]> granicus.if.org Git - postgresql/blob - src/backend/optimizer/plan/planner.c
Create hooks to let a loadable plugin monitor (or even replace) the planner
[postgresql] / src / backend / optimizer / plan / planner.c
1 /*-------------------------------------------------------------------------
2  *
3  * planner.c
4  *        The query optimizer external interface.
5  *
6  * Portions Copyright (c) 1996-2007, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  *        $PostgreSQL: pgsql/src/backend/optimizer/plan/planner.c,v 1.220 2007/05/25 17:54:25 tgl Exp $
12  *
13  *-------------------------------------------------------------------------
14  */
15
16 #include "postgres.h"
17
18 #include <limits.h>
19
20 #include "catalog/pg_operator.h"
21 #include "executor/executor.h"
22 #include "executor/nodeAgg.h"
23 #include "miscadmin.h"
24 #include "nodes/makefuncs.h"
25 #include "optimizer/clauses.h"
26 #include "optimizer/cost.h"
27 #include "optimizer/pathnode.h"
28 #include "optimizer/paths.h"
29 #include "optimizer/planmain.h"
30 #include "optimizer/planner.h"
31 #include "optimizer/prep.h"
32 #include "optimizer/subselect.h"
33 #include "optimizer/tlist.h"
34 #include "optimizer/var.h"
35 #ifdef OPTIMIZER_DEBUG
36 #include "nodes/print.h"
37 #endif
38 #include "parser/parse_expr.h"
39 #include "parser/parse_oper.h"
40 #include "parser/parsetree.h"
41 #include "utils/lsyscache.h"
42 #include "utils/syscache.h"
43
44
45 /* Hook for plugins to get control in planner() */
46 planner_hook_type planner_hook = NULL;
47
48
49 /* Expression kind codes for preprocess_expression */
50 #define EXPRKIND_QUAL           0
51 #define EXPRKIND_TARGET         1
52 #define EXPRKIND_RTFUNC         2
53 #define EXPRKIND_VALUES         3
54 #define EXPRKIND_LIMIT          4
55 #define EXPRKIND_ININFO         5
56 #define EXPRKIND_APPINFO        6
57
58
59 static Node *preprocess_expression(PlannerInfo *root, Node *expr, int kind);
60 static void preprocess_qual_conditions(PlannerInfo *root, Node *jtnode);
61 static Plan *inheritance_planner(PlannerInfo *root);
62 static Plan *grouping_planner(PlannerInfo *root, double tuple_fraction);
63 static bool is_dummy_plan(Plan *plan);
64 static double preprocess_limit(PlannerInfo *root,
65                                  double tuple_fraction,
66                                  int64 *offset_est, int64 *count_est);
67 static Oid *extract_grouping_ops(List *groupClause);
68 static bool choose_hashed_grouping(PlannerInfo *root,
69                                            double tuple_fraction, double limit_tuples,
70                                            Path *cheapest_path, Path *sorted_path,
71                                            Oid *groupOperators, double dNumGroups,
72                                            AggClauseCounts *agg_counts);
73 static List *make_subplanTargetList(PlannerInfo *root, List *tlist,
74                                            AttrNumber **groupColIdx, bool *need_tlist_eval);
75 static void locate_grouping_columns(PlannerInfo *root,
76                                                 List *tlist,
77                                                 List *sub_tlist,
78                                                 AttrNumber *groupColIdx);
79 static List *postprocess_setop_tlist(List *new_tlist, List *orig_tlist);
80
81
82 /*****************************************************************************
83  *
84  *         Query optimizer entry point
85  *
86  * To support loadable plugins that monitor or modify planner behavior,
87  * we provide a hook variable that lets a plugin get control before and
88  * after the standard planning process.  The plugin would normally call
89  * standard_planner().
90  *
91  * Note to plugin authors: standard_planner() scribbles on its Query input,
92  * so you'd better copy that data structure if you want to plan more than once.
93  *
94  *****************************************************************************/
95 PlannedStmt *
96 planner(Query *parse, int cursorOptions, ParamListInfo boundParams)
97 {
98         PlannedStmt *result;
99
100         if (planner_hook)
101                 result = (*planner_hook) (parse, cursorOptions, boundParams);
102         else
103                 result = standard_planner(parse, cursorOptions, boundParams);
104         return result;
105 }
106
107 PlannedStmt *
108 standard_planner(Query *parse, int cursorOptions, ParamListInfo boundParams)
109 {
110         PlannedStmt *result;
111         PlannerGlobal *glob;
112         double          tuple_fraction;
113         PlannerInfo *root;
114         Plan       *top_plan;
115         ListCell   *lp,
116                            *lr;
117
118         /* Cursor options may come from caller or from DECLARE CURSOR stmt */
119         if (parse->utilityStmt &&
120                 IsA(parse->utilityStmt, DeclareCursorStmt))
121                 cursorOptions |= ((DeclareCursorStmt *) parse->utilityStmt)->options;
122
123         /*
124          * Set up global state for this planner invocation.  This data is needed
125          * across all levels of sub-Query that might exist in the given command,
126          * so we keep it in a separate struct that's linked to by each per-Query
127          * PlannerInfo.
128          */
129         glob = makeNode(PlannerGlobal);
130
131         glob->boundParams = boundParams;
132         glob->paramlist = NIL;
133         glob->subplans = NIL;
134         glob->subrtables = NIL;
135         glob->rewindPlanIDs = NULL;
136         glob->finalrtable = NIL;
137
138         /* Determine what fraction of the plan is likely to be scanned */
139         if (cursorOptions & CURSOR_OPT_FAST_PLAN)
140         {
141                 /*
142                  * We have no real idea how many tuples the user will ultimately FETCH
143                  * from a cursor, but it seems a good bet that he doesn't want 'em
144                  * all.  Optimize for 10% retrieval (you gotta better number?  Should
145                  * this be a SETtable parameter?)
146                  */
147                 tuple_fraction = 0.10;
148         }
149         else
150         {
151                 /* Default assumption is we need all the tuples */
152                 tuple_fraction = 0.0;
153         }
154
155         /* primary planning entry point (may recurse for subqueries) */
156         top_plan = subquery_planner(glob, parse, 1, tuple_fraction, &root);
157
158         /*
159          * If creating a plan for a scrollable cursor, make sure it can run
160          * backwards on demand.  Add a Material node at the top at need.
161          */
162         if (cursorOptions & CURSOR_OPT_SCROLL)
163         {
164                 if (!ExecSupportsBackwardScan(top_plan))
165                         top_plan = materialize_finished_plan(top_plan);
166         }
167
168         /* final cleanup of the plan */
169         Assert(glob->finalrtable == NIL);
170         top_plan = set_plan_references(glob, top_plan, root->parse->rtable);
171         /* ... and the subplans (both regular subplans and initplans) */
172         Assert(list_length(glob->subplans) == list_length(glob->subrtables));
173         forboth(lp, glob->subplans, lr, glob->subrtables)
174         {
175                 Plan   *subplan = (Plan *) lfirst(lp);
176                 List   *subrtable = (List *) lfirst(lr);
177
178                 lfirst(lp) = set_plan_references(glob, subplan, subrtable);
179         }
180
181         /* build the PlannedStmt result */
182         result = makeNode(PlannedStmt);
183
184         result->commandType = parse->commandType;
185         result->canSetTag = parse->canSetTag;
186         result->planTree = top_plan;
187         result->rtable = glob->finalrtable;
188         result->resultRelations = root->resultRelations;
189         result->utilityStmt = parse->utilityStmt;
190         result->intoClause = parse->intoClause;
191         result->subplans = glob->subplans;
192         result->rewindPlanIDs = glob->rewindPlanIDs;
193         result->returningLists = root->returningLists;
194         result->rowMarks = parse->rowMarks;
195         result->nParamExec = list_length(glob->paramlist);
196
197         return result;
198 }
199
200
201 /*--------------------
202  * subquery_planner
203  *        Invokes the planner on a subquery.  We recurse to here for each
204  *        sub-SELECT found in the query tree.
205  *
206  * glob is the global state for the current planner run.
207  * parse is the querytree produced by the parser & rewriter.
208  * level is the current recursion depth (1 at the top-level Query).
209  * tuple_fraction is the fraction of tuples we expect will be retrieved.
210  * tuple_fraction is interpreted as explained for grouping_planner, below.
211  *
212  * If subroot isn't NULL, we pass back the query's final PlannerInfo struct;
213  * among other things this tells the output sort ordering of the plan.
214  *
215  * Basically, this routine does the stuff that should only be done once
216  * per Query object.  It then calls grouping_planner.  At one time,
217  * grouping_planner could be invoked recursively on the same Query object;
218  * that's not currently true, but we keep the separation between the two
219  * routines anyway, in case we need it again someday.
220  *
221  * subquery_planner will be called recursively to handle sub-Query nodes
222  * found within the query's expressions and rangetable.
223  *
224  * Returns a query plan.
225  *--------------------
226  */
227 Plan *
228 subquery_planner(PlannerGlobal *glob, Query *parse,
229                                  Index level, double tuple_fraction,
230                                  PlannerInfo **subroot)
231 {
232         int                     num_old_subplans = list_length(glob->subplans);
233         PlannerInfo *root;
234         Plan       *plan;
235         List       *newHaving;
236         ListCell   *l;
237
238         /* Create a PlannerInfo data structure for this subquery */
239         root = makeNode(PlannerInfo);
240         root->parse = parse;
241         root->glob = glob;
242         root->query_level = level;
243         root->planner_cxt = CurrentMemoryContext;
244         root->init_plans = NIL;
245         root->eq_classes = NIL;
246         root->in_info_list = NIL;
247         root->append_rel_list = NIL;
248
249         /*
250          * Look for IN clauses at the top level of WHERE, and transform them into
251          * joins.  Note that this step only handles IN clauses originally at top
252          * level of WHERE; if we pull up any subqueries in the next step, their
253          * INs are processed just before pulling them up.
254          */
255         if (parse->hasSubLinks)
256                 parse->jointree->quals = pull_up_IN_clauses(root,
257                                                                                                         parse->jointree->quals);
258
259         /*
260          * Check to see if any subqueries in the rangetable can be merged into
261          * this query.
262          */
263         parse->jointree = (FromExpr *)
264                 pull_up_subqueries(root, (Node *) parse->jointree, false, false);
265
266         /*
267          * Detect whether any rangetable entries are RTE_JOIN kind; if not, we can
268          * avoid the expense of doing flatten_join_alias_vars().  Also check for
269          * outer joins --- if none, we can skip reduce_outer_joins() and some
270          * other processing.  This must be done after we have done
271          * pull_up_subqueries, of course.
272          *
273          * Note: if reduce_outer_joins manages to eliminate all outer joins,
274          * root->hasOuterJoins is not reset currently.  This is OK since its
275          * purpose is merely to suppress unnecessary processing in simple cases.
276          */
277         root->hasJoinRTEs = false;
278         root->hasOuterJoins = false;
279         foreach(l, parse->rtable)
280         {
281                 RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
282
283                 if (rte->rtekind == RTE_JOIN)
284                 {
285                         root->hasJoinRTEs = true;
286                         if (IS_OUTER_JOIN(rte->jointype))
287                         {
288                                 root->hasOuterJoins = true;
289                                 /* Can quit scanning once we find an outer join */
290                                 break;
291                         }
292                 }
293         }
294
295         /*
296          * Expand any rangetable entries that are inheritance sets into "append
297          * relations".  This can add entries to the rangetable, but they must be
298          * plain base relations not joins, so it's OK (and marginally more
299          * efficient) to do it after checking for join RTEs.  We must do it after
300          * pulling up subqueries, else we'd fail to handle inherited tables in
301          * subqueries.
302          */
303         expand_inherited_tables(root);
304
305         /*
306          * Set hasHavingQual to remember if HAVING clause is present.  Needed
307          * because preprocess_expression will reduce a constant-true condition to
308          * an empty qual list ... but "HAVING TRUE" is not a semantic no-op.
309          */
310         root->hasHavingQual = (parse->havingQual != NULL);
311
312         /* Clear this flag; might get set in distribute_qual_to_rels */
313         root->hasPseudoConstantQuals = false;
314
315         /*
316          * Do expression preprocessing on targetlist and quals.
317          */
318         parse->targetList = (List *)
319                 preprocess_expression(root, (Node *) parse->targetList,
320                                                           EXPRKIND_TARGET);
321
322         parse->returningList = (List *)
323                 preprocess_expression(root, (Node *) parse->returningList,
324                                                           EXPRKIND_TARGET);
325
326         preprocess_qual_conditions(root, (Node *) parse->jointree);
327
328         parse->havingQual = preprocess_expression(root, parse->havingQual,
329                                                                                           EXPRKIND_QUAL);
330
331         parse->limitOffset = preprocess_expression(root, parse->limitOffset,
332                                                                                            EXPRKIND_LIMIT);
333         parse->limitCount = preprocess_expression(root, parse->limitCount,
334                                                                                           EXPRKIND_LIMIT);
335
336         root->in_info_list = (List *)
337                 preprocess_expression(root, (Node *) root->in_info_list,
338                                                           EXPRKIND_ININFO);
339         root->append_rel_list = (List *)
340                 preprocess_expression(root, (Node *) root->append_rel_list,
341                                                           EXPRKIND_APPINFO);
342
343         /* Also need to preprocess expressions for function and values RTEs */
344         foreach(l, parse->rtable)
345         {
346                 RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
347
348                 if (rte->rtekind == RTE_FUNCTION)
349                         rte->funcexpr = preprocess_expression(root, rte->funcexpr,
350                                                                                                   EXPRKIND_RTFUNC);
351                 else if (rte->rtekind == RTE_VALUES)
352                         rte->values_lists = (List *)
353                                 preprocess_expression(root, (Node *) rte->values_lists,
354                                                                           EXPRKIND_VALUES);
355         }
356
357         /*
358          * In some cases we may want to transfer a HAVING clause into WHERE. We
359          * cannot do so if the HAVING clause contains aggregates (obviously) or
360          * volatile functions (since a HAVING clause is supposed to be executed
361          * only once per group).  Also, it may be that the clause is so expensive
362          * to execute that we're better off doing it only once per group, despite
363          * the loss of selectivity.  This is hard to estimate short of doing the
364          * entire planning process twice, so we use a heuristic: clauses
365          * containing subplans are left in HAVING.      Otherwise, we move or copy the
366          * HAVING clause into WHERE, in hopes of eliminating tuples before
367          * aggregation instead of after.
368          *
369          * If the query has explicit grouping then we can simply move such a
370          * clause into WHERE; any group that fails the clause will not be in the
371          * output because none of its tuples will reach the grouping or
372          * aggregation stage.  Otherwise we must have a degenerate (variable-free)
373          * HAVING clause, which we put in WHERE so that query_planner() can use it
374          * in a gating Result node, but also keep in HAVING to ensure that we
375          * don't emit a bogus aggregated row. (This could be done better, but it
376          * seems not worth optimizing.)
377          *
378          * Note that both havingQual and parse->jointree->quals are in
379          * implicitly-ANDed-list form at this point, even though they are declared
380          * as Node *.
381          */
382         newHaving = NIL;
383         foreach(l, (List *) parse->havingQual)
384         {
385                 Node       *havingclause = (Node *) lfirst(l);
386
387                 if (contain_agg_clause(havingclause) ||
388                         contain_volatile_functions(havingclause) ||
389                         contain_subplans(havingclause))
390                 {
391                         /* keep it in HAVING */
392                         newHaving = lappend(newHaving, havingclause);
393                 }
394                 else if (parse->groupClause)
395                 {
396                         /* move it to WHERE */
397                         parse->jointree->quals = (Node *)
398                                 lappend((List *) parse->jointree->quals, havingclause);
399                 }
400                 else
401                 {
402                         /* put a copy in WHERE, keep it in HAVING */
403                         parse->jointree->quals = (Node *)
404                                 lappend((List *) parse->jointree->quals,
405                                                 copyObject(havingclause));
406                         newHaving = lappend(newHaving, havingclause);
407                 }
408         }
409         parse->havingQual = (Node *) newHaving;
410
411         /*
412          * If we have any outer joins, try to reduce them to plain inner joins.
413          * This step is most easily done after we've done expression
414          * preprocessing.
415          */
416         if (root->hasOuterJoins)
417                 reduce_outer_joins(root);
418
419         /*
420          * Do the main planning.  If we have an inherited target relation, that
421          * needs special processing, else go straight to grouping_planner.
422          */
423         if (parse->resultRelation &&
424                 rt_fetch(parse->resultRelation, parse->rtable)->inh)
425                 plan = inheritance_planner(root);
426         else
427                 plan = grouping_planner(root, tuple_fraction);
428
429         /*
430          * If any subplans were generated, or if we're inside a subplan, build
431          * initPlan list and extParam/allParam sets for plan nodes, and attach the
432          * initPlans to the top plan node.
433          */
434         if (list_length(glob->subplans) != num_old_subplans ||
435                 root->query_level > 1)
436                 SS_finalize_plan(root, plan);
437
438         /* Return internal info if caller wants it */
439         if (subroot)
440                 *subroot = root;
441
442         return plan;
443 }
444
445 /*
446  * preprocess_expression
447  *              Do subquery_planner's preprocessing work for an expression,
448  *              which can be a targetlist, a WHERE clause (including JOIN/ON
449  *              conditions), or a HAVING clause.
450  */
451 static Node *
452 preprocess_expression(PlannerInfo *root, Node *expr, int kind)
453 {
454         /*
455          * Fall out quickly if expression is empty.  This occurs often enough to
456          * be worth checking.  Note that null->null is the correct conversion for
457          * implicit-AND result format, too.
458          */
459         if (expr == NULL)
460                 return NULL;
461
462         /*
463          * If the query has any join RTEs, replace join alias variables with
464          * base-relation variables. We must do this before sublink processing,
465          * else sublinks expanded out from join aliases wouldn't get processed. We
466          * can skip it in VALUES lists, however, since they can't contain any Vars
467          * at all.
468          */
469         if (root->hasJoinRTEs && kind != EXPRKIND_VALUES)
470                 expr = flatten_join_alias_vars(root, expr);
471
472         /*
473          * Simplify constant expressions.
474          *
475          * Note: this also flattens nested AND and OR expressions into N-argument
476          * form.  All processing of a qual expression after this point must be
477          * careful to maintain AND/OR flatness --- that is, do not generate a tree
478          * with AND directly under AND, nor OR directly under OR.
479          *
480          * Because this is a relatively expensive process, we skip it when the
481          * query is trivial, such as "SELECT 2+2;" or "INSERT ... VALUES()". The
482          * expression will only be evaluated once anyway, so no point in
483          * pre-simplifying; we can't execute it any faster than the executor can,
484          * and we will waste cycles copying the tree.  Notice however that we
485          * still must do it for quals (to get AND/OR flatness); and if we are in a
486          * subquery we should not assume it will be done only once.
487          *
488          * For VALUES lists we never do this at all, again on the grounds that we
489          * should optimize for one-time evaluation.
490          */
491         if (kind != EXPRKIND_VALUES &&
492                 (root->parse->jointree->fromlist != NIL ||
493                  kind == EXPRKIND_QUAL ||
494                  root->query_level > 1))
495                 expr = eval_const_expressions(expr);
496
497         /*
498          * If it's a qual or havingQual, canonicalize it.
499          */
500         if (kind == EXPRKIND_QUAL)
501         {
502                 expr = (Node *) canonicalize_qual((Expr *) expr);
503
504 #ifdef OPTIMIZER_DEBUG
505                 printf("After canonicalize_qual()\n");
506                 pprint(expr);
507 #endif
508         }
509
510         /* Expand SubLinks to SubPlans */
511         if (root->parse->hasSubLinks)
512                 expr = SS_process_sublinks(root, expr, (kind == EXPRKIND_QUAL));
513
514         /*
515          * XXX do not insert anything here unless you have grokked the comments in
516          * SS_replace_correlation_vars ...
517          */
518
519         /* Replace uplevel vars with Param nodes (this IS possible in VALUES) */
520         if (root->query_level > 1)
521                 expr = SS_replace_correlation_vars(root, expr);
522
523         /*
524          * If it's a qual or havingQual, convert it to implicit-AND format. (We
525          * don't want to do this before eval_const_expressions, since the latter
526          * would be unable to simplify a top-level AND correctly. Also,
527          * SS_process_sublinks expects explicit-AND format.)
528          */
529         if (kind == EXPRKIND_QUAL)
530                 expr = (Node *) make_ands_implicit((Expr *) expr);
531
532         return expr;
533 }
534
535 /*
536  * preprocess_qual_conditions
537  *              Recursively scan the query's jointree and do subquery_planner's
538  *              preprocessing work on each qual condition found therein.
539  */
540 static void
541 preprocess_qual_conditions(PlannerInfo *root, Node *jtnode)
542 {
543         if (jtnode == NULL)
544                 return;
545         if (IsA(jtnode, RangeTblRef))
546         {
547                 /* nothing to do here */
548         }
549         else if (IsA(jtnode, FromExpr))
550         {
551                 FromExpr   *f = (FromExpr *) jtnode;
552                 ListCell   *l;
553
554                 foreach(l, f->fromlist)
555                         preprocess_qual_conditions(root, lfirst(l));
556
557                 f->quals = preprocess_expression(root, f->quals, EXPRKIND_QUAL);
558         }
559         else if (IsA(jtnode, JoinExpr))
560         {
561                 JoinExpr   *j = (JoinExpr *) jtnode;
562
563                 preprocess_qual_conditions(root, j->larg);
564                 preprocess_qual_conditions(root, j->rarg);
565
566                 j->quals = preprocess_expression(root, j->quals, EXPRKIND_QUAL);
567         }
568         else
569                 elog(ERROR, "unrecognized node type: %d",
570                          (int) nodeTag(jtnode));
571 }
572
573 /*
574  * inheritance_planner
575  *        Generate a plan in the case where the result relation is an
576  *        inheritance set.
577  *
578  * We have to handle this case differently from cases where a source relation
579  * is an inheritance set. Source inheritance is expanded at the bottom of the
580  * plan tree (see allpaths.c), but target inheritance has to be expanded at
581  * the top.  The reason is that for UPDATE, each target relation needs a
582  * different targetlist matching its own column set.  Also, for both UPDATE
583  * and DELETE, the executor needs the Append plan node at the top, else it
584  * can't keep track of which table is the current target table.  Fortunately,
585  * the UPDATE/DELETE target can never be the nullable side of an outer join,
586  * so it's OK to generate the plan this way.
587  *
588  * Returns a query plan.
589  */
590 static Plan *
591 inheritance_planner(PlannerInfo *root)
592 {
593         Query      *parse = root->parse;
594         int                     parentRTindex = parse->resultRelation;
595         List       *subplans = NIL;
596         List       *resultRelations = NIL;
597         List       *returningLists = NIL;
598         List       *rtable = NIL;
599         List       *tlist = NIL;
600         PlannerInfo subroot;
601         ListCell   *l;
602
603         foreach(l, root->append_rel_list)
604         {
605                 AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(l);
606                 Plan       *subplan;
607
608                 /* append_rel_list contains all append rels; ignore others */
609                 if (appinfo->parent_relid != parentRTindex)
610                         continue;
611
612                 /*
613                  * Generate modified query with this rel as target.  We have to be
614                  * prepared to translate varnos in in_info_list as well as in the
615                  * Query proper.
616                  */
617                 memcpy(&subroot, root, sizeof(PlannerInfo));
618                 subroot.parse = (Query *)
619                         adjust_appendrel_attrs((Node *) parse,
620                                                                    appinfo);
621                 subroot.in_info_list = (List *)
622                         adjust_appendrel_attrs((Node *) root->in_info_list,
623                                                                    appinfo);
624                 subroot.init_plans = NIL;
625                 /* There shouldn't be any OJ info to translate, as yet */
626                 Assert(subroot.oj_info_list == NIL);
627
628                 /* Generate plan */
629                 subplan = grouping_planner(&subroot, 0.0 /* retrieve all tuples */ );
630
631                 /*
632                  * If this child rel was excluded by constraint exclusion, exclude it
633                  * from the plan.
634                  */
635                 if (is_dummy_plan(subplan))
636                         continue;
637
638                 /* Save rtable and tlist from first rel for use below */
639                 if (subplans == NIL)
640                 {
641                         rtable = subroot.parse->rtable;
642                         tlist = subplan->targetlist;
643                 }
644
645                 subplans = lappend(subplans, subplan);
646
647                 /* Make sure any initplans from this rel get into the outer list */
648                 root->init_plans = list_concat(root->init_plans, subroot.init_plans);
649
650                 /* Build target-relations list for the executor */
651                 resultRelations = lappend_int(resultRelations, appinfo->child_relid);
652
653                 /* Build list of per-relation RETURNING targetlists */
654                 if (parse->returningList)
655                 {
656                         Assert(list_length(subroot.returningLists) == 1);
657                         returningLists = list_concat(returningLists,
658                                                                                  subroot.returningLists);
659                 }
660         }
661
662         root->resultRelations = resultRelations;
663         root->returningLists = returningLists;
664
665         /* Mark result as unordered (probably unnecessary) */
666         root->query_pathkeys = NIL;
667
668         /*
669          * If we managed to exclude every child rel, return a dummy plan
670          */
671         if (subplans == NIL)
672                 return (Plan *) make_result(root,
673                                                                         tlist,
674                                                                         (Node *) list_make1(makeBoolConst(false,
675                                                                                                                                           false)),
676                                                                         NULL);
677
678         /*
679          * Planning might have modified the rangetable, due to changes of the
680          * Query structures inside subquery RTEs.  We have to ensure that this
681          * gets propagated back to the master copy.  But can't do this until we
682          * are done planning, because all the calls to grouping_planner need
683          * virgin sub-Queries to work from.  (We are effectively assuming that
684          * sub-Queries will get planned identically each time, or at least that
685          * the impacts on their rangetables will be the same each time.)
686          *
687          * XXX should clean this up someday
688          */
689         parse->rtable = rtable;
690
691         /* Suppress Append if there's only one surviving child rel */
692         if (list_length(subplans) == 1)
693                 return (Plan *) linitial(subplans);
694
695         return (Plan *) make_append(subplans, true, tlist);
696 }
697
698 /*--------------------
699  * grouping_planner
700  *        Perform planning steps related to grouping, aggregation, etc.
701  *        This primarily means adding top-level processing to the basic
702  *        query plan produced by query_planner.
703  *
704  * tuple_fraction is the fraction of tuples we expect will be retrieved
705  *
706  * tuple_fraction is interpreted as follows:
707  *        0: expect all tuples to be retrieved (normal case)
708  *        0 < tuple_fraction < 1: expect the given fraction of tuples available
709  *              from the plan to be retrieved
710  *        tuple_fraction >= 1: tuple_fraction is the absolute number of tuples
711  *              expected to be retrieved (ie, a LIMIT specification)
712  *
713  * Returns a query plan.  Also, root->query_pathkeys is returned as the
714  * actual output ordering of the plan (in pathkey format).
715  *--------------------
716  */
717 static Plan *
718 grouping_planner(PlannerInfo *root, double tuple_fraction)
719 {
720         Query      *parse = root->parse;
721         List       *tlist = parse->targetList;
722         int64           offset_est = 0;
723         int64           count_est = 0;
724         double          limit_tuples = -1.0;
725         Plan       *result_plan;
726         List       *current_pathkeys;
727         List       *sort_pathkeys;
728         double          dNumGroups = 0;
729
730         /* Tweak caller-supplied tuple_fraction if have LIMIT/OFFSET */
731         if (parse->limitCount || parse->limitOffset)
732         {
733                 tuple_fraction = preprocess_limit(root, tuple_fraction,
734                                                                                   &offset_est, &count_est);
735                 /*
736                  * If we have a known LIMIT, and don't have an unknown OFFSET,
737                  * we can estimate the effects of using a bounded sort.
738                  */
739                 if (count_est > 0 && offset_est >= 0)
740                         limit_tuples = (double) count_est + (double) offset_est;
741         }
742
743         if (parse->setOperations)
744         {
745                 List       *set_sortclauses;
746
747                 /*
748                  * If there's a top-level ORDER BY, assume we have to fetch all the
749                  * tuples.      This might seem too simplistic given all the hackery below
750                  * to possibly avoid the sort ... but a nonzero tuple_fraction is only
751                  * of use to plan_set_operations() when the setop is UNION ALL, and
752                  * the result of UNION ALL is always unsorted.
753                  */
754                 if (parse->sortClause)
755                         tuple_fraction = 0.0;
756
757                 /*
758                  * Construct the plan for set operations.  The result will not need
759                  * any work except perhaps a top-level sort and/or LIMIT.
760                  */
761                 result_plan = plan_set_operations(root, tuple_fraction,
762                                                                                   &set_sortclauses);
763
764                 /*
765                  * Calculate pathkeys representing the sort order (if any) of the set
766                  * operation's result.  We have to do this before overwriting the sort
767                  * key information...
768                  */
769                 current_pathkeys = make_pathkeys_for_sortclauses(root,
770                                                                                                                  set_sortclauses,
771                                                                                                         result_plan->targetlist,
772                                                                                                                  true);
773
774                 /*
775                  * We should not need to call preprocess_targetlist, since we must be
776                  * in a SELECT query node.      Instead, use the targetlist returned by
777                  * plan_set_operations (since this tells whether it returned any
778                  * resjunk columns!), and transfer any sort key information from the
779                  * original tlist.
780                  */
781                 Assert(parse->commandType == CMD_SELECT);
782
783                 tlist = postprocess_setop_tlist(result_plan->targetlist, tlist);
784
785                 /*
786                  * Can't handle FOR UPDATE/SHARE here (parser should have checked
787                  * already, but let's make sure).
788                  */
789                 if (parse->rowMarks)
790                         ereport(ERROR,
791                                         (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
792                                          errmsg("SELECT FOR UPDATE/SHARE is not allowed with UNION/INTERSECT/EXCEPT")));
793
794                 /*
795                  * Calculate pathkeys that represent result ordering requirements
796                  */
797                 sort_pathkeys = make_pathkeys_for_sortclauses(root,
798                                                                                                           parse->sortClause,
799                                                                                                           tlist,
800                                                                                                           true);
801         }
802         else
803         {
804                 /* No set operations, do regular planning */
805                 List       *sub_tlist;
806                 List       *group_pathkeys;
807                 AttrNumber *groupColIdx = NULL;
808                 Oid                *groupOperators = NULL;
809                 bool            need_tlist_eval = true;
810                 QualCost        tlist_cost;
811                 Path       *cheapest_path;
812                 Path       *sorted_path;
813                 Path       *best_path;
814                 long            numGroups = 0;
815                 AggClauseCounts agg_counts;
816                 int                     numGroupCols = list_length(parse->groupClause);
817                 bool            use_hashed_grouping = false;
818
819                 MemSet(&agg_counts, 0, sizeof(AggClauseCounts));
820
821                 /* Preprocess targetlist */
822                 tlist = preprocess_targetlist(root, tlist);
823
824                 /*
825                  * Generate appropriate target list for subplan; may be different from
826                  * tlist if grouping or aggregation is needed.
827                  */
828                 sub_tlist = make_subplanTargetList(root, tlist,
829                                                                                    &groupColIdx, &need_tlist_eval);
830
831                 /*
832                  * Calculate pathkeys that represent grouping/ordering requirements.
833                  * Stash them in PlannerInfo so that query_planner can canonicalize
834                  * them after EquivalenceClasses have been formed.
835                  */
836                 root->group_pathkeys =
837                         make_pathkeys_for_sortclauses(root,
838                                                                                   parse->groupClause,
839                                                                                   tlist,
840                                                                                   false);
841                 root->sort_pathkeys =
842                         make_pathkeys_for_sortclauses(root,
843                                                                                   parse->sortClause,
844                                                                                   tlist,
845                                                                                   false);
846
847                 /*
848                  * Will need actual number of aggregates for estimating costs.
849                  *
850                  * Note: we do not attempt to detect duplicate aggregates here; a
851                  * somewhat-overestimated count is okay for our present purposes.
852                  *
853                  * Note: think not that we can turn off hasAggs if we find no aggs. It
854                  * is possible for constant-expression simplification to remove all
855                  * explicit references to aggs, but we still have to follow the
856                  * aggregate semantics (eg, producing only one output row).
857                  */
858                 if (parse->hasAggs)
859                 {
860                         count_agg_clauses((Node *) tlist, &agg_counts);
861                         count_agg_clauses(parse->havingQual, &agg_counts);
862                 }
863
864                 /*
865                  * Figure out whether we need a sorted result from query_planner.
866                  *
867                  * If we have a GROUP BY clause, then we want a result sorted properly
868                  * for grouping.  Otherwise, if there is an ORDER BY clause, we want
869                  * to sort by the ORDER BY clause.      (Note: if we have both, and ORDER
870                  * BY is a superset of GROUP BY, it would be tempting to request sort
871                  * by ORDER BY --- but that might just leave us failing to exploit an
872                  * available sort order at all. Needs more thought...)
873                  */
874                 if (parse->groupClause)
875                         root->query_pathkeys = root->group_pathkeys;
876                 else if (parse->sortClause)
877                         root->query_pathkeys = root->sort_pathkeys;
878                 else
879                         root->query_pathkeys = NIL;
880
881                 /*
882                  * Generate the best unsorted and presorted paths for this Query (but
883                  * note there may not be any presorted path).  query_planner will also
884                  * estimate the number of groups in the query, and canonicalize all
885                  * the pathkeys.
886                  */
887                 query_planner(root, sub_tlist, tuple_fraction, limit_tuples,
888                                           &cheapest_path, &sorted_path, &dNumGroups);
889
890                 group_pathkeys = root->group_pathkeys;
891                 sort_pathkeys = root->sort_pathkeys;
892
893                 /*
894                  * If grouping, extract the grouping operators and decide whether we
895                  * want to use hashed grouping.
896                  */
897                 if (parse->groupClause)
898                 {
899                         groupOperators = extract_grouping_ops(parse->groupClause);
900                         use_hashed_grouping =
901                                 choose_hashed_grouping(root, tuple_fraction, limit_tuples,
902                                                                            cheapest_path, sorted_path,
903                                                                            groupOperators, dNumGroups,
904                                                                            &agg_counts);
905
906                         /* Also convert # groups to long int --- but 'ware overflow! */
907                         numGroups = (long) Min(dNumGroups, (double) LONG_MAX);
908                 }
909
910                 /*
911                  * Select the best path.  If we are doing hashed grouping, we will
912                  * always read all the input tuples, so use the cheapest-total path.
913                  * Otherwise, trust query_planner's decision about which to use.
914                  */
915                 if (use_hashed_grouping || !sorted_path)
916                         best_path = cheapest_path;
917                 else
918                         best_path = sorted_path;
919
920                 /*
921                  * Check to see if it's possible to optimize MIN/MAX aggregates. If
922                  * so, we will forget all the work we did so far to choose a "regular"
923                  * path ... but we had to do it anyway to be able to tell which way is
924                  * cheaper.
925                  */
926                 result_plan = optimize_minmax_aggregates(root,
927                                                                                                  tlist,
928                                                                                                  best_path);
929                 if (result_plan != NULL)
930                 {
931                         /*
932                          * optimize_minmax_aggregates generated the full plan, with the
933                          * right tlist, and it has no sort order.
934                          */
935                         current_pathkeys = NIL;
936                 }
937                 else
938                 {
939                         /*
940                          * Normal case --- create a plan according to query_planner's
941                          * results.
942                          */
943                         result_plan = create_plan(root, best_path);
944                         current_pathkeys = best_path->pathkeys;
945
946                         /*
947                          * create_plan() returns a plan with just a "flat" tlist of
948                          * required Vars.  Usually we need to insert the sub_tlist as the
949                          * tlist of the top plan node.  However, we can skip that if we
950                          * determined that whatever query_planner chose to return will be
951                          * good enough.
952                          */
953                         if (need_tlist_eval)
954                         {
955                                 /*
956                                  * If the top-level plan node is one that cannot do expression
957                                  * evaluation, we must insert a Result node to project the
958                                  * desired tlist.
959                                  */
960                                 if (!is_projection_capable_plan(result_plan))
961                                 {
962                                         result_plan = (Plan *) make_result(root,
963                                                                                                            sub_tlist,
964                                                                                                            NULL,
965                                                                                                            result_plan);
966                                 }
967                                 else
968                                 {
969                                         /*
970                                          * Otherwise, just replace the subplan's flat tlist with
971                                          * the desired tlist.
972                                          */
973                                         result_plan->targetlist = sub_tlist;
974                                 }
975
976                                 /*
977                                  * Also, account for the cost of evaluation of the sub_tlist.
978                                  *
979                                  * Up to now, we have only been dealing with "flat" tlists,
980                                  * containing just Vars.  So their evaluation cost is zero
981                                  * according to the model used by cost_qual_eval() (or if you
982                                  * prefer, the cost is factored into cpu_tuple_cost).  Thus we
983                                  * can avoid accounting for tlist cost throughout
984                                  * query_planner() and subroutines.  But now we've inserted a
985                                  * tlist that might contain actual operators, sub-selects, etc
986                                  * --- so we'd better account for its cost.
987                                  *
988                                  * Below this point, any tlist eval cost for added-on nodes
989                                  * should be accounted for as we create those nodes.
990                                  * Presently, of the node types we can add on, only Agg and
991                                  * Group project new tlists (the rest just copy their input
992                                  * tuples) --- so make_agg() and make_group() are responsible
993                                  * for computing the added cost.
994                                  */
995                                 cost_qual_eval(&tlist_cost, sub_tlist, root);
996                                 result_plan->startup_cost += tlist_cost.startup;
997                                 result_plan->total_cost += tlist_cost.startup +
998                                         tlist_cost.per_tuple * result_plan->plan_rows;
999                         }
1000                         else
1001                         {
1002                                 /*
1003                                  * Since we're using query_planner's tlist and not the one
1004                                  * make_subplanTargetList calculated, we have to refigure any
1005                                  * grouping-column indexes make_subplanTargetList computed.
1006                                  */
1007                                 locate_grouping_columns(root, tlist, result_plan->targetlist,
1008                                                                                 groupColIdx);
1009                         }
1010
1011                         /*
1012                          * Insert AGG or GROUP node if needed, plus an explicit sort step
1013                          * if necessary.
1014                          *
1015                          * HAVING clause, if any, becomes qual of the Agg or Group node.
1016                          */
1017                         if (use_hashed_grouping)
1018                         {
1019                                 /* Hashed aggregate plan --- no sort needed */
1020                                 result_plan = (Plan *) make_agg(root,
1021                                                                                                 tlist,
1022                                                                                                 (List *) parse->havingQual,
1023                                                                                                 AGG_HASHED,
1024                                                                                                 numGroupCols,
1025                                                                                                 groupColIdx,
1026                                                                                                 groupOperators,
1027                                                                                                 numGroups,
1028                                                                                                 agg_counts.numAggs,
1029                                                                                                 result_plan);
1030                                 /* Hashed aggregation produces randomly-ordered results */
1031                                 current_pathkeys = NIL;
1032                         }
1033                         else if (parse->hasAggs)
1034                         {
1035                                 /* Plain aggregate plan --- sort if needed */
1036                                 AggStrategy aggstrategy;
1037
1038                                 if (parse->groupClause)
1039                                 {
1040                                         if (!pathkeys_contained_in(group_pathkeys,
1041                                                                                            current_pathkeys))
1042                                         {
1043                                                 result_plan = (Plan *)
1044                                                         make_sort_from_groupcols(root,
1045                                                                                                          parse->groupClause,
1046                                                                                                          groupColIdx,
1047                                                                                                          result_plan);
1048                                                 current_pathkeys = group_pathkeys;
1049                                         }
1050                                         aggstrategy = AGG_SORTED;
1051
1052                                         /*
1053                                          * The AGG node will not change the sort ordering of its
1054                                          * groups, so current_pathkeys describes the result too.
1055                                          */
1056                                 }
1057                                 else
1058                                 {
1059                                         aggstrategy = AGG_PLAIN;
1060                                         /* Result will be only one row anyway; no sort order */
1061                                         current_pathkeys = NIL;
1062                                 }
1063
1064                                 result_plan = (Plan *) make_agg(root,
1065                                                                                                 tlist,
1066                                                                                                 (List *) parse->havingQual,
1067                                                                                                 aggstrategy,
1068                                                                                                 numGroupCols,
1069                                                                                                 groupColIdx,
1070                                                                                                 groupOperators,
1071                                                                                                 numGroups,
1072                                                                                                 agg_counts.numAggs,
1073                                                                                                 result_plan);
1074                         }
1075                         else if (parse->groupClause)
1076                         {
1077                                 /*
1078                                  * GROUP BY without aggregation, so insert a group node (plus
1079                                  * the appropriate sort node, if necessary).
1080                                  *
1081                                  * Add an explicit sort if we couldn't make the path come out
1082                                  * the way the GROUP node needs it.
1083                                  */
1084                                 if (!pathkeys_contained_in(group_pathkeys, current_pathkeys))
1085                                 {
1086                                         result_plan = (Plan *)
1087                                                 make_sort_from_groupcols(root,
1088                                                                                                  parse->groupClause,
1089                                                                                                  groupColIdx,
1090                                                                                                  result_plan);
1091                                         current_pathkeys = group_pathkeys;
1092                                 }
1093
1094                                 result_plan = (Plan *) make_group(root,
1095                                                                                                   tlist,
1096                                                                                                   (List *) parse->havingQual,
1097                                                                                                   numGroupCols,
1098                                                                                                   groupColIdx,
1099                                                                                                   groupOperators,
1100                                                                                                   dNumGroups,
1101                                                                                                   result_plan);
1102                                 /* The Group node won't change sort ordering */
1103                         }
1104                         else if (root->hasHavingQual)
1105                         {
1106                                 /*
1107                                  * No aggregates, and no GROUP BY, but we have a HAVING qual.
1108                                  * This is a degenerate case in which we are supposed to emit
1109                                  * either 0 or 1 row depending on whether HAVING succeeds.
1110                                  * Furthermore, there cannot be any variables in either HAVING
1111                                  * or the targetlist, so we actually do not need the FROM
1112                                  * table at all!  We can just throw away the plan-so-far and
1113                                  * generate a Result node.      This is a sufficiently unusual
1114                                  * corner case that it's not worth contorting the structure of
1115                                  * this routine to avoid having to generate the plan in the
1116                                  * first place.
1117                                  */
1118                                 result_plan = (Plan *) make_result(root,
1119                                                                                                    tlist,
1120                                                                                                    parse->havingQual,
1121                                                                                                    NULL);
1122                         }
1123                 }                                               /* end of non-minmax-aggregate case */
1124         }                                                       /* end of if (setOperations) */
1125
1126         /*
1127          * If we were not able to make the plan come out in the right order, add
1128          * an explicit sort step.
1129          */
1130         if (parse->sortClause)
1131         {
1132                 if (!pathkeys_contained_in(sort_pathkeys, current_pathkeys))
1133                 {
1134                         result_plan = (Plan *) make_sort_from_pathkeys(root,
1135                                                                                                                    result_plan,
1136                                                                                                                    sort_pathkeys,
1137                                                                                                                    limit_tuples);
1138                         current_pathkeys = sort_pathkeys;
1139                 }
1140         }
1141
1142         /*
1143          * If there is a DISTINCT clause, add the UNIQUE node.
1144          */
1145         if (parse->distinctClause)
1146         {
1147                 result_plan = (Plan *) make_unique(result_plan, parse->distinctClause);
1148
1149                 /*
1150                  * If there was grouping or aggregation, leave plan_rows as-is (ie,
1151                  * assume the result was already mostly unique).  If not, use the
1152                  * number of distinct-groups calculated by query_planner.
1153                  */
1154                 if (!parse->groupClause && !root->hasHavingQual && !parse->hasAggs)
1155                         result_plan->plan_rows = dNumGroups;
1156         }
1157
1158         /*
1159          * Finally, if there is a LIMIT/OFFSET clause, add the LIMIT node.
1160          */
1161         if (parse->limitCount || parse->limitOffset)
1162         {
1163                 result_plan = (Plan *) make_limit(result_plan,
1164                                                                                   parse->limitOffset,
1165                                                                                   parse->limitCount,
1166                                                                                   offset_est,
1167                                                                                   count_est);
1168         }
1169
1170         /*
1171          * Deal with the RETURNING clause if any.  It's convenient to pass the
1172          * returningList through setrefs.c now rather than at top level (if we
1173          * waited, handling inherited UPDATE/DELETE would be much harder).
1174          */
1175         if (parse->returningList)
1176         {
1177                 List       *rlist;
1178
1179                 Assert(parse->resultRelation);
1180                 rlist = set_returning_clause_references(parse->returningList,
1181                                                                                                 result_plan,
1182                                                                                                 parse->resultRelation);
1183                 root->returningLists = list_make1(rlist);
1184         }
1185         else
1186                 root->returningLists = NIL;
1187
1188         /* Compute result-relations list if needed */
1189         if (parse->resultRelation)
1190                 root->resultRelations = list_make1_int(parse->resultRelation);
1191         else
1192                 root->resultRelations = NIL;
1193
1194         /*
1195          * Return the actual output ordering in query_pathkeys for possible use by
1196          * an outer query level.
1197          */
1198         root->query_pathkeys = current_pathkeys;
1199
1200         return result_plan;
1201 }
1202
1203 /*
1204  * Detect whether a plan node is a "dummy" plan created when a relation
1205  * is deemed not to need scanning due to constraint exclusion.
1206  *
1207  * Currently, such dummy plans are Result nodes with constant FALSE
1208  * filter quals.
1209  */
1210 static bool
1211 is_dummy_plan(Plan *plan)
1212 {
1213         if (IsA(plan, Result))
1214         {
1215                 List       *rcqual = (List *) ((Result *) plan)->resconstantqual;
1216
1217                 if (list_length(rcqual) == 1)
1218                 {
1219                         Const      *constqual = (Const *) linitial(rcqual);
1220
1221                         if (constqual && IsA(constqual, Const))
1222                         {
1223                                 if (!constqual->constisnull &&
1224                                         !DatumGetBool(constqual->constvalue))
1225                                         return true;
1226                         }
1227                 }
1228         }
1229         return false;
1230 }
1231
1232 /*
1233  * preprocess_limit - do pre-estimation for LIMIT and/or OFFSET clauses
1234  *
1235  * We try to estimate the values of the LIMIT/OFFSET clauses, and pass the
1236  * results back in *count_est and *offset_est.  These variables are set to
1237  * 0 if the corresponding clause is not present, and -1 if it's present
1238  * but we couldn't estimate the value for it.  (The "0" convention is OK
1239  * for OFFSET but a little bit bogus for LIMIT: effectively we estimate
1240  * LIMIT 0 as though it were LIMIT 1.  But this is in line with the planner's
1241  * usual practice of never estimating less than one row.)  These values will
1242  * be passed to make_limit, which see if you change this code.
1243  *
1244  * The return value is the suitably adjusted tuple_fraction to use for
1245  * planning the query.  This adjustment is not overridable, since it reflects
1246  * plan actions that grouping_planner() will certainly take, not assumptions
1247  * about context.
1248  */
1249 static double
1250 preprocess_limit(PlannerInfo *root, double tuple_fraction,
1251                                  int64 *offset_est, int64 *count_est)
1252 {
1253         Query      *parse = root->parse;
1254         Node       *est;
1255         double          limit_fraction;
1256
1257         /* Should not be called unless LIMIT or OFFSET */
1258         Assert(parse->limitCount || parse->limitOffset);
1259
1260         /*
1261          * Try to obtain the clause values.  We use estimate_expression_value
1262          * primarily because it can sometimes do something useful with Params.
1263          */
1264         if (parse->limitCount)
1265         {
1266                 est = estimate_expression_value(root, parse->limitCount);
1267                 if (est && IsA(est, Const))
1268                 {
1269                         if (((Const *) est)->constisnull)
1270                         {
1271                                 /* NULL indicates LIMIT ALL, ie, no limit */
1272                                 *count_est = 0; /* treat as not present */
1273                         }
1274                         else
1275                         {
1276                                 *count_est = DatumGetInt64(((Const *) est)->constvalue);
1277                                 if (*count_est <= 0)
1278                                         *count_est = 1;         /* force to at least 1 */
1279                         }
1280                 }
1281                 else
1282                         *count_est = -1;        /* can't estimate */
1283         }
1284         else
1285                 *count_est = 0;                 /* not present */
1286
1287         if (parse->limitOffset)
1288         {
1289                 est = estimate_expression_value(root, parse->limitOffset);
1290                 if (est && IsA(est, Const))
1291                 {
1292                         if (((Const *) est)->constisnull)
1293                         {
1294                                 /* Treat NULL as no offset; the executor will too */
1295                                 *offset_est = 0;        /* treat as not present */
1296                         }
1297                         else
1298                         {
1299                                 *offset_est = DatumGetInt64(((Const *) est)->constvalue);
1300                                 if (*offset_est < 0)
1301                                         *offset_est = 0;        /* less than 0 is same as 0 */
1302                         }
1303                 }
1304                 else
1305                         *offset_est = -1;       /* can't estimate */
1306         }
1307         else
1308                 *offset_est = 0;                /* not present */
1309
1310         if (*count_est != 0)
1311         {
1312                 /*
1313                  * A LIMIT clause limits the absolute number of tuples returned.
1314                  * However, if it's not a constant LIMIT then we have to guess; for
1315                  * lack of a better idea, assume 10% of the plan's result is wanted.
1316                  */
1317                 if (*count_est < 0 || *offset_est < 0)
1318                 {
1319                         /* LIMIT or OFFSET is an expression ... punt ... */
1320                         limit_fraction = 0.10;
1321                 }
1322                 else
1323                 {
1324                         /* LIMIT (plus OFFSET, if any) is max number of tuples needed */
1325                         limit_fraction = (double) *count_est + (double) *offset_est;
1326                 }
1327
1328                 /*
1329                  * If we have absolute limits from both caller and LIMIT, use the
1330                  * smaller value; likewise if they are both fractional.  If one is
1331                  * fractional and the other absolute, we can't easily determine which
1332                  * is smaller, but we use the heuristic that the absolute will usually
1333                  * be smaller.
1334                  */
1335                 if (tuple_fraction >= 1.0)
1336                 {
1337                         if (limit_fraction >= 1.0)
1338                         {
1339                                 /* both absolute */
1340                                 tuple_fraction = Min(tuple_fraction, limit_fraction);
1341                         }
1342                         else
1343                         {
1344                                 /* caller absolute, limit fractional; use caller's value */
1345                         }
1346                 }
1347                 else if (tuple_fraction > 0.0)
1348                 {
1349                         if (limit_fraction >= 1.0)
1350                         {
1351                                 /* caller fractional, limit absolute; use limit */
1352                                 tuple_fraction = limit_fraction;
1353                         }
1354                         else
1355                         {
1356                                 /* both fractional */
1357                                 tuple_fraction = Min(tuple_fraction, limit_fraction);
1358                         }
1359                 }
1360                 else
1361                 {
1362                         /* no info from caller, just use limit */
1363                         tuple_fraction = limit_fraction;
1364                 }
1365         }
1366         else if (*offset_est != 0 && tuple_fraction > 0.0)
1367         {
1368                 /*
1369                  * We have an OFFSET but no LIMIT.      This acts entirely differently
1370                  * from the LIMIT case: here, we need to increase rather than decrease
1371                  * the caller's tuple_fraction, because the OFFSET acts to cause more
1372                  * tuples to be fetched instead of fewer.  This only matters if we got
1373                  * a tuple_fraction > 0, however.
1374                  *
1375                  * As above, use 10% if OFFSET is present but unestimatable.
1376                  */
1377                 if (*offset_est < 0)
1378                         limit_fraction = 0.10;
1379                 else
1380                         limit_fraction = (double) *offset_est;
1381
1382                 /*
1383                  * If we have absolute counts from both caller and OFFSET, add them
1384                  * together; likewise if they are both fractional.      If one is
1385                  * fractional and the other absolute, we want to take the larger, and
1386                  * we heuristically assume that's the fractional one.
1387                  */
1388                 if (tuple_fraction >= 1.0)
1389                 {
1390                         if (limit_fraction >= 1.0)
1391                         {
1392                                 /* both absolute, so add them together */
1393                                 tuple_fraction += limit_fraction;
1394                         }
1395                         else
1396                         {
1397                                 /* caller absolute, limit fractional; use limit */
1398                                 tuple_fraction = limit_fraction;
1399                         }
1400                 }
1401                 else
1402                 {
1403                         if (limit_fraction >= 1.0)
1404                         {
1405                                 /* caller fractional, limit absolute; use caller's value */
1406                         }
1407                         else
1408                         {
1409                                 /* both fractional, so add them together */
1410                                 tuple_fraction += limit_fraction;
1411                                 if (tuple_fraction >= 1.0)
1412                                         tuple_fraction = 0.0;           /* assume fetch all */
1413                         }
1414                 }
1415         }
1416
1417         return tuple_fraction;
1418 }
1419
1420 /*
1421  * extract_grouping_ops - make an array of the equality operator OIDs
1422  *              for the GROUP BY clause
1423  */
1424 static Oid *
1425 extract_grouping_ops(List *groupClause)
1426 {
1427         int                     numCols = list_length(groupClause);
1428         int                     colno = 0;
1429         Oid                *groupOperators;
1430         ListCell   *glitem;
1431
1432         groupOperators = (Oid *) palloc(sizeof(Oid) * numCols);
1433
1434         foreach(glitem, groupClause)
1435         {
1436                 GroupClause *groupcl = (GroupClause *) lfirst(glitem);
1437
1438                 groupOperators[colno] = get_equality_op_for_ordering_op(groupcl->sortop);
1439                 if (!OidIsValid(groupOperators[colno]))         /* shouldn't happen */
1440                         elog(ERROR, "could not find equality operator for ordering operator %u",
1441                                  groupcl->sortop);
1442                 colno++;
1443         }
1444
1445         return groupOperators;
1446 }
1447
1448 /*
1449  * choose_hashed_grouping - should we use hashed grouping?
1450  */
1451 static bool
1452 choose_hashed_grouping(PlannerInfo *root,
1453                                            double tuple_fraction, double limit_tuples,
1454                                            Path *cheapest_path, Path *sorted_path,
1455                                            Oid *groupOperators, double dNumGroups,
1456                                            AggClauseCounts *agg_counts)
1457 {
1458         int                     numGroupCols = list_length(root->parse->groupClause);
1459         double          cheapest_path_rows;
1460         int                     cheapest_path_width;
1461         Size            hashentrysize;
1462         List       *current_pathkeys;
1463         Path            hashed_p;
1464         Path            sorted_p;
1465         int                     i;
1466
1467         /*
1468          * Check can't-do-it conditions, including whether the grouping operators
1469          * are hashjoinable.  (We assume hashing is OK if they are marked
1470          * oprcanhash.  If there isn't actually a supporting hash function,
1471          * the executor will complain at runtime.)
1472          *
1473          * Executor doesn't support hashed aggregation with DISTINCT aggregates.
1474          * (Doing so would imply storing *all* the input values in the hash table,
1475          * which seems like a certain loser.)
1476          */
1477         if (!enable_hashagg)
1478                 return false;
1479         if (agg_counts->numDistinctAggs != 0)
1480                 return false;
1481         for (i = 0; i < numGroupCols; i++)
1482         {
1483                 if (!op_hashjoinable(groupOperators[i]))
1484                         return false;
1485         }
1486
1487         /*
1488          * Don't do it if it doesn't look like the hashtable will fit into
1489          * work_mem.
1490          *
1491          * Beware here of the possibility that cheapest_path->parent is NULL. This
1492          * could happen if user does something silly like SELECT 'foo' GROUP BY 1;
1493          */
1494         if (cheapest_path->parent)
1495         {
1496                 cheapest_path_rows = cheapest_path->parent->rows;
1497                 cheapest_path_width = cheapest_path->parent->width;
1498         }
1499         else
1500         {
1501                 cheapest_path_rows = 1; /* assume non-set result */
1502                 cheapest_path_width = 100;              /* arbitrary */
1503         }
1504
1505         /* Estimate per-hash-entry space at tuple width... */
1506         hashentrysize = MAXALIGN(cheapest_path_width) + MAXALIGN(sizeof(MinimalTupleData));
1507         /* plus space for pass-by-ref transition values... */
1508         hashentrysize += agg_counts->transitionSpace;
1509         /* plus the per-hash-entry overhead */
1510         hashentrysize += hash_agg_entry_size(agg_counts->numAggs);
1511
1512         if (hashentrysize * dNumGroups > work_mem * 1024L)
1513                 return false;
1514
1515         /*
1516          * See if the estimated cost is no more than doing it the other way. While
1517          * avoiding the need for sorted input is usually a win, the fact that the
1518          * output won't be sorted may be a loss; so we need to do an actual cost
1519          * comparison.
1520          *
1521          * We need to consider cheapest_path + hashagg [+ final sort] versus
1522          * either cheapest_path [+ sort] + group or agg [+ final sort] or
1523          * presorted_path + group or agg [+ final sort] where brackets indicate a
1524          * step that may not be needed. We assume query_planner() will have
1525          * returned a presorted path only if it's a winner compared to
1526          * cheapest_path for this purpose.
1527          *
1528          * These path variables are dummies that just hold cost fields; we don't
1529          * make actual Paths for these steps.
1530          */
1531         cost_agg(&hashed_p, root, AGG_HASHED, agg_counts->numAggs,
1532                          numGroupCols, dNumGroups,
1533                          cheapest_path->startup_cost, cheapest_path->total_cost,
1534                          cheapest_path_rows);
1535         /* Result of hashed agg is always unsorted */
1536         if (root->sort_pathkeys)
1537                 cost_sort(&hashed_p, root, root->sort_pathkeys, hashed_p.total_cost,
1538                                   dNumGroups, cheapest_path_width, limit_tuples);
1539
1540         if (sorted_path)
1541         {
1542                 sorted_p.startup_cost = sorted_path->startup_cost;
1543                 sorted_p.total_cost = sorted_path->total_cost;
1544                 current_pathkeys = sorted_path->pathkeys;
1545         }
1546         else
1547         {
1548                 sorted_p.startup_cost = cheapest_path->startup_cost;
1549                 sorted_p.total_cost = cheapest_path->total_cost;
1550                 current_pathkeys = cheapest_path->pathkeys;
1551         }
1552         if (!pathkeys_contained_in(root->group_pathkeys, current_pathkeys))
1553         {
1554                 cost_sort(&sorted_p, root, root->group_pathkeys, sorted_p.total_cost,
1555                                   cheapest_path_rows, cheapest_path_width, -1.0);
1556                 current_pathkeys = root->group_pathkeys;
1557         }
1558
1559         if (root->parse->hasAggs)
1560                 cost_agg(&sorted_p, root, AGG_SORTED, agg_counts->numAggs,
1561                                  numGroupCols, dNumGroups,
1562                                  sorted_p.startup_cost, sorted_p.total_cost,
1563                                  cheapest_path_rows);
1564         else
1565                 cost_group(&sorted_p, root, numGroupCols, dNumGroups,
1566                                    sorted_p.startup_cost, sorted_p.total_cost,
1567                                    cheapest_path_rows);
1568         /* The Agg or Group node will preserve ordering */
1569         if (root->sort_pathkeys &&
1570                 !pathkeys_contained_in(root->sort_pathkeys, current_pathkeys))
1571                 cost_sort(&sorted_p, root, root->sort_pathkeys, sorted_p.total_cost,
1572                                   dNumGroups, cheapest_path_width, limit_tuples);
1573
1574         /*
1575          * Now make the decision using the top-level tuple fraction.  First we
1576          * have to convert an absolute count (LIMIT) into fractional form.
1577          */
1578         if (tuple_fraction >= 1.0)
1579                 tuple_fraction /= dNumGroups;
1580
1581         if (compare_fractional_path_costs(&hashed_p, &sorted_p,
1582                                                                           tuple_fraction) < 0)
1583         {
1584                 /* Hashed is cheaper, so use it */
1585                 return true;
1586         }
1587         return false;
1588 }
1589
1590 /*---------------
1591  * make_subplanTargetList
1592  *        Generate appropriate target list when grouping is required.
1593  *
1594  * When grouping_planner inserts Aggregate, Group, or Result plan nodes
1595  * above the result of query_planner, we typically want to pass a different
1596  * target list to query_planner than the outer plan nodes should have.
1597  * This routine generates the correct target list for the subplan.
1598  *
1599  * The initial target list passed from the parser already contains entries
1600  * for all ORDER BY and GROUP BY expressions, but it will not have entries
1601  * for variables used only in HAVING clauses; so we need to add those
1602  * variables to the subplan target list.  Also, we flatten all expressions
1603  * except GROUP BY items into their component variables; the other expressions
1604  * will be computed by the inserted nodes rather than by the subplan.
1605  * For example, given a query like
1606  *              SELECT a+b,SUM(c+d) FROM table GROUP BY a+b;
1607  * we want to pass this targetlist to the subplan:
1608  *              a,b,c,d,a+b
1609  * where the a+b target will be used by the Sort/Group steps, and the
1610  * other targets will be used for computing the final results.  (In the
1611  * above example we could theoretically suppress the a and b targets and
1612  * pass down only c,d,a+b, but it's not really worth the trouble to
1613  * eliminate simple var references from the subplan.  We will avoid doing
1614  * the extra computation to recompute a+b at the outer level; see
1615  * fix_upper_expr() in setrefs.c.)
1616  *
1617  * If we are grouping or aggregating, *and* there are no non-Var grouping
1618  * expressions, then the returned tlist is effectively dummy; we do not
1619  * need to force it to be evaluated, because all the Vars it contains
1620  * should be present in the output of query_planner anyway.
1621  *
1622  * 'tlist' is the query's target list.
1623  * 'groupColIdx' receives an array of column numbers for the GROUP BY
1624  *                      expressions (if there are any) in the subplan's target list.
1625  * 'need_tlist_eval' is set true if we really need to evaluate the
1626  *                      result tlist.
1627  *
1628  * The result is the targetlist to be passed to the subplan.
1629  *---------------
1630  */
1631 static List *
1632 make_subplanTargetList(PlannerInfo *root,
1633                                            List *tlist,
1634                                            AttrNumber **groupColIdx,
1635                                            bool *need_tlist_eval)
1636 {
1637         Query      *parse = root->parse;
1638         List       *sub_tlist;
1639         List       *extravars;
1640         int                     numCols;
1641
1642         *groupColIdx = NULL;
1643
1644         /*
1645          * If we're not grouping or aggregating, there's nothing to do here;
1646          * query_planner should receive the unmodified target list.
1647          */
1648         if (!parse->hasAggs && !parse->groupClause && !root->hasHavingQual)
1649         {
1650                 *need_tlist_eval = true;
1651                 return tlist;
1652         }
1653
1654         /*
1655          * Otherwise, start with a "flattened" tlist (having just the vars
1656          * mentioned in the targetlist and HAVING qual --- but not upper- level
1657          * Vars; they will be replaced by Params later on).
1658          */
1659         sub_tlist = flatten_tlist(tlist);
1660         extravars = pull_var_clause(parse->havingQual, false);
1661         sub_tlist = add_to_flat_tlist(sub_tlist, extravars);
1662         list_free(extravars);
1663         *need_tlist_eval = false;       /* only eval if not flat tlist */
1664
1665         /*
1666          * If grouping, create sub_tlist entries for all GROUP BY expressions
1667          * (GROUP BY items that are simple Vars should be in the list already),
1668          * and make an array showing where the group columns are in the sub_tlist.
1669          */
1670         numCols = list_length(parse->groupClause);
1671         if (numCols > 0)
1672         {
1673                 int                     keyno = 0;
1674                 AttrNumber *grpColIdx;
1675                 ListCell   *gl;
1676
1677                 grpColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols);
1678                 *groupColIdx = grpColIdx;
1679
1680                 foreach(gl, parse->groupClause)
1681                 {
1682                         GroupClause *grpcl = (GroupClause *) lfirst(gl);
1683                         Node       *groupexpr = get_sortgroupclause_expr(grpcl, tlist);
1684                         TargetEntry *te = NULL;
1685                         ListCell   *sl;
1686
1687                         /* Find or make a matching sub_tlist entry */
1688                         foreach(sl, sub_tlist)
1689                         {
1690                                 te = (TargetEntry *) lfirst(sl);
1691                                 if (equal(groupexpr, te->expr))
1692                                         break;
1693                         }
1694                         if (!sl)
1695                         {
1696                                 te = makeTargetEntry((Expr *) groupexpr,
1697                                                                          list_length(sub_tlist) + 1,
1698                                                                          NULL,
1699                                                                          false);
1700                                 sub_tlist = lappend(sub_tlist, te);
1701                                 *need_tlist_eval = true;                /* it's not flat anymore */
1702                         }
1703
1704                         /* and save its resno */
1705                         grpColIdx[keyno++] = te->resno;
1706                 }
1707         }
1708
1709         return sub_tlist;
1710 }
1711
1712 /*
1713  * locate_grouping_columns
1714  *              Locate grouping columns in the tlist chosen by query_planner.
1715  *
1716  * This is only needed if we don't use the sub_tlist chosen by
1717  * make_subplanTargetList.      We have to forget the column indexes found
1718  * by that routine and re-locate the grouping vars in the real sub_tlist.
1719  */
1720 static void
1721 locate_grouping_columns(PlannerInfo *root,
1722                                                 List *tlist,
1723                                                 List *sub_tlist,
1724                                                 AttrNumber *groupColIdx)
1725 {
1726         int                     keyno = 0;
1727         ListCell   *gl;
1728
1729         /*
1730          * No work unless grouping.
1731          */
1732         if (!root->parse->groupClause)
1733         {
1734                 Assert(groupColIdx == NULL);
1735                 return;
1736         }
1737         Assert(groupColIdx != NULL);
1738
1739         foreach(gl, root->parse->groupClause)
1740         {
1741                 GroupClause *grpcl = (GroupClause *) lfirst(gl);
1742                 Node       *groupexpr = get_sortgroupclause_expr(grpcl, tlist);
1743                 TargetEntry *te = NULL;
1744                 ListCell   *sl;
1745
1746                 foreach(sl, sub_tlist)
1747                 {
1748                         te = (TargetEntry *) lfirst(sl);
1749                         if (equal(groupexpr, te->expr))
1750                                 break;
1751                 }
1752                 if (!sl)
1753                         elog(ERROR, "failed to locate grouping columns");
1754
1755                 groupColIdx[keyno++] = te->resno;
1756         }
1757 }
1758
1759 /*
1760  * postprocess_setop_tlist
1761  *        Fix up targetlist returned by plan_set_operations().
1762  *
1763  * We need to transpose sort key info from the orig_tlist into new_tlist.
1764  * NOTE: this would not be good enough if we supported resjunk sort keys
1765  * for results of set operations --- then, we'd need to project a whole
1766  * new tlist to evaluate the resjunk columns.  For now, just ereport if we
1767  * find any resjunk columns in orig_tlist.
1768  */
1769 static List *
1770 postprocess_setop_tlist(List *new_tlist, List *orig_tlist)
1771 {
1772         ListCell   *l;
1773         ListCell   *orig_tlist_item = list_head(orig_tlist);
1774
1775         foreach(l, new_tlist)
1776         {
1777                 TargetEntry *new_tle = (TargetEntry *) lfirst(l);
1778                 TargetEntry *orig_tle;
1779
1780                 /* ignore resjunk columns in setop result */
1781                 if (new_tle->resjunk)
1782                         continue;
1783
1784                 Assert(orig_tlist_item != NULL);
1785                 orig_tle = (TargetEntry *) lfirst(orig_tlist_item);
1786                 orig_tlist_item = lnext(orig_tlist_item);
1787                 if (orig_tle->resjunk)  /* should not happen */
1788                         elog(ERROR, "resjunk output columns are not implemented");
1789                 Assert(new_tle->resno == orig_tle->resno);
1790                 new_tle->ressortgroupref = orig_tle->ressortgroupref;
1791         }
1792         if (orig_tlist_item != NULL)
1793                 elog(ERROR, "resjunk output columns are not implemented");
1794         return new_tlist;
1795 }