]> granicus.if.org Git - postgresql/blob - src/backend/optimizer/plan/planner.c
When we have successfully optimized a MIN or MAX aggregate into an indexscan,
[postgresql] / src / backend / optimizer / plan / planner.c
1 /*-------------------------------------------------------------------------
2  *
3  * planner.c
4  *        The query optimizer external interface.
5  *
6  * Portions Copyright (c) 1996-2008, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  *        $PostgreSQL: pgsql/src/backend/optimizer/plan/planner.c,v 1.228 2008/03/27 19:06:14 tgl Exp $
12  *
13  *-------------------------------------------------------------------------
14  */
15
16 #include "postgres.h"
17
18 #include <limits.h>
19
20 #include "catalog/pg_operator.h"
21 #include "executor/executor.h"
22 #include "executor/nodeAgg.h"
23 #include "miscadmin.h"
24 #include "nodes/makefuncs.h"
25 #include "optimizer/clauses.h"
26 #include "optimizer/cost.h"
27 #include "optimizer/pathnode.h"
28 #include "optimizer/paths.h"
29 #include "optimizer/planmain.h"
30 #include "optimizer/planner.h"
31 #include "optimizer/prep.h"
32 #include "optimizer/subselect.h"
33 #include "optimizer/tlist.h"
34 #include "optimizer/var.h"
35 #ifdef OPTIMIZER_DEBUG
36 #include "nodes/print.h"
37 #endif
38 #include "parser/parse_expr.h"
39 #include "parser/parse_oper.h"
40 #include "parser/parsetree.h"
41 #include "utils/lsyscache.h"
42 #include "utils/syscache.h"
43
44
45 /* Hook for plugins to get control in planner() */
46 planner_hook_type planner_hook = NULL;
47
48
49 /* Expression kind codes for preprocess_expression */
50 #define EXPRKIND_QUAL           0
51 #define EXPRKIND_TARGET         1
52 #define EXPRKIND_RTFUNC         2
53 #define EXPRKIND_VALUES         3
54 #define EXPRKIND_LIMIT          4
55 #define EXPRKIND_ININFO         5
56 #define EXPRKIND_APPINFO        6
57
58
59 static Node *preprocess_expression(PlannerInfo *root, Node *expr, int kind);
60 static void preprocess_qual_conditions(PlannerInfo *root, Node *jtnode);
61 static Plan *inheritance_planner(PlannerInfo *root);
62 static Plan *grouping_planner(PlannerInfo *root, double tuple_fraction);
63 static bool is_dummy_plan(Plan *plan);
64 static double preprocess_limit(PlannerInfo *root,
65                                  double tuple_fraction,
66                                  int64 *offset_est, int64 *count_est);
67 static Oid *extract_grouping_ops(List *groupClause);
68 static bool choose_hashed_grouping(PlannerInfo *root,
69                                            double tuple_fraction, double limit_tuples,
70                                            Path *cheapest_path, Path *sorted_path,
71                                            Oid *groupOperators, double dNumGroups,
72                                            AggClauseCounts *agg_counts);
73 static List *make_subplanTargetList(PlannerInfo *root, List *tlist,
74                                            AttrNumber **groupColIdx, bool *need_tlist_eval);
75 static void locate_grouping_columns(PlannerInfo *root,
76                                                 List *tlist,
77                                                 List *sub_tlist,
78                                                 AttrNumber *groupColIdx);
79 static List *postprocess_setop_tlist(List *new_tlist, List *orig_tlist);
80
81
82 /*****************************************************************************
83  *
84  *         Query optimizer entry point
85  *
86  * To support loadable plugins that monitor or modify planner behavior,
87  * we provide a hook variable that lets a plugin get control before and
88  * after the standard planning process.  The plugin would normally call
89  * standard_planner().
90  *
91  * Note to plugin authors: standard_planner() scribbles on its Query input,
92  * so you'd better copy that data structure if you want to plan more than once.
93  *
94  *****************************************************************************/
95 PlannedStmt *
96 planner(Query *parse, int cursorOptions, ParamListInfo boundParams)
97 {
98         PlannedStmt *result;
99
100         if (planner_hook)
101                 result = (*planner_hook) (parse, cursorOptions, boundParams);
102         else
103                 result = standard_planner(parse, cursorOptions, boundParams);
104         return result;
105 }
106
107 PlannedStmt *
108 standard_planner(Query *parse, int cursorOptions, ParamListInfo boundParams)
109 {
110         PlannedStmt *result;
111         PlannerGlobal *glob;
112         double          tuple_fraction;
113         PlannerInfo *root;
114         Plan       *top_plan;
115         ListCell   *lp,
116                            *lr;
117
118         /* Cursor options may come from caller or from DECLARE CURSOR stmt */
119         if (parse->utilityStmt &&
120                 IsA(parse->utilityStmt, DeclareCursorStmt))
121                 cursorOptions |= ((DeclareCursorStmt *) parse->utilityStmt)->options;
122
123         /*
124          * Set up global state for this planner invocation.  This data is needed
125          * across all levels of sub-Query that might exist in the given command,
126          * so we keep it in a separate struct that's linked to by each per-Query
127          * PlannerInfo.
128          */
129         glob = makeNode(PlannerGlobal);
130
131         glob->boundParams = boundParams;
132         glob->paramlist = NIL;
133         glob->subplans = NIL;
134         glob->subrtables = NIL;
135         glob->rewindPlanIDs = NULL;
136         glob->finalrtable = NIL;
137         glob->relationOids = NIL;
138         glob->transientPlan = false;
139
140         /* Determine what fraction of the plan is likely to be scanned */
141         if (cursorOptions & CURSOR_OPT_FAST_PLAN)
142         {
143                 /*
144                  * We have no real idea how many tuples the user will ultimately FETCH
145                  * from a cursor, but it seems a good bet that he doesn't want 'em
146                  * all.  Optimize for 10% retrieval (you gotta better number?  Should
147                  * this be a SETtable parameter?)
148                  */
149                 tuple_fraction = 0.10;
150         }
151         else
152         {
153                 /* Default assumption is we need all the tuples */
154                 tuple_fraction = 0.0;
155         }
156
157         /* primary planning entry point (may recurse for subqueries) */
158         top_plan = subquery_planner(glob, parse, 1, tuple_fraction, &root);
159
160         /*
161          * If creating a plan for a scrollable cursor, make sure it can run
162          * backwards on demand.  Add a Material node at the top at need.
163          */
164         if (cursorOptions & CURSOR_OPT_SCROLL)
165         {
166                 if (!ExecSupportsBackwardScan(top_plan))
167                         top_plan = materialize_finished_plan(top_plan);
168         }
169
170         /* final cleanup of the plan */
171         Assert(glob->finalrtable == NIL);
172         top_plan = set_plan_references(glob, top_plan, root->parse->rtable);
173         /* ... and the subplans (both regular subplans and initplans) */
174         Assert(list_length(glob->subplans) == list_length(glob->subrtables));
175         forboth(lp, glob->subplans, lr, glob->subrtables)
176         {
177                 Plan       *subplan = (Plan *) lfirst(lp);
178                 List       *subrtable = (List *) lfirst(lr);
179
180                 lfirst(lp) = set_plan_references(glob, subplan, subrtable);
181         }
182
183         /* build the PlannedStmt result */
184         result = makeNode(PlannedStmt);
185
186         result->commandType = parse->commandType;
187         result->canSetTag = parse->canSetTag;
188         result->transientPlan = glob->transientPlan;
189         result->planTree = top_plan;
190         result->rtable = glob->finalrtable;
191         result->resultRelations = root->resultRelations;
192         result->utilityStmt = parse->utilityStmt;
193         result->intoClause = parse->intoClause;
194         result->subplans = glob->subplans;
195         result->rewindPlanIDs = glob->rewindPlanIDs;
196         result->returningLists = root->returningLists;
197         result->rowMarks = parse->rowMarks;
198         result->relationOids = glob->relationOids;
199         result->nParamExec = list_length(glob->paramlist);
200
201         return result;
202 }
203
204
205 /*--------------------
206  * subquery_planner
207  *        Invokes the planner on a subquery.  We recurse to here for each
208  *        sub-SELECT found in the query tree.
209  *
210  * glob is the global state for the current planner run.
211  * parse is the querytree produced by the parser & rewriter.
212  * level is the current recursion depth (1 at the top-level Query).
213  * tuple_fraction is the fraction of tuples we expect will be retrieved.
214  * tuple_fraction is interpreted as explained for grouping_planner, below.
215  *
216  * If subroot isn't NULL, we pass back the query's final PlannerInfo struct;
217  * among other things this tells the output sort ordering of the plan.
218  *
219  * Basically, this routine does the stuff that should only be done once
220  * per Query object.  It then calls grouping_planner.  At one time,
221  * grouping_planner could be invoked recursively on the same Query object;
222  * that's not currently true, but we keep the separation between the two
223  * routines anyway, in case we need it again someday.
224  *
225  * subquery_planner will be called recursively to handle sub-Query nodes
226  * found within the query's expressions and rangetable.
227  *
228  * Returns a query plan.
229  *--------------------
230  */
231 Plan *
232 subquery_planner(PlannerGlobal *glob, Query *parse,
233                                  Index level, double tuple_fraction,
234                                  PlannerInfo **subroot)
235 {
236         int                     num_old_subplans = list_length(glob->subplans);
237         PlannerInfo *root;
238         Plan       *plan;
239         List       *newHaving;
240         ListCell   *l;
241
242         /* Create a PlannerInfo data structure for this subquery */
243         root = makeNode(PlannerInfo);
244         root->parse = parse;
245         root->glob = glob;
246         root->query_level = level;
247         root->planner_cxt = CurrentMemoryContext;
248         root->init_plans = NIL;
249         root->eq_classes = NIL;
250         root->in_info_list = NIL;
251         root->append_rel_list = NIL;
252
253         /*
254          * Look for IN clauses at the top level of WHERE, and transform them into
255          * joins.  Note that this step only handles IN clauses originally at top
256          * level of WHERE; if we pull up any subqueries below, their INs are
257          * processed just before pulling them up.
258          */
259         if (parse->hasSubLinks)
260                 parse->jointree->quals = pull_up_IN_clauses(root,
261                                                                                                         parse->jointree->quals);
262
263         /*
264          * Scan the rangetable for set-returning functions, and inline them
265          * if possible (producing subqueries that might get pulled up next).
266          * Recursion issues here are handled in the same way as for IN clauses.
267          */
268         inline_set_returning_functions(root);
269
270         /*
271          * Check to see if any subqueries in the rangetable can be merged into
272          * this query.
273          */
274         parse->jointree = (FromExpr *)
275                 pull_up_subqueries(root, (Node *) parse->jointree, false, false);
276
277         /*
278          * Detect whether any rangetable entries are RTE_JOIN kind; if not, we can
279          * avoid the expense of doing flatten_join_alias_vars().  Also check for
280          * outer joins --- if none, we can skip reduce_outer_joins() and some
281          * other processing.  This must be done after we have done
282          * pull_up_subqueries, of course.
283          *
284          * Note: if reduce_outer_joins manages to eliminate all outer joins,
285          * root->hasOuterJoins is not reset currently.  This is OK since its
286          * purpose is merely to suppress unnecessary processing in simple cases.
287          */
288         root->hasJoinRTEs = false;
289         root->hasOuterJoins = false;
290         foreach(l, parse->rtable)
291         {
292                 RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
293
294                 if (rte->rtekind == RTE_JOIN)
295                 {
296                         root->hasJoinRTEs = true;
297                         if (IS_OUTER_JOIN(rte->jointype))
298                         {
299                                 root->hasOuterJoins = true;
300                                 /* Can quit scanning once we find an outer join */
301                                 break;
302                         }
303                 }
304         }
305
306         /*
307          * Expand any rangetable entries that are inheritance sets into "append
308          * relations".  This can add entries to the rangetable, but they must be
309          * plain base relations not joins, so it's OK (and marginally more
310          * efficient) to do it after checking for join RTEs.  We must do it after
311          * pulling up subqueries, else we'd fail to handle inherited tables in
312          * subqueries.
313          */
314         expand_inherited_tables(root);
315
316         /*
317          * Set hasHavingQual to remember if HAVING clause is present.  Needed
318          * because preprocess_expression will reduce a constant-true condition to
319          * an empty qual list ... but "HAVING TRUE" is not a semantic no-op.
320          */
321         root->hasHavingQual = (parse->havingQual != NULL);
322
323         /* Clear this flag; might get set in distribute_qual_to_rels */
324         root->hasPseudoConstantQuals = false;
325
326         /*
327          * Do expression preprocessing on targetlist and quals.
328          */
329         parse->targetList = (List *)
330                 preprocess_expression(root, (Node *) parse->targetList,
331                                                           EXPRKIND_TARGET);
332
333         parse->returningList = (List *)
334                 preprocess_expression(root, (Node *) parse->returningList,
335                                                           EXPRKIND_TARGET);
336
337         preprocess_qual_conditions(root, (Node *) parse->jointree);
338
339         parse->havingQual = preprocess_expression(root, parse->havingQual,
340                                                                                           EXPRKIND_QUAL);
341
342         parse->limitOffset = preprocess_expression(root, parse->limitOffset,
343                                                                                            EXPRKIND_LIMIT);
344         parse->limitCount = preprocess_expression(root, parse->limitCount,
345                                                                                           EXPRKIND_LIMIT);
346
347         root->in_info_list = (List *)
348                 preprocess_expression(root, (Node *) root->in_info_list,
349                                                           EXPRKIND_ININFO);
350         root->append_rel_list = (List *)
351                 preprocess_expression(root, (Node *) root->append_rel_list,
352                                                           EXPRKIND_APPINFO);
353
354         /* Also need to preprocess expressions for function and values RTEs */
355         foreach(l, parse->rtable)
356         {
357                 RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
358
359                 if (rte->rtekind == RTE_FUNCTION)
360                         rte->funcexpr = preprocess_expression(root, rte->funcexpr,
361                                                                                                   EXPRKIND_RTFUNC);
362                 else if (rte->rtekind == RTE_VALUES)
363                         rte->values_lists = (List *)
364                                 preprocess_expression(root, (Node *) rte->values_lists,
365                                                                           EXPRKIND_VALUES);
366         }
367
368         /*
369          * In some cases we may want to transfer a HAVING clause into WHERE. We
370          * cannot do so if the HAVING clause contains aggregates (obviously) or
371          * volatile functions (since a HAVING clause is supposed to be executed
372          * only once per group).  Also, it may be that the clause is so expensive
373          * to execute that we're better off doing it only once per group, despite
374          * the loss of selectivity.  This is hard to estimate short of doing the
375          * entire planning process twice, so we use a heuristic: clauses
376          * containing subplans are left in HAVING.      Otherwise, we move or copy the
377          * HAVING clause into WHERE, in hopes of eliminating tuples before
378          * aggregation instead of after.
379          *
380          * If the query has explicit grouping then we can simply move such a
381          * clause into WHERE; any group that fails the clause will not be in the
382          * output because none of its tuples will reach the grouping or
383          * aggregation stage.  Otherwise we must have a degenerate (variable-free)
384          * HAVING clause, which we put in WHERE so that query_planner() can use it
385          * in a gating Result node, but also keep in HAVING to ensure that we
386          * don't emit a bogus aggregated row. (This could be done better, but it
387          * seems not worth optimizing.)
388          *
389          * Note that both havingQual and parse->jointree->quals are in
390          * implicitly-ANDed-list form at this point, even though they are declared
391          * as Node *.
392          */
393         newHaving = NIL;
394         foreach(l, (List *) parse->havingQual)
395         {
396                 Node       *havingclause = (Node *) lfirst(l);
397
398                 if (contain_agg_clause(havingclause) ||
399                         contain_volatile_functions(havingclause) ||
400                         contain_subplans(havingclause))
401                 {
402                         /* keep it in HAVING */
403                         newHaving = lappend(newHaving, havingclause);
404                 }
405                 else if (parse->groupClause)
406                 {
407                         /* move it to WHERE */
408                         parse->jointree->quals = (Node *)
409                                 lappend((List *) parse->jointree->quals, havingclause);
410                 }
411                 else
412                 {
413                         /* put a copy in WHERE, keep it in HAVING */
414                         parse->jointree->quals = (Node *)
415                                 lappend((List *) parse->jointree->quals,
416                                                 copyObject(havingclause));
417                         newHaving = lappend(newHaving, havingclause);
418                 }
419         }
420         parse->havingQual = (Node *) newHaving;
421
422         /*
423          * If we have any outer joins, try to reduce them to plain inner joins.
424          * This step is most easily done after we've done expression
425          * preprocessing.
426          */
427         if (root->hasOuterJoins)
428                 reduce_outer_joins(root);
429
430         /*
431          * Do the main planning.  If we have an inherited target relation, that
432          * needs special processing, else go straight to grouping_planner.
433          */
434         if (parse->resultRelation &&
435                 rt_fetch(parse->resultRelation, parse->rtable)->inh)
436                 plan = inheritance_planner(root);
437         else
438                 plan = grouping_planner(root, tuple_fraction);
439
440         /*
441          * If any subplans were generated, or if we're inside a subplan, build
442          * initPlan list and extParam/allParam sets for plan nodes, and attach the
443          * initPlans to the top plan node.
444          */
445         if (list_length(glob->subplans) != num_old_subplans ||
446                 root->query_level > 1)
447                 SS_finalize_plan(root, plan);
448
449         /* Return internal info if caller wants it */
450         if (subroot)
451                 *subroot = root;
452
453         return plan;
454 }
455
456 /*
457  * preprocess_expression
458  *              Do subquery_planner's preprocessing work for an expression,
459  *              which can be a targetlist, a WHERE clause (including JOIN/ON
460  *              conditions), or a HAVING clause.
461  */
462 static Node *
463 preprocess_expression(PlannerInfo *root, Node *expr, int kind)
464 {
465         /*
466          * Fall out quickly if expression is empty.  This occurs often enough to
467          * be worth checking.  Note that null->null is the correct conversion for
468          * implicit-AND result format, too.
469          */
470         if (expr == NULL)
471                 return NULL;
472
473         /*
474          * If the query has any join RTEs, replace join alias variables with
475          * base-relation variables. We must do this before sublink processing,
476          * else sublinks expanded out from join aliases wouldn't get processed. We
477          * can skip it in VALUES lists, however, since they can't contain any Vars
478          * at all.
479          */
480         if (root->hasJoinRTEs && kind != EXPRKIND_VALUES)
481                 expr = flatten_join_alias_vars(root, expr);
482
483         /*
484          * Simplify constant expressions.
485          *
486          * Note: this also flattens nested AND and OR expressions into N-argument
487          * form.  All processing of a qual expression after this point must be
488          * careful to maintain AND/OR flatness --- that is, do not generate a tree
489          * with AND directly under AND, nor OR directly under OR.
490          *
491          * Because this is a relatively expensive process, we skip it when the
492          * query is trivial, such as "SELECT 2+2;" or "INSERT ... VALUES()". The
493          * expression will only be evaluated once anyway, so no point in
494          * pre-simplifying; we can't execute it any faster than the executor can,
495          * and we will waste cycles copying the tree.  Notice however that we
496          * still must do it for quals (to get AND/OR flatness); and if we are in a
497          * subquery we should not assume it will be done only once.
498          *
499          * For VALUES lists we never do this at all, again on the grounds that we
500          * should optimize for one-time evaluation.
501          */
502         if (kind != EXPRKIND_VALUES &&
503                 (root->parse->jointree->fromlist != NIL ||
504                  kind == EXPRKIND_QUAL ||
505                  root->query_level > 1))
506                 expr = eval_const_expressions(expr);
507
508         /*
509          * If it's a qual or havingQual, canonicalize it.
510          */
511         if (kind == EXPRKIND_QUAL)
512         {
513                 expr = (Node *) canonicalize_qual((Expr *) expr);
514
515 #ifdef OPTIMIZER_DEBUG
516                 printf("After canonicalize_qual()\n");
517                 pprint(expr);
518 #endif
519         }
520
521         /* Expand SubLinks to SubPlans */
522         if (root->parse->hasSubLinks)
523                 expr = SS_process_sublinks(root, expr, (kind == EXPRKIND_QUAL));
524
525         /*
526          * XXX do not insert anything here unless you have grokked the comments in
527          * SS_replace_correlation_vars ...
528          */
529
530         /* Replace uplevel vars with Param nodes (this IS possible in VALUES) */
531         if (root->query_level > 1)
532                 expr = SS_replace_correlation_vars(root, expr);
533
534         /*
535          * If it's a qual or havingQual, convert it to implicit-AND format. (We
536          * don't want to do this before eval_const_expressions, since the latter
537          * would be unable to simplify a top-level AND correctly. Also,
538          * SS_process_sublinks expects explicit-AND format.)
539          */
540         if (kind == EXPRKIND_QUAL)
541                 expr = (Node *) make_ands_implicit((Expr *) expr);
542
543         return expr;
544 }
545
546 /*
547  * preprocess_qual_conditions
548  *              Recursively scan the query's jointree and do subquery_planner's
549  *              preprocessing work on each qual condition found therein.
550  */
551 static void
552 preprocess_qual_conditions(PlannerInfo *root, Node *jtnode)
553 {
554         if (jtnode == NULL)
555                 return;
556         if (IsA(jtnode, RangeTblRef))
557         {
558                 /* nothing to do here */
559         }
560         else if (IsA(jtnode, FromExpr))
561         {
562                 FromExpr   *f = (FromExpr *) jtnode;
563                 ListCell   *l;
564
565                 foreach(l, f->fromlist)
566                         preprocess_qual_conditions(root, lfirst(l));
567
568                 f->quals = preprocess_expression(root, f->quals, EXPRKIND_QUAL);
569         }
570         else if (IsA(jtnode, JoinExpr))
571         {
572                 JoinExpr   *j = (JoinExpr *) jtnode;
573
574                 preprocess_qual_conditions(root, j->larg);
575                 preprocess_qual_conditions(root, j->rarg);
576
577                 j->quals = preprocess_expression(root, j->quals, EXPRKIND_QUAL);
578         }
579         else
580                 elog(ERROR, "unrecognized node type: %d",
581                          (int) nodeTag(jtnode));
582 }
583
584 /*
585  * inheritance_planner
586  *        Generate a plan in the case where the result relation is an
587  *        inheritance set.
588  *
589  * We have to handle this case differently from cases where a source relation
590  * is an inheritance set. Source inheritance is expanded at the bottom of the
591  * plan tree (see allpaths.c), but target inheritance has to be expanded at
592  * the top.  The reason is that for UPDATE, each target relation needs a
593  * different targetlist matching its own column set.  Also, for both UPDATE
594  * and DELETE, the executor needs the Append plan node at the top, else it
595  * can't keep track of which table is the current target table.  Fortunately,
596  * the UPDATE/DELETE target can never be the nullable side of an outer join,
597  * so it's OK to generate the plan this way.
598  *
599  * Returns a query plan.
600  */
601 static Plan *
602 inheritance_planner(PlannerInfo *root)
603 {
604         Query      *parse = root->parse;
605         int                     parentRTindex = parse->resultRelation;
606         List       *subplans = NIL;
607         List       *resultRelations = NIL;
608         List       *returningLists = NIL;
609         List       *rtable = NIL;
610         List       *tlist = NIL;
611         PlannerInfo subroot;
612         ListCell   *l;
613
614         foreach(l, root->append_rel_list)
615         {
616                 AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(l);
617                 Plan       *subplan;
618
619                 /* append_rel_list contains all append rels; ignore others */
620                 if (appinfo->parent_relid != parentRTindex)
621                         continue;
622
623                 /*
624                  * Generate modified query with this rel as target.  We have to be
625                  * prepared to translate varnos in in_info_list as well as in the
626                  * Query proper.
627                  */
628                 memcpy(&subroot, root, sizeof(PlannerInfo));
629                 subroot.parse = (Query *)
630                         adjust_appendrel_attrs((Node *) parse,
631                                                                    appinfo);
632                 subroot.in_info_list = (List *)
633                         adjust_appendrel_attrs((Node *) root->in_info_list,
634                                                                    appinfo);
635                 subroot.init_plans = NIL;
636                 /* There shouldn't be any OJ info to translate, as yet */
637                 Assert(subroot.oj_info_list == NIL);
638
639                 /* Generate plan */
640                 subplan = grouping_planner(&subroot, 0.0 /* retrieve all tuples */ );
641
642                 /*
643                  * If this child rel was excluded by constraint exclusion, exclude it
644                  * from the plan.
645                  */
646                 if (is_dummy_plan(subplan))
647                         continue;
648
649                 /* Save rtable and tlist from first rel for use below */
650                 if (subplans == NIL)
651                 {
652                         rtable = subroot.parse->rtable;
653                         tlist = subplan->targetlist;
654                 }
655
656                 subplans = lappend(subplans, subplan);
657
658                 /* Make sure any initplans from this rel get into the outer list */
659                 root->init_plans = list_concat(root->init_plans, subroot.init_plans);
660
661                 /* Build target-relations list for the executor */
662                 resultRelations = lappend_int(resultRelations, appinfo->child_relid);
663
664                 /* Build list of per-relation RETURNING targetlists */
665                 if (parse->returningList)
666                 {
667                         Assert(list_length(subroot.returningLists) == 1);
668                         returningLists = list_concat(returningLists,
669                                                                                  subroot.returningLists);
670                 }
671         }
672
673         root->resultRelations = resultRelations;
674         root->returningLists = returningLists;
675
676         /* Mark result as unordered (probably unnecessary) */
677         root->query_pathkeys = NIL;
678
679         /*
680          * If we managed to exclude every child rel, return a dummy plan
681          */
682         if (subplans == NIL)
683         {
684                 root->resultRelations = list_make1_int(parentRTindex);
685                 /* although dummy, it must have a valid tlist for executor */
686                 tlist = preprocess_targetlist(root, parse->targetList);
687                 return (Plan *) make_result(root,
688                                                                         tlist,
689                                                                         (Node *) list_make1(makeBoolConst(false,
690                                                                                                                                           false)),
691                                                                         NULL);
692         }
693
694         /*
695          * Planning might have modified the rangetable, due to changes of the
696          * Query structures inside subquery RTEs.  We have to ensure that this
697          * gets propagated back to the master copy.  But can't do this until we
698          * are done planning, because all the calls to grouping_planner need
699          * virgin sub-Queries to work from.  (We are effectively assuming that
700          * sub-Queries will get planned identically each time, or at least that
701          * the impacts on their rangetables will be the same each time.)
702          *
703          * XXX should clean this up someday
704          */
705         parse->rtable = rtable;
706
707         /* Suppress Append if there's only one surviving child rel */
708         if (list_length(subplans) == 1)
709                 return (Plan *) linitial(subplans);
710
711         return (Plan *) make_append(subplans, true, tlist);
712 }
713
714 /*--------------------
715  * grouping_planner
716  *        Perform planning steps related to grouping, aggregation, etc.
717  *        This primarily means adding top-level processing to the basic
718  *        query plan produced by query_planner.
719  *
720  * tuple_fraction is the fraction of tuples we expect will be retrieved
721  *
722  * tuple_fraction is interpreted as follows:
723  *        0: expect all tuples to be retrieved (normal case)
724  *        0 < tuple_fraction < 1: expect the given fraction of tuples available
725  *              from the plan to be retrieved
726  *        tuple_fraction >= 1: tuple_fraction is the absolute number of tuples
727  *              expected to be retrieved (ie, a LIMIT specification)
728  *
729  * Returns a query plan.  Also, root->query_pathkeys is returned as the
730  * actual output ordering of the plan (in pathkey format).
731  *--------------------
732  */
733 static Plan *
734 grouping_planner(PlannerInfo *root, double tuple_fraction)
735 {
736         Query      *parse = root->parse;
737         List       *tlist = parse->targetList;
738         int64           offset_est = 0;
739         int64           count_est = 0;
740         double          limit_tuples = -1.0;
741         Plan       *result_plan;
742         List       *current_pathkeys;
743         List       *sort_pathkeys;
744         double          dNumGroups = 0;
745
746         /* Tweak caller-supplied tuple_fraction if have LIMIT/OFFSET */
747         if (parse->limitCount || parse->limitOffset)
748         {
749                 tuple_fraction = preprocess_limit(root, tuple_fraction,
750                                                                                   &offset_est, &count_est);
751
752                 /*
753                  * If we have a known LIMIT, and don't have an unknown OFFSET, we can
754                  * estimate the effects of using a bounded sort.
755                  */
756                 if (count_est > 0 && offset_est >= 0)
757                         limit_tuples = (double) count_est + (double) offset_est;
758         }
759
760         if (parse->setOperations)
761         {
762                 List       *set_sortclauses;
763
764                 /*
765                  * If there's a top-level ORDER BY, assume we have to fetch all the
766                  * tuples.      This might seem too simplistic given all the hackery below
767                  * to possibly avoid the sort ... but a nonzero tuple_fraction is only
768                  * of use to plan_set_operations() when the setop is UNION ALL, and
769                  * the result of UNION ALL is always unsorted.
770                  */
771                 if (parse->sortClause)
772                         tuple_fraction = 0.0;
773
774                 /*
775                  * Construct the plan for set operations.  The result will not need
776                  * any work except perhaps a top-level sort and/or LIMIT.
777                  */
778                 result_plan = plan_set_operations(root, tuple_fraction,
779                                                                                   &set_sortclauses);
780
781                 /*
782                  * Calculate pathkeys representing the sort order (if any) of the set
783                  * operation's result.  We have to do this before overwriting the sort
784                  * key information...
785                  */
786                 current_pathkeys = make_pathkeys_for_sortclauses(root,
787                                                                                                                  set_sortclauses,
788                                                                                                          result_plan->targetlist,
789                                                                                                                  true);
790
791                 /*
792                  * We should not need to call preprocess_targetlist, since we must be
793                  * in a SELECT query node.      Instead, use the targetlist returned by
794                  * plan_set_operations (since this tells whether it returned any
795                  * resjunk columns!), and transfer any sort key information from the
796                  * original tlist.
797                  */
798                 Assert(parse->commandType == CMD_SELECT);
799
800                 tlist = postprocess_setop_tlist(result_plan->targetlist, tlist);
801
802                 /*
803                  * Can't handle FOR UPDATE/SHARE here (parser should have checked
804                  * already, but let's make sure).
805                  */
806                 if (parse->rowMarks)
807                         ereport(ERROR,
808                                         (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
809                                          errmsg("SELECT FOR UPDATE/SHARE is not allowed with UNION/INTERSECT/EXCEPT")));
810
811                 /*
812                  * Calculate pathkeys that represent result ordering requirements
813                  */
814                 sort_pathkeys = make_pathkeys_for_sortclauses(root,
815                                                                                                           parse->sortClause,
816                                                                                                           tlist,
817                                                                                                           true);
818         }
819         else
820         {
821                 /* No set operations, do regular planning */
822                 List       *sub_tlist;
823                 List       *group_pathkeys;
824                 AttrNumber *groupColIdx = NULL;
825                 Oid                *groupOperators = NULL;
826                 bool            need_tlist_eval = true;
827                 QualCost        tlist_cost;
828                 Path       *cheapest_path;
829                 Path       *sorted_path;
830                 Path       *best_path;
831                 long            numGroups = 0;
832                 AggClauseCounts agg_counts;
833                 int                     numGroupCols = list_length(parse->groupClause);
834                 bool            use_hashed_grouping = false;
835
836                 MemSet(&agg_counts, 0, sizeof(AggClauseCounts));
837
838                 /* Preprocess targetlist */
839                 tlist = preprocess_targetlist(root, tlist);
840
841                 /*
842                  * Generate appropriate target list for subplan; may be different from
843                  * tlist if grouping or aggregation is needed.
844                  */
845                 sub_tlist = make_subplanTargetList(root, tlist,
846                                                                                    &groupColIdx, &need_tlist_eval);
847
848                 /*
849                  * Calculate pathkeys that represent grouping/ordering requirements.
850                  * Stash them in PlannerInfo so that query_planner can canonicalize
851                  * them after EquivalenceClasses have been formed.
852                  */
853                 root->group_pathkeys =
854                         make_pathkeys_for_sortclauses(root,
855                                                                                   parse->groupClause,
856                                                                                   tlist,
857                                                                                   false);
858                 root->sort_pathkeys =
859                         make_pathkeys_for_sortclauses(root,
860                                                                                   parse->sortClause,
861                                                                                   tlist,
862                                                                                   false);
863
864                 /*
865                  * Will need actual number of aggregates for estimating costs.
866                  *
867                  * Note: we do not attempt to detect duplicate aggregates here; a
868                  * somewhat-overestimated count is okay for our present purposes.
869                  *
870                  * Note: think not that we can turn off hasAggs if we find no aggs. It
871                  * is possible for constant-expression simplification to remove all
872                  * explicit references to aggs, but we still have to follow the
873                  * aggregate semantics (eg, producing only one output row).
874                  */
875                 if (parse->hasAggs)
876                 {
877                         count_agg_clauses((Node *) tlist, &agg_counts);
878                         count_agg_clauses(parse->havingQual, &agg_counts);
879                 }
880
881                 /*
882                  * Figure out whether we need a sorted result from query_planner.
883                  *
884                  * If we have a GROUP BY clause, then we want a result sorted properly
885                  * for grouping.  Otherwise, if there is an ORDER BY clause, we want
886                  * to sort by the ORDER BY clause.      (Note: if we have both, and ORDER
887                  * BY is a superset of GROUP BY, it would be tempting to request sort
888                  * by ORDER BY --- but that might just leave us failing to exploit an
889                  * available sort order at all. Needs more thought...)
890                  */
891                 if (parse->groupClause)
892                         root->query_pathkeys = root->group_pathkeys;
893                 else if (parse->sortClause)
894                         root->query_pathkeys = root->sort_pathkeys;
895                 else
896                         root->query_pathkeys = NIL;
897
898                 /*
899                  * Generate the best unsorted and presorted paths for this Query (but
900                  * note there may not be any presorted path).  query_planner will also
901                  * estimate the number of groups in the query, and canonicalize all
902                  * the pathkeys.
903                  */
904                 query_planner(root, sub_tlist, tuple_fraction, limit_tuples,
905                                           &cheapest_path, &sorted_path, &dNumGroups);
906
907                 group_pathkeys = root->group_pathkeys;
908                 sort_pathkeys = root->sort_pathkeys;
909
910                 /*
911                  * If grouping, extract the grouping operators and decide whether we
912                  * want to use hashed grouping.
913                  */
914                 if (parse->groupClause)
915                 {
916                         groupOperators = extract_grouping_ops(parse->groupClause);
917                         use_hashed_grouping =
918                                 choose_hashed_grouping(root, tuple_fraction, limit_tuples,
919                                                                            cheapest_path, sorted_path,
920                                                                            groupOperators, dNumGroups,
921                                                                            &agg_counts);
922
923                         /* Also convert # groups to long int --- but 'ware overflow! */
924                         numGroups = (long) Min(dNumGroups, (double) LONG_MAX);
925                 }
926
927                 /*
928                  * Select the best path.  If we are doing hashed grouping, we will
929                  * always read all the input tuples, so use the cheapest-total path.
930                  * Otherwise, trust query_planner's decision about which to use.
931                  */
932                 if (use_hashed_grouping || !sorted_path)
933                         best_path = cheapest_path;
934                 else
935                         best_path = sorted_path;
936
937                 /*
938                  * Check to see if it's possible to optimize MIN/MAX aggregates. If
939                  * so, we will forget all the work we did so far to choose a "regular"
940                  * path ... but we had to do it anyway to be able to tell which way is
941                  * cheaper.
942                  */
943                 result_plan = optimize_minmax_aggregates(root,
944                                                                                                  tlist,
945                                                                                                  best_path);
946                 if (result_plan != NULL)
947                 {
948                         /*
949                          * optimize_minmax_aggregates generated the full plan, with the
950                          * right tlist, and it has no sort order.
951                          */
952                         current_pathkeys = NIL;
953                         /*
954                          * In fact, since we don't optimize grouped aggregates, it
955                          * needs no sort order --- there must be exactly one output row,
956                          * and so any ORDER BY or DISTINCT attached to the query is
957                          * useless and can be dropped.  Aside from saving useless cycles,
958                          * this protects us against problems with matching the hacked-up
959                          * tlist entries to sort clauses.
960                          */
961                         Assert(!parse->groupClause);
962                         parse->sortClause = NULL;
963                         parse->distinctClause = NULL;
964                 }
965                 else
966                 {
967                         /*
968                          * Normal case --- create a plan according to query_planner's
969                          * results.
970                          */
971                         result_plan = create_plan(root, best_path);
972                         current_pathkeys = best_path->pathkeys;
973
974                         /*
975                          * create_plan() returns a plan with just a "flat" tlist of
976                          * required Vars.  Usually we need to insert the sub_tlist as the
977                          * tlist of the top plan node.  However, we can skip that if we
978                          * determined that whatever query_planner chose to return will be
979                          * good enough.
980                          */
981                         if (need_tlist_eval)
982                         {
983                                 /*
984                                  * If the top-level plan node is one that cannot do expression
985                                  * evaluation, we must insert a Result node to project the
986                                  * desired tlist.
987                                  */
988                                 if (!is_projection_capable_plan(result_plan))
989                                 {
990                                         result_plan = (Plan *) make_result(root,
991                                                                                                            sub_tlist,
992                                                                                                            NULL,
993                                                                                                            result_plan);
994                                 }
995                                 else
996                                 {
997                                         /*
998                                          * Otherwise, just replace the subplan's flat tlist with
999                                          * the desired tlist.
1000                                          */
1001                                         result_plan->targetlist = sub_tlist;
1002                                 }
1003
1004                                 /*
1005                                  * Also, account for the cost of evaluation of the sub_tlist.
1006                                  *
1007                                  * Up to now, we have only been dealing with "flat" tlists,
1008                                  * containing just Vars.  So their evaluation cost is zero
1009                                  * according to the model used by cost_qual_eval() (or if you
1010                                  * prefer, the cost is factored into cpu_tuple_cost).  Thus we
1011                                  * can avoid accounting for tlist cost throughout
1012                                  * query_planner() and subroutines.  But now we've inserted a
1013                                  * tlist that might contain actual operators, sub-selects, etc
1014                                  * --- so we'd better account for its cost.
1015                                  *
1016                                  * Below this point, any tlist eval cost for added-on nodes
1017                                  * should be accounted for as we create those nodes.
1018                                  * Presently, of the node types we can add on, only Agg and
1019                                  * Group project new tlists (the rest just copy their input
1020                                  * tuples) --- so make_agg() and make_group() are responsible
1021                                  * for computing the added cost.
1022                                  */
1023                                 cost_qual_eval(&tlist_cost, sub_tlist, root);
1024                                 result_plan->startup_cost += tlist_cost.startup;
1025                                 result_plan->total_cost += tlist_cost.startup +
1026                                         tlist_cost.per_tuple * result_plan->plan_rows;
1027                         }
1028                         else
1029                         {
1030                                 /*
1031                                  * Since we're using query_planner's tlist and not the one
1032                                  * make_subplanTargetList calculated, we have to refigure any
1033                                  * grouping-column indexes make_subplanTargetList computed.
1034                                  */
1035                                 locate_grouping_columns(root, tlist, result_plan->targetlist,
1036                                                                                 groupColIdx);
1037                         }
1038
1039                         /*
1040                          * Insert AGG or GROUP node if needed, plus an explicit sort step
1041                          * if necessary.
1042                          *
1043                          * HAVING clause, if any, becomes qual of the Agg or Group node.
1044                          */
1045                         if (use_hashed_grouping)
1046                         {
1047                                 /* Hashed aggregate plan --- no sort needed */
1048                                 result_plan = (Plan *) make_agg(root,
1049                                                                                                 tlist,
1050                                                                                                 (List *) parse->havingQual,
1051                                                                                                 AGG_HASHED,
1052                                                                                                 numGroupCols,
1053                                                                                                 groupColIdx,
1054                                                                                                 groupOperators,
1055                                                                                                 numGroups,
1056                                                                                                 agg_counts.numAggs,
1057                                                                                                 result_plan);
1058                                 /* Hashed aggregation produces randomly-ordered results */
1059                                 current_pathkeys = NIL;
1060                         }
1061                         else if (parse->hasAggs)
1062                         {
1063                                 /* Plain aggregate plan --- sort if needed */
1064                                 AggStrategy aggstrategy;
1065
1066                                 if (parse->groupClause)
1067                                 {
1068                                         if (!pathkeys_contained_in(group_pathkeys,
1069                                                                                            current_pathkeys))
1070                                         {
1071                                                 result_plan = (Plan *)
1072                                                         make_sort_from_groupcols(root,
1073                                                                                                          parse->groupClause,
1074                                                                                                          groupColIdx,
1075                                                                                                          result_plan);
1076                                                 current_pathkeys = group_pathkeys;
1077                                         }
1078                                         aggstrategy = AGG_SORTED;
1079
1080                                         /*
1081                                          * The AGG node will not change the sort ordering of its
1082                                          * groups, so current_pathkeys describes the result too.
1083                                          */
1084                                 }
1085                                 else
1086                                 {
1087                                         aggstrategy = AGG_PLAIN;
1088                                         /* Result will be only one row anyway; no sort order */
1089                                         current_pathkeys = NIL;
1090                                 }
1091
1092                                 result_plan = (Plan *) make_agg(root,
1093                                                                                                 tlist,
1094                                                                                                 (List *) parse->havingQual,
1095                                                                                                 aggstrategy,
1096                                                                                                 numGroupCols,
1097                                                                                                 groupColIdx,
1098                                                                                                 groupOperators,
1099                                                                                                 numGroups,
1100                                                                                                 agg_counts.numAggs,
1101                                                                                                 result_plan);
1102                         }
1103                         else if (parse->groupClause)
1104                         {
1105                                 /*
1106                                  * GROUP BY without aggregation, so insert a group node (plus
1107                                  * the appropriate sort node, if necessary).
1108                                  *
1109                                  * Add an explicit sort if we couldn't make the path come out
1110                                  * the way the GROUP node needs it.
1111                                  */
1112                                 if (!pathkeys_contained_in(group_pathkeys, current_pathkeys))
1113                                 {
1114                                         result_plan = (Plan *)
1115                                                 make_sort_from_groupcols(root,
1116                                                                                                  parse->groupClause,
1117                                                                                                  groupColIdx,
1118                                                                                                  result_plan);
1119                                         current_pathkeys = group_pathkeys;
1120                                 }
1121
1122                                 result_plan = (Plan *) make_group(root,
1123                                                                                                   tlist,
1124                                                                                                   (List *) parse->havingQual,
1125                                                                                                   numGroupCols,
1126                                                                                                   groupColIdx,
1127                                                                                                   groupOperators,
1128                                                                                                   dNumGroups,
1129                                                                                                   result_plan);
1130                                 /* The Group node won't change sort ordering */
1131                         }
1132                         else if (root->hasHavingQual)
1133                         {
1134                                 /*
1135                                  * No aggregates, and no GROUP BY, but we have a HAVING qual.
1136                                  * This is a degenerate case in which we are supposed to emit
1137                                  * either 0 or 1 row depending on whether HAVING succeeds.
1138                                  * Furthermore, there cannot be any variables in either HAVING
1139                                  * or the targetlist, so we actually do not need the FROM
1140                                  * table at all!  We can just throw away the plan-so-far and
1141                                  * generate a Result node.      This is a sufficiently unusual
1142                                  * corner case that it's not worth contorting the structure of
1143                                  * this routine to avoid having to generate the plan in the
1144                                  * first place.
1145                                  */
1146                                 result_plan = (Plan *) make_result(root,
1147                                                                                                    tlist,
1148                                                                                                    parse->havingQual,
1149                                                                                                    NULL);
1150                         }
1151                 }                                               /* end of non-minmax-aggregate case */
1152         }                                                       /* end of if (setOperations) */
1153
1154         /*
1155          * If we were not able to make the plan come out in the right order, add
1156          * an explicit sort step.
1157          */
1158         if (parse->sortClause)
1159         {
1160                 if (!pathkeys_contained_in(sort_pathkeys, current_pathkeys))
1161                 {
1162                         result_plan = (Plan *) make_sort_from_pathkeys(root,
1163                                                                                                                    result_plan,
1164                                                                                                                    sort_pathkeys,
1165                                                                                                                    limit_tuples);
1166                         current_pathkeys = sort_pathkeys;
1167                 }
1168         }
1169
1170         /*
1171          * If there is a DISTINCT clause, add the UNIQUE node.
1172          */
1173         if (parse->distinctClause)
1174         {
1175                 result_plan = (Plan *) make_unique(result_plan, parse->distinctClause);
1176
1177                 /*
1178                  * If there was grouping or aggregation, leave plan_rows as-is (ie,
1179                  * assume the result was already mostly unique).  If not, use the
1180                  * number of distinct-groups calculated by query_planner.
1181                  */
1182                 if (!parse->groupClause && !root->hasHavingQual && !parse->hasAggs)
1183                         result_plan->plan_rows = dNumGroups;
1184         }
1185
1186         /*
1187          * Finally, if there is a LIMIT/OFFSET clause, add the LIMIT node.
1188          */
1189         if (parse->limitCount || parse->limitOffset)
1190         {
1191                 result_plan = (Plan *) make_limit(result_plan,
1192                                                                                   parse->limitOffset,
1193                                                                                   parse->limitCount,
1194                                                                                   offset_est,
1195                                                                                   count_est);
1196         }
1197
1198         /*
1199          * Deal with the RETURNING clause if any.  It's convenient to pass the
1200          * returningList through setrefs.c now rather than at top level (if we
1201          * waited, handling inherited UPDATE/DELETE would be much harder).
1202          */
1203         if (parse->returningList)
1204         {
1205                 List       *rlist;
1206
1207                 Assert(parse->resultRelation);
1208                 rlist = set_returning_clause_references(root->glob,
1209                                                                                                 parse->returningList,
1210                                                                                                 result_plan,
1211                                                                                                 parse->resultRelation);
1212                 root->returningLists = list_make1(rlist);
1213         }
1214         else
1215                 root->returningLists = NIL;
1216
1217         /* Compute result-relations list if needed */
1218         if (parse->resultRelation)
1219                 root->resultRelations = list_make1_int(parse->resultRelation);
1220         else
1221                 root->resultRelations = NIL;
1222
1223         /*
1224          * Return the actual output ordering in query_pathkeys for possible use by
1225          * an outer query level.
1226          */
1227         root->query_pathkeys = current_pathkeys;
1228
1229         return result_plan;
1230 }
1231
1232 /*
1233  * Detect whether a plan node is a "dummy" plan created when a relation
1234  * is deemed not to need scanning due to constraint exclusion.
1235  *
1236  * Currently, such dummy plans are Result nodes with constant FALSE
1237  * filter quals.
1238  */
1239 static bool
1240 is_dummy_plan(Plan *plan)
1241 {
1242         if (IsA(plan, Result))
1243         {
1244                 List       *rcqual = (List *) ((Result *) plan)->resconstantqual;
1245
1246                 if (list_length(rcqual) == 1)
1247                 {
1248                         Const      *constqual = (Const *) linitial(rcqual);
1249
1250                         if (constqual && IsA(constqual, Const))
1251                         {
1252                                 if (!constqual->constisnull &&
1253                                         !DatumGetBool(constqual->constvalue))
1254                                         return true;
1255                         }
1256                 }
1257         }
1258         return false;
1259 }
1260
1261 /*
1262  * preprocess_limit - do pre-estimation for LIMIT and/or OFFSET clauses
1263  *
1264  * We try to estimate the values of the LIMIT/OFFSET clauses, and pass the
1265  * results back in *count_est and *offset_est.  These variables are set to
1266  * 0 if the corresponding clause is not present, and -1 if it's present
1267  * but we couldn't estimate the value for it.  (The "0" convention is OK
1268  * for OFFSET but a little bit bogus for LIMIT: effectively we estimate
1269  * LIMIT 0 as though it were LIMIT 1.  But this is in line with the planner's
1270  * usual practice of never estimating less than one row.)  These values will
1271  * be passed to make_limit, which see if you change this code.
1272  *
1273  * The return value is the suitably adjusted tuple_fraction to use for
1274  * planning the query.  This adjustment is not overridable, since it reflects
1275  * plan actions that grouping_planner() will certainly take, not assumptions
1276  * about context.
1277  */
1278 static double
1279 preprocess_limit(PlannerInfo *root, double tuple_fraction,
1280                                  int64 *offset_est, int64 *count_est)
1281 {
1282         Query      *parse = root->parse;
1283         Node       *est;
1284         double          limit_fraction;
1285
1286         /* Should not be called unless LIMIT or OFFSET */
1287         Assert(parse->limitCount || parse->limitOffset);
1288
1289         /*
1290          * Try to obtain the clause values.  We use estimate_expression_value
1291          * primarily because it can sometimes do something useful with Params.
1292          */
1293         if (parse->limitCount)
1294         {
1295                 est = estimate_expression_value(root, parse->limitCount);
1296                 if (est && IsA(est, Const))
1297                 {
1298                         if (((Const *) est)->constisnull)
1299                         {
1300                                 /* NULL indicates LIMIT ALL, ie, no limit */
1301                                 *count_est = 0; /* treat as not present */
1302                         }
1303                         else
1304                         {
1305                                 *count_est = DatumGetInt64(((Const *) est)->constvalue);
1306                                 if (*count_est <= 0)
1307                                         *count_est = 1;         /* force to at least 1 */
1308                         }
1309                 }
1310                 else
1311                         *count_est = -1;        /* can't estimate */
1312         }
1313         else
1314                 *count_est = 0;                 /* not present */
1315
1316         if (parse->limitOffset)
1317         {
1318                 est = estimate_expression_value(root, parse->limitOffset);
1319                 if (est && IsA(est, Const))
1320                 {
1321                         if (((Const *) est)->constisnull)
1322                         {
1323                                 /* Treat NULL as no offset; the executor will too */
1324                                 *offset_est = 0;        /* treat as not present */
1325                         }
1326                         else
1327                         {
1328                                 *offset_est = DatumGetInt64(((Const *) est)->constvalue);
1329                                 if (*offset_est < 0)
1330                                         *offset_est = 0;        /* less than 0 is same as 0 */
1331                         }
1332                 }
1333                 else
1334                         *offset_est = -1;       /* can't estimate */
1335         }
1336         else
1337                 *offset_est = 0;                /* not present */
1338
1339         if (*count_est != 0)
1340         {
1341                 /*
1342                  * A LIMIT clause limits the absolute number of tuples returned.
1343                  * However, if it's not a constant LIMIT then we have to guess; for
1344                  * lack of a better idea, assume 10% of the plan's result is wanted.
1345                  */
1346                 if (*count_est < 0 || *offset_est < 0)
1347                 {
1348                         /* LIMIT or OFFSET is an expression ... punt ... */
1349                         limit_fraction = 0.10;
1350                 }
1351                 else
1352                 {
1353                         /* LIMIT (plus OFFSET, if any) is max number of tuples needed */
1354                         limit_fraction = (double) *count_est + (double) *offset_est;
1355                 }
1356
1357                 /*
1358                  * If we have absolute limits from both caller and LIMIT, use the
1359                  * smaller value; likewise if they are both fractional.  If one is
1360                  * fractional and the other absolute, we can't easily determine which
1361                  * is smaller, but we use the heuristic that the absolute will usually
1362                  * be smaller.
1363                  */
1364                 if (tuple_fraction >= 1.0)
1365                 {
1366                         if (limit_fraction >= 1.0)
1367                         {
1368                                 /* both absolute */
1369                                 tuple_fraction = Min(tuple_fraction, limit_fraction);
1370                         }
1371                         else
1372                         {
1373                                 /* caller absolute, limit fractional; use caller's value */
1374                         }
1375                 }
1376                 else if (tuple_fraction > 0.0)
1377                 {
1378                         if (limit_fraction >= 1.0)
1379                         {
1380                                 /* caller fractional, limit absolute; use limit */
1381                                 tuple_fraction = limit_fraction;
1382                         }
1383                         else
1384                         {
1385                                 /* both fractional */
1386                                 tuple_fraction = Min(tuple_fraction, limit_fraction);
1387                         }
1388                 }
1389                 else
1390                 {
1391                         /* no info from caller, just use limit */
1392                         tuple_fraction = limit_fraction;
1393                 }
1394         }
1395         else if (*offset_est != 0 && tuple_fraction > 0.0)
1396         {
1397                 /*
1398                  * We have an OFFSET but no LIMIT.      This acts entirely differently
1399                  * from the LIMIT case: here, we need to increase rather than decrease
1400                  * the caller's tuple_fraction, because the OFFSET acts to cause more
1401                  * tuples to be fetched instead of fewer.  This only matters if we got
1402                  * a tuple_fraction > 0, however.
1403                  *
1404                  * As above, use 10% if OFFSET is present but unestimatable.
1405                  */
1406                 if (*offset_est < 0)
1407                         limit_fraction = 0.10;
1408                 else
1409                         limit_fraction = (double) *offset_est;
1410
1411                 /*
1412                  * If we have absolute counts from both caller and OFFSET, add them
1413                  * together; likewise if they are both fractional.      If one is
1414                  * fractional and the other absolute, we want to take the larger, and
1415                  * we heuristically assume that's the fractional one.
1416                  */
1417                 if (tuple_fraction >= 1.0)
1418                 {
1419                         if (limit_fraction >= 1.0)
1420                         {
1421                                 /* both absolute, so add them together */
1422                                 tuple_fraction += limit_fraction;
1423                         }
1424                         else
1425                         {
1426                                 /* caller absolute, limit fractional; use limit */
1427                                 tuple_fraction = limit_fraction;
1428                         }
1429                 }
1430                 else
1431                 {
1432                         if (limit_fraction >= 1.0)
1433                         {
1434                                 /* caller fractional, limit absolute; use caller's value */
1435                         }
1436                         else
1437                         {
1438                                 /* both fractional, so add them together */
1439                                 tuple_fraction += limit_fraction;
1440                                 if (tuple_fraction >= 1.0)
1441                                         tuple_fraction = 0.0;           /* assume fetch all */
1442                         }
1443                 }
1444         }
1445
1446         return tuple_fraction;
1447 }
1448
1449 /*
1450  * extract_grouping_ops - make an array of the equality operator OIDs
1451  *              for the GROUP BY clause
1452  */
1453 static Oid *
1454 extract_grouping_ops(List *groupClause)
1455 {
1456         int                     numCols = list_length(groupClause);
1457         int                     colno = 0;
1458         Oid                *groupOperators;
1459         ListCell   *glitem;
1460
1461         groupOperators = (Oid *) palloc(sizeof(Oid) * numCols);
1462
1463         foreach(glitem, groupClause)
1464         {
1465                 GroupClause *groupcl = (GroupClause *) lfirst(glitem);
1466
1467                 groupOperators[colno] = get_equality_op_for_ordering_op(groupcl->sortop);
1468                 if (!OidIsValid(groupOperators[colno])) /* shouldn't happen */
1469                         elog(ERROR, "could not find equality operator for ordering operator %u",
1470                                  groupcl->sortop);
1471                 colno++;
1472         }
1473
1474         return groupOperators;
1475 }
1476
1477 /*
1478  * choose_hashed_grouping - should we use hashed grouping?
1479  */
1480 static bool
1481 choose_hashed_grouping(PlannerInfo *root,
1482                                            double tuple_fraction, double limit_tuples,
1483                                            Path *cheapest_path, Path *sorted_path,
1484                                            Oid *groupOperators, double dNumGroups,
1485                                            AggClauseCounts *agg_counts)
1486 {
1487         int                     numGroupCols = list_length(root->parse->groupClause);
1488         double          cheapest_path_rows;
1489         int                     cheapest_path_width;
1490         Size            hashentrysize;
1491         List       *current_pathkeys;
1492         Path            hashed_p;
1493         Path            sorted_p;
1494         int                     i;
1495
1496         /*
1497          * Check can't-do-it conditions, including whether the grouping operators
1498          * are hashjoinable.  (We assume hashing is OK if they are marked
1499          * oprcanhash.  If there isn't actually a supporting hash function, the
1500          * executor will complain at runtime.)
1501          *
1502          * Executor doesn't support hashed aggregation with DISTINCT aggregates.
1503          * (Doing so would imply storing *all* the input values in the hash table,
1504          * which seems like a certain loser.)
1505          */
1506         if (!enable_hashagg)
1507                 return false;
1508         if (agg_counts->numDistinctAggs != 0)
1509                 return false;
1510         for (i = 0; i < numGroupCols; i++)
1511         {
1512                 if (!op_hashjoinable(groupOperators[i]))
1513                         return false;
1514         }
1515
1516         /*
1517          * Don't do it if it doesn't look like the hashtable will fit into
1518          * work_mem.
1519          *
1520          * Beware here of the possibility that cheapest_path->parent is NULL. This
1521          * could happen if user does something silly like SELECT 'foo' GROUP BY 1;
1522          */
1523         if (cheapest_path->parent)
1524         {
1525                 cheapest_path_rows = cheapest_path->parent->rows;
1526                 cheapest_path_width = cheapest_path->parent->width;
1527         }
1528         else
1529         {
1530                 cheapest_path_rows = 1; /* assume non-set result */
1531                 cheapest_path_width = 100;              /* arbitrary */
1532         }
1533
1534         /* Estimate per-hash-entry space at tuple width... */
1535         hashentrysize = MAXALIGN(cheapest_path_width) + MAXALIGN(sizeof(MinimalTupleData));
1536         /* plus space for pass-by-ref transition values... */
1537         hashentrysize += agg_counts->transitionSpace;
1538         /* plus the per-hash-entry overhead */
1539         hashentrysize += hash_agg_entry_size(agg_counts->numAggs);
1540
1541         if (hashentrysize * dNumGroups > work_mem * 1024L)
1542                 return false;
1543
1544         /*
1545          * See if the estimated cost is no more than doing it the other way. While
1546          * avoiding the need for sorted input is usually a win, the fact that the
1547          * output won't be sorted may be a loss; so we need to do an actual cost
1548          * comparison.
1549          *
1550          * We need to consider cheapest_path + hashagg [+ final sort] versus
1551          * either cheapest_path [+ sort] + group or agg [+ final sort] or
1552          * presorted_path + group or agg [+ final sort] where brackets indicate a
1553          * step that may not be needed. We assume query_planner() will have
1554          * returned a presorted path only if it's a winner compared to
1555          * cheapest_path for this purpose.
1556          *
1557          * These path variables are dummies that just hold cost fields; we don't
1558          * make actual Paths for these steps.
1559          */
1560         cost_agg(&hashed_p, root, AGG_HASHED, agg_counts->numAggs,
1561                          numGroupCols, dNumGroups,
1562                          cheapest_path->startup_cost, cheapest_path->total_cost,
1563                          cheapest_path_rows);
1564         /* Result of hashed agg is always unsorted */
1565         if (root->sort_pathkeys)
1566                 cost_sort(&hashed_p, root, root->sort_pathkeys, hashed_p.total_cost,
1567                                   dNumGroups, cheapest_path_width, limit_tuples);
1568
1569         if (sorted_path)
1570         {
1571                 sorted_p.startup_cost = sorted_path->startup_cost;
1572                 sorted_p.total_cost = sorted_path->total_cost;
1573                 current_pathkeys = sorted_path->pathkeys;
1574         }
1575         else
1576         {
1577                 sorted_p.startup_cost = cheapest_path->startup_cost;
1578                 sorted_p.total_cost = cheapest_path->total_cost;
1579                 current_pathkeys = cheapest_path->pathkeys;
1580         }
1581         if (!pathkeys_contained_in(root->group_pathkeys, current_pathkeys))
1582         {
1583                 cost_sort(&sorted_p, root, root->group_pathkeys, sorted_p.total_cost,
1584                                   cheapest_path_rows, cheapest_path_width, -1.0);
1585                 current_pathkeys = root->group_pathkeys;
1586         }
1587
1588         if (root->parse->hasAggs)
1589                 cost_agg(&sorted_p, root, AGG_SORTED, agg_counts->numAggs,
1590                                  numGroupCols, dNumGroups,
1591                                  sorted_p.startup_cost, sorted_p.total_cost,
1592                                  cheapest_path_rows);
1593         else
1594                 cost_group(&sorted_p, root, numGroupCols, dNumGroups,
1595                                    sorted_p.startup_cost, sorted_p.total_cost,
1596                                    cheapest_path_rows);
1597         /* The Agg or Group node will preserve ordering */
1598         if (root->sort_pathkeys &&
1599                 !pathkeys_contained_in(root->sort_pathkeys, current_pathkeys))
1600                 cost_sort(&sorted_p, root, root->sort_pathkeys, sorted_p.total_cost,
1601                                   dNumGroups, cheapest_path_width, limit_tuples);
1602
1603         /*
1604          * Now make the decision using the top-level tuple fraction.  First we
1605          * have to convert an absolute count (LIMIT) into fractional form.
1606          */
1607         if (tuple_fraction >= 1.0)
1608                 tuple_fraction /= dNumGroups;
1609
1610         if (compare_fractional_path_costs(&hashed_p, &sorted_p,
1611                                                                           tuple_fraction) < 0)
1612         {
1613                 /* Hashed is cheaper, so use it */
1614                 return true;
1615         }
1616         return false;
1617 }
1618
1619 /*---------------
1620  * make_subplanTargetList
1621  *        Generate appropriate target list when grouping is required.
1622  *
1623  * When grouping_planner inserts Aggregate, Group, or Result plan nodes
1624  * above the result of query_planner, we typically want to pass a different
1625  * target list to query_planner than the outer plan nodes should have.
1626  * This routine generates the correct target list for the subplan.
1627  *
1628  * The initial target list passed from the parser already contains entries
1629  * for all ORDER BY and GROUP BY expressions, but it will not have entries
1630  * for variables used only in HAVING clauses; so we need to add those
1631  * variables to the subplan target list.  Also, we flatten all expressions
1632  * except GROUP BY items into their component variables; the other expressions
1633  * will be computed by the inserted nodes rather than by the subplan.
1634  * For example, given a query like
1635  *              SELECT a+b,SUM(c+d) FROM table GROUP BY a+b;
1636  * we want to pass this targetlist to the subplan:
1637  *              a,b,c,d,a+b
1638  * where the a+b target will be used by the Sort/Group steps, and the
1639  * other targets will be used for computing the final results.  (In the
1640  * above example we could theoretically suppress the a and b targets and
1641  * pass down only c,d,a+b, but it's not really worth the trouble to
1642  * eliminate simple var references from the subplan.  We will avoid doing
1643  * the extra computation to recompute a+b at the outer level; see
1644  * fix_upper_expr() in setrefs.c.)
1645  *
1646  * If we are grouping or aggregating, *and* there are no non-Var grouping
1647  * expressions, then the returned tlist is effectively dummy; we do not
1648  * need to force it to be evaluated, because all the Vars it contains
1649  * should be present in the output of query_planner anyway.
1650  *
1651  * 'tlist' is the query's target list.
1652  * 'groupColIdx' receives an array of column numbers for the GROUP BY
1653  *                      expressions (if there are any) in the subplan's target list.
1654  * 'need_tlist_eval' is set true if we really need to evaluate the
1655  *                      result tlist.
1656  *
1657  * The result is the targetlist to be passed to the subplan.
1658  *---------------
1659  */
1660 static List *
1661 make_subplanTargetList(PlannerInfo *root,
1662                                            List *tlist,
1663                                            AttrNumber **groupColIdx,
1664                                            bool *need_tlist_eval)
1665 {
1666         Query      *parse = root->parse;
1667         List       *sub_tlist;
1668         List       *extravars;
1669         int                     numCols;
1670
1671         *groupColIdx = NULL;
1672
1673         /*
1674          * If we're not grouping or aggregating, there's nothing to do here;
1675          * query_planner should receive the unmodified target list.
1676          */
1677         if (!parse->hasAggs && !parse->groupClause && !root->hasHavingQual)
1678         {
1679                 *need_tlist_eval = true;
1680                 return tlist;
1681         }
1682
1683         /*
1684          * Otherwise, start with a "flattened" tlist (having just the vars
1685          * mentioned in the targetlist and HAVING qual --- but not upper- level
1686          * Vars; they will be replaced by Params later on).
1687          */
1688         sub_tlist = flatten_tlist(tlist);
1689         extravars = pull_var_clause(parse->havingQual, false);
1690         sub_tlist = add_to_flat_tlist(sub_tlist, extravars);
1691         list_free(extravars);
1692         *need_tlist_eval = false;       /* only eval if not flat tlist */
1693
1694         /*
1695          * If grouping, create sub_tlist entries for all GROUP BY expressions
1696          * (GROUP BY items that are simple Vars should be in the list already),
1697          * and make an array showing where the group columns are in the sub_tlist.
1698          */
1699         numCols = list_length(parse->groupClause);
1700         if (numCols > 0)
1701         {
1702                 int                     keyno = 0;
1703                 AttrNumber *grpColIdx;
1704                 ListCell   *gl;
1705
1706                 grpColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols);
1707                 *groupColIdx = grpColIdx;
1708
1709                 foreach(gl, parse->groupClause)
1710                 {
1711                         GroupClause *grpcl = (GroupClause *) lfirst(gl);
1712                         Node       *groupexpr = get_sortgroupclause_expr(grpcl, tlist);
1713                         TargetEntry *te = NULL;
1714                         ListCell   *sl;
1715
1716                         /* Find or make a matching sub_tlist entry */
1717                         foreach(sl, sub_tlist)
1718                         {
1719                                 te = (TargetEntry *) lfirst(sl);
1720                                 if (equal(groupexpr, te->expr))
1721                                         break;
1722                         }
1723                         if (!sl)
1724                         {
1725                                 te = makeTargetEntry((Expr *) groupexpr,
1726                                                                          list_length(sub_tlist) + 1,
1727                                                                          NULL,
1728                                                                          false);
1729                                 sub_tlist = lappend(sub_tlist, te);
1730                                 *need_tlist_eval = true;                /* it's not flat anymore */
1731                         }
1732
1733                         /* and save its resno */
1734                         grpColIdx[keyno++] = te->resno;
1735                 }
1736         }
1737
1738         return sub_tlist;
1739 }
1740
1741 /*
1742  * locate_grouping_columns
1743  *              Locate grouping columns in the tlist chosen by query_planner.
1744  *
1745  * This is only needed if we don't use the sub_tlist chosen by
1746  * make_subplanTargetList.      We have to forget the column indexes found
1747  * by that routine and re-locate the grouping vars in the real sub_tlist.
1748  */
1749 static void
1750 locate_grouping_columns(PlannerInfo *root,
1751                                                 List *tlist,
1752                                                 List *sub_tlist,
1753                                                 AttrNumber *groupColIdx)
1754 {
1755         int                     keyno = 0;
1756         ListCell   *gl;
1757
1758         /*
1759          * No work unless grouping.
1760          */
1761         if (!root->parse->groupClause)
1762         {
1763                 Assert(groupColIdx == NULL);
1764                 return;
1765         }
1766         Assert(groupColIdx != NULL);
1767
1768         foreach(gl, root->parse->groupClause)
1769         {
1770                 GroupClause *grpcl = (GroupClause *) lfirst(gl);
1771                 Node       *groupexpr = get_sortgroupclause_expr(grpcl, tlist);
1772                 TargetEntry *te = NULL;
1773                 ListCell   *sl;
1774
1775                 foreach(sl, sub_tlist)
1776                 {
1777                         te = (TargetEntry *) lfirst(sl);
1778                         if (equal(groupexpr, te->expr))
1779                                 break;
1780                 }
1781                 if (!sl)
1782                         elog(ERROR, "failed to locate grouping columns");
1783
1784                 groupColIdx[keyno++] = te->resno;
1785         }
1786 }
1787
1788 /*
1789  * postprocess_setop_tlist
1790  *        Fix up targetlist returned by plan_set_operations().
1791  *
1792  * We need to transpose sort key info from the orig_tlist into new_tlist.
1793  * NOTE: this would not be good enough if we supported resjunk sort keys
1794  * for results of set operations --- then, we'd need to project a whole
1795  * new tlist to evaluate the resjunk columns.  For now, just ereport if we
1796  * find any resjunk columns in orig_tlist.
1797  */
1798 static List *
1799 postprocess_setop_tlist(List *new_tlist, List *orig_tlist)
1800 {
1801         ListCell   *l;
1802         ListCell   *orig_tlist_item = list_head(orig_tlist);
1803
1804         foreach(l, new_tlist)
1805         {
1806                 TargetEntry *new_tle = (TargetEntry *) lfirst(l);
1807                 TargetEntry *orig_tle;
1808
1809                 /* ignore resjunk columns in setop result */
1810                 if (new_tle->resjunk)
1811                         continue;
1812
1813                 Assert(orig_tlist_item != NULL);
1814                 orig_tle = (TargetEntry *) lfirst(orig_tlist_item);
1815                 orig_tlist_item = lnext(orig_tlist_item);
1816                 if (orig_tle->resjunk)  /* should not happen */
1817                         elog(ERROR, "resjunk output columns are not implemented");
1818                 Assert(new_tle->resno == orig_tle->resno);
1819                 new_tle->ressortgroupref = orig_tle->ressortgroupref;
1820         }
1821         if (orig_tlist_item != NULL)
1822                 elog(ERROR, "resjunk output columns are not implemented");
1823         return new_tlist;
1824 }