]> granicus.if.org Git - postgresql/blob - src/backend/optimizer/plan/planner.c
Clean up the usage of canonicalize_qual(): in particular, be consistent
[postgresql] / src / backend / optimizer / plan / planner.c
1 /*-------------------------------------------------------------------------
2  *
3  * planner.c
4  *        The query optimizer external interface.
5  *
6  * Portions Copyright (c) 1996-2003, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  *        $PostgreSQL: pgsql/src/backend/optimizer/plan/planner.c,v 1.163 2003/12/28 21:57:36 tgl Exp $
12  *
13  *-------------------------------------------------------------------------
14  */
15
16 #include "postgres.h"
17
18 #include <limits.h>
19
20 #include "catalog/pg_operator.h"
21 #include "catalog/pg_type.h"
22 #include "executor/executor.h"
23 #include "miscadmin.h"
24 #include "nodes/makefuncs.h"
25 #ifdef OPTIMIZER_DEBUG
26 #include "nodes/print.h"
27 #endif
28 #include "optimizer/clauses.h"
29 #include "optimizer/cost.h"
30 #include "optimizer/pathnode.h"
31 #include "optimizer/paths.h"
32 #include "optimizer/planmain.h"
33 #include "optimizer/planner.h"
34 #include "optimizer/prep.h"
35 #include "optimizer/subselect.h"
36 #include "optimizer/tlist.h"
37 #include "optimizer/var.h"
38 #include "parser/analyze.h"
39 #include "parser/parsetree.h"
40 #include "parser/parse_expr.h"
41 #include "parser/parse_oper.h"
42 #include "utils/selfuncs.h"
43 #include "utils/syscache.h"
44
45
46 /* Expression kind codes for preprocess_expression */
47 #define EXPRKIND_QUAL   0
48 #define EXPRKIND_TARGET 1
49 #define EXPRKIND_RTFUNC 2
50 #define EXPRKIND_LIMIT  3
51 #define EXPRKIND_ININFO 4
52
53
54 static Node *preprocess_expression(Query *parse, Node *expr, int kind);
55 static void preprocess_qual_conditions(Query *parse, Node *jtnode);
56 static Plan *inheritance_planner(Query *parse, List *inheritlist);
57 static Plan *grouping_planner(Query *parse, double tuple_fraction);
58 static bool hash_safe_grouping(Query *parse);
59 static List *make_subplanTargetList(Query *parse, List *tlist,
60                                            AttrNumber **groupColIdx, bool *need_tlist_eval);
61 static void locate_grouping_columns(Query *parse,
62                                                 List *tlist,
63                                                 List *sub_tlist,
64                                                 AttrNumber *groupColIdx);
65 static List *postprocess_setop_tlist(List *new_tlist, List *orig_tlist);
66
67
68 /*****************************************************************************
69  *
70  *         Query optimizer entry point
71  *
72  *****************************************************************************/
73 Plan *
74 planner(Query *parse, bool isCursor, int cursorOptions)
75 {
76         double          tuple_fraction;
77         Plan       *result_plan;
78         Index           save_PlannerQueryLevel;
79         List       *save_PlannerParamList;
80
81         /*
82          * The planner can be called recursively (an example is when
83          * eval_const_expressions tries to pre-evaluate an SQL function). So,
84          * these global state variables must be saved and restored.
85          *
86          * These vars cannot be moved into the Query structure since their whole
87          * purpose is communication across multiple sub-Queries.
88          *
89          * Note we do NOT save and restore PlannerPlanId: it exists to assign
90          * unique IDs to SubPlan nodes, and we want those IDs to be unique for
91          * the life of a backend.  Also, PlannerInitPlan is saved/restored in
92          * subquery_planner, not here.
93          */
94         save_PlannerQueryLevel = PlannerQueryLevel;
95         save_PlannerParamList = PlannerParamList;
96
97         /* Initialize state for handling outer-level references and params */
98         PlannerQueryLevel = 0;          /* will be 1 in top-level subquery_planner */
99         PlannerParamList = NIL;
100
101         /* Determine what fraction of the plan is likely to be scanned */
102         if (isCursor)
103         {
104                 /*
105                  * We have no real idea how many tuples the user will ultimately
106                  * FETCH from a cursor, but it seems a good bet that he doesn't
107                  * want 'em all.  Optimize for 10% retrieval (you gotta better
108                  * number?      Should this be a SETtable parameter?)
109                  */
110                 tuple_fraction = 0.10;
111         }
112         else
113         {
114                 /* Default assumption is we need all the tuples */
115                 tuple_fraction = 0.0;
116         }
117
118         /* primary planning entry point (may recurse for subqueries) */
119         result_plan = subquery_planner(parse, tuple_fraction);
120
121         Assert(PlannerQueryLevel == 0);
122
123         /*
124          * If creating a plan for a scrollable cursor, make sure it can run
125          * backwards on demand.  Add a Material node at the top at need.
126          */
127         if (isCursor && (cursorOptions & CURSOR_OPT_SCROLL))
128         {
129                 if (!ExecSupportsBackwardScan(result_plan))
130                         result_plan = materialize_finished_plan(result_plan);
131         }
132
133         /* executor wants to know total number of Params used overall */
134         result_plan->nParamExec = length(PlannerParamList);
135
136         /* final cleanup of the plan */
137         set_plan_references(result_plan, parse->rtable);
138
139         /* restore state for outer planner, if any */
140         PlannerQueryLevel = save_PlannerQueryLevel;
141         PlannerParamList = save_PlannerParamList;
142
143         return result_plan;
144 }
145
146
147 /*--------------------
148  * subquery_planner
149  *        Invokes the planner on a subquery.  We recurse to here for each
150  *        sub-SELECT found in the query tree.
151  *
152  * parse is the querytree produced by the parser & rewriter.
153  * tuple_fraction is the fraction of tuples we expect will be retrieved.
154  * tuple_fraction is interpreted as explained for grouping_planner, below.
155  *
156  * Basically, this routine does the stuff that should only be done once
157  * per Query object.  It then calls grouping_planner.  At one time,
158  * grouping_planner could be invoked recursively on the same Query object;
159  * that's not currently true, but we keep the separation between the two
160  * routines anyway, in case we need it again someday.
161  *
162  * subquery_planner will be called recursively to handle sub-Query nodes
163  * found within the query's expressions and rangetable.
164  *
165  * Returns a query plan.
166  *--------------------
167  */
168 Plan *
169 subquery_planner(Query *parse, double tuple_fraction)
170 {
171         List       *saved_initplan = PlannerInitPlan;
172         int                     saved_planid = PlannerPlanId;
173         bool            hasOuterJoins;
174         Plan       *plan;
175         List       *newHaving;
176         List       *lst;
177
178         /* Set up for a new level of subquery */
179         PlannerQueryLevel++;
180         PlannerInitPlan = NIL;
181
182         /*
183          * Look for IN clauses at the top level of WHERE, and transform them
184          * into joins.  Note that this step only handles IN clauses originally
185          * at top level of WHERE; if we pull up any subqueries in the next
186          * step, their INs are processed just before pulling them up.
187          */
188         parse->in_info_list = NIL;
189         if (parse->hasSubLinks)
190                 parse->jointree->quals = pull_up_IN_clauses(parse,
191                                                                                                  parse->jointree->quals);
192
193         /*
194          * Check to see if any subqueries in the rangetable can be merged into
195          * this query.
196          */
197         parse->jointree = (FromExpr *)
198                 pull_up_subqueries(parse, (Node *) parse->jointree, false);
199
200         /*
201          * Detect whether any rangetable entries are RTE_JOIN kind; if not, we
202          * can avoid the expense of doing flatten_join_alias_vars().  Also
203          * check for outer joins --- if none, we can skip
204          * reduce_outer_joins(). This must be done after we have done
205          * pull_up_subqueries, of course.
206          */
207         parse->hasJoinRTEs = false;
208         hasOuterJoins = false;
209         foreach(lst, parse->rtable)
210         {
211                 RangeTblEntry *rte = (RangeTblEntry *) lfirst(lst);
212
213                 if (rte->rtekind == RTE_JOIN)
214                 {
215                         parse->hasJoinRTEs = true;
216                         if (IS_OUTER_JOIN(rte->jointype))
217                         {
218                                 hasOuterJoins = true;
219                                 /* Can quit scanning once we find an outer join */
220                                 break;
221                         }
222                 }
223         }
224
225         /*
226          * Do expression preprocessing on targetlist and quals.
227          */
228         parse->targetList = (List *)
229                 preprocess_expression(parse, (Node *) parse->targetList,
230                                                           EXPRKIND_TARGET);
231
232         preprocess_qual_conditions(parse, (Node *) parse->jointree);
233
234         parse->havingQual = preprocess_expression(parse, parse->havingQual,
235                                                                                           EXPRKIND_QUAL);
236
237         parse->limitOffset = preprocess_expression(parse, parse->limitOffset,
238                                                                                            EXPRKIND_LIMIT);
239         parse->limitCount = preprocess_expression(parse, parse->limitCount,
240                                                                                           EXPRKIND_LIMIT);
241
242         parse->in_info_list = (List *)
243                 preprocess_expression(parse, (Node *) parse->in_info_list,
244                                                           EXPRKIND_ININFO);
245
246         /* Also need to preprocess expressions for function RTEs */
247         foreach(lst, parse->rtable)
248         {
249                 RangeTblEntry *rte = (RangeTblEntry *) lfirst(lst);
250
251                 if (rte->rtekind == RTE_FUNCTION)
252                         rte->funcexpr = preprocess_expression(parse, rte->funcexpr,
253                                                                                                   EXPRKIND_RTFUNC);
254         }
255
256         /*
257          * A HAVING clause without aggregates is equivalent to a WHERE clause
258          * (except it can only refer to grouped fields).  Transfer any
259          * agg-free clauses of the HAVING qual into WHERE.      This may seem like
260          * wasting cycles to cater to stupidly-written queries, but there are
261          * other reasons for doing it.  Firstly, if the query contains no aggs
262          * at all, then we aren't going to generate an Agg plan node, and so
263          * there'll be no place to execute HAVING conditions; without this
264          * transfer, we'd lose the HAVING condition entirely, which is wrong.
265          * Secondly, when we push down a qual condition into a sub-query, it's
266          * easiest to push the qual into HAVING always, in case it contains
267          * aggs, and then let this code sort it out.
268          *
269          * Note that both havingQual and parse->jointree->quals are in
270          * implicitly-ANDed-list form at this point, even though they are
271          * declared as Node *.
272          */
273         newHaving = NIL;
274         foreach(lst, (List *) parse->havingQual)
275         {
276                 Node       *havingclause = (Node *) lfirst(lst);
277
278                 if (contain_agg_clause(havingclause))
279                         newHaving = lappend(newHaving, havingclause);
280                 else
281                         parse->jointree->quals = (Node *)
282                                 lappend((List *) parse->jointree->quals, havingclause);
283         }
284         parse->havingQual = (Node *) newHaving;
285
286         /*
287          * If we have any outer joins, try to reduce them to plain inner
288          * joins. This step is most easily done after we've done expression
289          * preprocessing.
290          */
291         if (hasOuterJoins)
292                 reduce_outer_joins(parse);
293
294         /*
295          * See if we can simplify the jointree; opportunities for this may
296          * come from having pulled up subqueries, or from flattening explicit
297          * JOIN syntax.  We must do this after flattening JOIN alias
298          * variables, since eliminating explicit JOIN nodes from the jointree
299          * will cause get_relids_for_join() to fail.  But it should happen
300          * after reduce_outer_joins, anyway.
301          */
302         parse->jointree = (FromExpr *)
303                 simplify_jointree(parse, (Node *) parse->jointree);
304
305         /*
306          * Do the main planning.  If we have an inherited target relation,
307          * that needs special processing, else go straight to
308          * grouping_planner.
309          */
310         if (parse->resultRelation &&
311                 (lst = expand_inherited_rtentry(parse, parse->resultRelation,
312                                                                                 false)) != NIL)
313                 plan = inheritance_planner(parse, lst);
314         else
315                 plan = grouping_planner(parse, tuple_fraction);
316
317         /*
318          * If any subplans were generated, or if we're inside a subplan, build
319          * initPlan list and extParam/allParam sets for plan nodes.
320          */
321         if (PlannerPlanId != saved_planid || PlannerQueryLevel > 1)
322         {
323                 Cost            initplan_cost = 0;
324
325                 /* Prepare extParam/allParam sets for all nodes in tree */
326                 SS_finalize_plan(plan, parse->rtable);
327
328                 /*
329                  * SS_finalize_plan doesn't handle initPlans, so we have to
330                  * manually attach them to the topmost plan node, and add their
331                  * extParams to the topmost node's, too.
332                  *
333                  * We also add the total_cost of each initPlan to the startup cost of
334                  * the top node.  This is a conservative overestimate, since in
335                  * fact each initPlan might be executed later than plan startup,
336                  * or even not at all.
337                  */
338                 plan->initPlan = PlannerInitPlan;
339
340                 foreach(lst, plan->initPlan)
341                 {
342                         SubPlan    *initplan = (SubPlan *) lfirst(lst);
343
344                         plan->extParam = bms_add_members(plan->extParam,
345                                                                                          initplan->plan->extParam);
346                         initplan_cost += initplan->plan->total_cost;
347                 }
348
349                 plan->startup_cost += initplan_cost;
350                 plan->total_cost += initplan_cost;
351         }
352
353         /* Return to outer subquery context */
354         PlannerQueryLevel--;
355         PlannerInitPlan = saved_initplan;
356         /* we do NOT restore PlannerPlanId; that's not an oversight! */
357
358         return plan;
359 }
360
361 /*
362  * preprocess_expression
363  *              Do subquery_planner's preprocessing work for an expression,
364  *              which can be a targetlist, a WHERE clause (including JOIN/ON
365  *              conditions), or a HAVING clause.
366  */
367 static Node *
368 preprocess_expression(Query *parse, Node *expr, int kind)
369 {
370         /*
371          * If the query has any join RTEs, replace join alias variables with
372          * base-relation variables. We must do this before sublink processing,
373          * else sublinks expanded out from join aliases wouldn't get
374          * processed.
375          */
376         if (parse->hasJoinRTEs)
377                 expr = flatten_join_alias_vars(parse, expr);
378
379         /*
380          * If it's a qual or havingQual, canonicalize it.  It seems most useful
381          * to do this before applying eval_const_expressions, since the latter
382          * can optimize flattened AND/ORs better than unflattened ones.
383          */
384         if (kind == EXPRKIND_QUAL)
385         {
386                 expr = (Node *) canonicalize_qual((Expr *) expr);
387
388 #ifdef OPTIMIZER_DEBUG
389                 printf("After canonicalize_qual()\n");
390                 pprint(expr);
391 #endif
392         }
393
394         /*
395          * Simplify constant expressions.
396          */
397         expr = eval_const_expressions(expr);
398
399         /*
400          * If it's a qual or havingQual, convert it to implicit-AND format.
401          * (We don't want to do this before eval_const_expressions, since the
402          * latter would be unable to simplify a top-level AND correctly.)
403          */
404         if (kind == EXPRKIND_QUAL)
405                 expr = (Node *) make_ands_implicit((Expr *) expr);
406
407         /* Expand SubLinks to SubPlans */
408         if (parse->hasSubLinks)
409                 expr = SS_process_sublinks(expr, (kind == EXPRKIND_QUAL));
410
411         /*
412          * XXX do not insert anything here unless you have grokked the
413          * comments in SS_replace_correlation_vars ...
414          */
415
416         /* Replace uplevel vars with Param nodes */
417         if (PlannerQueryLevel > 1)
418                 expr = SS_replace_correlation_vars(expr);
419
420         return expr;
421 }
422
423 /*
424  * preprocess_qual_conditions
425  *              Recursively scan the query's jointree and do subquery_planner's
426  *              preprocessing work on each qual condition found therein.
427  */
428 static void
429 preprocess_qual_conditions(Query *parse, Node *jtnode)
430 {
431         if (jtnode == NULL)
432                 return;
433         if (IsA(jtnode, RangeTblRef))
434         {
435                 /* nothing to do here */
436         }
437         else if (IsA(jtnode, FromExpr))
438         {
439                 FromExpr   *f = (FromExpr *) jtnode;
440                 List       *l;
441
442                 foreach(l, f->fromlist)
443                         preprocess_qual_conditions(parse, lfirst(l));
444
445                 f->quals = preprocess_expression(parse, f->quals, EXPRKIND_QUAL);
446         }
447         else if (IsA(jtnode, JoinExpr))
448         {
449                 JoinExpr   *j = (JoinExpr *) jtnode;
450
451                 preprocess_qual_conditions(parse, j->larg);
452                 preprocess_qual_conditions(parse, j->rarg);
453
454                 j->quals = preprocess_expression(parse, j->quals, EXPRKIND_QUAL);
455         }
456         else
457                 elog(ERROR, "unrecognized node type: %d",
458                          (int) nodeTag(jtnode));
459 }
460
461 /*--------------------
462  * inheritance_planner
463  *        Generate a plan in the case where the result relation is an
464  *        inheritance set.
465  *
466  * We have to handle this case differently from cases where a source
467  * relation is an inheritance set.      Source inheritance is expanded at
468  * the bottom of the plan tree (see allpaths.c), but target inheritance
469  * has to be expanded at the top.  The reason is that for UPDATE, each
470  * target relation needs a different targetlist matching its own column
471  * set.  (This is not so critical for DELETE, but for simplicity we treat
472  * inherited DELETE the same way.)      Fortunately, the UPDATE/DELETE target
473  * can never be the nullable side of an outer join, so it's OK to generate
474  * the plan this way.
475  *
476  * parse is the querytree produced by the parser & rewriter.
477  * inheritlist is an integer list of RT indexes for the result relation set.
478  *
479  * Returns a query plan.
480  *--------------------
481  */
482 static Plan *
483 inheritance_planner(Query *parse, List *inheritlist)
484 {
485         int                     parentRTindex = parse->resultRelation;
486         Oid                     parentOID = getrelid(parentRTindex, parse->rtable);
487         int                     mainrtlength = length(parse->rtable);
488         List       *subplans = NIL;
489         List       *tlist = NIL;
490         List       *l;
491
492         foreach(l, inheritlist)
493         {
494                 int                     childRTindex = lfirsti(l);
495                 Oid                     childOID = getrelid(childRTindex, parse->rtable);
496                 int                     subrtlength;
497                 Query      *subquery;
498                 Plan       *subplan;
499
500                 /* Generate modified query with this rel as target */
501                 subquery = (Query *) adjust_inherited_attrs((Node *) parse,
502                                                                                                 parentRTindex, parentOID,
503                                                                                                  childRTindex, childOID);
504                 /* Generate plan */
505                 subplan = grouping_planner(subquery, 0.0 /* retrieve all tuples */ );
506                 subplans = lappend(subplans, subplan);
507
508                 /*
509                  * It's possible that additional RTEs got added to the rangetable
510                  * due to expansion of inherited source tables (see allpaths.c).
511                  * If so, we must copy 'em back to the main parse tree's rtable.
512                  *
513                  * XXX my goodness this is ugly.  Really need to think about ways to
514                  * rein in planner's habit of scribbling on its input.
515                  */
516                 subrtlength = length(subquery->rtable);
517                 if (subrtlength > mainrtlength)
518                 {
519                         List       *subrt = subquery->rtable;
520
521                         while (mainrtlength-- > 0)      /* wish we had nthcdr() */
522                                 subrt = lnext(subrt);
523                         parse->rtable = nconc(parse->rtable, subrt);
524                         mainrtlength = subrtlength;
525                 }
526                 /* Save preprocessed tlist from first rel for use in Append */
527                 if (tlist == NIL)
528                         tlist = subplan->targetlist;
529         }
530
531         /* Save the target-relations list for the executor, too */
532         parse->resultRelations = inheritlist;
533
534         /* Mark result as unordered (probably unnecessary) */
535         parse->query_pathkeys = NIL;
536
537         return (Plan *) make_append(subplans, true, tlist);
538 }
539
540 /*--------------------
541  * grouping_planner
542  *        Perform planning steps related to grouping, aggregation, etc.
543  *        This primarily means adding top-level processing to the basic
544  *        query plan produced by query_planner.
545  *
546  * parse is the querytree produced by the parser & rewriter.
547  * tuple_fraction is the fraction of tuples we expect will be retrieved
548  *
549  * tuple_fraction is interpreted as follows:
550  *        0: expect all tuples to be retrieved (normal case)
551  *        0 < tuple_fraction < 1: expect the given fraction of tuples available
552  *              from the plan to be retrieved
553  *        tuple_fraction >= 1: tuple_fraction is the absolute number of tuples
554  *              expected to be retrieved (ie, a LIMIT specification)
555  *
556  * Returns a query plan.  Also, parse->query_pathkeys is returned as the
557  * actual output ordering of the plan (in pathkey format).
558  *--------------------
559  */
560 static Plan *
561 grouping_planner(Query *parse, double tuple_fraction)
562 {
563         List       *tlist = parse->targetList;
564         Plan       *result_plan;
565         List       *current_pathkeys;
566         List       *sort_pathkeys;
567
568         if (parse->setOperations)
569         {
570                 /*
571                  * Construct the plan for set operations.  The result will not
572                  * need any work except perhaps a top-level sort and/or LIMIT.
573                  */
574                 result_plan = plan_set_operations(parse);
575
576                 /*
577                  * We should not need to call preprocess_targetlist, since we must
578                  * be in a SELECT query node.  Instead, use the targetlist
579                  * returned by plan_set_operations (since this tells whether it
580                  * returned any resjunk columns!), and transfer any sort key
581                  * information from the original tlist.
582                  */
583                 Assert(parse->commandType == CMD_SELECT);
584
585                 tlist = postprocess_setop_tlist(result_plan->targetlist, tlist);
586
587                 /*
588                  * Can't handle FOR UPDATE here (parser should have checked
589                  * already, but let's make sure).
590                  */
591                 if (parse->rowMarks)
592                         ereport(ERROR,
593                                         (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
594                                          errmsg("SELECT FOR UPDATE is not allowed with UNION/INTERSECT/EXCEPT")));
595
596                 /*
597                  * We set current_pathkeys NIL indicating we do not know sort
598                  * order.  This is correct when the top set operation is UNION
599                  * ALL, since the appended-together results are unsorted even if
600                  * the subplans were sorted.  For other set operations we could be
601                  * smarter --- room for future improvement!
602                  */
603                 current_pathkeys = NIL;
604
605                 /*
606                  * Calculate pathkeys that represent ordering requirements
607                  */
608                 sort_pathkeys = make_pathkeys_for_sortclauses(parse->sortClause,
609                                                                                                           tlist);
610                 sort_pathkeys = canonicalize_pathkeys(parse, sort_pathkeys);
611         }
612         else
613         {
614                 /* No set operations, do regular planning */
615                 List       *sub_tlist;
616                 List       *group_pathkeys;
617                 AttrNumber *groupColIdx = NULL;
618                 bool            need_tlist_eval = true;
619                 QualCost        tlist_cost;
620                 double          sub_tuple_fraction;
621                 Path       *cheapest_path;
622                 Path       *sorted_path;
623                 double          dNumGroups = 0;
624                 long            numGroups = 0;
625                 int                     numAggs = 0;
626                 int                     numGroupCols = length(parse->groupClause);
627                 bool            use_hashed_grouping = false;
628
629                 /* Preprocess targetlist in case we are inside an INSERT/UPDATE. */
630                 tlist = preprocess_targetlist(tlist,
631                                                                           parse->commandType,
632                                                                           parse->resultRelation,
633                                                                           parse->rtable);
634
635                 /*
636                  * Add TID targets for rels selected FOR UPDATE (should this be
637                  * done in preprocess_targetlist?).  The executor uses the TID to
638                  * know which rows to lock, much as for UPDATE or DELETE.
639                  */
640                 if (parse->rowMarks)
641                 {
642                         List       *l;
643
644                         /*
645                          * We've got trouble if the FOR UPDATE appears inside
646                          * grouping, since grouping renders a reference to individual
647                          * tuple CTIDs invalid.  This is also checked at parse time,
648                          * but that's insufficient because of rule substitution, query
649                          * pullup, etc.
650                          */
651                         CheckSelectForUpdate(parse);
652
653                         /*
654                          * Currently the executor only supports FOR UPDATE at top
655                          * level
656                          */
657                         if (PlannerQueryLevel > 1)
658                                 ereport(ERROR,
659                                                 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
660                                                  errmsg("SELECT FOR UPDATE is not allowed in subqueries")));
661
662                         foreach(l, parse->rowMarks)
663                         {
664                                 Index           rti = lfirsti(l);
665                                 char       *resname;
666                                 Resdom     *resdom;
667                                 Var                *var;
668                                 TargetEntry *ctid;
669
670                                 resname = (char *) palloc(32);
671                                 snprintf(resname, 32, "ctid%u", rti);
672                                 resdom = makeResdom(length(tlist) + 1,
673                                                                         TIDOID,
674                                                                         -1,
675                                                                         resname,
676                                                                         true);
677
678                                 var = makeVar(rti,
679                                                           SelfItemPointerAttributeNumber,
680                                                           TIDOID,
681                                                           -1,
682                                                           0);
683
684                                 ctid = makeTargetEntry(resdom, (Expr *) var);
685                                 tlist = lappend(tlist, ctid);
686                         }
687                 }
688
689                 /*
690                  * Generate appropriate target list for subplan; may be different
691                  * from tlist if grouping or aggregation is needed.
692                  */
693                 sub_tlist = make_subplanTargetList(parse, tlist,
694                                                                                  &groupColIdx, &need_tlist_eval);
695
696                 /*
697                  * Calculate pathkeys that represent grouping/ordering
698                  * requirements
699                  */
700                 group_pathkeys = make_pathkeys_for_sortclauses(parse->groupClause,
701                                                                                                            tlist);
702                 sort_pathkeys = make_pathkeys_for_sortclauses(parse->sortClause,
703                                                                                                           tlist);
704
705                 /*
706                  * Will need actual number of aggregates for estimating costs.
707                  * Also, it's possible that optimization has eliminated all
708                  * aggregates, and we may as well check for that here.
709                  *
710                  * Note: we do not attempt to detect duplicate aggregates here; a
711                  * somewhat-overestimated count is okay for our present purposes.
712                  */
713                 if (parse->hasAggs)
714                 {
715                         numAggs = count_agg_clause((Node *) tlist) +
716                                 count_agg_clause(parse->havingQual);
717                         if (numAggs == 0)
718                                 parse->hasAggs = false;
719                 }
720
721                 /*
722                  * Figure out whether we need a sorted result from query_planner.
723                  *
724                  * If we have a GROUP BY clause, then we want a result sorted
725                  * properly for grouping.  Otherwise, if there is an ORDER BY
726                  * clause, we want to sort by the ORDER BY clause.      (Note: if we
727                  * have both, and ORDER BY is a superset of GROUP BY, it would be
728                  * tempting to request sort by ORDER BY --- but that might just
729                  * leave us failing to exploit an available sort order at all.
730                  * Needs more thought...)
731                  */
732                 if (parse->groupClause)
733                         parse->query_pathkeys = group_pathkeys;
734                 else if (parse->sortClause)
735                         parse->query_pathkeys = sort_pathkeys;
736                 else
737                         parse->query_pathkeys = NIL;
738
739                 /*
740                  * Adjust tuple_fraction if we see that we are going to apply
741                  * limiting/grouping/aggregation/etc.  This is not overridable by
742                  * the caller, since it reflects plan actions that this routine
743                  * will certainly take, not assumptions about context.
744                  */
745                 if (parse->limitCount != NULL)
746                 {
747                         /*
748                          * A LIMIT clause limits the absolute number of tuples
749                          * returned. However, if it's not a constant LIMIT then we
750                          * have to punt; for lack of a better idea, assume 10% of the
751                          * plan's result is wanted.
752                          */
753                         double          limit_fraction = 0.0;
754
755                         if (IsA(parse->limitCount, Const))
756                         {
757                                 Const      *limitc = (Const *) parse->limitCount;
758                                 int32           count = DatumGetInt32(limitc->constvalue);
759
760                                 /*
761                                  * A NULL-constant LIMIT represents "LIMIT ALL", which we
762                                  * treat the same as no limit (ie, expect to retrieve all
763                                  * the tuples).
764                                  */
765                                 if (!limitc->constisnull && count > 0)
766                                 {
767                                         limit_fraction = (double) count;
768                                         /* We must also consider the OFFSET, if present */
769                                         if (parse->limitOffset != NULL)
770                                         {
771                                                 if (IsA(parse->limitOffset, Const))
772                                                 {
773                                                         int32           offset;
774
775                                                         limitc = (Const *) parse->limitOffset;
776                                                         offset = DatumGetInt32(limitc->constvalue);
777                                                         if (!limitc->constisnull && offset > 0)
778                                                                 limit_fraction += (double) offset;
779                                                 }
780                                                 else
781                                                 {
782                                                         /* OFFSET is an expression ... punt ... */
783                                                         limit_fraction = 0.10;
784                                                 }
785                                         }
786                                 }
787                         }
788                         else
789                         {
790                                 /* LIMIT is an expression ... punt ... */
791                                 limit_fraction = 0.10;
792                         }
793
794                         if (limit_fraction > 0.0)
795                         {
796                                 /*
797                                  * If we have absolute limits from both caller and LIMIT,
798                                  * use the smaller value; if one is fractional and the
799                                  * other absolute, treat the fraction as a fraction of the
800                                  * absolute value; else we can multiply the two fractions
801                                  * together.
802                                  */
803                                 if (tuple_fraction >= 1.0)
804                                 {
805                                         if (limit_fraction >= 1.0)
806                                         {
807                                                 /* both absolute */
808                                                 tuple_fraction = Min(tuple_fraction, limit_fraction);
809                                         }
810                                         else
811                                         {
812                                                 /* caller absolute, limit fractional */
813                                                 tuple_fraction *= limit_fraction;
814                                                 if (tuple_fraction < 1.0)
815                                                         tuple_fraction = 1.0;
816                                         }
817                                 }
818                                 else if (tuple_fraction > 0.0)
819                                 {
820                                         if (limit_fraction >= 1.0)
821                                         {
822                                                 /* caller fractional, limit absolute */
823                                                 tuple_fraction *= limit_fraction;
824                                                 if (tuple_fraction < 1.0)
825                                                         tuple_fraction = 1.0;
826                                         }
827                                         else
828                                         {
829                                                 /* both fractional */
830                                                 tuple_fraction *= limit_fraction;
831                                         }
832                                 }
833                                 else
834                                 {
835                                         /* no info from caller, just use limit */
836                                         tuple_fraction = limit_fraction;
837                                 }
838                         }
839                 }
840
841                 /*
842                  * With grouping or aggregation, the tuple fraction to pass to
843                  * query_planner() may be different from what it is at top level.
844                  */
845                 sub_tuple_fraction = tuple_fraction;
846
847                 if (parse->groupClause)
848                 {
849                         /*
850                          * In GROUP BY mode, we have the little problem that we don't
851                          * really know how many input tuples will be needed to make a
852                          * group, so we can't translate an output LIMIT count into an
853                          * input count.  For lack of a better idea, assume 25% of the
854                          * input data will be processed if there is any output limit.
855                          * However, if the caller gave us a fraction rather than an
856                          * absolute count, we can keep using that fraction (which
857                          * amounts to assuming that all the groups are about the same
858                          * size).
859                          */
860                         if (sub_tuple_fraction >= 1.0)
861                                 sub_tuple_fraction = 0.25;
862
863                         /*
864                          * If both GROUP BY and ORDER BY are specified, we will need
865                          * two levels of sort --- and, therefore, certainly need to
866                          * read all the input tuples --- unless ORDER BY is a subset
867                          * of GROUP BY.  (We have not yet canonicalized the pathkeys,
868                          * so must use the slower noncanonical comparison method.)
869                          */
870                         if (parse->groupClause && parse->sortClause &&
871                                 !noncanonical_pathkeys_contained_in(sort_pathkeys,
872                                                                                                         group_pathkeys))
873                                 sub_tuple_fraction = 0.0;
874                 }
875                 else if (parse->hasAggs)
876                 {
877                         /*
878                          * Ungrouped aggregate will certainly want all the input
879                          * tuples.
880                          */
881                         sub_tuple_fraction = 0.0;
882                 }
883                 else if (parse->distinctClause)
884                 {
885                         /*
886                          * SELECT DISTINCT, like GROUP, will absorb an unpredictable
887                          * number of input tuples per output tuple.  Handle the same
888                          * way.
889                          */
890                         if (sub_tuple_fraction >= 1.0)
891                                 sub_tuple_fraction = 0.25;
892                 }
893
894                 /*
895                  * Generate the best unsorted and presorted paths for this Query
896                  * (but note there may not be any presorted path).
897                  */
898                 query_planner(parse, sub_tlist, sub_tuple_fraction,
899                                           &cheapest_path, &sorted_path);
900
901                 /*
902                  * We couldn't canonicalize group_pathkeys and sort_pathkeys
903                  * before running query_planner(), so do it now.
904                  */
905                 group_pathkeys = canonicalize_pathkeys(parse, group_pathkeys);
906                 sort_pathkeys = canonicalize_pathkeys(parse, sort_pathkeys);
907
908                 /*
909                  * Consider whether we might want to use hashed grouping.
910                  */
911                 if (parse->groupClause)
912                 {
913                         List       *groupExprs;
914                         double          cheapest_path_rows;
915                         int                     cheapest_path_width;
916
917                         /*
918                          * Beware in this section of the possibility that
919                          * cheapest_path->parent is NULL.  This could happen if user
920                          * does something silly like SELECT 'foo' GROUP BY 1;
921                          */
922                         if (cheapest_path->parent)
923                         {
924                                 cheapest_path_rows = cheapest_path->parent->rows;
925                                 cheapest_path_width = cheapest_path->parent->width;
926                         }
927                         else
928                         {
929                                 cheapest_path_rows = 1; /* assume non-set result */
930                                 cheapest_path_width = 100;              /* arbitrary */
931                         }
932
933                         /*
934                          * Always estimate the number of groups.  We can't do this
935                          * until after running query_planner(), either.
936                          */
937                         groupExprs = get_sortgrouplist_exprs(parse->groupClause,
938                                                                                                  parse->targetList);
939                         dNumGroups = estimate_num_groups(parse,
940                                                                                          groupExprs,
941                                                                                          cheapest_path_rows);
942                         /* Also want it as a long int --- but 'ware overflow! */
943                         numGroups = (long) Min(dNumGroups, (double) LONG_MAX);
944
945                         /*
946                          * Check can't-do-it conditions, including whether the
947                          * grouping operators are hashjoinable.
948                          *
949                          * Executor doesn't support hashed aggregation with DISTINCT
950                          * aggregates.  (Doing so would imply storing *all* the input
951                          * values in the hash table, which seems like a certain
952                          * loser.)
953                          */
954                         if (!enable_hashagg || !hash_safe_grouping(parse))
955                                 use_hashed_grouping = false;
956                         else if (parse->hasAggs &&
957                                          (contain_distinct_agg_clause((Node *) tlist) ||
958                                           contain_distinct_agg_clause(parse->havingQual)))
959                                 use_hashed_grouping = false;
960                         else
961                         {
962                                 /*
963                                  * Use hashed grouping if (a) we think we can fit the
964                                  * hashtable into SortMem, *and* (b) the estimated cost is
965                                  * no more than doing it the other way.  While avoiding
966                                  * the need for sorted input is usually a win, the fact
967                                  * that the output won't be sorted may be a loss; so we
968                                  * need to do an actual cost comparison.
969                                  *
970                                  * In most cases we have no good way to estimate the size of
971                                  * the transition value needed by an aggregate;
972                                  * arbitrarily assume it is 100 bytes.  Also set the
973                                  * overhead per hashtable entry at 64 bytes.
974                                  */
975                                 int                     hashentrysize = cheapest_path_width + 64 + numAggs * 100;
976
977                                 if (hashentrysize * dNumGroups <= SortMem * 1024L)
978                                 {
979                                         /*
980                                          * Okay, do the cost comparison.  We need to consider
981                                          * cheapest_path + hashagg [+ final sort] versus
982                                          * either cheapest_path [+ sort] + group or agg [+
983                                          * final sort] or presorted_path + group or agg [+
984                                          * final sort] where brackets indicate a step that may
985                                          * not be needed. We assume query_planner() will have
986                                          * returned a presorted path only if it's a winner
987                                          * compared to cheapest_path for this purpose.
988                                          *
989                                          * These path variables are dummies that just hold cost
990                                          * fields; we don't make actual Paths for these steps.
991                                          */
992                                         Path            hashed_p;
993                                         Path            sorted_p;
994
995                                         cost_agg(&hashed_p, parse,
996                                                          AGG_HASHED, numAggs,
997                                                          numGroupCols, dNumGroups,
998                                                          cheapest_path->startup_cost,
999                                                          cheapest_path->total_cost,
1000                                                          cheapest_path_rows);
1001                                         /* Result of hashed agg is always unsorted */
1002                                         if (sort_pathkeys)
1003                                                 cost_sort(&hashed_p, parse, sort_pathkeys,
1004                                                                   hashed_p.total_cost,
1005                                                                   dNumGroups,
1006                                                                   cheapest_path_width);
1007
1008                                         if (sorted_path)
1009                                         {
1010                                                 sorted_p.startup_cost = sorted_path->startup_cost;
1011                                                 sorted_p.total_cost = sorted_path->total_cost;
1012                                                 current_pathkeys = sorted_path->pathkeys;
1013                                         }
1014                                         else
1015                                         {
1016                                                 sorted_p.startup_cost = cheapest_path->startup_cost;
1017                                                 sorted_p.total_cost = cheapest_path->total_cost;
1018                                                 current_pathkeys = cheapest_path->pathkeys;
1019                                         }
1020                                         if (!pathkeys_contained_in(group_pathkeys,
1021                                                                                            current_pathkeys))
1022                                         {
1023                                                 cost_sort(&sorted_p, parse, group_pathkeys,
1024                                                                   sorted_p.total_cost,
1025                                                                   cheapest_path_rows,
1026                                                                   cheapest_path_width);
1027                                                 current_pathkeys = group_pathkeys;
1028                                         }
1029                                         if (parse->hasAggs)
1030                                                 cost_agg(&sorted_p, parse,
1031                                                                  AGG_SORTED, numAggs,
1032                                                                  numGroupCols, dNumGroups,
1033                                                                  sorted_p.startup_cost,
1034                                                                  sorted_p.total_cost,
1035                                                                  cheapest_path_rows);
1036                                         else
1037                                                 cost_group(&sorted_p, parse,
1038                                                                    numGroupCols, dNumGroups,
1039                                                                    sorted_p.startup_cost,
1040                                                                    sorted_p.total_cost,
1041                                                                    cheapest_path_rows);
1042                                         /* The Agg or Group node will preserve ordering */
1043                                         if (sort_pathkeys &&
1044                                                 !pathkeys_contained_in(sort_pathkeys,
1045                                                                                            current_pathkeys))
1046                                         {
1047                                                 cost_sort(&sorted_p, parse, sort_pathkeys,
1048                                                                   sorted_p.total_cost,
1049                                                                   dNumGroups,
1050                                                                   cheapest_path_width);
1051                                         }
1052
1053                                         /*
1054                                          * Now make the decision using the top-level tuple
1055                                          * fraction.  First we have to convert an absolute
1056                                          * count (LIMIT) into fractional form.
1057                                          */
1058                                         if (tuple_fraction >= 1.0)
1059                                                 tuple_fraction /= dNumGroups;
1060
1061                                         if (compare_fractional_path_costs(&hashed_p, &sorted_p,
1062                                                                                                           tuple_fraction) < 0)
1063                                         {
1064                                                 /* Hashed is cheaper, so use it */
1065                                                 use_hashed_grouping = true;
1066                                         }
1067                                 }
1068                         }
1069                 }
1070
1071                 /*
1072                  * Select the best path and create a plan to execute it.
1073                  *
1074                  * If we are doing hashed grouping, we will always read all the input
1075                  * tuples, so use the cheapest-total path.      Otherwise, trust
1076                  * query_planner's decision about which to use.
1077                  */
1078                 if (sorted_path && !use_hashed_grouping)
1079                 {
1080                         result_plan = create_plan(parse, sorted_path);
1081                         current_pathkeys = sorted_path->pathkeys;
1082                 }
1083                 else
1084                 {
1085                         result_plan = create_plan(parse, cheapest_path);
1086                         current_pathkeys = cheapest_path->pathkeys;
1087                 }
1088
1089                 /*
1090                  * create_plan() returns a plan with just a "flat" tlist of
1091                  * required Vars.  Usually we need to insert the sub_tlist as the
1092                  * tlist of the top plan node.  However, we can skip that if we
1093                  * determined that whatever query_planner chose to return will be
1094                  * good enough.
1095                  */
1096                 if (need_tlist_eval)
1097                 {
1098                         /*
1099                          * If the top-level plan node is one that cannot do expression
1100                          * evaluation, we must insert a Result node to project the
1101                          * desired tlist. Currently, the only plan node we might see
1102                          * here that falls into that category is Append.
1103                          */
1104                         if (IsA(result_plan, Append))
1105                         {
1106                                 result_plan = (Plan *) make_result(sub_tlist, NULL,
1107                                                                                                    result_plan);
1108                         }
1109                         else
1110                         {
1111                                 /*
1112                                  * Otherwise, just replace the subplan's flat tlist with
1113                                  * the desired tlist.
1114                                  */
1115                                 result_plan->targetlist = sub_tlist;
1116                         }
1117
1118                         /*
1119                          * Also, account for the cost of evaluation of the sub_tlist.
1120                          *
1121                          * Up to now, we have only been dealing with "flat" tlists,
1122                          * containing just Vars.  So their evaluation cost is zero
1123                          * according to the model used by cost_qual_eval() (or if you
1124                          * prefer, the cost is factored into cpu_tuple_cost).  Thus we
1125                          * can avoid accounting for tlist cost throughout
1126                          * query_planner() and subroutines.  But now we've inserted a
1127                          * tlist that might contain actual operators, sub-selects, etc
1128                          * --- so we'd better account for its cost.
1129                          *
1130                          * Below this point, any tlist eval cost for added-on nodes
1131                          * should be accounted for as we create those nodes.
1132                          * Presently, of the node types we can add on, only Agg and
1133                          * Group project new tlists (the rest just copy their input
1134                          * tuples) --- so make_agg() and make_group() are responsible
1135                          * for computing the added cost.
1136                          */
1137                         cost_qual_eval(&tlist_cost, sub_tlist);
1138                         result_plan->startup_cost += tlist_cost.startup;
1139                         result_plan->total_cost += tlist_cost.startup +
1140                                 tlist_cost.per_tuple * result_plan->plan_rows;
1141                 }
1142                 else
1143                 {
1144                         /*
1145                          * Since we're using query_planner's tlist and not the one
1146                          * make_subplanTargetList calculated, we have to refigure any
1147                          * grouping-column indexes make_subplanTargetList computed.
1148                          */
1149                         locate_grouping_columns(parse, tlist, result_plan->targetlist,
1150                                                                         groupColIdx);
1151                 }
1152
1153                 /*
1154                  * Insert AGG or GROUP node if needed, plus an explicit sort step
1155                  * if necessary.
1156                  *
1157                  * HAVING clause, if any, becomes qual of the Agg node
1158                  */
1159                 if (use_hashed_grouping)
1160                 {
1161                         /* Hashed aggregate plan --- no sort needed */
1162                         result_plan = (Plan *) make_agg(parse,
1163                                                                                         tlist,
1164                                                                                         (List *) parse->havingQual,
1165                                                                                         AGG_HASHED,
1166                                                                                         numGroupCols,
1167                                                                                         groupColIdx,
1168                                                                                         numGroups,
1169                                                                                         numAggs,
1170                                                                                         result_plan);
1171                         /* Hashed aggregation produces randomly-ordered results */
1172                         current_pathkeys = NIL;
1173                 }
1174                 else if (parse->hasAggs)
1175                 {
1176                         /* Plain aggregate plan --- sort if needed */
1177                         AggStrategy aggstrategy;
1178
1179                         if (parse->groupClause)
1180                         {
1181                                 if (!pathkeys_contained_in(group_pathkeys, current_pathkeys))
1182                                 {
1183                                         result_plan = (Plan *)
1184                                                 make_sort_from_groupcols(parse,
1185                                                                                                  parse->groupClause,
1186                                                                                                  groupColIdx,
1187                                                                                                  result_plan);
1188                                         current_pathkeys = group_pathkeys;
1189                                 }
1190                                 aggstrategy = AGG_SORTED;
1191
1192                                 /*
1193                                  * The AGG node will not change the sort ordering of its
1194                                  * groups, so current_pathkeys describes the result too.
1195                                  */
1196                         }
1197                         else
1198                         {
1199                                 aggstrategy = AGG_PLAIN;
1200                                 /* Result will be only one row anyway; no sort order */
1201                                 current_pathkeys = NIL;
1202                         }
1203
1204                         result_plan = (Plan *) make_agg(parse,
1205                                                                                         tlist,
1206                                                                                         (List *) parse->havingQual,
1207                                                                                         aggstrategy,
1208                                                                                         numGroupCols,
1209                                                                                         groupColIdx,
1210                                                                                         numGroups,
1211                                                                                         numAggs,
1212                                                                                         result_plan);
1213                 }
1214                 else
1215                 {
1216                         /*
1217                          * If there are no Aggs, we shouldn't have any HAVING qual
1218                          * anymore
1219                          */
1220                         Assert(parse->havingQual == NULL);
1221
1222                         /*
1223                          * If we have a GROUP BY clause, insert a group node (plus the
1224                          * appropriate sort node, if necessary).
1225                          */
1226                         if (parse->groupClause)
1227                         {
1228                                 /*
1229                                  * Add an explicit sort if we couldn't make the path come
1230                                  * out the way the GROUP node needs it.
1231                                  */
1232                                 if (!pathkeys_contained_in(group_pathkeys, current_pathkeys))
1233                                 {
1234                                         result_plan = (Plan *)
1235                                                 make_sort_from_groupcols(parse,
1236                                                                                                  parse->groupClause,
1237                                                                                                  groupColIdx,
1238                                                                                                  result_plan);
1239                                         current_pathkeys = group_pathkeys;
1240                                 }
1241
1242                                 result_plan = (Plan *) make_group(parse,
1243                                                                                                   tlist,
1244                                                                                                   numGroupCols,
1245                                                                                                   groupColIdx,
1246                                                                                                   dNumGroups,
1247                                                                                                   result_plan);
1248                                 /* The Group node won't change sort ordering */
1249                         }
1250                 }
1251         }                                                       /* end of if (setOperations) */
1252
1253         /*
1254          * If we were not able to make the plan come out in the right order,
1255          * add an explicit sort step.
1256          */
1257         if (parse->sortClause)
1258         {
1259                 if (!pathkeys_contained_in(sort_pathkeys, current_pathkeys))
1260                 {
1261                         result_plan = (Plan *)
1262                                 make_sort_from_sortclauses(parse,
1263                                                                                    tlist,
1264                                                                                    result_plan,
1265                                                                                    parse->sortClause);
1266                         current_pathkeys = sort_pathkeys;
1267                 }
1268         }
1269
1270         /*
1271          * If there is a DISTINCT clause, add the UNIQUE node.
1272          */
1273         if (parse->distinctClause)
1274         {
1275                 result_plan = (Plan *) make_unique(tlist, result_plan,
1276                                                                                    parse->distinctClause);
1277
1278                 /*
1279                  * If there was grouping or aggregation, leave plan_rows as-is
1280                  * (ie, assume the result was already mostly unique).  If not,
1281                  * it's reasonable to assume the UNIQUE filter has effects
1282                  * comparable to GROUP BY.
1283                  */
1284                 if (!parse->groupClause && !parse->hasAggs)
1285                 {
1286                         List       *distinctExprs;
1287
1288                         distinctExprs = get_sortgrouplist_exprs(parse->distinctClause,
1289                                                                                                         parse->targetList);
1290                         result_plan->plan_rows = estimate_num_groups(parse,
1291                                                                                                                  distinctExprs,
1292                                                                                                  result_plan->plan_rows);
1293                 }
1294         }
1295
1296         /*
1297          * Finally, if there is a LIMIT/OFFSET clause, add the LIMIT node.
1298          */
1299         if (parse->limitOffset || parse->limitCount)
1300         {
1301                 result_plan = (Plan *) make_limit(tlist, result_plan,
1302                                                                                   parse->limitOffset,
1303                                                                                   parse->limitCount);
1304         }
1305
1306         /*
1307          * Return the actual output ordering in query_pathkeys for possible
1308          * use by an outer query level.
1309          */
1310         parse->query_pathkeys = current_pathkeys;
1311
1312         return result_plan;
1313 }
1314
1315 /*
1316  * hash_safe_grouping - are grouping operators hashable?
1317  *
1318  * We assume hashed aggregation will work if the datatype's equality operator
1319  * is marked hashjoinable.
1320  */
1321 static bool
1322 hash_safe_grouping(Query *parse)
1323 {
1324         List       *gl;
1325
1326         foreach(gl, parse->groupClause)
1327         {
1328                 GroupClause *grpcl = (GroupClause *) lfirst(gl);
1329                 TargetEntry *tle = get_sortgroupclause_tle(grpcl, parse->targetList);
1330                 Operator        optup;
1331                 bool            oprcanhash;
1332
1333                 optup = equality_oper(tle->resdom->restype, true);
1334                 if (!optup)
1335                         return false;
1336                 oprcanhash = ((Form_pg_operator) GETSTRUCT(optup))->oprcanhash;
1337                 ReleaseSysCache(optup);
1338                 if (!oprcanhash)
1339                         return false;
1340         }
1341         return true;
1342 }
1343
1344 /*---------------
1345  * make_subplanTargetList
1346  *        Generate appropriate target list when grouping is required.
1347  *
1348  * When grouping_planner inserts Aggregate or Group plan nodes above
1349  * the result of query_planner, we typically want to pass a different
1350  * target list to query_planner than the outer plan nodes should have.
1351  * This routine generates the correct target list for the subplan.
1352  *
1353  * The initial target list passed from the parser already contains entries
1354  * for all ORDER BY and GROUP BY expressions, but it will not have entries
1355  * for variables used only in HAVING clauses; so we need to add those
1356  * variables to the subplan target list.  Also, if we are doing either
1357  * grouping or aggregation, we flatten all expressions except GROUP BY items
1358  * into their component variables; the other expressions will be computed by
1359  * the inserted nodes rather than by the subplan.  For example,
1360  * given a query like
1361  *              SELECT a+b,SUM(c+d) FROM table GROUP BY a+b;
1362  * we want to pass this targetlist to the subplan:
1363  *              a,b,c,d,a+b
1364  * where the a+b target will be used by the Sort/Group steps, and the
1365  * other targets will be used for computing the final results.  (In the
1366  * above example we could theoretically suppress the a and b targets and
1367  * pass down only c,d,a+b, but it's not really worth the trouble to
1368  * eliminate simple var references from the subplan.  We will avoid doing
1369  * the extra computation to recompute a+b at the outer level; see
1370  * replace_vars_with_subplan_refs() in setrefs.c.)
1371  *
1372  * If we are grouping or aggregating, *and* there are no non-Var grouping
1373  * expressions, then the returned tlist is effectively dummy; we do not
1374  * need to force it to be evaluated, because all the Vars it contains
1375  * should be present in the output of query_planner anyway.
1376  *
1377  * 'parse' is the query being processed.
1378  * 'tlist' is the query's target list.
1379  * 'groupColIdx' receives an array of column numbers for the GROUP BY
1380  *                      expressions (if there are any) in the subplan's target list.
1381  * 'need_tlist_eval' is set true if we really need to evaluate the
1382  *                      result tlist.
1383  *
1384  * The result is the targetlist to be passed to the subplan.
1385  *---------------
1386  */
1387 static List *
1388 make_subplanTargetList(Query *parse,
1389                                            List *tlist,
1390                                            AttrNumber **groupColIdx,
1391                                            bool *need_tlist_eval)
1392 {
1393         List       *sub_tlist;
1394         List       *extravars;
1395         int                     numCols;
1396
1397         *groupColIdx = NULL;
1398
1399         /*
1400          * If we're not grouping or aggregating, nothing to do here;
1401          * query_planner should receive the unmodified target list.
1402          */
1403         if (!parse->hasAggs && !parse->groupClause)
1404         {
1405                 *need_tlist_eval = true;
1406                 return tlist;
1407         }
1408
1409         /*
1410          * Otherwise, start with a "flattened" tlist (having just the vars
1411          * mentioned in the targetlist and HAVING qual --- but not upper-
1412          * level Vars; they will be replaced by Params later on).
1413          */
1414         sub_tlist = flatten_tlist(tlist);
1415         extravars = pull_var_clause(parse->havingQual, false);
1416         sub_tlist = add_to_flat_tlist(sub_tlist, extravars);
1417         freeList(extravars);
1418         *need_tlist_eval = false;       /* only eval if not flat tlist */
1419
1420         /*
1421          * If grouping, create sub_tlist entries for all GROUP BY expressions
1422          * (GROUP BY items that are simple Vars should be in the list
1423          * already), and make an array showing where the group columns are in
1424          * the sub_tlist.
1425          */
1426         numCols = length(parse->groupClause);
1427         if (numCols > 0)
1428         {
1429                 int                     keyno = 0;
1430                 AttrNumber *grpColIdx;
1431                 List       *gl;
1432
1433                 grpColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols);
1434                 *groupColIdx = grpColIdx;
1435
1436                 foreach(gl, parse->groupClause)
1437                 {
1438                         GroupClause *grpcl = (GroupClause *) lfirst(gl);
1439                         Node       *groupexpr = get_sortgroupclause_expr(grpcl, tlist);
1440                         TargetEntry *te = NULL;
1441                         List       *sl;
1442
1443                         /* Find or make a matching sub_tlist entry */
1444                         foreach(sl, sub_tlist)
1445                         {
1446                                 te = (TargetEntry *) lfirst(sl);
1447                                 if (equal(groupexpr, te->expr))
1448                                         break;
1449                         }
1450                         if (!sl)
1451                         {
1452                                 te = makeTargetEntry(makeResdom(length(sub_tlist) + 1,
1453                                                                                                 exprType(groupexpr),
1454                                                                                                 exprTypmod(groupexpr),
1455                                                                                                 NULL,
1456                                                                                                 false),
1457                                                                          (Expr *) groupexpr);
1458                                 sub_tlist = lappend(sub_tlist, te);
1459                                 *need_tlist_eval = true;                /* it's not flat anymore */
1460                         }
1461
1462                         /* and save its resno */
1463                         grpColIdx[keyno++] = te->resdom->resno;
1464                 }
1465         }
1466
1467         return sub_tlist;
1468 }
1469
1470 /*
1471  * locate_grouping_columns
1472  *              Locate grouping columns in the tlist chosen by query_planner.
1473  *
1474  * This is only needed if we don't use the sub_tlist chosen by
1475  * make_subplanTargetList.      We have to forget the column indexes found
1476  * by that routine and re-locate the grouping vars in the real sub_tlist.
1477  */
1478 static void
1479 locate_grouping_columns(Query *parse,
1480                                                 List *tlist,
1481                                                 List *sub_tlist,
1482                                                 AttrNumber *groupColIdx)
1483 {
1484         int                     keyno = 0;
1485         List       *gl;
1486
1487         /*
1488          * No work unless grouping.
1489          */
1490         if (!parse->groupClause)
1491         {
1492                 Assert(groupColIdx == NULL);
1493                 return;
1494         }
1495         Assert(groupColIdx != NULL);
1496
1497         foreach(gl, parse->groupClause)
1498         {
1499                 GroupClause *grpcl = (GroupClause *) lfirst(gl);
1500                 Node       *groupexpr = get_sortgroupclause_expr(grpcl, tlist);
1501                 TargetEntry *te = NULL;
1502                 List       *sl;
1503
1504                 foreach(sl, sub_tlist)
1505                 {
1506                         te = (TargetEntry *) lfirst(sl);
1507                         if (equal(groupexpr, te->expr))
1508                                 break;
1509                 }
1510                 if (!sl)
1511                         elog(ERROR, "failed to locate grouping columns");
1512
1513                 groupColIdx[keyno++] = te->resdom->resno;
1514         }
1515 }
1516
1517 /*
1518  * postprocess_setop_tlist
1519  *        Fix up targetlist returned by plan_set_operations().
1520  *
1521  * We need to transpose sort key info from the orig_tlist into new_tlist.
1522  * NOTE: this would not be good enough if we supported resjunk sort keys
1523  * for results of set operations --- then, we'd need to project a whole
1524  * new tlist to evaluate the resjunk columns.  For now, just ereport if we
1525  * find any resjunk columns in orig_tlist.
1526  */
1527 static List *
1528 postprocess_setop_tlist(List *new_tlist, List *orig_tlist)
1529 {
1530         List       *l;
1531
1532         foreach(l, new_tlist)
1533         {
1534                 TargetEntry *new_tle = (TargetEntry *) lfirst(l);
1535                 TargetEntry *orig_tle;
1536
1537                 /* ignore resjunk columns in setop result */
1538                 if (new_tle->resdom->resjunk)
1539                         continue;
1540
1541                 Assert(orig_tlist != NIL);
1542                 orig_tle = (TargetEntry *) lfirst(orig_tlist);
1543                 orig_tlist = lnext(orig_tlist);
1544                 if (orig_tle->resdom->resjunk)  /* should not happen */
1545                         elog(ERROR, "resjunk output columns are not implemented");
1546                 Assert(new_tle->resdom->resno == orig_tle->resdom->resno);
1547                 Assert(new_tle->resdom->restype == orig_tle->resdom->restype);
1548                 new_tle->resdom->ressortgroupref = orig_tle->resdom->ressortgroupref;
1549         }
1550         if (orig_tlist != NIL)
1551                 elog(ERROR, "resjunk output columns are not implemented");
1552         return new_tlist;
1553 }