]> granicus.if.org Git - postgresql/blob - src/backend/optimizer/plan/planner.c
Fix problems with subselects used in GROUP BY expressions, per gripe
[postgresql] / src / backend / optimizer / plan / planner.c
1 /*-------------------------------------------------------------------------
2  *
3  * planner.c
4  *        The query optimizer external interface.
5  *
6  * Portions Copyright (c) 1996-2001, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  *        $Header: /cvsroot/pgsql/src/backend/optimizer/plan/planner.c,v 1.112 2001/10/30 19:58:58 tgl Exp $
12  *
13  *-------------------------------------------------------------------------
14  */
15
16 #include "postgres.h"
17
18 #include "catalog/pg_type.h"
19 #include "nodes/makefuncs.h"
20 #ifdef OPTIMIZER_DEBUG
21 #include "nodes/print.h"
22 #endif
23 #include "optimizer/clauses.h"
24 #include "optimizer/paths.h"
25 #include "optimizer/planmain.h"
26 #include "optimizer/planner.h"
27 #include "optimizer/prep.h"
28 #include "optimizer/subselect.h"
29 #include "optimizer/tlist.h"
30 #include "optimizer/var.h"
31 #include "parser/analyze.h"
32 #include "parser/parsetree.h"
33 #include "parser/parse_expr.h"
34 #include "rewrite/rewriteManip.h"
35 #include "utils/lsyscache.h"
36
37
38 /* Expression kind codes for preprocess_expression */
39 #define EXPRKIND_TARGET 0
40 #define EXPRKIND_WHERE  1
41 #define EXPRKIND_HAVING 2
42
43
44 static Node *pull_up_subqueries(Query *parse, Node *jtnode);
45 static bool is_simple_subquery(Query *subquery);
46 static void resolvenew_in_jointree(Node *jtnode, int varno, List *subtlist);
47 static Node *preprocess_jointree(Query *parse, Node *jtnode);
48 static Node *preprocess_expression(Query *parse, Node *expr, int kind);
49 static void preprocess_qual_conditions(Query *parse, Node *jtnode);
50 static Plan *inheritance_planner(Query *parse, List *inheritlist);
51 static Plan *grouping_planner(Query *parse, double tuple_fraction);
52 static List *make_subplanTargetList(Query *parse, List *tlist,
53                                            AttrNumber **groupColIdx);
54 static Plan *make_groupplan(Query *parse,
55                            List *group_tlist, bool tuplePerGroup,
56                            List *groupClause, AttrNumber *grpColIdx,
57                            bool is_presorted, Plan *subplan);
58 static List *postprocess_setop_tlist(List *new_tlist, List *orig_tlist);
59
60
61 /*****************************************************************************
62  *
63  *         Query optimizer entry point
64  *
65  *****************************************************************************/
66 Plan *
67 planner(Query *parse)
68 {
69         Plan       *result_plan;
70         Index           save_PlannerQueryLevel;
71         List       *save_PlannerParamVar;
72
73         /*
74          * The planner can be called recursively (an example is when
75          * eval_const_expressions tries to pre-evaluate an SQL function). So,
76          * these global state variables must be saved and restored.
77          *
78          * These vars cannot be moved into the Query structure since their whole
79          * purpose is communication across multiple sub-Queries.
80          *
81          * Note we do NOT save and restore PlannerPlanId: it exists to assign
82          * unique IDs to SubPlan nodes, and we want those IDs to be unique for
83          * the life of a backend.  Also, PlannerInitPlan is saved/restored in
84          * subquery_planner, not here.
85          */
86         save_PlannerQueryLevel = PlannerQueryLevel;
87         save_PlannerParamVar = PlannerParamVar;
88
89         /* Initialize state for handling outer-level references and params */
90         PlannerQueryLevel = 0;          /* will be 1 in top-level subquery_planner */
91         PlannerParamVar = NIL;
92
93         /* primary planning entry point (may recurse for subqueries) */
94         result_plan = subquery_planner(parse, -1.0 /* default case */ );
95
96         Assert(PlannerQueryLevel == 0);
97
98         /* executor wants to know total number of Params used overall */
99         result_plan->nParamExec = length(PlannerParamVar);
100
101         /* final cleanup of the plan */
102         set_plan_references(result_plan);
103
104         /* restore state for outer planner, if any */
105         PlannerQueryLevel = save_PlannerQueryLevel;
106         PlannerParamVar = save_PlannerParamVar;
107
108         return result_plan;
109 }
110
111
112 /*--------------------
113  * subquery_planner
114  *        Invokes the planner on a subquery.  We recurse to here for each
115  *        sub-SELECT found in the query tree.
116  *
117  * parse is the querytree produced by the parser & rewriter.
118  * tuple_fraction is the fraction of tuples we expect will be retrieved.
119  * tuple_fraction is interpreted as explained for grouping_planner, below.
120  *
121  * Basically, this routine does the stuff that should only be done once
122  * per Query object.  It then calls grouping_planner.  At one time,
123  * grouping_planner could be invoked recursively on the same Query object;
124  * that's not currently true, but we keep the separation between the two
125  * routines anyway, in case we need it again someday.
126  *
127  * subquery_planner will be called recursively to handle sub-Query nodes
128  * found within the query's expressions and rangetable.
129  *
130  * Returns a query plan.
131  *--------------------
132  */
133 Plan *
134 subquery_planner(Query *parse, double tuple_fraction)
135 {
136         List       *saved_initplan = PlannerInitPlan;
137         int                     saved_planid = PlannerPlanId;
138         Plan       *plan;
139         List       *newHaving;
140         List       *lst;
141
142         /* Set up for a new level of subquery */
143         PlannerQueryLevel++;
144         PlannerInitPlan = NIL;
145
146 #ifdef ENABLE_KEY_SET_QUERY
147         /* this should go away sometime soon */
148         transformKeySetQuery(parse);
149 #endif
150
151         /*
152          * Check to see if any subqueries in the rangetable can be merged into
153          * this query.
154          */
155         parse->jointree = (FromExpr *)
156                 pull_up_subqueries(parse, (Node *) parse->jointree);
157
158         /*
159          * If so, we may have created opportunities to simplify the jointree.
160          */
161         parse->jointree = (FromExpr *)
162                 preprocess_jointree(parse, (Node *) parse->jointree);
163
164         /*
165          * Do expression preprocessing on targetlist and quals.
166          */
167         parse->targetList = (List *)
168                 preprocess_expression(parse, (Node *) parse->targetList,
169                                                           EXPRKIND_TARGET);
170
171         preprocess_qual_conditions(parse, (Node *) parse->jointree);
172
173         parse->havingQual = preprocess_expression(parse, parse->havingQual,
174                                                                                           EXPRKIND_HAVING);
175
176         /*
177          * Check for ungrouped variables passed to subplans in targetlist and
178          * HAVING clause (but not in WHERE or JOIN/ON clauses, since those are
179          * evaluated before grouping).  We can't do this any earlier because
180          * we must use the preprocessed targetlist for comparisons of grouped
181          * expressions.
182          */
183         if (parse->hasSubLinks &&
184                 (parse->groupClause != NIL || parse->hasAggs))
185                 check_subplans_for_ungrouped_vars(parse);
186
187         /*
188          * A HAVING clause without aggregates is equivalent to a WHERE clause
189          * (except it can only refer to grouped fields).  Transfer any
190          * agg-free clauses of the HAVING qual into WHERE.      This may seem like
191          * wasting cycles to cater to stupidly-written queries, but there are
192          * other reasons for doing it.  Firstly, if the query contains no aggs
193          * at all, then we aren't going to generate an Agg plan node, and so
194          * there'll be no place to execute HAVING conditions; without this
195          * transfer, we'd lose the HAVING condition entirely, which is wrong.
196          * Secondly, when we push down a qual condition into a sub-query, it's
197          * easiest to push the qual into HAVING always, in case it contains
198          * aggs, and then let this code sort it out.
199          *
200          * Note that both havingQual and parse->jointree->quals are in
201          * implicitly-ANDed-list form at this point, even though they are
202          * declared as Node *.  Also note that contain_agg_clause does not
203          * recurse into sub-selects, which is exactly what we need here.
204          */
205         newHaving = NIL;
206         foreach(lst, (List *) parse->havingQual)
207         {
208                 Node       *havingclause = (Node *) lfirst(lst);
209
210                 if (contain_agg_clause(havingclause))
211                         newHaving = lappend(newHaving, havingclause);
212                 else
213                         parse->jointree->quals = (Node *)
214                                 lappend((List *) parse->jointree->quals, havingclause);
215         }
216         parse->havingQual = (Node *) newHaving;
217
218         /*
219          * Do the main planning.  If we have an inherited target relation,
220          * that needs special processing, else go straight to
221          * grouping_planner.
222          */
223         if (parse->resultRelation &&
224          (lst = expand_inherted_rtentry(parse, parse->resultRelation, false))
225                 != NIL)
226                 plan = inheritance_planner(parse, lst);
227         else
228                 plan = grouping_planner(parse, tuple_fraction);
229
230         /*
231          * If any subplans were generated, or if we're inside a subplan, build
232          * subPlan, extParam and locParam lists for plan nodes.
233          */
234         if (PlannerPlanId != saved_planid || PlannerQueryLevel > 1)
235         {
236                 (void) SS_finalize_plan(plan);
237
238                 /*
239                  * At the moment, SS_finalize_plan doesn't handle initPlans and so
240                  * we assign them to the topmost plan node.
241                  */
242                 plan->initPlan = PlannerInitPlan;
243                 /* Must add the initPlans' extParams to the topmost node's, too */
244                 foreach(lst, plan->initPlan)
245                 {
246                         SubPlan    *subplan = (SubPlan *) lfirst(lst);
247
248                         plan->extParam = set_unioni(plan->extParam,
249                                                                                 subplan->plan->extParam);
250                 }
251         }
252
253         /* Return to outer subquery context */
254         PlannerQueryLevel--;
255         PlannerInitPlan = saved_initplan;
256         /* we do NOT restore PlannerPlanId; that's not an oversight! */
257
258         return plan;
259 }
260
261 /*
262  * pull_up_subqueries
263  *              Look for subqueries in the rangetable that can be pulled up into
264  *              the parent query.  If the subquery has no special features like
265  *              grouping/aggregation then we can merge it into the parent's jointree.
266  *
267  * A tricky aspect of this code is that if we pull up a subquery we have
268  * to replace Vars that reference the subquery's outputs throughout the
269  * parent query, including quals attached to jointree nodes above the one
270  * we are currently processing!  We handle this by being careful not to
271  * change the jointree structure while recursing: no nodes other than
272  * subquery RangeTblRef entries will be replaced.  Also, we can't turn
273  * ResolveNew loose on the whole jointree, because it'll return a mutated
274  * copy of the tree; we have to invoke it just on the quals, instead.
275  */
276 static Node *
277 pull_up_subqueries(Query *parse, Node *jtnode)
278 {
279         if (jtnode == NULL)
280                 return NULL;
281         if (IsA(jtnode, RangeTblRef))
282         {
283                 int                     varno = ((RangeTblRef *) jtnode)->rtindex;
284                 RangeTblEntry *rte = rt_fetch(varno, parse->rtable);
285                 Query      *subquery = rte->subquery;
286
287                 /*
288                  * Is this a subquery RTE, and if so, is the subquery simple
289                  * enough to pull up?  (If not, do nothing at this node.)
290                  *
291                  * Note: even if the subquery itself is simple enough, we can't pull
292                  * it up if there is a reference to its whole tuple result.
293                  */
294                 if (subquery && is_simple_subquery(subquery) &&
295                         !contain_whole_tuple_var((Node *) parse, varno, 0))
296                 {
297                         int                     rtoffset;
298                         Node       *subjointree;
299                         List       *subtlist;
300                         List       *l;
301
302                         /*
303                          * First, recursively pull up the subquery's subqueries, so
304                          * that this routine's processing is complete for its jointree
305                          * and rangetable.      NB: if the same subquery is referenced
306                          * from multiple jointree items (which can't happen normally,
307                          * but might after rule rewriting), then we will invoke this
308                          * processing multiple times on that subquery.  OK because
309                          * nothing will happen after the first time.  We do have to be
310                          * careful to copy everything we pull up, however, or risk
311                          * having chunks of structure multiply linked.
312                          */
313                         subquery->jointree = (FromExpr *)
314                                 pull_up_subqueries(subquery, (Node *) subquery->jointree);
315
316                         /*
317                          * Append the subquery's rangetable to mine (currently, no
318                          * adjustments will be needed in the subquery's rtable).
319                          */
320                         rtoffset = length(parse->rtable);
321                         parse->rtable = nconc(parse->rtable,
322                                                                   copyObject(subquery->rtable));
323
324                         /*
325                          * Make copies of the subquery's jointree and targetlist with
326                          * varnos adjusted to match the merged rangetable.
327                          */
328                         subjointree = copyObject(subquery->jointree);
329                         OffsetVarNodes(subjointree, rtoffset, 0);
330                         subtlist = copyObject(subquery->targetList);
331                         OffsetVarNodes((Node *) subtlist, rtoffset, 0);
332
333                         /*
334                          * Replace all of the top query's references to the subquery's
335                          * outputs with copies of the adjusted subtlist items, being
336                          * careful not to replace any of the jointree structure.
337                          */
338                         parse->targetList = (List *)
339                                 ResolveNew((Node *) parse->targetList,
340                                                    varno, 0, subtlist, CMD_SELECT, 0);
341                         resolvenew_in_jointree((Node *) parse->jointree, varno, subtlist);
342                         parse->havingQual =
343                                 ResolveNew(parse->havingQual,
344                                                    varno, 0, subtlist, CMD_SELECT, 0);
345
346                         /*
347                          * Pull up any FOR UPDATE markers, too.
348                          */
349                         foreach(l, subquery->rowMarks)
350                         {
351                                 int                     submark = lfirsti(l);
352
353                                 parse->rowMarks = lappendi(parse->rowMarks,
354                                                                                    submark + rtoffset);
355                         }
356
357                         /*
358                          * Miscellaneous housekeeping.
359                          */
360                         parse->hasSubLinks |= subquery->hasSubLinks;
361                         /* subquery won't be pulled up if it hasAggs, so no work there */
362
363                         /*
364                          * Return the adjusted subquery jointree to replace the
365                          * RangeTblRef entry in my jointree.
366                          */
367                         return subjointree;
368                 }
369         }
370         else if (IsA(jtnode, FromExpr))
371         {
372                 FromExpr   *f = (FromExpr *) jtnode;
373                 List       *l;
374
375                 foreach(l, f->fromlist)
376                         lfirst(l) = pull_up_subqueries(parse, lfirst(l));
377         }
378         else if (IsA(jtnode, JoinExpr))
379         {
380                 JoinExpr   *j = (JoinExpr *) jtnode;
381
382                 /*
383                  * At the moment, we can't pull up subqueries that are inside the
384                  * nullable side of an outer join, because substituting their
385                  * target list entries for upper Var references wouldn't do the
386                  * right thing (the entries wouldn't go to NULL when they're
387                  * supposed to). Suppressing the pullup is an ugly,
388                  * performance-losing hack, but I see no alternative for now. Find
389                  * a better way to handle this when we redesign query trees ---
390                  * tgl 4/30/01.
391                  */
392                 switch (j->jointype)
393                 {
394                         case JOIN_INNER:
395                                 j->larg = pull_up_subqueries(parse, j->larg);
396                                 j->rarg = pull_up_subqueries(parse, j->rarg);
397                                 break;
398                         case JOIN_LEFT:
399                                 j->larg = pull_up_subqueries(parse, j->larg);
400                                 break;
401                         case JOIN_FULL:
402                                 break;
403                         case JOIN_RIGHT:
404                                 j->rarg = pull_up_subqueries(parse, j->rarg);
405                                 break;
406                         case JOIN_UNION:
407
408                                 /*
409                                  * This is where we fail if upper levels of planner
410                                  * haven't rewritten UNION JOIN as an Append ...
411                                  */
412                                 elog(ERROR, "UNION JOIN is not implemented yet");
413                                 break;
414                         default:
415                                 elog(ERROR, "pull_up_subqueries: unexpected join type %d",
416                                          j->jointype);
417                                 break;
418                 }
419         }
420         else
421                 elog(ERROR, "pull_up_subqueries: unexpected node type %d",
422                          nodeTag(jtnode));
423         return jtnode;
424 }
425
426 /*
427  * is_simple_subquery
428  *        Check a subquery in the range table to see if it's simple enough
429  *        to pull up into the parent query.
430  */
431 static bool
432 is_simple_subquery(Query *subquery)
433 {
434         /*
435          * Let's just make sure it's a valid subselect ...
436          */
437         if (!IsA(subquery, Query) ||
438                 subquery->commandType != CMD_SELECT ||
439                 subquery->resultRelation != 0 ||
440                 subquery->into != NULL ||
441                 subquery->isPortal)
442                 elog(ERROR, "is_simple_subquery: subquery is bogus");
443
444         /*
445          * Can't currently pull up a query with setops. Maybe after querytree
446          * redesign...
447          */
448         if (subquery->setOperations)
449                 return false;
450
451         /*
452          * Can't pull up a subquery involving grouping, aggregation, sorting,
453          * or limiting.
454          */
455         if (subquery->hasAggs ||
456                 subquery->groupClause ||
457                 subquery->havingQual ||
458                 subquery->sortClause ||
459                 subquery->distinctClause ||
460                 subquery->limitOffset ||
461                 subquery->limitCount)
462                 return false;
463
464         /*
465          * Hack: don't try to pull up a subquery with an empty jointree.
466          * query_planner() will correctly generate a Result plan for a
467          * jointree that's totally empty, but I don't think the right things
468          * happen if an empty FromExpr appears lower down in a jointree. Not
469          * worth working hard on this, just to collapse SubqueryScan/Result
470          * into Result...
471          */
472         if (subquery->jointree->fromlist == NIL)
473                 return false;
474
475         return true;
476 }
477
478 /*
479  * Helper routine for pull_up_subqueries: do ResolveNew on every expression
480  * in the jointree, without changing the jointree structure itself.  Ugly,
481  * but there's no other way...
482  */
483 static void
484 resolvenew_in_jointree(Node *jtnode, int varno, List *subtlist)
485 {
486         if (jtnode == NULL)
487                 return;
488         if (IsA(jtnode, RangeTblRef))
489         {
490                 /* nothing to do here */
491         }
492         else if (IsA(jtnode, FromExpr))
493         {
494                 FromExpr   *f = (FromExpr *) jtnode;
495                 List       *l;
496
497                 foreach(l, f->fromlist)
498                         resolvenew_in_jointree(lfirst(l), varno, subtlist);
499                 f->quals = ResolveNew(f->quals,
500                                                           varno, 0, subtlist, CMD_SELECT, 0);
501         }
502         else if (IsA(jtnode, JoinExpr))
503         {
504                 JoinExpr   *j = (JoinExpr *) jtnode;
505
506                 resolvenew_in_jointree(j->larg, varno, subtlist);
507                 resolvenew_in_jointree(j->rarg, varno, subtlist);
508                 j->quals = ResolveNew(j->quals,
509                                                           varno, 0, subtlist, CMD_SELECT, 0);
510
511                 /*
512                  * We don't bother to update the colvars list, since it won't be
513                  * used again ...
514                  */
515         }
516         else
517                 elog(ERROR, "resolvenew_in_jointree: unexpected node type %d",
518                          nodeTag(jtnode));
519 }
520
521 /*
522  * preprocess_jointree
523  *              Attempt to simplify a query's jointree.
524  *
525  * If we succeed in pulling up a subquery then we might form a jointree
526  * in which a FromExpr is a direct child of another FromExpr.  In that
527  * case we can consider collapsing the two FromExprs into one.  This is
528  * an optional conversion, since the planner will work correctly either
529  * way.  But we may find a better plan (at the cost of more planning time)
530  * if we merge the two nodes.
531  *
532  * NOTE: don't try to do this in the same jointree scan that does subquery
533  * pullup!      Since we're changing the jointree structure here, that wouldn't
534  * work reliably --- see comments for pull_up_subqueries().
535  */
536 static Node *
537 preprocess_jointree(Query *parse, Node *jtnode)
538 {
539         if (jtnode == NULL)
540                 return NULL;
541         if (IsA(jtnode, RangeTblRef))
542         {
543                 /* nothing to do here... */
544         }
545         else if (IsA(jtnode, FromExpr))
546         {
547                 FromExpr   *f = (FromExpr *) jtnode;
548                 List       *newlist = NIL;
549                 List       *l;
550
551                 foreach(l, f->fromlist)
552                 {
553                         Node       *child = (Node *) lfirst(l);
554
555                         /* Recursively simplify the child... */
556                         child = preprocess_jointree(parse, child);
557                         /* Now, is it a FromExpr? */
558                         if (child && IsA(child, FromExpr))
559                         {
560                                 /*
561                                  * Yes, so do we want to merge it into parent?  Always do
562                                  * so if child has just one element (since that doesn't
563                                  * make the parent's list any longer).  Otherwise we have
564                                  * to be careful about the increase in planning time
565                                  * caused by combining the two join search spaces into
566                                  * one.  Our heuristic is to merge if the merge will
567                                  * produce a join list no longer than GEQO_RELS/2.
568                                  * (Perhaps need an additional user parameter?)
569                                  */
570                                 FromExpr   *subf = (FromExpr *) child;
571                                 int                     childlen = length(subf->fromlist);
572                                 int                     myothers = length(newlist) + length(lnext(l));
573
574                                 if (childlen <= 1 || (childlen + myothers) <= geqo_rels / 2)
575                                 {
576                                         newlist = nconc(newlist, subf->fromlist);
577                                         f->quals = make_and_qual(f->quals, subf->quals);
578                                 }
579                                 else
580                                         newlist = lappend(newlist, child);
581                         }
582                         else
583                                 newlist = lappend(newlist, child);
584                 }
585                 f->fromlist = newlist;
586         }
587         else if (IsA(jtnode, JoinExpr))
588         {
589                 JoinExpr   *j = (JoinExpr *) jtnode;
590
591                 /* Can't usefully change the JoinExpr, but recurse on children */
592                 j->larg = preprocess_jointree(parse, j->larg);
593                 j->rarg = preprocess_jointree(parse, j->rarg);
594         }
595         else
596                 elog(ERROR, "preprocess_jointree: unexpected node type %d",
597                          nodeTag(jtnode));
598         return jtnode;
599 }
600
601 /*
602  * preprocess_expression
603  *              Do subquery_planner's preprocessing work for an expression,
604  *              which can be a targetlist, a WHERE clause (including JOIN/ON
605  *              conditions), or a HAVING clause.
606  */
607 static Node *
608 preprocess_expression(Query *parse, Node *expr, int kind)
609 {
610         /*
611          * Simplify constant expressions.
612          *
613          * Note that at this point quals have not yet been converted to
614          * implicit-AND form, so we can apply eval_const_expressions directly.
615          * Also note that we need to do this before SS_process_sublinks,
616          * because that routine inserts bogus "Const" nodes.
617          */
618         expr = eval_const_expressions(expr);
619
620         /*
621          * If it's a qual or havingQual, canonicalize it, and convert it to
622          * implicit-AND format.
623          *
624          * XXX Is there any value in re-applying eval_const_expressions after
625          * canonicalize_qual?
626          */
627         if (kind != EXPRKIND_TARGET)
628         {
629                 expr = (Node *) canonicalize_qual((Expr *) expr, true);
630
631 #ifdef OPTIMIZER_DEBUG
632                 printf("After canonicalize_qual()\n");
633                 pprint(expr);
634 #endif
635         }
636
637         /* Expand SubLinks to SubPlans */
638         if (parse->hasSubLinks)
639                 expr = SS_process_sublinks(expr);
640
641         /* Replace uplevel vars with Param nodes */
642         if (PlannerQueryLevel > 1)
643                 expr = SS_replace_correlation_vars(expr);
644
645         return expr;
646 }
647
648 /*
649  * preprocess_qual_conditions
650  *              Recursively scan the query's jointree and do subquery_planner's
651  *              preprocessing work on each qual condition found therein.
652  */
653 static void
654 preprocess_qual_conditions(Query *parse, Node *jtnode)
655 {
656         if (jtnode == NULL)
657                 return;
658         if (IsA(jtnode, RangeTblRef))
659         {
660                 /* nothing to do here */
661         }
662         else if (IsA(jtnode, FromExpr))
663         {
664                 FromExpr   *f = (FromExpr *) jtnode;
665                 List       *l;
666
667                 foreach(l, f->fromlist)
668                         preprocess_qual_conditions(parse, lfirst(l));
669
670                 f->quals = preprocess_expression(parse, f->quals, EXPRKIND_WHERE);
671         }
672         else if (IsA(jtnode, JoinExpr))
673         {
674                 JoinExpr   *j = (JoinExpr *) jtnode;
675
676                 preprocess_qual_conditions(parse, j->larg);
677                 preprocess_qual_conditions(parse, j->rarg);
678
679                 j->quals = preprocess_expression(parse, j->quals, EXPRKIND_WHERE);
680         }
681         else
682                 elog(ERROR, "preprocess_qual_conditions: unexpected node type %d",
683                          nodeTag(jtnode));
684 }
685
686 /*--------------------
687  * inheritance_planner
688  *        Generate a plan in the case where the result relation is an
689  *        inheritance set.
690  *
691  * We have to handle this case differently from cases where a source
692  * relation is an inheritance set.      Source inheritance is expanded at
693  * the bottom of the plan tree (see allpaths.c), but target inheritance
694  * has to be expanded at the top.  The reason is that for UPDATE, each
695  * target relation needs a different targetlist matching its own column
696  * set.  (This is not so critical for DELETE, but for simplicity we treat
697  * inherited DELETE the same way.)      Fortunately, the UPDATE/DELETE target
698  * can never be the nullable side of an outer join, so it's OK to generate
699  * the plan this way.
700  *
701  * parse is the querytree produced by the parser & rewriter.
702  * inheritlist is an integer list of RT indexes for the result relation set.
703  *
704  * Returns a query plan.
705  *--------------------
706  */
707 static Plan *
708 inheritance_planner(Query *parse, List *inheritlist)
709 {
710         int                     parentRTindex = parse->resultRelation;
711         Oid                     parentOID = getrelid(parentRTindex, parse->rtable);
712         List       *subplans = NIL;
713         List       *tlist = NIL;
714         List       *l;
715
716         foreach(l, inheritlist)
717         {
718                 int                     childRTindex = lfirsti(l);
719                 Oid                     childOID = getrelid(childRTindex, parse->rtable);
720                 Query      *subquery;
721                 Plan       *subplan;
722
723                 /* Generate modified query with this rel as target */
724                 subquery = (Query *) adjust_inherited_attrs((Node *) parse,
725                                                                                                 parentRTindex, parentOID,
726                                                                                                  childRTindex, childOID);
727                 /* Generate plan */
728                 subplan = grouping_planner(subquery, 0.0 /* retrieve all tuples */ );
729                 subplans = lappend(subplans, subplan);
730                 /* Save preprocessed tlist from first rel for use in Append */
731                 if (tlist == NIL)
732                         tlist = subplan->targetlist;
733         }
734
735         /* Save the target-relations list for the executor, too */
736         parse->resultRelations = inheritlist;
737
738         return (Plan *) make_append(subplans, true, tlist);
739 }
740
741 /*--------------------
742  * grouping_planner
743  *        Perform planning steps related to grouping, aggregation, etc.
744  *        This primarily means adding top-level processing to the basic
745  *        query plan produced by query_planner.
746  *
747  * parse is the querytree produced by the parser & rewriter.
748  * tuple_fraction is the fraction of tuples we expect will be retrieved
749  *
750  * tuple_fraction is interpreted as follows:
751  *        < 0: determine fraction by inspection of query (normal case)
752  *        0: expect all tuples to be retrieved
753  *        0 < tuple_fraction < 1: expect the given fraction of tuples available
754  *              from the plan to be retrieved
755  *        tuple_fraction >= 1: tuple_fraction is the absolute number of tuples
756  *              expected to be retrieved (ie, a LIMIT specification)
757  * The normal case is to pass -1, but some callers pass values >= 0 to
758  * override this routine's determination of the appropriate fraction.
759  *
760  * Returns a query plan.
761  *--------------------
762  */
763 static Plan *
764 grouping_planner(Query *parse, double tuple_fraction)
765 {
766         List       *tlist = parse->targetList;
767         Plan       *result_plan;
768         List       *current_pathkeys;
769         List       *group_pathkeys;
770         List       *sort_pathkeys;
771         AttrNumber *groupColIdx = NULL;
772
773         if (parse->setOperations)
774         {
775                 /*
776                  * Construct the plan for set operations.  The result will not
777                  * need any work except perhaps a top-level sort and/or LIMIT.
778                  */
779                 result_plan = plan_set_operations(parse);
780
781                 /*
782                  * We should not need to call preprocess_targetlist, since we must
783                  * be in a SELECT query node.  Instead, use the targetlist
784                  * returned by plan_set_operations (since this tells whether it
785                  * returned any resjunk columns!), and transfer any sort key
786                  * information from the original tlist.
787                  */
788                 Assert(parse->commandType == CMD_SELECT);
789
790                 tlist = postprocess_setop_tlist(result_plan->targetlist, tlist);
791
792                 /*
793                  * Can't handle FOR UPDATE here (parser should have checked
794                  * already, but let's make sure).
795                  */
796                 if (parse->rowMarks)
797                         elog(ERROR, "SELECT FOR UPDATE is not allowed with UNION/INTERSECT/EXCEPT");
798
799                 /*
800                  * We set current_pathkeys NIL indicating we do not know sort
801                  * order.  This is correct when the top set operation is UNION
802                  * ALL, since the appended-together results are unsorted even if
803                  * the subplans were sorted.  For other set operations we could be
804                  * smarter --- room for future improvement!
805                  */
806                 current_pathkeys = NIL;
807
808                 /*
809                  * Calculate pathkeys that represent grouping/ordering
810                  * requirements (grouping should always be null, but...)
811                  */
812                 group_pathkeys = make_pathkeys_for_sortclauses(parse->groupClause,
813                                                                                                            tlist);
814                 sort_pathkeys = make_pathkeys_for_sortclauses(parse->sortClause,
815                                                                                                           tlist);
816         }
817         else
818         {
819                 List       *sub_tlist;
820
821                 /* Preprocess targetlist in case we are inside an INSERT/UPDATE. */
822                 tlist = preprocess_targetlist(tlist,
823                                                                           parse->commandType,
824                                                                           parse->resultRelation,
825                                                                           parse->rtable);
826
827                 /*
828                  * Add TID targets for rels selected FOR UPDATE (should this be
829                  * done in preprocess_targetlist?).  The executor uses the TID to
830                  * know which rows to lock, much as for UPDATE or DELETE.
831                  */
832                 if (parse->rowMarks)
833                 {
834                         List       *l;
835
836                         /*
837                          * We've got trouble if the FOR UPDATE appears inside
838                          * grouping, since grouping renders a reference to individual
839                          * tuple CTIDs invalid.  This is also checked at parse time,
840                          * but that's insufficient because of rule substitution, query
841                          * pullup, etc.
842                          */
843                         CheckSelectForUpdate(parse);
844
845                         /*
846                          * Currently the executor only supports FOR UPDATE at top
847                          * level
848                          */
849                         if (PlannerQueryLevel > 1)
850                                 elog(ERROR, "SELECT FOR UPDATE is not allowed in subselects");
851
852                         foreach(l, parse->rowMarks)
853                         {
854                                 Index           rti = lfirsti(l);
855                                 char       *resname;
856                                 Resdom     *resdom;
857                                 Var                *var;
858                                 TargetEntry *ctid;
859
860                                 resname = (char *) palloc(32);
861                                 sprintf(resname, "ctid%u", rti);
862                                 resdom = makeResdom(length(tlist) + 1,
863                                                                         TIDOID,
864                                                                         -1,
865                                                                         resname,
866                                                                         true);
867
868                                 var = makeVar(rti,
869                                                           SelfItemPointerAttributeNumber,
870                                                           TIDOID,
871                                                           -1,
872                                                           0);
873
874                                 ctid = makeTargetEntry(resdom, (Node *) var);
875                                 tlist = lappend(tlist, ctid);
876                         }
877                 }
878
879                 /*
880                  * Generate appropriate target list for subplan; may be different
881                  * from tlist if grouping or aggregation is needed.
882                  */
883                 sub_tlist = make_subplanTargetList(parse, tlist, &groupColIdx);
884
885                 /*
886                  * Calculate pathkeys that represent grouping/ordering
887                  * requirements
888                  */
889                 group_pathkeys = make_pathkeys_for_sortclauses(parse->groupClause,
890                                                                                                            tlist);
891                 sort_pathkeys = make_pathkeys_for_sortclauses(parse->sortClause,
892                                                                                                           tlist);
893
894                 /*
895                  * Figure out whether we need a sorted result from query_planner.
896                  *
897                  * If we have a GROUP BY clause, then we want a result sorted
898                  * properly for grouping.  Otherwise, if there is an ORDER BY
899                  * clause, we want to sort by the ORDER BY clause.      (Note: if we
900                  * have both, and ORDER BY is a superset of GROUP BY, it would be
901                  * tempting to request sort by ORDER BY --- but that might just
902                  * leave us failing to exploit an available sort order at all.
903                  * Needs more thought...)
904                  */
905                 if (parse->groupClause)
906                         parse->query_pathkeys = group_pathkeys;
907                 else if (parse->sortClause)
908                         parse->query_pathkeys = sort_pathkeys;
909                 else
910                         parse->query_pathkeys = NIL;
911
912                 /*
913                  * Figure out whether we expect to retrieve all the tuples that
914                  * the plan can generate, or to stop early due to outside factors
915                  * such as a cursor.  If the caller passed a value >= 0, believe
916                  * that value, else do our own examination of the query context.
917                  */
918                 if (tuple_fraction < 0.0)
919                 {
920                         /* Initial assumption is we need all the tuples */
921                         tuple_fraction = 0.0;
922
923                         /*
924                          * Check for retrieve-into-portal, ie DECLARE CURSOR.
925                          *
926                          * We have no real idea how many tuples the user will ultimately
927                          * FETCH from a cursor, but it seems a good bet that he
928                          * doesn't want 'em all.  Optimize for 10% retrieval (you
929                          * gotta better number?  Should this be a SETtable parameter?)
930                          */
931                         if (parse->isPortal)
932                                 tuple_fraction = 0.10;
933                 }
934
935                 /*
936                  * Adjust tuple_fraction if we see that we are going to apply
937                  * limiting/grouping/aggregation/etc.  This is not overridable by
938                  * the caller, since it reflects plan actions that this routine
939                  * will certainly take, not assumptions about context.
940                  */
941                 if (parse->limitCount != NULL)
942                 {
943                         /*
944                          * A LIMIT clause limits the absolute number of tuples
945                          * returned. However, if it's not a constant LIMIT then we
946                          * have to punt; for lack of a better idea, assume 10% of the
947                          * plan's result is wanted.
948                          */
949                         double          limit_fraction = 0.0;
950
951                         if (IsA(parse->limitCount, Const))
952                         {
953                                 Const      *limitc = (Const *) parse->limitCount;
954                                 int32           count = DatumGetInt32(limitc->constvalue);
955
956                                 /*
957                                  * A NULL-constant LIMIT represents "LIMIT ALL", which we
958                                  * treat the same as no limit (ie, expect to retrieve all
959                                  * the tuples).
960                                  */
961                                 if (!limitc->constisnull && count > 0)
962                                 {
963                                         limit_fraction = (double) count;
964                                         /* We must also consider the OFFSET, if present */
965                                         if (parse->limitOffset != NULL)
966                                         {
967                                                 if (IsA(parse->limitOffset, Const))
968                                                 {
969                                                         int32           offset;
970
971                                                         limitc = (Const *) parse->limitOffset;
972                                                         offset = DatumGetInt32(limitc->constvalue);
973                                                         if (!limitc->constisnull && offset > 0)
974                                                                 limit_fraction += (double) offset;
975                                                 }
976                                                 else
977                                                 {
978                                                         /* OFFSET is an expression ... punt ... */
979                                                         limit_fraction = 0.10;
980                                                 }
981                                         }
982                                 }
983                         }
984                         else
985                         {
986                                 /* LIMIT is an expression ... punt ... */
987                                 limit_fraction = 0.10;
988                         }
989
990                         if (limit_fraction > 0.0)
991                         {
992                                 /*
993                                  * If we have absolute limits from both caller and LIMIT,
994                                  * use the smaller value; if one is fractional and the
995                                  * other absolute, treat the fraction as a fraction of the
996                                  * absolute value; else we can multiply the two fractions
997                                  * together.
998                                  */
999                                 if (tuple_fraction >= 1.0)
1000                                 {
1001                                         if (limit_fraction >= 1.0)
1002                                         {
1003                                                 /* both absolute */
1004                                                 tuple_fraction = Min(tuple_fraction, limit_fraction);
1005                                         }
1006                                         else
1007                                         {
1008                                                 /* caller absolute, limit fractional */
1009                                                 tuple_fraction *= limit_fraction;
1010                                                 if (tuple_fraction < 1.0)
1011                                                         tuple_fraction = 1.0;
1012                                         }
1013                                 }
1014                                 else if (tuple_fraction > 0.0)
1015                                 {
1016                                         if (limit_fraction >= 1.0)
1017                                         {
1018                                                 /* caller fractional, limit absolute */
1019                                                 tuple_fraction *= limit_fraction;
1020                                                 if (tuple_fraction < 1.0)
1021                                                         tuple_fraction = 1.0;
1022                                         }
1023                                         else
1024                                         {
1025                                                 /* both fractional */
1026                                                 tuple_fraction *= limit_fraction;
1027                                         }
1028                                 }
1029                                 else
1030                                 {
1031                                         /* no info from caller, just use limit */
1032                                         tuple_fraction = limit_fraction;
1033                                 }
1034                         }
1035                 }
1036
1037                 if (parse->groupClause)
1038                 {
1039                         /*
1040                          * In GROUP BY mode, we have the little problem that we don't
1041                          * really know how many input tuples will be needed to make a
1042                          * group, so we can't translate an output LIMIT count into an
1043                          * input count.  For lack of a better idea, assume 25% of the
1044                          * input data will be processed if there is any output limit.
1045                          * However, if the caller gave us a fraction rather than an
1046                          * absolute count, we can keep using that fraction (which
1047                          * amounts to assuming that all the groups are about the same
1048                          * size).
1049                          */
1050                         if (tuple_fraction >= 1.0)
1051                                 tuple_fraction = 0.25;
1052
1053                         /*
1054                          * If both GROUP BY and ORDER BY are specified, we will need
1055                          * two levels of sort --- and, therefore, certainly need to
1056                          * read all the input tuples --- unless ORDER BY is a subset
1057                          * of GROUP BY.  (We have not yet canonicalized the pathkeys,
1058                          * so must use the slower noncanonical comparison method.)
1059                          */
1060                         if (parse->groupClause && parse->sortClause &&
1061                                 !noncanonical_pathkeys_contained_in(sort_pathkeys,
1062                                                                                                         group_pathkeys))
1063                                 tuple_fraction = 0.0;
1064                 }
1065                 else if (parse->hasAggs)
1066                 {
1067                         /*
1068                          * Ungrouped aggregate will certainly want all the input
1069                          * tuples.
1070                          */
1071                         tuple_fraction = 0.0;
1072                 }
1073                 else if (parse->distinctClause)
1074                 {
1075                         /*
1076                          * SELECT DISTINCT, like GROUP, will absorb an unpredictable
1077                          * number of input tuples per output tuple.  Handle the same
1078                          * way.
1079                          */
1080                         if (tuple_fraction >= 1.0)
1081                                 tuple_fraction = 0.25;
1082                 }
1083
1084                 /* Generate the basic plan for this Query */
1085                 result_plan = query_planner(parse,
1086                                                                         sub_tlist,
1087                                                                         tuple_fraction);
1088
1089                 /*
1090                  * query_planner returns actual sort order (which is not
1091                  * necessarily what we requested) in query_pathkeys.
1092                  */
1093                 current_pathkeys = parse->query_pathkeys;
1094         }
1095
1096         /*
1097          * We couldn't canonicalize group_pathkeys and sort_pathkeys before
1098          * running query_planner(), so do it now.
1099          */
1100         group_pathkeys = canonicalize_pathkeys(parse, group_pathkeys);
1101         sort_pathkeys = canonicalize_pathkeys(parse, sort_pathkeys);
1102
1103         /*
1104          * If we have a GROUP BY clause, insert a group node (plus the
1105          * appropriate sort node, if necessary).
1106          */
1107         if (parse->groupClause)
1108         {
1109                 bool            tuplePerGroup;
1110                 List       *group_tlist;
1111                 bool            is_sorted;
1112
1113                 /*
1114                  * Decide whether how many tuples per group the Group node needs
1115                  * to return. (Needs only one tuple per group if no aggregate is
1116                  * present. Otherwise, need every tuple from the group to do the
1117                  * aggregation.)  Note tuplePerGroup is named backwards :-(
1118                  */
1119                 tuplePerGroup = parse->hasAggs;
1120
1121                 /*
1122                  * If there are aggregates then the Group node should just return
1123                  * the same set of vars as the subplan did.  If there are no aggs
1124                  * then the Group node had better compute the final tlist.
1125                  */
1126                 if (parse->hasAggs)
1127                         group_tlist = new_unsorted_tlist(result_plan->targetlist);
1128                 else
1129                         group_tlist = tlist;
1130
1131                 /*
1132                  * Figure out whether the path result is already ordered the way
1133                  * we need it --- if so, no need for an explicit sort step.
1134                  */
1135                 if (pathkeys_contained_in(group_pathkeys, current_pathkeys))
1136                 {
1137                         is_sorted = true;       /* no sort needed now */
1138                         /* current_pathkeys remains unchanged */
1139                 }
1140                 else
1141                 {
1142                         /*
1143                          * We will need to do an explicit sort by the GROUP BY clause.
1144                          * make_groupplan will do the work, but set current_pathkeys
1145                          * to indicate the resulting order.
1146                          */
1147                         is_sorted = false;
1148                         current_pathkeys = group_pathkeys;
1149                 }
1150
1151                 result_plan = make_groupplan(parse,
1152                                                                          group_tlist,
1153                                                                          tuplePerGroup,
1154                                                                          parse->groupClause,
1155                                                                          groupColIdx,
1156                                                                          is_sorted,
1157                                                                          result_plan);
1158         }
1159
1160         /*
1161          * If aggregate is present, insert the Agg node
1162          *
1163          * HAVING clause, if any, becomes qual of the Agg node
1164          */
1165         if (parse->hasAggs)
1166         {
1167                 result_plan = (Plan *) make_agg(tlist,
1168                                                                                 (List *) parse->havingQual,
1169                                                                                 result_plan);
1170                 /* Note: Agg does not affect any existing sort order of the tuples */
1171         }
1172         else
1173         {
1174                 /* If there are no Aggs, we shouldn't have any HAVING qual anymore */
1175                 Assert(parse->havingQual == NULL);
1176         }
1177
1178         /*
1179          * If we were not able to make the plan come out in the right order,
1180          * add an explicit sort step.
1181          */
1182         if (parse->sortClause)
1183         {
1184                 if (!pathkeys_contained_in(sort_pathkeys, current_pathkeys))
1185                         result_plan = make_sortplan(parse, tlist, result_plan,
1186                                                                                 parse->sortClause);
1187         }
1188
1189         /*
1190          * If there is a DISTINCT clause, add the UNIQUE node.
1191          */
1192         if (parse->distinctClause)
1193         {
1194                 result_plan = (Plan *) make_unique(tlist, result_plan,
1195                                                                                    parse->distinctClause);
1196         }
1197
1198         /*
1199          * Finally, if there is a LIMIT/OFFSET clause, add the LIMIT node.
1200          */
1201         if (parse->limitOffset || parse->limitCount)
1202         {
1203                 result_plan = (Plan *) make_limit(tlist, result_plan,
1204                                                                                   parse->limitOffset,
1205                                                                                   parse->limitCount);
1206         }
1207
1208         return result_plan;
1209 }
1210
1211 /*---------------
1212  * make_subplanTargetList
1213  *        Generate appropriate target list when grouping is required.
1214  *
1215  * When grouping_planner inserts Aggregate and/or Group plan nodes above
1216  * the result of query_planner, we typically want to pass a different
1217  * target list to query_planner than the outer plan nodes should have.
1218  * This routine generates the correct target list for the subplan.
1219  *
1220  * The initial target list passed from the parser already contains entries
1221  * for all ORDER BY and GROUP BY expressions, but it will not have entries
1222  * for variables used only in HAVING clauses; so we need to add those
1223  * variables to the subplan target list.  Also, if we are doing either
1224  * grouping or aggregation, we flatten all expressions except GROUP BY items
1225  * into their component variables; the other expressions will be computed by
1226  * the inserted nodes rather than by the subplan.  For example,
1227  * given a query like
1228  *              SELECT a+b,SUM(c+d) FROM table GROUP BY a+b;
1229  * we want to pass this targetlist to the subplan:
1230  *              a,b,c,d,a+b
1231  * where the a+b target will be used by the Sort/Group steps, and the
1232  * other targets will be used for computing the final results.  (In the
1233  * above example we could theoretically suppress the a and b targets and
1234  * pass down only c,d,a+b, but it's not really worth the trouble to
1235  * eliminate simple var references from the subplan.  We will avoid doing
1236  * the extra computation to recompute a+b at the outer level; see
1237  * replace_vars_with_subplan_refs() in setrefs.c.)
1238  *
1239  * 'parse' is the query being processed.
1240  * 'tlist' is the query's target list.
1241  * 'groupColIdx' receives an array of column numbers for the GROUP BY
1242  * expressions (if there are any) in the subplan's target list.
1243  *
1244  * The result is the targetlist to be passed to the subplan.
1245  *---------------
1246  */
1247 static List *
1248 make_subplanTargetList(Query *parse,
1249                                            List *tlist,
1250                                            AttrNumber **groupColIdx)
1251 {
1252         List       *sub_tlist;
1253         List       *extravars;
1254         int                     numCols;
1255
1256         *groupColIdx = NULL;
1257
1258         /*
1259          * If we're not grouping or aggregating, nothing to do here;
1260          * query_planner should receive the unmodified target list.
1261          */
1262         if (!parse->hasAggs && !parse->groupClause && !parse->havingQual)
1263                 return tlist;
1264
1265         /*
1266          * Otherwise, start with a "flattened" tlist (having just the vars
1267          * mentioned in the targetlist and HAVING qual --- but not upper-
1268          * level Vars; they will be replaced by Params later on).
1269          */
1270         sub_tlist = flatten_tlist(tlist);
1271         extravars = pull_var_clause(parse->havingQual, false);
1272         sub_tlist = add_to_flat_tlist(sub_tlist, extravars);
1273         freeList(extravars);
1274
1275         /*
1276          * If grouping, create sub_tlist entries for all GROUP BY expressions
1277          * (GROUP BY items that are simple Vars should be in the list
1278          * already), and make an array showing where the group columns are in
1279          * the sub_tlist.
1280          */
1281         numCols = length(parse->groupClause);
1282         if (numCols > 0)
1283         {
1284                 int                     keyno = 0;
1285                 AttrNumber *grpColIdx;
1286                 List       *gl;
1287
1288                 grpColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols);
1289                 *groupColIdx = grpColIdx;
1290
1291                 foreach(gl, parse->groupClause)
1292                 {
1293                         GroupClause *grpcl = (GroupClause *) lfirst(gl);
1294                         Node       *groupexpr = get_sortgroupclause_expr(grpcl, tlist);
1295                         TargetEntry *te = NULL;
1296                         List       *sl;
1297
1298                         /* Find or make a matching sub_tlist entry */
1299                         foreach(sl, sub_tlist)
1300                         {
1301                                 te = (TargetEntry *) lfirst(sl);
1302                                 if (equal(groupexpr, te->expr))
1303                                         break;
1304                         }
1305                         if (!sl)
1306                         {
1307                                 te = makeTargetEntry(makeResdom(length(sub_tlist) + 1,
1308                                                                                                 exprType(groupexpr),
1309                                                                                                 exprTypmod(groupexpr),
1310                                                                                                 NULL,
1311                                                                                                 false),
1312                                                                          groupexpr);
1313                                 sub_tlist = lappend(sub_tlist, te);
1314                         }
1315
1316                         /* and save its resno */
1317                         grpColIdx[keyno++] = te->resdom->resno;
1318                 }
1319         }
1320
1321         return sub_tlist;
1322 }
1323
1324 /*
1325  * make_groupplan
1326  *              Add a Group node for GROUP BY processing.
1327  *              If we couldn't make the subplan produce presorted output for grouping,
1328  *              first add an explicit Sort node.
1329  */
1330 static Plan *
1331 make_groupplan(Query *parse,
1332                            List *group_tlist,
1333                            bool tuplePerGroup,
1334                            List *groupClause,
1335                            AttrNumber *grpColIdx,
1336                            bool is_presorted,
1337                            Plan *subplan)
1338 {
1339         int                     numCols = length(groupClause);
1340
1341         if (!is_presorted)
1342         {
1343                 /*
1344                  * The Sort node always just takes a copy of the subplan's tlist
1345                  * plus ordering information.  (This might seem inefficient if the
1346                  * subplan contains complex GROUP BY expressions, but in fact Sort
1347                  * does not evaluate its targetlist --- it only outputs the same
1348                  * tuples in a new order.  So the expressions we might be copying
1349                  * are just dummies with no extra execution cost.)
1350                  */
1351                 List       *sort_tlist = new_unsorted_tlist(subplan->targetlist);
1352                 int                     keyno = 0;
1353                 List       *gl;
1354
1355                 foreach(gl, groupClause)
1356                 {
1357                         GroupClause *grpcl = (GroupClause *) lfirst(gl);
1358                         TargetEntry *te = nth(grpColIdx[keyno] - 1, sort_tlist);
1359                         Resdom     *resdom = te->resdom;
1360
1361                         /*
1362                          * Check for the possibility of duplicate group-by clauses ---
1363                          * the parser should have removed 'em, but the Sort executor
1364                          * will get terribly confused if any get through!
1365                          */
1366                         if (resdom->reskey == 0)
1367                         {
1368                                 /* OK, insert the ordering info needed by the executor. */
1369                                 resdom->reskey = ++keyno;
1370                                 resdom->reskeyop = grpcl->sortop;
1371                         }
1372                 }
1373
1374                 Assert(keyno > 0);
1375
1376                 subplan = (Plan *) make_sort(parse, sort_tlist, subplan, keyno);
1377         }
1378
1379         return (Plan *) make_group(group_tlist, tuplePerGroup, numCols,
1380                                                            grpColIdx, subplan);
1381 }
1382
1383 /*
1384  * make_sortplan
1385  *        Add a Sort node to implement an explicit ORDER BY clause.
1386  */
1387 Plan *
1388 make_sortplan(Query *parse, List *tlist, Plan *plannode, List *sortcls)
1389 {
1390         List       *sort_tlist;
1391         List       *i;
1392         int                     keyno = 0;
1393
1394         /*
1395          * First make a copy of the tlist so that we don't corrupt the
1396          * original.
1397          */
1398         sort_tlist = new_unsorted_tlist(tlist);
1399
1400         foreach(i, sortcls)
1401         {
1402                 SortClause *sortcl = (SortClause *) lfirst(i);
1403                 TargetEntry *tle = get_sortgroupclause_tle(sortcl, sort_tlist);
1404                 Resdom     *resdom = tle->resdom;
1405
1406                 /*
1407                  * Check for the possibility of duplicate order-by clauses --- the
1408                  * parser should have removed 'em, but the executor will get
1409                  * terribly confused if any get through!
1410                  */
1411                 if (resdom->reskey == 0)
1412                 {
1413                         /* OK, insert the ordering info needed by the executor. */
1414                         resdom->reskey = ++keyno;
1415                         resdom->reskeyop = sortcl->sortop;
1416                 }
1417         }
1418
1419         Assert(keyno > 0);
1420
1421         return (Plan *) make_sort(parse, sort_tlist, plannode, keyno);
1422 }
1423
1424 /*
1425  * postprocess_setop_tlist
1426  *        Fix up targetlist returned by plan_set_operations().
1427  *
1428  * We need to transpose sort key info from the orig_tlist into new_tlist.
1429  * NOTE: this would not be good enough if we supported resjunk sort keys
1430  * for results of set operations --- then, we'd need to project a whole
1431  * new tlist to evaluate the resjunk columns.  For now, just elog if we
1432  * find any resjunk columns in orig_tlist.
1433  */
1434 static List *
1435 postprocess_setop_tlist(List *new_tlist, List *orig_tlist)
1436 {
1437         List       *l;
1438
1439         foreach(l, new_tlist)
1440         {
1441                 TargetEntry *new_tle = (TargetEntry *) lfirst(l);
1442                 TargetEntry *orig_tle;
1443
1444                 /* ignore resjunk columns in setop result */
1445                 if (new_tle->resdom->resjunk)
1446                         continue;
1447
1448                 Assert(orig_tlist != NIL);
1449                 orig_tle = (TargetEntry *) lfirst(orig_tlist);
1450                 orig_tlist = lnext(orig_tlist);
1451                 if (orig_tle->resdom->resjunk)
1452                         elog(ERROR, "postprocess_setop_tlist: resjunk output columns not implemented");
1453                 Assert(new_tle->resdom->resno == orig_tle->resdom->resno);
1454                 Assert(new_tle->resdom->restype == orig_tle->resdom->restype);
1455                 new_tle->resdom->ressortgroupref = orig_tle->resdom->ressortgroupref;
1456         }
1457         if (orig_tlist != NIL)
1458                 elog(ERROR, "postprocess_setop_tlist: resjunk output columns not implemented");
1459         return new_tlist;
1460 }