) b;
94
95         if (x == y)
96                 return 0;
97         return (x > y) ? 1 : -1;
98 }
99
100 typedef struct
101 {
102         double          low;
103         double          high;
104 } Range;
105
106 typedef struct
107 {
108         Range           left;
109         Range           right;
110 } RangeBox;
111
112 typedef struct
113 {
114         RangeBox        range_box_x;
115         RangeBox        range_box_y;
116 } RectBox;
117
118 /*
119  * Calculate the quadrant
120  *
121  * The quadrant is 8 bit unsigned integer with 4 least bits in use.
122  * This function accepts BOXes as input.  They are not casted to
123  * RangeBoxes, yet.  All 4 bits are set by comparing a corner of the box.
124  * This makes 16 quadrants in total.
125  */
126 static uint8
127 getQuadrant(BOX *centroid, BOX *inBox)
128 {
129         uint8           quadrant = 0;
130
131         if (inBox->low.x > centroid->low.x)
132                 quadrant |= 0x8;
133
134         if (inBox->high.x > centroid->high.x)
135                 quadrant |= 0x4;
136
137         if (inBox->low.y > centroid->low.y)
138                 quadrant |= 0x2;
139
140         if (inBox->high.y > centroid->high.y)
141                 quadrant |= 0x1;
142
143         return quadrant;
144 }
145
146 /*
147  * Get RangeBox using BOX
148  *
149  * We are turning the BOX to our structures to emphasize their function
150  * of representing points in 4D space.  It also is more convenient to
151  * access the values with this structure.
152  */
153 static RangeBox *
154 getRangeBox(BOX *box)
155 {
156         RangeBox   *range_box = (RangeBox *) palloc(sizeof(RangeBox));
157
158         range_box->left.low = box->low.x;
159         range_box->left.high = box->high.x;
160
161         range_box->right.low = box->low.y;
162         range_box->right.high = box->high.y;
163
164         return range_box;
165 }
166
167 /*
168  * Initialize the traversal value
169  *
170  * In the beginning, we don't have any restrictions.  We have to
171  * initialize the struct to cover the whole 4D space.
172  */
173 static RectBox *
174 initRectBox(void)
175 {
176         RectBox    *rect_box = (RectBox *) palloc(sizeof(RectBox));
177         double          infinity = get_float8_infinity();
178
179         rect_box->range_box_x.left.low = -infinity;
180         rect_box->range_box_x.left.high = infinity;
181
182         rect_box->range_box_x.right.low = -infinity;
183         rect_box->range_box_x.right.high = infinity;
184
185         rect_box->range_box_y.left.low = -infinity;
186         rect_box->range_box_y.left.high = infinity;
187
188         rect_box->range_box_y.right.low = -infinity;
189         rect_box->range_box_y.right.high = infinity;
190
191         return rect_box;
192 }
193
194 /*
195  * Calculate the next traversal value
196  *
197  * All centroids are bounded by RectBox, but SP-GiST only keeps
198  * boxes.  When we are traversing the tree, we must calculate RectBox,
199  * using centroid and quadrant.
200  */
201 static RectBox *
202 nextRectBox(RectBox *rect_box, RangeBox *centroid, uint8 quadrant)
203 {
204         RectBox    *next_rect_box = (RectBox *) palloc(sizeof(RectBox));
205
206         memcpy(next_rect_box, rect_box, sizeof(RectBox));
207
208         if (quadrant & 0x8)
209                 next_rect_box->range_box_x.left.low = centroid->left.low;
210         else
211                 next_rect_box->range_box_x.left.high = centroid->left.low;
212
213         if (quadrant & 0x4)
214                 next_rect_box->range_box_x.right.low = centroid->left.high;
215         else
216                 next_rect_box->range_box_x.right.high = centroid->left.high;
217
218         if (quadrant & 0x2)
219                 next_rect_box->range_box_y.left.low = centroid->right.low;
220         else
221                 next_rect_box->range_box_y.left.high = centroid->right.low;
222
223         if (quadrant & 0x1)
224                 next_rect_box->range_box_y.right.low = centroid->right.high;
225         else
226                 next_rect_box->range_box_y.right.high = centroid->right.high;
227
228         return next_rect_box;
229 }
230
231 /* Can any range from range_box overlap with this argument? */
232 static bool
233 overlap2D(RangeBox *range_box, Range *query)
234 {
235         return FPge(range_box->right.high, query->low) &&
236                 FPle(range_box->left.low, query->high);
237 }
238
239 /* Can any rectangle from rect_box overlap with this argument? */
240 static bool
241 overlap4D(RectBox *rect_box, RangeBox *query)
242 {
243         return overlap2D(&rect_box->range_box_x, &query->left) &&
244                 overlap2D(&rect_box->range_box_y, &query->right);
245 }
246
247 /* Can any range from range_box contain this argument? */
248 static bool
249 contain2D(RangeBox *range_box, Range *query)
250 {
251         return FPge(range_box->right.high, query->high) &&
252                 FPle(range_box->left.low, query->low);
253 }
254
255 /* Can any rectangle from rect_box contain this argument? */
256 static bool
257 contain4D(RectBox *rect_box, RangeBox *query)
258 {
259         return contain2D(&rect_box->range_box_x, &query->left) &&
260                 contain2D(&rect_box->range_box_y, &query->right);
261 }
262
263 /* Can any range from range_box be contained by this argument? */
264 static bool
265 contained2D(RangeBox *range_box, Range *query)
266 {
267         return FPle(range_box->left.low, query->high) &&
268                 FPge(range_box->left.high, query->low) &&
269                 FPle(range_box->right.low, query->high) &&
270                 FPge(range_box->right.high, query->low);
271 }
272
273 /* Can any rectangle from rect_box be contained by this argument? */
274 static bool
275 contained4D(RectBox *rect_box, RangeBox *query)
276 {
277         return contained2D(&rect_box->range_box_x, &query->left) &&
278                 contained2D(&rect_box->range_box_y, &query->right);
279 }
280
281 /* Can any range from range_box to be lower than this argument? */
282 static bool
283 lower2D(RangeBox *range_box, Range *query)
284 {
285         return FPlt(range_box->left.low, query->low) &&
286                 FPlt(range_box->right.low, query->low);
287 }
288
289 /* Can any range from range_box not extend to the right side of the query? */
290 static bool
291 overLower2D(RangeBox *range_box, Range *query)
292 {
293         return FPle(range_box->left.low, query->high) &&
294                 FPle(range_box->right.low, query->high);
295 }
296
297 /* Can any range from range_box to be higher than this argument? */
298 static bool
299 higher2D(RangeBox *range_box, Range *query)
300 {
301         return FPgt(range_box->left.high, query->high) &&
302                 FPgt(range_box->right.high, query->high);
303 }
304
305 /* Can any range from range_box not extend to the left side of the query? */
306 static bool
307 overHigher2D(RangeBox *range_box, Range *query)
308 {
309         return FPge(range_box->left.high, query->low) &&
310                 FPge(range_box->right.high, query->low);
311 }
312
313 /* Can any rectangle from rect_box be left of this argument? */
314 static bool
315 left4D(RectBox *rect_box, RangeBox *query)
316 {
317         return lower2D(&rect_box->range_box_x, &query->left);
318 }
319
320 /* Can any rectangle from rect_box does not extend the right of this argument? */
321 static bool
322 overLeft4D(RectBox *rect_box, RangeBox *query)
323 {
324         return overLower2D(&rect_box->range_box_x, &query->left);
325 }
326
327 /* Can any rectangle from rect_box be right of this argument? */
328 static bool
329 right4D(RectBox *rect_box, RangeBox *query)
330 {
331         return higher2D(&rect_box->range_box_x, &query->left);
332 }
333
334 /* Can any rectangle from rect_box does not extend the left of this argument? */
335 static bool
336 overRight4D(RectBox *rect_box, RangeBox *query)
337 {
338         return overHigher2D(&rect_box->range_box_x, &query->left);
339 }
340
341 /* Can any rectangle from rect_box be below of this argument? */
342 static bool
343 below4D(RectBox *rect_box, RangeBox *query)
344 {
345         return lower2D(&rect_box->range_box_y, &query->right);
346 }
347
348 /* Can any rectangle from rect_box does not extend above this argument? */
349 static bool
350 overBelow4D(RectBox *rect_box, RangeBox *query)
351 {
352         return overLower2D(&rect_box->range_box_y, &query->right);
353 }
354
355 /* Can any rectangle from rect_box be above of this argument? */
356 static bool
357 above4D(RectBox *rect_box, RangeBox *query)
358 {
359         return higher2D(&rect_box->range_box_y, &query->right);
360 }
361
362 /* Can any rectangle from rect_box does not extend below of this argument? */
363 static bool
364 overAbove4D(RectBox *rect_box, RangeBox *query)
365 {
366         return overHigher2D(&rect_box->range_box_y, &query->right);
367 }
368
369 /*
370  * SP-GiST config function
371  */
372 Datum
373 spg_box_quad_config(PG_FUNCTION_ARGS)
374 {
375         spgConfigOut *cfg = (spgConfigOut *) PG_GETARG_POINTER(1);
376
377         cfg->prefixType = BOXOID;
378         cfg->labelType = VOIDOID;       /* We don't need node labels. */
379         cfg->canReturnData = true;
380         cfg->longValuesOK = false;
381
382         PG_RETURN_VOID();
383 }
384
385 /*
386  * SP-GiST choose function
387  */
388 Datum
389 spg_box_quad_choose(PG_FUNCTION_ARGS)
390 {
391         spgChooseIn *in = (spgChooseIn *) PG_GETARG_POINTER(0);
392         spgChooseOut *out = (spgChooseOut *) PG_GETARG_POINTER(1);
393         BOX                *centroid = DatumGetBoxP(in->prefixDatum),
394                            *box = DatumGetBoxP(in->leafDatum);
395
396         out->resultType = spgMatchNode;
397         out->result.matchNode.restDatum = BoxPGetDatum(box);
398
399         /* nodeN will be set by core, when allTheSame. */
400         if (!in->allTheSame)
401                 out->result.matchNode.nodeN = getQuadrant(centroid, box);
402
403         PG_RETURN_VOID();
404 }
405
406 /*
407  * SP-GiST pick-split function
408  *
409  * It splits a list of boxes into quadrants by choosing a central 4D
410  * point as the median of the coordinates of the boxes.
411  */
412 Datum
413 spg_box_quad_picksplit(PG_FUNCTION_ARGS)
414 {
415         spgPickSplitIn *in = (spgPickSplitIn *) PG_GETARG_POINTER(0);
416         spgPickSplitOut *out = (spgPickSplitOut *) PG_GETARG_POINTER(1);
417         BOX                *centroid;
418         int                     median,
419                                 i;
420         double     *lowXs = palloc(sizeof(double) * in->nTuples);
421         double     *highXs = palloc(sizeof(double) * in->nTuples);
422         double     *lowYs = palloc(sizeof(double) * in->nTuples);
423         double     *highYs = palloc(sizeof(double) * in->nTuples);
424
425         /* Calculate median of all 4D coordinates */
426         for (i = 0; i < in->nTuples; i++)
427         {
428                 BOX                *box = DatumGetBoxP(in->datums[i]);
429
430                 lowXs[i] = box->low.x;
431                 highXs[i] = box->high.x;
432                 lowYs[i] = box->low.y;
433                 highYs[i] = box->high.y;
434         }
435
436         qsort(lowXs, in->nTuples, sizeof(double), compareDoubles);
437         qsort(highXs, in->nTuples, sizeof(double), compareDoubles);
438         qsort(lowYs, in->nTuples, sizeof(double), compareDoubles);
439         qsort(highYs, in->nTuples, sizeof(double), compareDoubles);
440
441         median = in->nTuples / 2;
442
443         centroid = palloc(sizeof(BOX));
444
445         centroid->low.x = lowXs[median];
446         centroid->high.x = highXs[median];
447         centroid->low.y = lowYs[median];
448         centroid->high.y = highYs[median];
449
450         /* Fill the output */
451         out->hasPrefix = true;
452         out->prefixDatum = BoxPGetDatum(centroid);
453
454         out->nNodes = 16;
455         out->nodeLabels = NULL;         /* We don't need node labels. */
456
457         out->mapTuplesToNodes = palloc(sizeof(int) * in->nTuples);
458         out->leafTupleDatums = palloc(sizeof(Datum) * in->nTuples);
459
460         /*
461          * Assign ranges to corresponding nodes according to quadrants relative to
462          * the "centroid" range
463          */
464         for (i = 0; i < in->nTuples; i++)
465         {
466                 BOX                *box = DatumGetBoxP(in->datums[i]);
467                 uint8           quadrant = getQuadrant(centroid, box);
468
469                 out->leafTupleDatums[i] = BoxPGetDatum(box);
470                 out->mapTuplesToNodes[i] = quadrant;
471         }
472
473         PG_RETURN_VOID();
474 }
475
476 /*
477  * Check if result of consistent method based on bounding box is exact.
478  */
479 static bool
480 is_bounding_box_test_exact(StrategyNumber strategy)
481 {
482         switch (strategy)
483         {
484                 case RTLeftStrategyNumber:
485                 case RTOverLeftStrategyNumber:
486                 case RTOverRightStrategyNumber:
487                 case RTRightStrategyNumber:
488                 case RTOverBelowStrategyNumber:
489                 case RTBelowStrategyNumber:
490                 case RTAboveStrategyNumber:
491                 case RTOverAboveStrategyNumber:
492                         return true;
493
494                 default:
495                         return false;
496         }
497 }
498
499 /*
500  * Get bounding box for ScanKey.
501  */
502 static BOX *
503 spg_box_quad_get_scankey_bbox(ScanKey sk, bool *recheck)
504 {
505         switch (sk->sk_subtype)
506         {
507                 case BOXOID:
508                         return DatumGetBoxP(sk->sk_argument);
509
510                 case POLYGONOID:
511                         if (recheck && !is_bounding_box_test_exact(sk->sk_strategy))
512                                 *recheck = true;
513                         return &DatumGetPolygonP(sk->sk_argument)->boundbox;
514
515                 default:
516                         elog(ERROR, "unrecognized scankey subtype: %d", sk->sk_subtype);
517                         return NULL;
518         }
519 }
520
521 /*
522  * SP-GiST inner consistent function
523  */
524 Datum
525 spg_box_quad_inner_consistent(PG_FUNCTION_ARGS)
526 {
527         spgInnerConsistentIn *in = (spgInnerConsistentIn *) PG_GETARG_POINTER(0);
528         spgInnerConsistentOut *out = (spgInnerConsistentOut *) PG_GETARG_POINTER(1);
529         int                     i;
530         MemoryContext old_ctx;
531         RectBox    *rect_box;
532         uint8           quadrant;
533         RangeBox   *centroid,
534                           **queries;
535
536         if (in->allTheSame)
537         {
538                 /* Report that all nodes should be visited */
539                 out->nNodes = in->nNodes;
540                 out->nodeNumbers = (int *) palloc(sizeof(int) * in->nNodes);
541                 for (i = 0; i < in->nNodes; i++)
542                         out->nodeNumbers[i] = i;
543
544                 PG_RETURN_VOID();
545         }
546
547         /*
548          * We are saving the traversal value or initialize it an unbounded one, if
549          * we have just begun to walk the tree.
550          */
551         if (in->traversalValue)
552                 rect_box = in->traversalValue;
553         else
554                 rect_box = initRectBox();
555
556         /*
557          * We are casting the prefix and queries to RangeBoxes for ease of the
558          * following operations.
559          */
560         centroid = getRangeBox(DatumGetBoxP(in->prefixDatum));
561         queries = (RangeBox **) palloc(in->nkeys * sizeof(RangeBox *));
562         for (i = 0; i < in->nkeys; i++)
563         {
564                 BOX                *box = spg_box_quad_get_scankey_bbox(&in->scankeys[i], NULL);
565
566                 queries[i] = getRangeBox(box);
567         }
568
569         /* Allocate enough memory for nodes */
570         out->nNodes = 0;
571         out->nodeNumbers = (int *) palloc(sizeof(int) * in->nNodes);
572         out->traversalValues = (void **) palloc(sizeof(void *) * in->nNodes);
573
574         /*
575          * We switch memory context, because we want to allocate memory for new
576          * traversal values (next_rect_box) and pass these pieces of memory to
577          * further call of this function.
578          */
579         old_ctx = MemoryContextSwitchTo(in->traversalMemoryContext);
580
581         for (quadrant = 0; quadrant < in->nNodes; quadrant++)
582         {
583                 RectBox    *next_rect_box = nextRectBox(rect_box, centroid, quadrant);
584                 bool            flag = true;
585
586                 for (i = 0; i < in->nkeys; i++)
587                 {
588                         StrategyNumber strategy = in->scankeys[i].sk_strategy;
589
590                         switch (strategy)
591                         {
592                                 case RTOverlapStrategyNumber:
593                                         flag = overlap4D(next_rect_box, queries[i]);
594                                         break;
595
596                                 case RTContainsStrategyNumber:
597                                         flag = contain4D(next_rect_box, queries[i]);
598                                         break;
599
600                                 case RTSameStrategyNumber:
601                                 case RTContainedByStrategyNumber:
602                                         flag = contained4D(next_rect_box, queries[i]);
603                                         break;
604
605                                 case RTLeftStrategyNumber:
606                                         flag = left4D(next_rect_box, queries[i]);
607                                         break;
608
609                                 case RTOverLeftStrategyNumber:
610                                         flag = overLeft4D(next_rect_box, queries[i]);
611                                         break;
612
613                                 case RTRightStrategyNumber:
614                                         flag = right4D(next_rect_box, queries[i]);
615                                         break;
616
617                                 case RTOverRightStrategyNumber:
618                                         flag = overRight4D(next_rect_box, queries[i]);
619                                         break;
620
621                                 case RTAboveStrategyNumber:
622                                         flag = above4D(next_rect_box, queries[i]);
623                                         break;
624
625                                 case RTOverAboveStrategyNumber:
626                                         flag = overAbove4D(next_rect_box, queries[i]);
627                                         break;
628
629                                 case RTBelowStrategyNumber:
630                                         flag = below4D(next_rect_box, queries[i]);
631                                         break;
632
633                                 case RTOverBelowStrategyNumber:
634                                         flag = overBelow4D(next_rect_box, queries[i]);
635                                         break;
636
637                                 default:
638                                         elog(ERROR, "unrecognized strategy: %d", strategy);
639                         }
640
641                         /* If any check is failed, we have found our answer. */
642                         if (!flag)
643                                 break;
644                 }
645
646                 if (flag)
647                 {
648                         out->traversalValues[out->nNodes] = next_rect_box;
649                         out->nodeNumbers[out->nNodes] = quadrant;
650                         out->nNodes++;
651                 }
652                 else
653                 {
654                         /*
655                          * If this node is not selected, we don't need to keep the next
656                          * traversal value in the memory context.
657                          */
658                         pfree(next_rect_box);
659                 }
660         }
661
662         /* Switch back */
663         MemoryContextSwitchTo(old_ctx);
664
665         PG_RETURN_VOID();
666 }
667
668 /*
669  * SP-GiST inner consistent function
670  */
671 Datum
672 spg_box_quad_leaf_consistent(PG_FUNCTION_ARGS)
673 {
674         spgLeafConsistentIn *in = (spgLeafConsistentIn *) PG_GETARG_POINTER(0);
675         spgLeafConsistentOut *out = (spgLeafConsistentOut *) PG_GETARG_POINTER(1);
676         Datum           leaf = in->leafDatum;
677         bool            flag = true;
678         int                     i;
679
680         /* All tests are exact. */
681         out->recheck = false;
682
683         /* leafDatum is what it is... */
684         out->leafValue = in->leafDatum;
685
686         /* Perform the required comparison(s) */
687         for (i = 0; i < in->nkeys; i++)
688         {
689                 StrategyNumber strategy = in->scankeys[i].sk_strategy;
690                 BOX                *box = spg_box_quad_get_scankey_bbox(&in->scankeys[i],
691                                                                                                                 &out->recheck);
692                 Datum           query = BoxPGetDatum(box);
693
694                 switch (strategy)
695                 {
696                         case RTOverlapStrategyNumber:
697                                 flag = DatumGetBool(DirectFunctionCall2(box_overlap, leaf,
698                                                                                                                 query));
699                                 break;
700
701                         case RTContainsStrategyNumber:
702                                 flag = DatumGetBool(DirectFunctionCall2(box_contain, leaf,
703                                                                                                                 query));
704                                 break;
705
706                         case RTContainedByStrategyNumber:
707                                 flag = DatumGetBool(DirectFunctionCall2(box_contained, leaf,
708                                                                                                                 query));
709                                 break;
710
711                         case RTSameStrategyNumber:
712                                 flag = DatumGetBool(DirectFunctionCall2(box_same, leaf,
713                                                                                                                 query));
714                                 break;
715
716                         case RTLeftStrategyNumber:
717                                 flag = DatumGetBool(DirectFunctionCall2(box_left, leaf,
718                                                                                                                 query));
719                                 break;
720
721                         case RTOverLeftStrategyNumber:
722                                 flag = DatumGetBool(DirectFunctionCall2(box_overleft, leaf,
723                                                                                                                 query));
724                                 break;
725
726                         case RTRightStrategyNumber:
727                                 flag = DatumGetBool(DirectFunctionCall2(box_right, leaf,
728                                                                                                                 query));
729                                 break;
730
731                         case RTOverRightStrategyNumber:
732                                 flag = DatumGetBool(DirectFunctionCall2(box_overright, leaf,
733                                                                                                                 query));
734                                 break;
735
736                         case RTAboveStrategyNumber:
737                                 flag = DatumGetBool(DirectFunctionCall2(box_above, leaf,
738                                                                                                                 query));
739                                 break;
740
741                         case RTOverAboveStrategyNumber:
742                                 flag = DatumGetBool(DirectFunctionCall2(box_overabove, leaf,
743                                                                                                                 query));
744                                 break;
745
746                         case RTBelowStrategyNumber:
747                                 flag = DatumGetBool(DirectFunctionCall2(box_below, leaf,
748                                                                                                                 query));
749                                 break;
750
751                         case RTOverBelowStrategyNumber:
752                                 flag = DatumGetBool(DirectFunctionCall2(box_overbelow, leaf,
753                                                                                                                 query));
754                                 break;
755
756                         default:
757                                 elog(ERROR, "unrecognized strategy: %d", strategy);
758                 }
759
760                 /* If any check is failed, we have found our answer. */
761                 if (!flag)
762                         break;
763         }
764
765         PG_RETURN_BOOL(flag);
766 }
767
768
769 /*
770  * SP-GiST config function for 2-D types that are lossy represented by their
771  * bounding boxes
772  */
773 Datum
774 spg_bbox_quad_config(PG_FUNCTION_ARGS)
775 {
776         spgConfigOut *cfg = (spgConfigOut *) PG_GETARG_POINTER(1);
777
778         cfg->prefixType = BOXOID;       /* A type represented by its bounding box */
779         cfg->labelType = VOIDOID;       /* We don't need node labels. */
780         cfg->leafType = BOXOID;
781         cfg->canReturnData = false;
782         cfg->longValuesOK = false;
783
784         PG_RETURN_VOID();
785 }
786
787 /*
788  * SP-GiST compress function for polygons
789  */
790 Datum
791 spg_poly_quad_compress(PG_FUNCTION_ARGS)
792 {
793         POLYGON    *polygon = PG_GETARG_POLYGON_P(0);
794         BOX                *box;
795
796         box = (BOX *) palloc(sizeof(BOX));
797         *box = polygon->boundbox;
798
799         PG_RETURN_BOX_P(box);
800 }