]> granicus.if.org Git - postgresql/blob - src/backend/optimizer/plan/planner.c
Code review for function default parameters patch. Fix numerous problems as
[postgresql] / src / backend / optimizer / plan / planner.c
1 /*-------------------------------------------------------------------------
2  *
3  * planner.c
4  *        The query optimizer external interface.
5  *
6  * Portions Copyright (c) 1996-2008, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  *        $PostgreSQL: pgsql/src/backend/optimizer/plan/planner.c,v 1.247 2008/12/18 18:20:33 tgl Exp $
12  *
13  *-------------------------------------------------------------------------
14  */
15
16 #include "postgres.h"
17
18 #include <limits.h>
19
20 #include "catalog/pg_operator.h"
21 #include "executor/executor.h"
22 #include "executor/nodeAgg.h"
23 #include "miscadmin.h"
24 #include "nodes/makefuncs.h"
25 #include "optimizer/clauses.h"
26 #include "optimizer/cost.h"
27 #include "optimizer/pathnode.h"
28 #include "optimizer/paths.h"
29 #include "optimizer/planmain.h"
30 #include "optimizer/planner.h"
31 #include "optimizer/prep.h"
32 #include "optimizer/subselect.h"
33 #include "optimizer/tlist.h"
34 #include "optimizer/var.h"
35 #ifdef OPTIMIZER_DEBUG
36 #include "nodes/print.h"
37 #endif
38 #include "parser/parse_expr.h"
39 #include "parser/parse_oper.h"
40 #include "parser/parsetree.h"
41 #include "utils/lsyscache.h"
42 #include "utils/syscache.h"
43
44
45 /* GUC parameter */
46 double cursor_tuple_fraction = DEFAULT_CURSOR_TUPLE_FRACTION;
47
48 /* Hook for plugins to get control in planner() */
49 planner_hook_type planner_hook = NULL;
50
51
52 /* Expression kind codes for preprocess_expression */
53 #define EXPRKIND_QUAL           0
54 #define EXPRKIND_TARGET         1
55 #define EXPRKIND_RTFUNC         2
56 #define EXPRKIND_VALUES         3
57 #define EXPRKIND_LIMIT          4
58 #define EXPRKIND_APPINFO        5
59
60
61 static Node *preprocess_expression(PlannerInfo *root, Node *expr, int kind);
62 static void preprocess_qual_conditions(PlannerInfo *root, Node *jtnode);
63 static Plan *inheritance_planner(PlannerInfo *root);
64 static Plan *grouping_planner(PlannerInfo *root, double tuple_fraction);
65 static bool is_dummy_plan(Plan *plan);
66 static double preprocess_limit(PlannerInfo *root,
67                                  double tuple_fraction,
68                                  int64 *offset_est, int64 *count_est);
69 static void preprocess_groupclause(PlannerInfo *root);
70 static bool choose_hashed_grouping(PlannerInfo *root,
71                                            double tuple_fraction, double limit_tuples,
72                                            Path *cheapest_path, Path *sorted_path,
73                                            double dNumGroups, AggClauseCounts *agg_counts);
74 static bool choose_hashed_distinct(PlannerInfo *root,
75                                            Plan *input_plan, List *input_pathkeys,
76                                            double tuple_fraction, double limit_tuples,
77                                            double dNumDistinctRows);
78 static List *make_subplanTargetList(PlannerInfo *root, List *tlist,
79                                            AttrNumber **groupColIdx, bool *need_tlist_eval);
80 static void locate_grouping_columns(PlannerInfo *root,
81                                                 List *tlist,
82                                                 List *sub_tlist,
83                                                 AttrNumber *groupColIdx);
84 static List *postprocess_setop_tlist(List *new_tlist, List *orig_tlist);
85
86
87 /*****************************************************************************
88  *
89  *         Query optimizer entry point
90  *
91  * To support loadable plugins that monitor or modify planner behavior,
92  * we provide a hook variable that lets a plugin get control before and
93  * after the standard planning process.  The plugin would normally call
94  * standard_planner().
95  *
96  * Note to plugin authors: standard_planner() scribbles on its Query input,
97  * so you'd better copy that data structure if you want to plan more than once.
98  *
99  *****************************************************************************/
100 PlannedStmt *
101 planner(Query *parse, int cursorOptions, ParamListInfo boundParams)
102 {
103         PlannedStmt *result;
104
105         if (planner_hook)
106                 result = (*planner_hook) (parse, cursorOptions, boundParams);
107         else
108                 result = standard_planner(parse, cursorOptions, boundParams);
109         return result;
110 }
111
112 PlannedStmt *
113 standard_planner(Query *parse, int cursorOptions, ParamListInfo boundParams)
114 {
115         PlannedStmt *result;
116         PlannerGlobal *glob;
117         double          tuple_fraction;
118         PlannerInfo *root;
119         Plan       *top_plan;
120         ListCell   *lp,
121                            *lr;
122
123         /* Cursor options may come from caller or from DECLARE CURSOR stmt */
124         if (parse->utilityStmt &&
125                 IsA(parse->utilityStmt, DeclareCursorStmt))
126                 cursorOptions |= ((DeclareCursorStmt *) parse->utilityStmt)->options;
127
128         /*
129          * Set up global state for this planner invocation.  This data is needed
130          * across all levels of sub-Query that might exist in the given command,
131          * so we keep it in a separate struct that's linked to by each per-Query
132          * PlannerInfo.
133          */
134         glob = makeNode(PlannerGlobal);
135
136         glob->boundParams = boundParams;
137         glob->paramlist = NIL;
138         glob->subplans = NIL;
139         glob->subrtables = NIL;
140         glob->rewindPlanIDs = NULL;
141         glob->finalrtable = NIL;
142         glob->relationOids = NIL;
143         glob->invalItems = NIL;
144         glob->lastPHId = 0;
145         glob->transientPlan = false;
146
147         /* Determine what fraction of the plan is likely to be scanned */
148         if (cursorOptions & CURSOR_OPT_FAST_PLAN)
149         {
150                 /*
151                  * We have no real idea how many tuples the user will ultimately FETCH
152                  * from a cursor, but it is often the case that he doesn't want 'em
153                  * all, or would prefer a fast-start plan anyway so that he can
154                  * process some of the tuples sooner.  Use a GUC parameter to decide
155                  * what fraction to optimize for.
156                  */
157                 tuple_fraction = cursor_tuple_fraction;
158
159                 /*
160                  * We document cursor_tuple_fraction as simply being a fraction,
161                  * which means the edge cases 0 and 1 have to be treated specially
162                  * here.  We convert 1 to 0 ("all the tuples") and 0 to a very small
163                  * fraction.
164                  */
165                 if (tuple_fraction >= 1.0)
166                         tuple_fraction = 0.0;
167                 else if (tuple_fraction <= 0.0)
168                         tuple_fraction = 1e-10;
169         }
170         else
171         {
172                 /* Default assumption is we need all the tuples */
173                 tuple_fraction = 0.0;
174         }
175
176         /* primary planning entry point (may recurse for subqueries) */
177         top_plan = subquery_planner(glob, parse, NULL,
178                                                                 false, tuple_fraction, &root);
179
180         /*
181          * If creating a plan for a scrollable cursor, make sure it can run
182          * backwards on demand.  Add a Material node at the top at need.
183          */
184         if (cursorOptions & CURSOR_OPT_SCROLL)
185         {
186                 if (!ExecSupportsBackwardScan(top_plan))
187                         top_plan = materialize_finished_plan(top_plan);
188         }
189
190         /* final cleanup of the plan */
191         Assert(glob->finalrtable == NIL);
192         top_plan = set_plan_references(glob, top_plan, root->parse->rtable);
193         /* ... and the subplans (both regular subplans and initplans) */
194         Assert(list_length(glob->subplans) == list_length(glob->subrtables));
195         forboth(lp, glob->subplans, lr, glob->subrtables)
196         {
197                 Plan       *subplan = (Plan *) lfirst(lp);
198                 List       *subrtable = (List *) lfirst(lr);
199
200                 lfirst(lp) = set_plan_references(glob, subplan, subrtable);
201         }
202
203         /* build the PlannedStmt result */
204         result = makeNode(PlannedStmt);
205
206         result->commandType = parse->commandType;
207         result->canSetTag = parse->canSetTag;
208         result->transientPlan = glob->transientPlan;
209         result->planTree = top_plan;
210         result->rtable = glob->finalrtable;
211         result->resultRelations = root->resultRelations;
212         result->utilityStmt = parse->utilityStmt;
213         result->intoClause = parse->intoClause;
214         result->subplans = glob->subplans;
215         result->rewindPlanIDs = glob->rewindPlanIDs;
216         result->returningLists = root->returningLists;
217         result->rowMarks = parse->rowMarks;
218         result->relationOids = glob->relationOids;
219         result->invalItems = glob->invalItems;
220         result->nParamExec = list_length(glob->paramlist);
221
222         return result;
223 }
224
225
226 /*--------------------
227  * subquery_planner
228  *        Invokes the planner on a subquery.  We recurse to here for each
229  *        sub-SELECT found in the query tree.
230  *
231  * glob is the global state for the current planner run.
232  * parse is the querytree produced by the parser & rewriter.
233  * parent_root is the immediate parent Query's info (NULL at the top level).
234  * hasRecursion is true if this is a recursive WITH query.
235  * tuple_fraction is the fraction of tuples we expect will be retrieved.
236  * tuple_fraction is interpreted as explained for grouping_planner, below.
237  *
238  * If subroot isn't NULL, we pass back the query's final PlannerInfo struct;
239  * among other things this tells the output sort ordering of the plan.
240  *
241  * Basically, this routine does the stuff that should only be done once
242  * per Query object.  It then calls grouping_planner.  At one time,
243  * grouping_planner could be invoked recursively on the same Query object;
244  * that's not currently true, but we keep the separation between the two
245  * routines anyway, in case we need it again someday.
246  *
247  * subquery_planner will be called recursively to handle sub-Query nodes
248  * found within the query's expressions and rangetable.
249  *
250  * Returns a query plan.
251  *--------------------
252  */
253 Plan *
254 subquery_planner(PlannerGlobal *glob, Query *parse,
255                                  PlannerInfo *parent_root,
256                                  bool hasRecursion, double tuple_fraction,
257                                  PlannerInfo **subroot)
258 {
259         int                     num_old_subplans = list_length(glob->subplans);
260         PlannerInfo *root;
261         Plan       *plan;
262         List       *newHaving;
263         bool            hasOuterJoins;
264         ListCell   *l;
265
266         /* Create a PlannerInfo data structure for this subquery */
267         root = makeNode(PlannerInfo);
268         root->parse = parse;
269         root->glob = glob;
270         root->query_level = parent_root ? parent_root->query_level + 1 : 1;
271         root->parent_root = parent_root;
272         root->planner_cxt = CurrentMemoryContext;
273         root->init_plans = NIL;
274         root->cte_plan_ids = NIL;
275         root->eq_classes = NIL;
276         root->append_rel_list = NIL;
277
278         root->hasRecursion = hasRecursion;
279         if (hasRecursion)
280                 root->wt_param_id = SS_assign_worktable_param(root);
281         else
282                 root->wt_param_id = -1;
283         root->non_recursive_plan = NULL;
284
285         /*
286          * If there is a WITH list, process each WITH query and build an
287          * initplan SubPlan structure for it.
288          */
289         if (parse->cteList)
290                 SS_process_ctes(root);
291
292         /*
293          * Look for ANY and EXISTS SubLinks in WHERE and JOIN/ON clauses, and try
294          * to transform them into joins.  Note that this step does not descend
295          * into subqueries; if we pull up any subqueries below, their SubLinks are
296          * processed just before pulling them up.
297          */
298         if (parse->hasSubLinks)
299                 pull_up_sublinks(root);
300
301         /*
302          * Scan the rangetable for set-returning functions, and inline them
303          * if possible (producing subqueries that might get pulled up next).
304          * Recursion issues here are handled in the same way as for SubLinks.
305          */
306         inline_set_returning_functions(root);
307
308         /*
309          * Check to see if any subqueries in the rangetable can be merged into
310          * this query.
311          */
312         parse->jointree = (FromExpr *)
313                 pull_up_subqueries(root, (Node *) parse->jointree, false, false);
314
315         /*
316          * Detect whether any rangetable entries are RTE_JOIN kind; if not, we can
317          * avoid the expense of doing flatten_join_alias_vars().  Also check for
318          * outer joins --- if none, we can skip reduce_outer_joins().
319          * This must be done after we have done pull_up_subqueries, of course.
320          */
321         root->hasJoinRTEs = false;
322         hasOuterJoins = false;
323         foreach(l, parse->rtable)
324         {
325                 RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
326
327                 if (rte->rtekind == RTE_JOIN)
328                 {
329                         root->hasJoinRTEs = true;
330                         if (IS_OUTER_JOIN(rte->jointype))
331                         {
332                                 hasOuterJoins = true;
333                                 /* Can quit scanning once we find an outer join */
334                                 break;
335                         }
336                 }
337         }
338
339         /*
340          * Expand any rangetable entries that are inheritance sets into "append
341          * relations".  This can add entries to the rangetable, but they must be
342          * plain base relations not joins, so it's OK (and marginally more
343          * efficient) to do it after checking for join RTEs.  We must do it after
344          * pulling up subqueries, else we'd fail to handle inherited tables in
345          * subqueries.
346          */
347         expand_inherited_tables(root);
348
349         /*
350          * Set hasHavingQual to remember if HAVING clause is present.  Needed
351          * because preprocess_expression will reduce a constant-true condition to
352          * an empty qual list ... but "HAVING TRUE" is not a semantic no-op.
353          */
354         root->hasHavingQual = (parse->havingQual != NULL);
355
356         /* Clear this flag; might get set in distribute_qual_to_rels */
357         root->hasPseudoConstantQuals = false;
358
359         /*
360          * Do expression preprocessing on targetlist and quals.
361          */
362         parse->targetList = (List *)
363                 preprocess_expression(root, (Node *) parse->targetList,
364                                                           EXPRKIND_TARGET);
365
366         parse->returningList = (List *)
367                 preprocess_expression(root, (Node *) parse->returningList,
368                                                           EXPRKIND_TARGET);
369
370         preprocess_qual_conditions(root, (Node *) parse->jointree);
371
372         parse->havingQual = preprocess_expression(root, parse->havingQual,
373                                                                                           EXPRKIND_QUAL);
374
375         parse->limitOffset = preprocess_expression(root, parse->limitOffset,
376                                                                                            EXPRKIND_LIMIT);
377         parse->limitCount = preprocess_expression(root, parse->limitCount,
378                                                                                           EXPRKIND_LIMIT);
379
380         root->append_rel_list = (List *)
381                 preprocess_expression(root, (Node *) root->append_rel_list,
382                                                           EXPRKIND_APPINFO);
383
384         /* Also need to preprocess expressions for function and values RTEs */
385         foreach(l, parse->rtable)
386         {
387                 RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
388
389                 if (rte->rtekind == RTE_FUNCTION)
390                         rte->funcexpr = preprocess_expression(root, rte->funcexpr,
391                                                                                                   EXPRKIND_RTFUNC);
392                 else if (rte->rtekind == RTE_VALUES)
393                         rte->values_lists = (List *)
394                                 preprocess_expression(root, (Node *) rte->values_lists,
395                                                                           EXPRKIND_VALUES);
396         }
397
398         /*
399          * In some cases we may want to transfer a HAVING clause into WHERE. We
400          * cannot do so if the HAVING clause contains aggregates (obviously) or
401          * volatile functions (since a HAVING clause is supposed to be executed
402          * only once per group).  Also, it may be that the clause is so expensive
403          * to execute that we're better off doing it only once per group, despite
404          * the loss of selectivity.  This is hard to estimate short of doing the
405          * entire planning process twice, so we use a heuristic: clauses
406          * containing subplans are left in HAVING.      Otherwise, we move or copy the
407          * HAVING clause into WHERE, in hopes of eliminating tuples before
408          * aggregation instead of after.
409          *
410          * If the query has explicit grouping then we can simply move such a
411          * clause into WHERE; any group that fails the clause will not be in the
412          * output because none of its tuples will reach the grouping or
413          * aggregation stage.  Otherwise we must have a degenerate (variable-free)
414          * HAVING clause, which we put in WHERE so that query_planner() can use it
415          * in a gating Result node, but also keep in HAVING to ensure that we
416          * don't emit a bogus aggregated row. (This could be done better, but it
417          * seems not worth optimizing.)
418          *
419          * Note that both havingQual and parse->jointree->quals are in
420          * implicitly-ANDed-list form at this point, even though they are declared
421          * as Node *.
422          */
423         newHaving = NIL;
424         foreach(l, (List *) parse->havingQual)
425         {
426                 Node       *havingclause = (Node *) lfirst(l);
427
428                 if (contain_agg_clause(havingclause) ||
429                         contain_volatile_functions(havingclause) ||
430                         contain_subplans(havingclause))
431                 {
432                         /* keep it in HAVING */
433                         newHaving = lappend(newHaving, havingclause);
434                 }
435                 else if (parse->groupClause)
436                 {
437                         /* move it to WHERE */
438                         parse->jointree->quals = (Node *)
439                                 lappend((List *) parse->jointree->quals, havingclause);
440                 }
441                 else
442                 {
443                         /* put a copy in WHERE, keep it in HAVING */
444                         parse->jointree->quals = (Node *)
445                                 lappend((List *) parse->jointree->quals,
446                                                 copyObject(havingclause));
447                         newHaving = lappend(newHaving, havingclause);
448                 }
449         }
450         parse->havingQual = (Node *) newHaving;
451
452         /*
453          * If we have any outer joins, try to reduce them to plain inner joins.
454          * This step is most easily done after we've done expression
455          * preprocessing.
456          */
457         if (hasOuterJoins)
458                 reduce_outer_joins(root);
459
460         /*
461          * Do the main planning.  If we have an inherited target relation, that
462          * needs special processing, else go straight to grouping_planner.
463          */
464         if (parse->resultRelation &&
465                 rt_fetch(parse->resultRelation, parse->rtable)->inh)
466                 plan = inheritance_planner(root);
467         else
468                 plan = grouping_planner(root, tuple_fraction);
469
470         /*
471          * If any subplans were generated, or if we're inside a subplan, build
472          * initPlan list and extParam/allParam sets for plan nodes, and attach the
473          * initPlans to the top plan node.
474          */
475         if (list_length(glob->subplans) != num_old_subplans ||
476                 root->query_level > 1)
477                 SS_finalize_plan(root, plan, true);
478
479         /* Return internal info if caller wants it */
480         if (subroot)
481                 *subroot = root;
482
483         return plan;
484 }
485
486 /*
487  * preprocess_expression
488  *              Do subquery_planner's preprocessing work for an expression,
489  *              which can be a targetlist, a WHERE clause (including JOIN/ON
490  *              conditions), or a HAVING clause.
491  */
492 static Node *
493 preprocess_expression(PlannerInfo *root, Node *expr, int kind)
494 {
495         /*
496          * Fall out quickly if expression is empty.  This occurs often enough to
497          * be worth checking.  Note that null->null is the correct conversion for
498          * implicit-AND result format, too.
499          */
500         if (expr == NULL)
501                 return NULL;
502
503         /*
504          * If the query has any join RTEs, replace join alias variables with
505          * base-relation variables. We must do this before sublink processing,
506          * else sublinks expanded out from join aliases wouldn't get processed. We
507          * can skip it in VALUES lists, however, since they can't contain any Vars
508          * at all.
509          */
510         if (root->hasJoinRTEs && kind != EXPRKIND_VALUES)
511                 expr = flatten_join_alias_vars(root, expr);
512
513         /*
514          * Simplify constant expressions.
515          *
516          * Note: one essential effect here is to insert the current actual values
517          * of any default arguments for functions.  To ensure that happens, we
518          * *must* process all expressions here.  Previous PG versions sometimes
519          * skipped const-simplification if it didn't seem worth the trouble, but
520          * we can't do that anymore.
521          *
522          * Note: this also flattens nested AND and OR expressions into N-argument
523          * form.  All processing of a qual expression after this point must be
524          * careful to maintain AND/OR flatness --- that is, do not generate a tree
525          * with AND directly under AND, nor OR directly under OR.
526          */
527         expr = eval_const_expressions(root, expr);
528
529         /*
530          * If it's a qual or havingQual, canonicalize it.
531          */
532         if (kind == EXPRKIND_QUAL)
533         {
534                 expr = (Node *) canonicalize_qual((Expr *) expr);
535
536 #ifdef OPTIMIZER_DEBUG
537                 printf("After canonicalize_qual()\n");
538                 pprint(expr);
539 #endif
540         }
541
542         /* Expand SubLinks to SubPlans */
543         if (root->parse->hasSubLinks)
544                 expr = SS_process_sublinks(root, expr, (kind == EXPRKIND_QUAL));
545
546         /*
547          * XXX do not insert anything here unless you have grokked the comments in
548          * SS_replace_correlation_vars ...
549          */
550
551         /* Replace uplevel vars with Param nodes (this IS possible in VALUES) */
552         if (root->query_level > 1)
553                 expr = SS_replace_correlation_vars(root, expr);
554
555         /*
556          * If it's a qual or havingQual, convert it to implicit-AND format. (We
557          * don't want to do this before eval_const_expressions, since the latter
558          * would be unable to simplify a top-level AND correctly. Also,
559          * SS_process_sublinks expects explicit-AND format.)
560          */
561         if (kind == EXPRKIND_QUAL)
562                 expr = (Node *) make_ands_implicit((Expr *) expr);
563
564         return expr;
565 }
566
567 /*
568  * preprocess_qual_conditions
569  *              Recursively scan the query's jointree and do subquery_planner's
570  *              preprocessing work on each qual condition found therein.
571  */
572 static void
573 preprocess_qual_conditions(PlannerInfo *root, Node *jtnode)
574 {
575         if (jtnode == NULL)
576                 return;
577         if (IsA(jtnode, RangeTblRef))
578         {
579                 /* nothing to do here */
580         }
581         else if (IsA(jtnode, FromExpr))
582         {
583                 FromExpr   *f = (FromExpr *) jtnode;
584                 ListCell   *l;
585
586                 foreach(l, f->fromlist)
587                         preprocess_qual_conditions(root, lfirst(l));
588
589                 f->quals = preprocess_expression(root, f->quals, EXPRKIND_QUAL);
590         }
591         else if (IsA(jtnode, JoinExpr))
592         {
593                 JoinExpr   *j = (JoinExpr *) jtnode;
594
595                 preprocess_qual_conditions(root, j->larg);
596                 preprocess_qual_conditions(root, j->rarg);
597
598                 j->quals = preprocess_expression(root, j->quals, EXPRKIND_QUAL);
599         }
600         else
601                 elog(ERROR, "unrecognized node type: %d",
602                          (int) nodeTag(jtnode));
603 }
604
605 /*
606  * inheritance_planner
607  *        Generate a plan in the case where the result relation is an
608  *        inheritance set.
609  *
610  * We have to handle this case differently from cases where a source relation
611  * is an inheritance set. Source inheritance is expanded at the bottom of the
612  * plan tree (see allpaths.c), but target inheritance has to be expanded at
613  * the top.  The reason is that for UPDATE, each target relation needs a
614  * different targetlist matching its own column set.  Also, for both UPDATE
615  * and DELETE, the executor needs the Append plan node at the top, else it
616  * can't keep track of which table is the current target table.  Fortunately,
617  * the UPDATE/DELETE target can never be the nullable side of an outer join,
618  * so it's OK to generate the plan this way.
619  *
620  * Returns a query plan.
621  */
622 static Plan *
623 inheritance_planner(PlannerInfo *root)
624 {
625         Query      *parse = root->parse;
626         int                     parentRTindex = parse->resultRelation;
627         List       *subplans = NIL;
628         List       *resultRelations = NIL;
629         List       *returningLists = NIL;
630         List       *rtable = NIL;
631         List       *tlist = NIL;
632         PlannerInfo subroot;
633         ListCell   *l;
634
635         foreach(l, root->append_rel_list)
636         {
637                 AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(l);
638                 Plan       *subplan;
639
640                 /* append_rel_list contains all append rels; ignore others */
641                 if (appinfo->parent_relid != parentRTindex)
642                         continue;
643
644                 /*
645                  * Generate modified query with this rel as target.
646                  */
647                 memcpy(&subroot, root, sizeof(PlannerInfo));
648                 subroot.parse = (Query *)
649                         adjust_appendrel_attrs((Node *) parse,
650                                                                    appinfo);
651                 subroot.returningLists = NIL;
652                 subroot.init_plans = NIL;
653                 /* We needn't modify the child's append_rel_list */
654                 /* There shouldn't be any OJ info to translate, as yet */
655                 Assert(subroot.join_info_list == NIL);
656                 /* and we haven't created PlaceHolderInfos, either */
657                 Assert(subroot.placeholder_list == NIL);
658
659                 /* Generate plan */
660                 subplan = grouping_planner(&subroot, 0.0 /* retrieve all tuples */ );
661
662                 /*
663                  * If this child rel was excluded by constraint exclusion, exclude it
664                  * from the plan.
665                  */
666                 if (is_dummy_plan(subplan))
667                         continue;
668
669                 /* Save rtable and tlist from first rel for use below */
670                 if (subplans == NIL)
671                 {
672                         rtable = subroot.parse->rtable;
673                         tlist = subplan->targetlist;
674                 }
675
676                 subplans = lappend(subplans, subplan);
677
678                 /* Make sure any initplans from this rel get into the outer list */
679                 root->init_plans = list_concat(root->init_plans, subroot.init_plans);
680
681                 /* Build target-relations list for the executor */
682                 resultRelations = lappend_int(resultRelations, appinfo->child_relid);
683
684                 /* Build list of per-relation RETURNING targetlists */
685                 if (parse->returningList)
686                 {
687                         Assert(list_length(subroot.returningLists) == 1);
688                         returningLists = list_concat(returningLists,
689                                                                                  subroot.returningLists);
690                 }
691         }
692
693         root->resultRelations = resultRelations;
694         root->returningLists = returningLists;
695
696         /* Mark result as unordered (probably unnecessary) */
697         root->query_pathkeys = NIL;
698
699         /*
700          * If we managed to exclude every child rel, return a dummy plan
701          */
702         if (subplans == NIL)
703         {
704                 root->resultRelations = list_make1_int(parentRTindex);
705                 /* although dummy, it must have a valid tlist for executor */
706                 tlist = preprocess_targetlist(root, parse->targetList);
707                 return (Plan *) make_result(root,
708                                                                         tlist,
709                                                                         (Node *) list_make1(makeBoolConst(false,
710                                                                                                                                           false)),
711                                                                         NULL);
712         }
713
714         /*
715          * Planning might have modified the rangetable, due to changes of the
716          * Query structures inside subquery RTEs.  We have to ensure that this
717          * gets propagated back to the master copy.  But can't do this until we
718          * are done planning, because all the calls to grouping_planner need
719          * virgin sub-Queries to work from.  (We are effectively assuming that
720          * sub-Queries will get planned identically each time, or at least that
721          * the impacts on their rangetables will be the same each time.)
722          *
723          * XXX should clean this up someday
724          */
725         parse->rtable = rtable;
726
727         /* Suppress Append if there's only one surviving child rel */
728         if (list_length(subplans) == 1)
729                 return (Plan *) linitial(subplans);
730
731         return (Plan *) make_append(subplans, true, tlist);
732 }
733
734 /*--------------------
735  * grouping_planner
736  *        Perform planning steps related to grouping, aggregation, etc.
737  *        This primarily means adding top-level processing to the basic
738  *        query plan produced by query_planner.
739  *
740  * tuple_fraction is the fraction of tuples we expect will be retrieved
741  *
742  * tuple_fraction is interpreted as follows:
743  *        0: expect all tuples to be retrieved (normal case)
744  *        0 < tuple_fraction < 1: expect the given fraction of tuples available
745  *              from the plan to be retrieved
746  *        tuple_fraction >= 1: tuple_fraction is the absolute number of tuples
747  *              expected to be retrieved (ie, a LIMIT specification)
748  *
749  * Returns a query plan.  Also, root->query_pathkeys is returned as the
750  * actual output ordering of the plan (in pathkey format).
751  *--------------------
752  */
753 static Plan *
754 grouping_planner(PlannerInfo *root, double tuple_fraction)
755 {
756         Query      *parse = root->parse;
757         List       *tlist = parse->targetList;
758         int64           offset_est = 0;
759         int64           count_est = 0;
760         double          limit_tuples = -1.0;
761         Plan       *result_plan;
762         List       *current_pathkeys;
763         double          dNumGroups = 0;
764
765         /* Tweak caller-supplied tuple_fraction if have LIMIT/OFFSET */
766         if (parse->limitCount || parse->limitOffset)
767         {
768                 tuple_fraction = preprocess_limit(root, tuple_fraction,
769                                                                                   &offset_est, &count_est);
770
771                 /*
772                  * If we have a known LIMIT, and don't have an unknown OFFSET, we can
773                  * estimate the effects of using a bounded sort.
774                  */
775                 if (count_est > 0 && offset_est >= 0)
776                         limit_tuples = (double) count_est + (double) offset_est;
777         }
778
779         if (parse->setOperations)
780         {
781                 List       *set_sortclauses;
782
783                 /*
784                  * If there's a top-level ORDER BY, assume we have to fetch all the
785                  * tuples.      This might be too simplistic given all the hackery below
786                  * to possibly avoid the sort; but the odds of accurate estimates
787                  * here are pretty low anyway.
788                  */
789                 if (parse->sortClause)
790                         tuple_fraction = 0.0;
791
792                 /*
793                  * Construct the plan for set operations.  The result will not need
794                  * any work except perhaps a top-level sort and/or LIMIT.  Note that
795                  * any special work for recursive unions is the responsibility of
796                  * plan_set_operations.
797                  */
798                 result_plan = plan_set_operations(root, tuple_fraction,
799                                                                                   &set_sortclauses);
800
801                 /*
802                  * Calculate pathkeys representing the sort order (if any) of the set
803                  * operation's result.  We have to do this before overwriting the sort
804                  * key information...
805                  */
806                 current_pathkeys = make_pathkeys_for_sortclauses(root,
807                                                                                                                  set_sortclauses,
808                                                                                                          result_plan->targetlist,
809                                                                                                                  true);
810
811                 /*
812                  * We should not need to call preprocess_targetlist, since we must be
813                  * in a SELECT query node.      Instead, use the targetlist returned by
814                  * plan_set_operations (since this tells whether it returned any
815                  * resjunk columns!), and transfer any sort key information from the
816                  * original tlist.
817                  */
818                 Assert(parse->commandType == CMD_SELECT);
819
820                 tlist = postprocess_setop_tlist(copyObject(result_plan->targetlist),
821                                                                                 tlist);
822
823                 /*
824                  * Can't handle FOR UPDATE/SHARE here (parser should have checked
825                  * already, but let's make sure).
826                  */
827                 if (parse->rowMarks)
828                         ereport(ERROR,
829                                         (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
830                                          errmsg("SELECT FOR UPDATE/SHARE is not allowed with UNION/INTERSECT/EXCEPT")));
831
832                 /*
833                  * Calculate pathkeys that represent result ordering requirements
834                  */
835                 Assert(parse->distinctClause == NIL);
836                 root->sort_pathkeys = make_pathkeys_for_sortclauses(root,
837                                                                                                                         parse->sortClause,
838                                                                                                                         tlist,
839                                                                                                                         true);
840         }
841         else
842         {
843                 /* No set operations, do regular planning */
844                 List       *sub_tlist;
845                 AttrNumber *groupColIdx = NULL;
846                 bool            need_tlist_eval = true;
847                 QualCost        tlist_cost;
848                 Path       *cheapest_path;
849                 Path       *sorted_path;
850                 Path       *best_path;
851                 long            numGroups = 0;
852                 AggClauseCounts agg_counts;
853                 int                     numGroupCols;
854                 bool            use_hashed_grouping = false;
855
856                 MemSet(&agg_counts, 0, sizeof(AggClauseCounts));
857
858                 /* A recursive query should always have setOperations */
859                 Assert(!root->hasRecursion);
860
861                 /* Preprocess GROUP BY clause, if any */
862                 if (parse->groupClause)
863                         preprocess_groupclause(root);
864                 numGroupCols = list_length(parse->groupClause);
865
866                 /* Preprocess targetlist */
867                 tlist = preprocess_targetlist(root, tlist);
868
869                 /*
870                  * Generate appropriate target list for subplan; may be different from
871                  * tlist if grouping or aggregation is needed.
872                  */
873                 sub_tlist = make_subplanTargetList(root, tlist,
874                                                                                    &groupColIdx, &need_tlist_eval);
875
876                 /*
877                  * Calculate pathkeys that represent grouping/ordering requirements.
878                  * Stash them in PlannerInfo so that query_planner can canonicalize
879                  * them after EquivalenceClasses have been formed.  The sortClause
880                  * is certainly sort-able, but GROUP BY and DISTINCT might not be,
881                  * in which case we just leave their pathkeys empty.
882                  */
883                 if (parse->groupClause &&
884                         grouping_is_sortable(parse->groupClause))
885                         root->group_pathkeys =
886                                 make_pathkeys_for_sortclauses(root,
887                                                                                           parse->groupClause,
888                                                                                           tlist,
889                                                                                           false);
890                 else
891                         root->group_pathkeys = NIL;
892
893                 if (parse->distinctClause &&
894                         grouping_is_sortable(parse->distinctClause))
895                         root->distinct_pathkeys =
896                                 make_pathkeys_for_sortclauses(root,
897                                                                                           parse->distinctClause,
898                                                                                           tlist,
899                                                                                           false);
900                 else
901                         root->distinct_pathkeys = NIL;
902
903                 root->sort_pathkeys =
904                         make_pathkeys_for_sortclauses(root,
905                                                                                   parse->sortClause,
906                                                                                   tlist,
907                                                                                   false);
908
909                 /*
910                  * Will need actual number of aggregates for estimating costs.
911                  *
912                  * Note: we do not attempt to detect duplicate aggregates here; a
913                  * somewhat-overestimated count is okay for our present purposes.
914                  *
915                  * Note: think not that we can turn off hasAggs if we find no aggs. It
916                  * is possible for constant-expression simplification to remove all
917                  * explicit references to aggs, but we still have to follow the
918                  * aggregate semantics (eg, producing only one output row).
919                  */
920                 if (parse->hasAggs)
921                 {
922                         count_agg_clauses((Node *) tlist, &agg_counts);
923                         count_agg_clauses(parse->havingQual, &agg_counts);
924                 }
925
926                 /*
927                  * Figure out whether we want a sorted result from query_planner.
928                  *
929                  * If we have a sortable GROUP BY clause, then we want a result sorted
930                  * properly for grouping.  Otherwise, if there's a sortable DISTINCT
931                  * clause that's more rigorous than the ORDER BY clause, we try to
932                  * produce output that's sufficiently well sorted for the DISTINCT.
933                  * Otherwise, if there is an ORDER BY clause, we want to sort by the
934                  * ORDER BY clause.
935                  *
936                  * Note: if we have both ORDER BY and GROUP BY, and ORDER BY is a
937                  * superset of GROUP BY, it would be tempting to request sort by ORDER
938                  * BY --- but that might just leave us failing to exploit an available
939                  * sort order at all.  Needs more thought.  The choice for DISTINCT
940                  * versus ORDER BY is much easier, since we know that the parser
941                  * ensured that one is a superset of the other.
942                  */
943                 if (root->group_pathkeys)
944                         root->query_pathkeys = root->group_pathkeys;
945                 else if (list_length(root->distinct_pathkeys) >
946                                  list_length(root->sort_pathkeys))
947                         root->query_pathkeys = root->distinct_pathkeys;
948                 else if (root->sort_pathkeys)
949                         root->query_pathkeys = root->sort_pathkeys;
950                 else
951                         root->query_pathkeys = NIL;
952
953                 /*
954                  * Generate the best unsorted and presorted paths for this Query (but
955                  * note there may not be any presorted path).  query_planner will also
956                  * estimate the number of groups in the query, and canonicalize all
957                  * the pathkeys.
958                  */
959                 query_planner(root, sub_tlist, tuple_fraction, limit_tuples,
960                                           &cheapest_path, &sorted_path, &dNumGroups);
961
962                 /*
963                  * If grouping, decide whether to use sorted or hashed grouping.
964                  */
965                 if (parse->groupClause)
966                 {
967                         bool    can_hash;
968                         bool    can_sort;
969
970                         /*
971                          * Executor doesn't support hashed aggregation with DISTINCT
972                          * aggregates.  (Doing so would imply storing *all* the input
973                          * values in the hash table, which seems like a certain loser.)
974                          */
975                         can_hash = (agg_counts.numDistinctAggs == 0 &&
976                                                 grouping_is_hashable(parse->groupClause));
977                         can_sort = grouping_is_sortable(parse->groupClause);
978                         if (can_hash && can_sort)
979                         {
980                                 /* we have a meaningful choice to make ... */
981                                 use_hashed_grouping =
982                                         choose_hashed_grouping(root,
983                                                                                    tuple_fraction, limit_tuples,
984                                                                                    cheapest_path, sorted_path,
985                                                                                    dNumGroups, &agg_counts);
986                         }
987                         else if (can_hash)
988                                 use_hashed_grouping = true;
989                         else if (can_sort)
990                                 use_hashed_grouping = false;
991                         else
992                                 ereport(ERROR,
993                                                 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
994                                                  errmsg("could not implement GROUP BY"),
995                                                  errdetail("Some of the datatypes only support hashing, while others only support sorting.")));
996
997                         /* Also convert # groups to long int --- but 'ware overflow! */
998                         numGroups = (long) Min(dNumGroups, (double) LONG_MAX);
999                 }
1000
1001                 /*
1002                  * Select the best path.  If we are doing hashed grouping, we will
1003                  * always read all the input tuples, so use the cheapest-total path.
1004                  * Otherwise, trust query_planner's decision about which to use.
1005                  */
1006                 if (use_hashed_grouping || !sorted_path)
1007                         best_path = cheapest_path;
1008                 else
1009                         best_path = sorted_path;
1010
1011                 /*
1012                  * Check to see if it's possible to optimize MIN/MAX aggregates. If
1013                  * so, we will forget all the work we did so far to choose a "regular"
1014                  * path ... but we had to do it anyway to be able to tell which way is
1015                  * cheaper.
1016                  */
1017                 result_plan = optimize_minmax_aggregates(root,
1018                                                                                                  tlist,
1019                                                                                                  best_path);
1020                 if (result_plan != NULL)
1021                 {
1022                         /*
1023                          * optimize_minmax_aggregates generated the full plan, with the
1024                          * right tlist, and it has no sort order.
1025                          */
1026                         current_pathkeys = NIL;
1027                 }
1028                 else
1029                 {
1030                         /*
1031                          * Normal case --- create a plan according to query_planner's
1032                          * results.
1033                          */
1034                         bool    need_sort_for_grouping = false;
1035
1036                         result_plan = create_plan(root, best_path);
1037                         current_pathkeys = best_path->pathkeys;
1038
1039                         /* Detect if we'll need an explicit sort for grouping */
1040                         if (parse->groupClause && !use_hashed_grouping &&
1041                                 !pathkeys_contained_in(root->group_pathkeys, current_pathkeys))
1042                         {
1043                                 need_sort_for_grouping = true;
1044                                 /*
1045                                  * Always override query_planner's tlist, so that we don't
1046                                  * sort useless data from a "physical" tlist.
1047                                  */
1048                                 need_tlist_eval = true;
1049                         }
1050
1051                         /*
1052                          * create_plan() returns a plan with just a "flat" tlist of
1053                          * required Vars.  Usually we need to insert the sub_tlist as the
1054                          * tlist of the top plan node.  However, we can skip that if we
1055                          * determined that whatever query_planner chose to return will be
1056                          * good enough.
1057                          */
1058                         if (need_tlist_eval)
1059                         {
1060                                 /*
1061                                  * If the top-level plan node is one that cannot do expression
1062                                  * evaluation, we must insert a Result node to project the
1063                                  * desired tlist.
1064                                  */
1065                                 if (!is_projection_capable_plan(result_plan))
1066                                 {
1067                                         result_plan = (Plan *) make_result(root,
1068                                                                                                            sub_tlist,
1069                                                                                                            NULL,
1070                                                                                                            result_plan);
1071                                 }
1072                                 else
1073                                 {
1074                                         /*
1075                                          * Otherwise, just replace the subplan's flat tlist with
1076                                          * the desired tlist.
1077                                          */
1078                                         result_plan->targetlist = sub_tlist;
1079                                 }
1080
1081                                 /*
1082                                  * Also, account for the cost of evaluation of the sub_tlist.
1083                                  *
1084                                  * Up to now, we have only been dealing with "flat" tlists,
1085                                  * containing just Vars.  So their evaluation cost is zero
1086                                  * according to the model used by cost_qual_eval() (or if you
1087                                  * prefer, the cost is factored into cpu_tuple_cost).  Thus we
1088                                  * can avoid accounting for tlist cost throughout
1089                                  * query_planner() and subroutines.  But now we've inserted a
1090                                  * tlist that might contain actual operators, sub-selects, etc
1091                                  * --- so we'd better account for its cost.
1092                                  *
1093                                  * Below this point, any tlist eval cost for added-on nodes
1094                                  * should be accounted for as we create those nodes.
1095                                  * Presently, of the node types we can add on, only Agg and
1096                                  * Group project new tlists (the rest just copy their input
1097                                  * tuples) --- so make_agg() and make_group() are responsible
1098                                  * for computing the added cost.
1099                                  */
1100                                 cost_qual_eval(&tlist_cost, sub_tlist, root);
1101                                 result_plan->startup_cost += tlist_cost.startup;
1102                                 result_plan->total_cost += tlist_cost.startup +
1103                                         tlist_cost.per_tuple * result_plan->plan_rows;
1104                         }
1105                         else
1106                         {
1107                                 /*
1108                                  * Since we're using query_planner's tlist and not the one
1109                                  * make_subplanTargetList calculated, we have to refigure any
1110                                  * grouping-column indexes make_subplanTargetList computed.
1111                                  */
1112                                 locate_grouping_columns(root, tlist, result_plan->targetlist,
1113                                                                                 groupColIdx);
1114                         }
1115
1116                         /*
1117                          * Insert AGG or GROUP node if needed, plus an explicit sort step
1118                          * if necessary.
1119                          *
1120                          * HAVING clause, if any, becomes qual of the Agg or Group node.
1121                          */
1122                         if (use_hashed_grouping)
1123                         {
1124                                 /* Hashed aggregate plan --- no sort needed */
1125                                 result_plan = (Plan *) make_agg(root,
1126                                                                                                 tlist,
1127                                                                                                 (List *) parse->havingQual,
1128                                                                                                 AGG_HASHED,
1129                                                                                                 numGroupCols,
1130                                                                                                 groupColIdx,
1131                                                                         extract_grouping_ops(parse->groupClause),
1132                                                                                                 numGroups,
1133                                                                                                 agg_counts.numAggs,
1134                                                                                                 result_plan);
1135                                 /* Hashed aggregation produces randomly-ordered results */
1136                                 current_pathkeys = NIL;
1137                         }
1138                         else if (parse->hasAggs)
1139                         {
1140                                 /* Plain aggregate plan --- sort if needed */
1141                                 AggStrategy aggstrategy;
1142
1143                                 if (parse->groupClause)
1144                                 {
1145                                         if (need_sort_for_grouping)
1146                                         {
1147                                                 result_plan = (Plan *)
1148                                                         make_sort_from_groupcols(root,
1149                                                                                                          parse->groupClause,
1150                                                                                                          groupColIdx,
1151                                                                                                          result_plan);
1152                                                 current_pathkeys = root->group_pathkeys;
1153                                         }
1154                                         aggstrategy = AGG_SORTED;
1155
1156                                         /*
1157                                          * The AGG node will not change the sort ordering of its
1158                                          * groups, so current_pathkeys describes the result too.
1159                                          */
1160                                 }
1161                                 else
1162                                 {
1163                                         aggstrategy = AGG_PLAIN;
1164                                         /* Result will be only one row anyway; no sort order */
1165                                         current_pathkeys = NIL;
1166                                 }
1167
1168                                 result_plan = (Plan *) make_agg(root,
1169                                                                                                 tlist,
1170                                                                                                 (List *) parse->havingQual,
1171                                                                                                 aggstrategy,
1172                                                                                                 numGroupCols,
1173                                                                                                 groupColIdx,
1174                                                                         extract_grouping_ops(parse->groupClause),
1175                                                                                                 numGroups,
1176                                                                                                 agg_counts.numAggs,
1177                                                                                                 result_plan);
1178                         }
1179                         else if (parse->groupClause)
1180                         {
1181                                 /*
1182                                  * GROUP BY without aggregation, so insert a group node (plus
1183                                  * the appropriate sort node, if necessary).
1184                                  *
1185                                  * Add an explicit sort if we couldn't make the path come out
1186                                  * the way the GROUP node needs it.
1187                                  */
1188                                 if (need_sort_for_grouping)
1189                                 {
1190                                         result_plan = (Plan *)
1191                                                 make_sort_from_groupcols(root,
1192                                                                                                  parse->groupClause,
1193                                                                                                  groupColIdx,
1194                                                                                                  result_plan);
1195                                         current_pathkeys = root->group_pathkeys;
1196                                 }
1197
1198                                 result_plan = (Plan *) make_group(root,
1199                                                                                                   tlist,
1200                                                                                                   (List *) parse->havingQual,
1201                                                                                                   numGroupCols,
1202                                                                                                   groupColIdx,
1203                                                                         extract_grouping_ops(parse->groupClause),
1204                                                                                                   dNumGroups,
1205                                                                                                   result_plan);
1206                                 /* The Group node won't change sort ordering */
1207                         }
1208                         else if (root->hasHavingQual)
1209                         {
1210                                 /*
1211                                  * No aggregates, and no GROUP BY, but we have a HAVING qual.
1212                                  * This is a degenerate case in which we are supposed to emit
1213                                  * either 0 or 1 row depending on whether HAVING succeeds.
1214                                  * Furthermore, there cannot be any variables in either HAVING
1215                                  * or the targetlist, so we actually do not need the FROM
1216                                  * table at all!  We can just throw away the plan-so-far and
1217                                  * generate a Result node.      This is a sufficiently unusual
1218                                  * corner case that it's not worth contorting the structure of
1219                                  * this routine to avoid having to generate the plan in the
1220                                  * first place.
1221                                  */
1222                                 result_plan = (Plan *) make_result(root,
1223                                                                                                    tlist,
1224                                                                                                    parse->havingQual,
1225                                                                                                    NULL);
1226                         }
1227                 }                                               /* end of non-minmax-aggregate case */
1228         }                                                       /* end of if (setOperations) */
1229
1230         /*
1231          * If there is a DISTINCT clause, add the necessary node(s).
1232          */
1233         if (parse->distinctClause)
1234         {
1235                 double  dNumDistinctRows;
1236                 long    numDistinctRows;
1237                 bool    use_hashed_distinct;
1238                 bool    can_sort;
1239                 bool    can_hash;
1240
1241                 /*
1242                  * If there was grouping or aggregation, use the current number of
1243                  * rows as the estimated number of DISTINCT rows (ie, assume the
1244                  * result was already mostly unique).  If not, use the number of
1245                  * distinct-groups calculated by query_planner.
1246                  */
1247                 if (parse->groupClause || root->hasHavingQual || parse->hasAggs)
1248                         dNumDistinctRows = result_plan->plan_rows;
1249                 else
1250                         dNumDistinctRows = dNumGroups;
1251
1252                 /* Also convert to long int --- but 'ware overflow! */
1253                 numDistinctRows = (long) Min(dNumDistinctRows, (double) LONG_MAX);
1254
1255                 /*
1256                  * If we have a sortable DISTINCT ON clause, we always use sorting.
1257                  * This enforces the expected behavior of DISTINCT ON.
1258                  */
1259                 can_sort = grouping_is_sortable(parse->distinctClause);
1260                 if (can_sort && parse->hasDistinctOn)
1261                         use_hashed_distinct = false;
1262                 else
1263                 {
1264                         can_hash = grouping_is_hashable(parse->distinctClause);
1265                         if (can_hash && can_sort)
1266                         {
1267                                 /* we have a meaningful choice to make ... */
1268                                 use_hashed_distinct =
1269                                         choose_hashed_distinct(root,
1270                                                                                    result_plan, current_pathkeys,
1271                                                                                    tuple_fraction, limit_tuples,
1272                                                                                    dNumDistinctRows);
1273                         }
1274                         else if (can_hash)
1275                                 use_hashed_distinct = true;
1276                         else if (can_sort)
1277                                 use_hashed_distinct = false;
1278                         else
1279                         {
1280                                 ereport(ERROR,
1281                                                 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1282                                                  errmsg("could not implement DISTINCT"),
1283                                                  errdetail("Some of the datatypes only support hashing, while others only support sorting.")));
1284                                 use_hashed_distinct = false; /* keep compiler quiet */
1285                         }
1286                 }
1287
1288                 if (use_hashed_distinct)
1289                 {
1290                         /* Hashed aggregate plan --- no sort needed */
1291                         result_plan = (Plan *) make_agg(root,
1292                                                                                         result_plan->targetlist,
1293                                                                                         NIL,
1294                                                                                         AGG_HASHED,
1295                                                                                         list_length(parse->distinctClause),
1296                                                                                         extract_grouping_cols(parse->distinctClause,
1297                                                                                                                                   result_plan->targetlist),
1298                                                                                         extract_grouping_ops(parse->distinctClause),
1299                                                                                         numDistinctRows,
1300                                                                                         0,
1301                                                                                         result_plan);
1302                         /* Hashed aggregation produces randomly-ordered results */
1303                         current_pathkeys = NIL;
1304                 }
1305                 else
1306                 {
1307                         /*
1308                          * Use a Unique node to implement DISTINCT.  Add an explicit sort
1309                          * if we couldn't make the path come out the way the Unique node
1310                          * needs it.  If we do have to sort, always sort by the more
1311                          * rigorous of DISTINCT and ORDER BY, to avoid a second sort
1312                          * below.  However, for regular DISTINCT, don't sort now if we
1313                          * don't have to --- sorting afterwards will likely be cheaper,
1314                          * and also has the possibility of optimizing via LIMIT.  But
1315                          * for DISTINCT ON, we *must* force the final sort now, else
1316                          * it won't have the desired behavior.
1317                          */
1318                         List   *needed_pathkeys;
1319
1320                         if (parse->hasDistinctOn &&
1321                                 list_length(root->distinct_pathkeys) <
1322                                 list_length(root->sort_pathkeys))
1323                                 needed_pathkeys = root->sort_pathkeys;
1324                         else
1325                                 needed_pathkeys = root->distinct_pathkeys;
1326
1327                         if (!pathkeys_contained_in(needed_pathkeys, current_pathkeys))
1328                         {
1329                                 if (list_length(root->distinct_pathkeys) >=
1330                                         list_length(root->sort_pathkeys))
1331                                         current_pathkeys = root->distinct_pathkeys;
1332                                 else
1333                                 {
1334                                         current_pathkeys = root->sort_pathkeys;
1335                                         /* Assert checks that parser didn't mess up... */
1336                                         Assert(pathkeys_contained_in(root->distinct_pathkeys,
1337                                                                                                  current_pathkeys));
1338                                 }
1339
1340                                 result_plan = (Plan *) make_sort_from_pathkeys(root,
1341                                                                                                                            result_plan,
1342                                                                                                                            current_pathkeys,
1343                                                                                                                            -1.0);
1344                         }
1345
1346                         result_plan = (Plan *) make_unique(result_plan,
1347                                                                                            parse->distinctClause);
1348                         result_plan->plan_rows = dNumDistinctRows;
1349                         /* The Unique node won't change sort ordering */
1350                 }
1351         }
1352
1353         /*
1354          * If ORDER BY was given and we were not able to make the plan come out in
1355          * the right order, add an explicit sort step.
1356          */
1357         if (parse->sortClause)
1358         {
1359                 if (!pathkeys_contained_in(root->sort_pathkeys, current_pathkeys))
1360                 {
1361                         result_plan = (Plan *) make_sort_from_pathkeys(root,
1362                                                                                                                    result_plan,
1363                                                                                                                    root->sort_pathkeys,
1364                                                                                                                    limit_tuples);
1365                         current_pathkeys = root->sort_pathkeys;
1366                 }
1367         }
1368
1369         /*
1370          * Finally, if there is a LIMIT/OFFSET clause, add the LIMIT node.
1371          */
1372         if (parse->limitCount || parse->limitOffset)
1373         {
1374                 result_plan = (Plan *) make_limit(result_plan,
1375                                                                                   parse->limitOffset,
1376                                                                                   parse->limitCount,
1377                                                                                   offset_est,
1378                                                                                   count_est);
1379         }
1380
1381         /*
1382          * Deal with the RETURNING clause if any.  It's convenient to pass the
1383          * returningList through setrefs.c now rather than at top level (if we
1384          * waited, handling inherited UPDATE/DELETE would be much harder).
1385          */
1386         if (parse->returningList)
1387         {
1388                 List       *rlist;
1389
1390                 Assert(parse->resultRelation);
1391                 rlist = set_returning_clause_references(root->glob,
1392                                                                                                 parse->returningList,
1393                                                                                                 result_plan,
1394                                                                                                 parse->resultRelation);
1395                 root->returningLists = list_make1(rlist);
1396         }
1397         else
1398                 root->returningLists = NIL;
1399
1400         /* Compute result-relations list if needed */
1401         if (parse->resultRelation)
1402                 root->resultRelations = list_make1_int(parse->resultRelation);
1403         else
1404                 root->resultRelations = NIL;
1405
1406         /*
1407          * Return the actual output ordering in query_pathkeys for possible use by
1408          * an outer query level.
1409          */
1410         root->query_pathkeys = current_pathkeys;
1411
1412         return result_plan;
1413 }
1414
1415 /*
1416  * Detect whether a plan node is a "dummy" plan created when a relation
1417  * is deemed not to need scanning due to constraint exclusion.
1418  *
1419  * Currently, such dummy plans are Result nodes with constant FALSE
1420  * filter quals.
1421  */
1422 static bool
1423 is_dummy_plan(Plan *plan)
1424 {
1425         if (IsA(plan, Result))
1426         {
1427                 List       *rcqual = (List *) ((Result *) plan)->resconstantqual;
1428
1429                 if (list_length(rcqual) == 1)
1430                 {
1431                         Const      *constqual = (Const *) linitial(rcqual);
1432
1433                         if (constqual && IsA(constqual, Const))
1434                         {
1435                                 if (!constqual->constisnull &&
1436                                         !DatumGetBool(constqual->constvalue))
1437                                         return true;
1438                         }
1439                 }
1440         }
1441         return false;
1442 }
1443
1444 /*
1445  * preprocess_limit - do pre-estimation for LIMIT and/or OFFSET clauses
1446  *
1447  * We try to estimate the values of the LIMIT/OFFSET clauses, and pass the
1448  * results back in *count_est and *offset_est.  These variables are set to
1449  * 0 if the corresponding clause is not present, and -1 if it's present
1450  * but we couldn't estimate the value for it.  (The "0" convention is OK
1451  * for OFFSET but a little bit bogus for LIMIT: effectively we estimate
1452  * LIMIT 0 as though it were LIMIT 1.  But this is in line with the planner's
1453  * usual practice of never estimating less than one row.)  These values will
1454  * be passed to make_limit, which see if you change this code.
1455  *
1456  * The return value is the suitably adjusted tuple_fraction to use for
1457  * planning the query.  This adjustment is not overridable, since it reflects
1458  * plan actions that grouping_planner() will certainly take, not assumptions
1459  * about context.
1460  */
1461 static double
1462 preprocess_limit(PlannerInfo *root, double tuple_fraction,
1463                                  int64 *offset_est, int64 *count_est)
1464 {
1465         Query      *parse = root->parse;
1466         Node       *est;
1467         double          limit_fraction;
1468
1469         /* Should not be called unless LIMIT or OFFSET */
1470         Assert(parse->limitCount || parse->limitOffset);
1471
1472         /*
1473          * Try to obtain the clause values.  We use estimate_expression_value
1474          * primarily because it can sometimes do something useful with Params.
1475          */
1476         if (parse->limitCount)
1477         {
1478                 est = estimate_expression_value(root, parse->limitCount);
1479                 if (est && IsA(est, Const))
1480                 {
1481                         if (((Const *) est)->constisnull)
1482                         {
1483                                 /* NULL indicates LIMIT ALL, ie, no limit */
1484                                 *count_est = 0; /* treat as not present */
1485                         }
1486                         else
1487                         {
1488                                 *count_est = DatumGetInt64(((Const *) est)->constvalue);
1489                                 if (*count_est <= 0)
1490                                         *count_est = 1;         /* force to at least 1 */
1491                         }
1492                 }
1493                 else
1494                         *count_est = -1;        /* can't estimate */
1495         }
1496         else
1497                 *count_est = 0;                 /* not present */
1498
1499         if (parse->limitOffset)
1500         {
1501                 est = estimate_expression_value(root, parse->limitOffset);
1502                 if (est && IsA(est, Const))
1503                 {
1504                         if (((Const *) est)->constisnull)
1505                         {
1506                                 /* Treat NULL as no offset; the executor will too */
1507                                 *offset_est = 0;        /* treat as not present */
1508                         }
1509                         else
1510                         {
1511                                 *offset_est = DatumGetInt64(((Const *) est)->constvalue);
1512                                 if (*offset_est < 0)
1513                                         *offset_est = 0;        /* less than 0 is same as 0 */
1514                         }
1515                 }
1516                 else
1517                         *offset_est = -1;       /* can't estimate */
1518         }
1519         else
1520                 *offset_est = 0;                /* not present */
1521
1522         if (*count_est != 0)
1523         {
1524                 /*
1525                  * A LIMIT clause limits the absolute number of tuples returned.
1526                  * However, if it's not a constant LIMIT then we have to guess; for
1527                  * lack of a better idea, assume 10% of the plan's result is wanted.
1528                  */
1529                 if (*count_est < 0 || *offset_est < 0)
1530                 {
1531                         /* LIMIT or OFFSET is an expression ... punt ... */
1532                         limit_fraction = 0.10;
1533                 }
1534                 else
1535                 {
1536                         /* LIMIT (plus OFFSET, if any) is max number of tuples needed */
1537                         limit_fraction = (double) *count_est + (double) *offset_est;
1538                 }
1539
1540                 /*
1541                  * If we have absolute limits from both caller and LIMIT, use the
1542                  * smaller value; likewise if they are both fractional.  If one is
1543                  * fractional and the other absolute, we can't easily determine which
1544                  * is smaller, but we use the heuristic that the absolute will usually
1545                  * be smaller.
1546                  */
1547                 if (tuple_fraction >= 1.0)
1548                 {
1549                         if (limit_fraction >= 1.0)
1550                         {
1551                                 /* both absolute */
1552                                 tuple_fraction = Min(tuple_fraction, limit_fraction);
1553                         }
1554                         else
1555                         {
1556                                 /* caller absolute, limit fractional; use caller's value */
1557                         }
1558                 }
1559                 else if (tuple_fraction > 0.0)
1560                 {
1561                         if (limit_fraction >= 1.0)
1562                         {
1563                                 /* caller fractional, limit absolute; use limit */
1564                                 tuple_fraction = limit_fraction;
1565                         }
1566                         else
1567                         {
1568                                 /* both fractional */
1569                                 tuple_fraction = Min(tuple_fraction, limit_fraction);
1570                         }
1571                 }
1572                 else
1573                 {
1574                         /* no info from caller, just use limit */
1575                         tuple_fraction = limit_fraction;
1576                 }
1577         }
1578         else if (*offset_est != 0 && tuple_fraction > 0.0)
1579         {
1580                 /*
1581                  * We have an OFFSET but no LIMIT.      This acts entirely differently
1582                  * from the LIMIT case: here, we need to increase rather than decrease
1583                  * the caller's tuple_fraction, because the OFFSET acts to cause more
1584                  * tuples to be fetched instead of fewer.  This only matters if we got
1585                  * a tuple_fraction > 0, however.
1586                  *
1587                  * As above, use 10% if OFFSET is present but unestimatable.
1588                  */
1589                 if (*offset_est < 0)
1590                         limit_fraction = 0.10;
1591                 else
1592                         limit_fraction = (double) *offset_est;
1593
1594                 /*
1595                  * If we have absolute counts from both caller and OFFSET, add them
1596                  * together; likewise if they are both fractional.      If one is
1597                  * fractional and the other absolute, we want to take the larger, and
1598                  * we heuristically assume that's the fractional one.
1599                  */
1600                 if (tuple_fraction >= 1.0)
1601                 {
1602                         if (limit_fraction >= 1.0)
1603                         {
1604                                 /* both absolute, so add them together */
1605                                 tuple_fraction += limit_fraction;
1606                         }
1607                         else
1608                         {
1609                                 /* caller absolute, limit fractional; use limit */
1610                                 tuple_fraction = limit_fraction;
1611                         }
1612                 }
1613                 else
1614                 {
1615                         if (limit_fraction >= 1.0)
1616                         {
1617                                 /* caller fractional, limit absolute; use caller's value */
1618                         }
1619                         else
1620                         {
1621                                 /* both fractional, so add them together */
1622                                 tuple_fraction += limit_fraction;
1623                                 if (tuple_fraction >= 1.0)
1624                                         tuple_fraction = 0.0;           /* assume fetch all */
1625                         }
1626                 }
1627         }
1628
1629         return tuple_fraction;
1630 }
1631
1632
1633 /*
1634  * preprocess_groupclause - do preparatory work on GROUP BY clause
1635  *
1636  * The idea here is to adjust the ordering of the GROUP BY elements
1637  * (which in itself is semantically insignificant) to match ORDER BY,
1638  * thereby allowing a single sort operation to both implement the ORDER BY
1639  * requirement and set up for a Unique step that implements GROUP BY.
1640  *
1641  * In principle it might be interesting to consider other orderings of the
1642  * GROUP BY elements, which could match the sort ordering of other
1643  * possible plans (eg an indexscan) and thereby reduce cost.  We don't
1644  * bother with that, though.  Hashed grouping will frequently win anyway.
1645  *
1646  * Note: we need no comparable processing of the distinctClause because
1647  * the parser already enforced that that matches ORDER BY.
1648  */
1649 static void
1650 preprocess_groupclause(PlannerInfo *root)
1651 {
1652         Query      *parse = root->parse;
1653         List       *new_groupclause;
1654         bool            partial_match;
1655         ListCell   *sl;
1656         ListCell   *gl;
1657
1658         /* If no ORDER BY, nothing useful to do here */
1659         if (parse->sortClause == NIL)
1660                 return;
1661
1662         /*
1663          * Scan the ORDER BY clause and construct a list of matching GROUP BY
1664          * items, but only as far as we can make a matching prefix.
1665          *
1666          * This code assumes that the sortClause contains no duplicate items.
1667          */
1668         new_groupclause = NIL;
1669         foreach(sl, parse->sortClause)
1670         {
1671                 SortGroupClause *sc = (SortGroupClause *) lfirst(sl);
1672
1673                 foreach(gl, parse->groupClause)
1674                 {
1675                         SortGroupClause *gc = (SortGroupClause *) lfirst(gl);
1676
1677                         if (equal(gc, sc))
1678                         {
1679                                 new_groupclause = lappend(new_groupclause, gc);
1680                                 break;
1681                         }
1682                 }
1683                 if (gl == NULL)
1684                         break;                          /* no match, so stop scanning */
1685         }
1686
1687         /* Did we match all of the ORDER BY list, or just some of it? */
1688         partial_match = (sl != NULL);
1689
1690         /* If no match at all, no point in reordering GROUP BY */
1691         if (new_groupclause == NIL)
1692                 return;
1693
1694         /*
1695          * Add any remaining GROUP BY items to the new list, but only if we
1696          * were able to make a complete match.  In other words, we only
1697          * rearrange the GROUP BY list if the result is that one list is a
1698          * prefix of the other --- otherwise there's no possibility of a
1699          * common sort.  Also, give up if there are any non-sortable GROUP BY
1700          * items, since then there's no hope anyway.
1701          */
1702         foreach(gl, parse->groupClause)
1703         {
1704                 SortGroupClause *gc = (SortGroupClause *) lfirst(gl);
1705
1706                 if (list_member_ptr(new_groupclause, gc))
1707                         continue;                       /* it matched an ORDER BY item */
1708                 if (partial_match)
1709                         return;                         /* give up, no common sort possible */
1710                 if (!OidIsValid(gc->sortop))
1711                         return;                         /* give up, GROUP BY can't be sorted */
1712                 new_groupclause = lappend(new_groupclause, gc);
1713         }
1714
1715         /* Success --- install the rearranged GROUP BY list */
1716         Assert(list_length(parse->groupClause) == list_length(new_groupclause));
1717         parse->groupClause = new_groupclause;
1718 }
1719
1720 /*
1721  * choose_hashed_grouping - should we use hashed grouping?
1722  *
1723  * Note: this is only applied when both alternatives are actually feasible.
1724  */
1725 static bool
1726 choose_hashed_grouping(PlannerInfo *root,
1727                                            double tuple_fraction, double limit_tuples,
1728                                            Path *cheapest_path, Path *sorted_path,
1729                                            double dNumGroups, AggClauseCounts *agg_counts)
1730 {
1731         int                     numGroupCols = list_length(root->parse->groupClause);
1732         double          cheapest_path_rows;
1733         int                     cheapest_path_width;
1734         Size            hashentrysize;
1735         List       *target_pathkeys;
1736         List       *current_pathkeys;
1737         Path            hashed_p;
1738         Path            sorted_p;
1739
1740         /* Prefer sorting when enable_hashagg is off */
1741         if (!enable_hashagg)
1742                 return false;
1743
1744         /*
1745          * Don't do it if it doesn't look like the hashtable will fit into
1746          * work_mem.
1747          *
1748          * Beware here of the possibility that cheapest_path->parent is NULL. This
1749          * could happen if user does something silly like SELECT 'foo' GROUP BY 1;
1750          */
1751         if (cheapest_path->parent)
1752         {
1753                 cheapest_path_rows = cheapest_path->parent->rows;
1754                 cheapest_path_width = cheapest_path->parent->width;
1755         }
1756         else
1757         {
1758                 cheapest_path_rows = 1; /* assume non-set result */
1759                 cheapest_path_width = 100;              /* arbitrary */
1760         }
1761
1762         /* Estimate per-hash-entry space at tuple width... */
1763         hashentrysize = MAXALIGN(cheapest_path_width) + MAXALIGN(sizeof(MinimalTupleData));
1764         /* plus space for pass-by-ref transition values... */
1765         hashentrysize += agg_counts->transitionSpace;
1766         /* plus the per-hash-entry overhead */
1767         hashentrysize += hash_agg_entry_size(agg_counts->numAggs);
1768
1769         if (hashentrysize * dNumGroups > work_mem * 1024L)
1770                 return false;
1771
1772         /*
1773          * When we have both GROUP BY and DISTINCT, use the more-rigorous of
1774          * DISTINCT and ORDER BY as the assumed required output sort order.
1775          * This is an oversimplification because the DISTINCT might get
1776          * implemented via hashing, but it's not clear that the case is common
1777          * enough (or that our estimates are good enough) to justify trying to
1778          * solve it exactly.
1779          */
1780         if (list_length(root->distinct_pathkeys) >
1781                 list_length(root->sort_pathkeys))
1782                 target_pathkeys = root->distinct_pathkeys;
1783         else
1784                 target_pathkeys = root->sort_pathkeys;
1785
1786         /*
1787          * See if the estimated cost is no more than doing it the other way. While
1788          * avoiding the need for sorted input is usually a win, the fact that the
1789          * output won't be sorted may be a loss; so we need to do an actual cost
1790          * comparison.
1791          *
1792          * We need to consider cheapest_path + hashagg [+ final sort] versus
1793          * either cheapest_path [+ sort] + group or agg [+ final sort] or
1794          * presorted_path + group or agg [+ final sort] where brackets indicate a
1795          * step that may not be needed. We assume query_planner() will have
1796          * returned a presorted path only if it's a winner compared to
1797          * cheapest_path for this purpose.
1798          *
1799          * These path variables are dummies that just hold cost fields; we don't
1800          * make actual Paths for these steps.
1801          */
1802         cost_agg(&hashed_p, root, AGG_HASHED, agg_counts->numAggs,
1803                          numGroupCols, dNumGroups,
1804                          cheapest_path->startup_cost, cheapest_path->total_cost,
1805                          cheapest_path_rows);
1806         /* Result of hashed agg is always unsorted */
1807         if (target_pathkeys)
1808                 cost_sort(&hashed_p, root, target_pathkeys, hashed_p.total_cost,
1809                                   dNumGroups, cheapest_path_width, limit_tuples);
1810
1811         if (sorted_path)
1812         {
1813                 sorted_p.startup_cost = sorted_path->startup_cost;
1814                 sorted_p.total_cost = sorted_path->total_cost;
1815                 current_pathkeys = sorted_path->pathkeys;
1816         }
1817         else
1818         {
1819                 sorted_p.startup_cost = cheapest_path->startup_cost;
1820                 sorted_p.total_cost = cheapest_path->total_cost;
1821                 current_pathkeys = cheapest_path->pathkeys;
1822         }
1823         if (!pathkeys_contained_in(root->group_pathkeys, current_pathkeys))
1824         {
1825                 cost_sort(&sorted_p, root, root->group_pathkeys, sorted_p.total_cost,
1826                                   cheapest_path_rows, cheapest_path_width, -1.0);
1827                 current_pathkeys = root->group_pathkeys;
1828         }
1829
1830         if (root->parse->hasAggs)
1831                 cost_agg(&sorted_p, root, AGG_SORTED, agg_counts->numAggs,
1832                                  numGroupCols, dNumGroups,
1833                                  sorted_p.startup_cost, sorted_p.total_cost,
1834                                  cheapest_path_rows);
1835         else
1836                 cost_group(&sorted_p, root, numGroupCols, dNumGroups,
1837                                    sorted_p.startup_cost, sorted_p.total_cost,
1838                                    cheapest_path_rows);
1839         /* The Agg or Group node will preserve ordering */
1840         if (target_pathkeys &&
1841                 !pathkeys_contained_in(target_pathkeys, current_pathkeys))
1842                 cost_sort(&sorted_p, root, target_pathkeys, sorted_p.total_cost,
1843                                   dNumGroups, cheapest_path_width, limit_tuples);
1844
1845         /*
1846          * Now make the decision using the top-level tuple fraction.  First we
1847          * have to convert an absolute count (LIMIT) into fractional form.
1848          */
1849         if (tuple_fraction >= 1.0)
1850                 tuple_fraction /= dNumGroups;
1851
1852         if (compare_fractional_path_costs(&hashed_p, &sorted_p,
1853                                                                           tuple_fraction) < 0)
1854         {
1855                 /* Hashed is cheaper, so use it */
1856                 return true;
1857         }
1858         return false;
1859 }
1860
1861 /*
1862  * choose_hashed_distinct - should we use hashing for DISTINCT?
1863  *
1864  * This is fairly similar to choose_hashed_grouping, but there are enough
1865  * differences that it doesn't seem worth trying to unify the two functions.
1866  *
1867  * But note that making the two choices independently is a bit bogus in
1868  * itself.  If the two could be combined into a single choice operation
1869  * it'd probably be better, but that seems far too unwieldy to be practical,
1870  * especially considering that the combination of GROUP BY and DISTINCT
1871  * isn't very common in real queries.  By separating them, we are giving
1872  * extra preference to using a sorting implementation when a common sort key
1873  * is available ... and that's not necessarily wrong anyway.
1874  *
1875  * Note: this is only applied when both alternatives are actually feasible.
1876  */
1877 static bool
1878 choose_hashed_distinct(PlannerInfo *root,
1879                                            Plan *input_plan, List *input_pathkeys,
1880                                            double tuple_fraction, double limit_tuples,
1881                                            double dNumDistinctRows)
1882 {
1883         int                     numDistinctCols = list_length(root->parse->distinctClause);
1884         Size            hashentrysize;
1885         List       *current_pathkeys;
1886         List       *needed_pathkeys;
1887         Path            hashed_p;
1888         Path            sorted_p;
1889
1890         /* Prefer sorting when enable_hashagg is off */
1891         if (!enable_hashagg)
1892                 return false;
1893
1894         /*
1895          * Don't do it if it doesn't look like the hashtable will fit into
1896          * work_mem.
1897          */
1898         hashentrysize = MAXALIGN(input_plan->plan_width) + MAXALIGN(sizeof(MinimalTupleData));
1899
1900         if (hashentrysize * dNumDistinctRows > work_mem * 1024L)
1901                 return false;
1902
1903         /*
1904          * See if the estimated cost is no more than doing it the other way. While
1905          * avoiding the need for sorted input is usually a win, the fact that the
1906          * output won't be sorted may be a loss; so we need to do an actual cost
1907          * comparison.
1908          *
1909          * We need to consider input_plan + hashagg [+ final sort] versus
1910          * input_plan [+ sort] + group [+ final sort] where brackets indicate
1911          * a step that may not be needed.
1912          *
1913          * These path variables are dummies that just hold cost fields; we don't
1914          * make actual Paths for these steps.
1915          */
1916         cost_agg(&hashed_p, root, AGG_HASHED, 0,
1917                          numDistinctCols, dNumDistinctRows,
1918                          input_plan->startup_cost, input_plan->total_cost,
1919                          input_plan->plan_rows);
1920         /*
1921          * Result of hashed agg is always unsorted, so if ORDER BY is present
1922          * we need to charge for the final sort.
1923          */
1924         if (root->parse->sortClause)
1925                 cost_sort(&hashed_p, root, root->sort_pathkeys, hashed_p.total_cost,
1926                                   dNumDistinctRows, input_plan->plan_width, limit_tuples);
1927
1928         /*
1929          * Now for the GROUP case.  See comments in grouping_planner about the
1930          * sorting choices here --- this code should match that code.
1931          */
1932         sorted_p.startup_cost = input_plan->startup_cost;
1933         sorted_p.total_cost = input_plan->total_cost;
1934         current_pathkeys = input_pathkeys;
1935         if (root->parse->hasDistinctOn &&
1936                 list_length(root->distinct_pathkeys) <
1937                 list_length(root->sort_pathkeys))
1938                 needed_pathkeys = root->sort_pathkeys;
1939         else
1940                 needed_pathkeys = root->distinct_pathkeys;
1941         if (!pathkeys_contained_in(needed_pathkeys, current_pathkeys))
1942         {
1943                 if (list_length(root->distinct_pathkeys) >=
1944                         list_length(root->sort_pathkeys))
1945                         current_pathkeys = root->distinct_pathkeys;
1946                 else
1947                         current_pathkeys = root->sort_pathkeys;
1948                 cost_sort(&sorted_p, root, current_pathkeys, sorted_p.total_cost,
1949                                   input_plan->plan_rows, input_plan->plan_width, -1.0);
1950         }
1951         cost_group(&sorted_p, root, numDistinctCols, dNumDistinctRows,
1952                            sorted_p.startup_cost, sorted_p.total_cost,
1953                            input_plan->plan_rows);
1954         if (root->parse->sortClause &&
1955                 !pathkeys_contained_in(root->sort_pathkeys, current_pathkeys))
1956                 cost_sort(&sorted_p, root, root->sort_pathkeys, sorted_p.total_cost,
1957                                   dNumDistinctRows, input_plan->plan_width, limit_tuples);
1958
1959         /*
1960          * Now make the decision using the top-level tuple fraction.  First we
1961          * have to convert an absolute count (LIMIT) into fractional form.
1962          */
1963         if (tuple_fraction >= 1.0)
1964                 tuple_fraction /= dNumDistinctRows;
1965
1966         if (compare_fractional_path_costs(&hashed_p, &sorted_p,
1967                                                                           tuple_fraction) < 0)
1968         {
1969                 /* Hashed is cheaper, so use it */
1970                 return true;
1971         }
1972         return false;
1973 }
1974
1975 /*---------------
1976  * make_subplanTargetList
1977  *        Generate appropriate target list when grouping is required.
1978  *
1979  * When grouping_planner inserts Aggregate, Group, or Result plan nodes
1980  * above the result of query_planner, we typically want to pass a different
1981  * target list to query_planner than the outer plan nodes should have.
1982  * This routine generates the correct target list for the subplan.
1983  *
1984  * The initial target list passed from the parser already contains entries
1985  * for all ORDER BY and GROUP BY expressions, but it will not have entries
1986  * for variables used only in HAVING clauses; so we need to add those
1987  * variables to the subplan target list.  Also, we flatten all expressions
1988  * except GROUP BY items into their component variables; the other expressions
1989  * will be computed by the inserted nodes rather than by the subplan.
1990  * For example, given a query like
1991  *              SELECT a+b,SUM(c+d) FROM table GROUP BY a+b;
1992  * we want to pass this targetlist to the subplan:
1993  *              a,b,c,d,a+b
1994  * where the a+b target will be used by the Sort/Group steps, and the
1995  * other targets will be used for computing the final results.  (In the
1996  * above example we could theoretically suppress the a and b targets and
1997  * pass down only c,d,a+b, but it's not really worth the trouble to
1998  * eliminate simple var references from the subplan.  We will avoid doing
1999  * the extra computation to recompute a+b at the outer level; see
2000  * fix_upper_expr() in setrefs.c.)
2001  *
2002  * If we are grouping or aggregating, *and* there are no non-Var grouping
2003  * expressions, then the returned tlist is effectively dummy; we do not
2004  * need to force it to be evaluated, because all the Vars it contains
2005  * should be present in the output of query_planner anyway.
2006  *
2007  * 'tlist' is the query's target list.
2008  * 'groupColIdx' receives an array of column numbers for the GROUP BY
2009  *                      expressions (if there are any) in the subplan's target list.
2010  * 'need_tlist_eval' is set true if we really need to evaluate the
2011  *                      result tlist.
2012  *
2013  * The result is the targetlist to be passed to the subplan.
2014  *---------------
2015  */
2016 static List *
2017 make_subplanTargetList(PlannerInfo *root,
2018                                            List *tlist,
2019                                            AttrNumber **groupColIdx,
2020                                            bool *need_tlist_eval)
2021 {
2022         Query      *parse = root->parse;
2023         List       *sub_tlist;
2024         List       *extravars;
2025         int                     numCols;
2026
2027         *groupColIdx = NULL;
2028
2029         /*
2030          * If we're not grouping or aggregating, there's nothing to do here;
2031          * query_planner should receive the unmodified target list.
2032          */
2033         if (!parse->hasAggs && !parse->groupClause && !root->hasHavingQual)
2034         {
2035                 *need_tlist_eval = true;
2036                 return tlist;
2037         }
2038
2039         /*
2040          * Otherwise, start with a "flattened" tlist (having just the vars
2041          * mentioned in the targetlist and HAVING qual --- but not upper-level
2042          * Vars; they will be replaced by Params later on).
2043          */
2044         sub_tlist = flatten_tlist(tlist);
2045         extravars = pull_var_clause(parse->havingQual, true);
2046         sub_tlist = add_to_flat_tlist(sub_tlist, extravars);
2047         list_free(extravars);
2048         *need_tlist_eval = false;       /* only eval if not flat tlist */
2049
2050         /*
2051          * If grouping, create sub_tlist entries for all GROUP BY expressions
2052          * (GROUP BY items that are simple Vars should be in the list already),
2053          * and make an array showing where the group columns are in the sub_tlist.
2054          */
2055         numCols = list_length(parse->groupClause);
2056         if (numCols > 0)
2057         {
2058                 int                     keyno = 0;
2059                 AttrNumber *grpColIdx;
2060                 ListCell   *gl;
2061
2062                 grpColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols);
2063                 *groupColIdx = grpColIdx;
2064
2065                 foreach(gl, parse->groupClause)
2066                 {
2067                         SortGroupClause *grpcl = (SortGroupClause *) lfirst(gl);
2068                         Node       *groupexpr = get_sortgroupclause_expr(grpcl, tlist);
2069                         TargetEntry *te = NULL;
2070
2071                         /*
2072                          * Find or make a matching sub_tlist entry.  If the groupexpr
2073                          * isn't a Var, no point in searching.  (Note that the parser
2074                          * won't make multiple groupClause entries for the same TLE.)
2075                          */
2076                         if (groupexpr && IsA(groupexpr, Var))
2077                         {
2078                                 ListCell   *sl;
2079
2080                                 foreach(sl, sub_tlist)
2081                                 {
2082                                         TargetEntry *lte = (TargetEntry *) lfirst(sl);
2083
2084                                         if (equal(groupexpr, lte->expr))
2085                                         {
2086                                                 te = lte;
2087                                                 break;
2088                                         }
2089                                 }
2090                         }
2091                         if (!te)
2092                         {
2093                                 te = makeTargetEntry((Expr *) groupexpr,
2094                                                                          list_length(sub_tlist) + 1,
2095                                                                          NULL,
2096                                                                          false);
2097                                 sub_tlist = lappend(sub_tlist, te);
2098                                 *need_tlist_eval = true;                /* it's not flat anymore */
2099                         }
2100
2101                         /* and save its resno */
2102                         grpColIdx[keyno++] = te->resno;
2103                 }
2104         }
2105
2106         return sub_tlist;
2107 }
2108
2109 /*
2110  * locate_grouping_columns
2111  *              Locate grouping columns in the tlist chosen by query_planner.
2112  *
2113  * This is only needed if we don't use the sub_tlist chosen by
2114  * make_subplanTargetList.      We have to forget the column indexes found
2115  * by that routine and re-locate the grouping vars in the real sub_tlist.
2116  */
2117 static void
2118 locate_grouping_columns(PlannerInfo *root,
2119                                                 List *tlist,
2120                                                 List *sub_tlist,
2121                                                 AttrNumber *groupColIdx)
2122 {
2123         int                     keyno = 0;
2124         ListCell   *gl;
2125
2126         /*
2127          * No work unless grouping.
2128          */
2129         if (!root->parse->groupClause)
2130         {
2131                 Assert(groupColIdx == NULL);
2132                 return;
2133         }
2134         Assert(groupColIdx != NULL);
2135
2136         foreach(gl, root->parse->groupClause)
2137         {
2138                 SortGroupClause *grpcl = (SortGroupClause *) lfirst(gl);
2139                 Node       *groupexpr = get_sortgroupclause_expr(grpcl, tlist);
2140                 TargetEntry *te = NULL;
2141                 ListCell   *sl;
2142
2143                 foreach(sl, sub_tlist)
2144                 {
2145                         te = (TargetEntry *) lfirst(sl);
2146                         if (equal(groupexpr, te->expr))
2147                                 break;
2148                 }
2149                 if (!sl)
2150                         elog(ERROR, "failed to locate grouping columns");
2151
2152                 groupColIdx[keyno++] = te->resno;
2153         }
2154 }
2155
2156 /*
2157  * postprocess_setop_tlist
2158  *        Fix up targetlist returned by plan_set_operations().
2159  *
2160  * We need to transpose sort key info from the orig_tlist into new_tlist.
2161  * NOTE: this would not be good enough if we supported resjunk sort keys
2162  * for results of set operations --- then, we'd need to project a whole
2163  * new tlist to evaluate the resjunk columns.  For now, just ereport if we
2164  * find any resjunk columns in orig_tlist.
2165  */
2166 static List *
2167 postprocess_setop_tlist(List *new_tlist, List *orig_tlist)
2168 {
2169         ListCell   *l;
2170         ListCell   *orig_tlist_item = list_head(orig_tlist);
2171
2172         foreach(l, new_tlist)
2173         {
2174                 TargetEntry *new_tle = (TargetEntry *) lfirst(l);
2175                 TargetEntry *orig_tle;
2176
2177                 /* ignore resjunk columns in setop result */
2178                 if (new_tle->resjunk)
2179                         continue;
2180
2181                 Assert(orig_tlist_item != NULL);
2182                 orig_tle = (TargetEntry *) lfirst(orig_tlist_item);
2183                 orig_tlist_item = lnext(orig_tlist_item);
2184                 if (orig_tle->resjunk)  /* should not happen */
2185                         elog(ERROR, "resjunk output columns are not implemented");
2186                 Assert(new_tle->resno == orig_tle->resno);
2187                 new_tle->ressortgroupref = orig_tle->ressortgroupref;
2188         }
2189         if (orig_tlist_item != NULL)
2190                 elog(ERROR, "resjunk output columns are not implemented");
2191         return new_tlist;
2192 }