]> granicus.if.org Git - postgresql/blob - src/backend/optimizer/plan/planner.c
Another pgindent run with lib typedefs added.
[postgresql] / src / backend / optimizer / plan / planner.c
1 /*-------------------------------------------------------------------------
2  *
3  * planner.c
4  *        The query optimizer external interface.
5  *
6  * Portions Copyright (c) 1996-2004, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  *        $PostgreSQL: pgsql/src/backend/optimizer/plan/planner.c,v 1.175 2004/08/30 02:54:38 momjian Exp $
12  *
13  *-------------------------------------------------------------------------
14  */
15
16 #include "postgres.h"
17
18 #include <limits.h>
19
20 #include "catalog/pg_operator.h"
21 #include "catalog/pg_type.h"
22 #include "executor/executor.h"
23 #include "miscadmin.h"
24 #include "nodes/makefuncs.h"
25 #ifdef OPTIMIZER_DEBUG
26 #include "nodes/print.h"
27 #endif
28 #include "optimizer/clauses.h"
29 #include "optimizer/cost.h"
30 #include "optimizer/pathnode.h"
31 #include "optimizer/paths.h"
32 #include "optimizer/planmain.h"
33 #include "optimizer/planner.h"
34 #include "optimizer/prep.h"
35 #include "optimizer/subselect.h"
36 #include "optimizer/tlist.h"
37 #include "optimizer/var.h"
38 #include "parser/analyze.h"
39 #include "parser/parsetree.h"
40 #include "parser/parse_expr.h"
41 #include "parser/parse_oper.h"
42 #include "utils/selfuncs.h"
43 #include "utils/syscache.h"
44
45
46 ParamListInfo PlannerBoundParamList = NULL;             /* current boundParams */
47
48
49 /* Expression kind codes for preprocess_expression */
50 #define EXPRKIND_QUAL   0
51 #define EXPRKIND_TARGET 1
52 #define EXPRKIND_RTFUNC 2
53 #define EXPRKIND_LIMIT  3
54 #define EXPRKIND_ININFO 4
55
56
57 static Node *preprocess_expression(Query *parse, Node *expr, int kind);
58 static void preprocess_qual_conditions(Query *parse, Node *jtnode);
59 static Plan *inheritance_planner(Query *parse, List *inheritlist);
60 static Plan *grouping_planner(Query *parse, double tuple_fraction);
61 static bool hash_safe_grouping(Query *parse);
62 static List *make_subplanTargetList(Query *parse, List *tlist,
63                                            AttrNumber **groupColIdx, bool *need_tlist_eval);
64 static void locate_grouping_columns(Query *parse,
65                                                 List *tlist,
66                                                 List *sub_tlist,
67                                                 AttrNumber *groupColIdx);
68 static List *postprocess_setop_tlist(List *new_tlist, List *orig_tlist);
69
70
71 /*****************************************************************************
72  *
73  *         Query optimizer entry point
74  *
75  *****************************************************************************/
76 Plan *
77 planner(Query *parse, bool isCursor, int cursorOptions,
78                 ParamListInfo boundParams)
79 {
80         double          tuple_fraction;
81         Plan       *result_plan;
82         Index           save_PlannerQueryLevel;
83         List       *save_PlannerParamList;
84         ParamListInfo save_PlannerBoundParamList;
85
86         /*
87          * The planner can be called recursively (an example is when
88          * eval_const_expressions tries to pre-evaluate an SQL function). So,
89          * these global state variables must be saved and restored.
90          *
91          * Query level and the param list cannot be moved into the Query
92          * structure since their whole purpose is communication across
93          * multiple sub-Queries. Also, boundParams is explicitly info from
94          * outside the Query, and so is likewise better handled as a global
95          * variable.
96          *
97          * Note we do NOT save and restore PlannerPlanId: it exists to assign
98          * unique IDs to SubPlan nodes, and we want those IDs to be unique for
99          * the life of a backend.  Also, PlannerInitPlan is saved/restored in
100          * subquery_planner, not here.
101          */
102         save_PlannerQueryLevel = PlannerQueryLevel;
103         save_PlannerParamList = PlannerParamList;
104         save_PlannerBoundParamList = PlannerBoundParamList;
105
106         /* Initialize state for handling outer-level references and params */
107         PlannerQueryLevel = 0;          /* will be 1 in top-level subquery_planner */
108         PlannerParamList = NIL;
109         PlannerBoundParamList = boundParams;
110
111         /* Determine what fraction of the plan is likely to be scanned */
112         if (isCursor)
113         {
114                 /*
115                  * We have no real idea how many tuples the user will ultimately
116                  * FETCH from a cursor, but it seems a good bet that he doesn't
117                  * want 'em all.  Optimize for 10% retrieval (you gotta better
118                  * number?      Should this be a SETtable parameter?)
119                  */
120                 tuple_fraction = 0.10;
121         }
122         else
123         {
124                 /* Default assumption is we need all the tuples */
125                 tuple_fraction = 0.0;
126         }
127
128         /* primary planning entry point (may recurse for subqueries) */
129         result_plan = subquery_planner(parse, tuple_fraction);
130
131         Assert(PlannerQueryLevel == 0);
132
133         /*
134          * If creating a plan for a scrollable cursor, make sure it can run
135          * backwards on demand.  Add a Material node at the top at need.
136          */
137         if (isCursor && (cursorOptions & CURSOR_OPT_SCROLL))
138         {
139                 if (!ExecSupportsBackwardScan(result_plan))
140                         result_plan = materialize_finished_plan(result_plan);
141         }
142
143         /* executor wants to know total number of Params used overall */
144         result_plan->nParamExec = list_length(PlannerParamList);
145
146         /* final cleanup of the plan */
147         set_plan_references(result_plan, parse->rtable);
148
149         /* restore state for outer planner, if any */
150         PlannerQueryLevel = save_PlannerQueryLevel;
151         PlannerParamList = save_PlannerParamList;
152         PlannerBoundParamList = save_PlannerBoundParamList;
153
154         return result_plan;
155 }
156
157
158 /*--------------------
159  * subquery_planner
160  *        Invokes the planner on a subquery.  We recurse to here for each
161  *        sub-SELECT found in the query tree.
162  *
163  * parse is the querytree produced by the parser & rewriter.
164  * tuple_fraction is the fraction of tuples we expect will be retrieved.
165  * tuple_fraction is interpreted as explained for grouping_planner, below.
166  *
167  * Basically, this routine does the stuff that should only be done once
168  * per Query object.  It then calls grouping_planner.  At one time,
169  * grouping_planner could be invoked recursively on the same Query object;
170  * that's not currently true, but we keep the separation between the two
171  * routines anyway, in case we need it again someday.
172  *
173  * subquery_planner will be called recursively to handle sub-Query nodes
174  * found within the query's expressions and rangetable.
175  *
176  * Returns a query plan.
177  *--------------------
178  */
179 Plan *
180 subquery_planner(Query *parse, double tuple_fraction)
181 {
182         List       *saved_initplan = PlannerInitPlan;
183         int                     saved_planid = PlannerPlanId;
184         bool            hasOuterJoins;
185         Plan       *plan;
186         List       *newHaving;
187         List       *lst;
188         ListCell   *l;
189
190         /* Set up for a new level of subquery */
191         PlannerQueryLevel++;
192         PlannerInitPlan = NIL;
193
194         /*
195          * Look for IN clauses at the top level of WHERE, and transform them
196          * into joins.  Note that this step only handles IN clauses originally
197          * at top level of WHERE; if we pull up any subqueries in the next
198          * step, their INs are processed just before pulling them up.
199          */
200         parse->in_info_list = NIL;
201         if (parse->hasSubLinks)
202                 parse->jointree->quals = pull_up_IN_clauses(parse,
203                                                                                                  parse->jointree->quals);
204
205         /*
206          * Check to see if any subqueries in the rangetable can be merged into
207          * this query.
208          */
209         parse->jointree = (FromExpr *)
210                 pull_up_subqueries(parse, (Node *) parse->jointree, false);
211
212         /*
213          * Detect whether any rangetable entries are RTE_JOIN kind; if not, we
214          * can avoid the expense of doing flatten_join_alias_vars().  Also
215          * check for outer joins --- if none, we can skip
216          * reduce_outer_joins(). This must be done after we have done
217          * pull_up_subqueries, of course.
218          */
219         parse->hasJoinRTEs = false;
220         hasOuterJoins = false;
221         foreach(l, parse->rtable)
222         {
223                 RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
224
225                 if (rte->rtekind == RTE_JOIN)
226                 {
227                         parse->hasJoinRTEs = true;
228                         if (IS_OUTER_JOIN(rte->jointype))
229                         {
230                                 hasOuterJoins = true;
231                                 /* Can quit scanning once we find an outer join */
232                                 break;
233                         }
234                 }
235         }
236
237         /*
238          * Do expression preprocessing on targetlist and quals.
239          */
240         parse->targetList = (List *)
241                 preprocess_expression(parse, (Node *) parse->targetList,
242                                                           EXPRKIND_TARGET);
243
244         preprocess_qual_conditions(parse, (Node *) parse->jointree);
245
246         parse->havingQual = preprocess_expression(parse, parse->havingQual,
247                                                                                           EXPRKIND_QUAL);
248
249         parse->limitOffset = preprocess_expression(parse, parse->limitOffset,
250                                                                                            EXPRKIND_LIMIT);
251         parse->limitCount = preprocess_expression(parse, parse->limitCount,
252                                                                                           EXPRKIND_LIMIT);
253
254         parse->in_info_list = (List *)
255                 preprocess_expression(parse, (Node *) parse->in_info_list,
256                                                           EXPRKIND_ININFO);
257
258         /* Also need to preprocess expressions for function RTEs */
259         foreach(l, parse->rtable)
260         {
261                 RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
262
263                 if (rte->rtekind == RTE_FUNCTION)
264                         rte->funcexpr = preprocess_expression(parse, rte->funcexpr,
265                                                                                                   EXPRKIND_RTFUNC);
266         }
267
268         /*
269          * A HAVING clause without aggregates is equivalent to a WHERE clause
270          * (except it can only refer to grouped fields).  Transfer any
271          * agg-free clauses of the HAVING qual into WHERE.      This may seem like
272          * wasting cycles to cater to stupidly-written queries, but there are
273          * other reasons for doing it.  Firstly, if the query contains no aggs
274          * at all, then we aren't going to generate an Agg plan node, and so
275          * there'll be no place to execute HAVING conditions; without this
276          * transfer, we'd lose the HAVING condition entirely, which is wrong.
277          * Secondly, when we push down a qual condition into a sub-query, it's
278          * easiest to push the qual into HAVING always, in case it contains
279          * aggs, and then let this code sort it out.
280          *
281          * Note that both havingQual and parse->jointree->quals are in
282          * implicitly-ANDed-list form at this point, even though they are
283          * declared as Node *.
284          */
285         newHaving = NIL;
286         foreach(l, (List *) parse->havingQual)
287         {
288                 Node       *havingclause = (Node *) lfirst(l);
289
290                 if (contain_agg_clause(havingclause))
291                         newHaving = lappend(newHaving, havingclause);
292                 else
293                         parse->jointree->quals = (Node *)
294                                 lappend((List *) parse->jointree->quals, havingclause);
295         }
296         parse->havingQual = (Node *) newHaving;
297
298         /*
299          * If we have any outer joins, try to reduce them to plain inner
300          * joins. This step is most easily done after we've done expression
301          * preprocessing.
302          */
303         if (hasOuterJoins)
304                 reduce_outer_joins(parse);
305
306         /*
307          * See if we can simplify the jointree; opportunities for this may
308          * come from having pulled up subqueries, or from flattening explicit
309          * JOIN syntax.  We must do this after flattening JOIN alias
310          * variables, since eliminating explicit JOIN nodes from the jointree
311          * will cause get_relids_for_join() to fail.  But it should happen
312          * after reduce_outer_joins, anyway.
313          */
314         parse->jointree = (FromExpr *)
315                 simplify_jointree(parse, (Node *) parse->jointree);
316
317         /*
318          * Do the main planning.  If we have an inherited target relation,
319          * that needs special processing, else go straight to
320          * grouping_planner.
321          */
322         if (parse->resultRelation &&
323                 (lst = expand_inherited_rtentry(parse, parse->resultRelation,
324                                                                                 false)) != NIL)
325                 plan = inheritance_planner(parse, lst);
326         else
327                 plan = grouping_planner(parse, tuple_fraction);
328
329         /*
330          * If any subplans were generated, or if we're inside a subplan, build
331          * initPlan list and extParam/allParam sets for plan nodes.
332          */
333         if (PlannerPlanId != saved_planid || PlannerQueryLevel > 1)
334         {
335                 Cost            initplan_cost = 0;
336
337                 /* Prepare extParam/allParam sets for all nodes in tree */
338                 SS_finalize_plan(plan, parse->rtable);
339
340                 /*
341                  * SS_finalize_plan doesn't handle initPlans, so we have to
342                  * manually attach them to the topmost plan node, and add their
343                  * extParams to the topmost node's, too.
344                  *
345                  * We also add the total_cost of each initPlan to the startup cost of
346                  * the top node.  This is a conservative overestimate, since in
347                  * fact each initPlan might be executed later than plan startup,
348                  * or even not at all.
349                  */
350                 plan->initPlan = PlannerInitPlan;
351
352                 foreach(l, plan->initPlan)
353                 {
354                         SubPlan    *initplan = (SubPlan *) lfirst(l);
355
356                         plan->extParam = bms_add_members(plan->extParam,
357                                                                                          initplan->plan->extParam);
358                         /* allParam must include all members of extParam */
359                         plan->allParam = bms_add_members(plan->allParam,
360                                                                                          plan->extParam);
361                         initplan_cost += initplan->plan->total_cost;
362                 }
363
364                 plan->startup_cost += initplan_cost;
365                 plan->total_cost += initplan_cost;
366         }
367
368         /* Return to outer subquery context */
369         PlannerQueryLevel--;
370         PlannerInitPlan = saved_initplan;
371         /* we do NOT restore PlannerPlanId; that's not an oversight! */
372
373         return plan;
374 }
375
376 /*
377  * preprocess_expression
378  *              Do subquery_planner's preprocessing work for an expression,
379  *              which can be a targetlist, a WHERE clause (including JOIN/ON
380  *              conditions), or a HAVING clause.
381  */
382 static Node *
383 preprocess_expression(Query *parse, Node *expr, int kind)
384 {
385         /*
386          * If the query has any join RTEs, replace join alias variables with
387          * base-relation variables. We must do this before sublink processing,
388          * else sublinks expanded out from join aliases wouldn't get
389          * processed.
390          */
391         if (parse->hasJoinRTEs)
392                 expr = flatten_join_alias_vars(parse, expr);
393
394         /*
395          * If it's a qual or havingQual, canonicalize it.  It seems most
396          * useful to do this before applying eval_const_expressions, since the
397          * latter can optimize flattened AND/ORs better than unflattened ones.
398          *
399          * Note: all processing of a qual expression after this point must be
400          * careful to maintain AND/OR flatness --- that is, do not generate a
401          * tree with AND directly under AND, nor OR directly under OR.
402          */
403         if (kind == EXPRKIND_QUAL)
404         {
405                 expr = (Node *) canonicalize_qual((Expr *) expr);
406
407 #ifdef OPTIMIZER_DEBUG
408                 printf("After canonicalize_qual()\n");
409                 pprint(expr);
410 #endif
411         }
412
413         /*
414          * Simplify constant expressions.
415          */
416         expr = eval_const_expressions(expr);
417
418         /* Expand SubLinks to SubPlans */
419         if (parse->hasSubLinks)
420                 expr = SS_process_sublinks(expr, (kind == EXPRKIND_QUAL));
421
422         /*
423          * XXX do not insert anything here unless you have grokked the
424          * comments in SS_replace_correlation_vars ...
425          */
426
427         /* Replace uplevel vars with Param nodes */
428         if (PlannerQueryLevel > 1)
429                 expr = SS_replace_correlation_vars(expr);
430
431         /*
432          * If it's a qual or havingQual, convert it to implicit-AND format.
433          * (We don't want to do this before eval_const_expressions, since the
434          * latter would be unable to simplify a top-level AND correctly. Also,
435          * SS_process_sublinks expects explicit-AND format.)
436          */
437         if (kind == EXPRKIND_QUAL)
438                 expr = (Node *) make_ands_implicit((Expr *) expr);
439
440         return expr;
441 }
442
443 /*
444  * preprocess_qual_conditions
445  *              Recursively scan the query's jointree and do subquery_planner's
446  *              preprocessing work on each qual condition found therein.
447  */
448 static void
449 preprocess_qual_conditions(Query *parse, Node *jtnode)
450 {
451         if (jtnode == NULL)
452                 return;
453         if (IsA(jtnode, RangeTblRef))
454         {
455                 /* nothing to do here */
456         }
457         else if (IsA(jtnode, FromExpr))
458         {
459                 FromExpr   *f = (FromExpr *) jtnode;
460                 ListCell   *l;
461
462                 foreach(l, f->fromlist)
463                         preprocess_qual_conditions(parse, lfirst(l));
464
465                 f->quals = preprocess_expression(parse, f->quals, EXPRKIND_QUAL);
466         }
467         else if (IsA(jtnode, JoinExpr))
468         {
469                 JoinExpr   *j = (JoinExpr *) jtnode;
470
471                 preprocess_qual_conditions(parse, j->larg);
472                 preprocess_qual_conditions(parse, j->rarg);
473
474                 j->quals = preprocess_expression(parse, j->quals, EXPRKIND_QUAL);
475         }
476         else
477                 elog(ERROR, "unrecognized node type: %d",
478                          (int) nodeTag(jtnode));
479 }
480
481 /*--------------------
482  * inheritance_planner
483  *        Generate a plan in the case where the result relation is an
484  *        inheritance set.
485  *
486  * We have to handle this case differently from cases where a source
487  * relation is an inheritance set.      Source inheritance is expanded at
488  * the bottom of the plan tree (see allpaths.c), but target inheritance
489  * has to be expanded at the top.  The reason is that for UPDATE, each
490  * target relation needs a different targetlist matching its own column
491  * set.  (This is not so critical for DELETE, but for simplicity we treat
492  * inherited DELETE the same way.)      Fortunately, the UPDATE/DELETE target
493  * can never be the nullable side of an outer join, so it's OK to generate
494  * the plan this way.
495  *
496  * parse is the querytree produced by the parser & rewriter.
497  * inheritlist is an integer list of RT indexes for the result relation set.
498  *
499  * Returns a query plan.
500  *--------------------
501  */
502 static Plan *
503 inheritance_planner(Query *parse, List *inheritlist)
504 {
505         int                     parentRTindex = parse->resultRelation;
506         Oid                     parentOID = getrelid(parentRTindex, parse->rtable);
507         int                     mainrtlength = list_length(parse->rtable);
508         List       *subplans = NIL;
509         List       *tlist = NIL;
510         ListCell   *l;
511
512         foreach(l, inheritlist)
513         {
514                 int                     childRTindex = lfirst_int(l);
515                 Oid                     childOID = getrelid(childRTindex, parse->rtable);
516                 int                     subrtlength;
517                 Query      *subquery;
518                 Plan       *subplan;
519
520                 /* Generate modified query with this rel as target */
521                 subquery = (Query *) adjust_inherited_attrs((Node *) parse,
522                                                                                                 parentRTindex, parentOID,
523                                                                                                  childRTindex, childOID);
524                 /* Generate plan */
525                 subplan = grouping_planner(subquery, 0.0 /* retrieve all tuples */ );
526                 subplans = lappend(subplans, subplan);
527
528                 /*
529                  * It's possible that additional RTEs got added to the rangetable
530                  * due to expansion of inherited source tables (see allpaths.c).
531                  * If so, we must copy 'em back to the main parse tree's rtable.
532                  *
533                  * XXX my goodness this is ugly.  Really need to think about ways to
534                  * rein in planner's habit of scribbling on its input.
535                  */
536                 subrtlength = list_length(subquery->rtable);
537                 if (subrtlength > mainrtlength)
538                 {
539                         List       *subrt;
540
541                         subrt = list_copy_tail(subquery->rtable, mainrtlength);
542                         parse->rtable = list_concat(parse->rtable, subrt);
543                         mainrtlength = subrtlength;
544                 }
545                 /* Save preprocessed tlist from first rel for use in Append */
546                 if (tlist == NIL)
547                         tlist = subplan->targetlist;
548         }
549
550         /* Save the target-relations list for the executor, too */
551         parse->resultRelations = inheritlist;
552
553         /* Mark result as unordered (probably unnecessary) */
554         parse->query_pathkeys = NIL;
555
556         return (Plan *) make_append(subplans, true, tlist);
557 }
558
559 /*--------------------
560  * grouping_planner
561  *        Perform planning steps related to grouping, aggregation, etc.
562  *        This primarily means adding top-level processing to the basic
563  *        query plan produced by query_planner.
564  *
565  * parse is the querytree produced by the parser & rewriter.
566  * tuple_fraction is the fraction of tuples we expect will be retrieved
567  *
568  * tuple_fraction is interpreted as follows:
569  *        0: expect all tuples to be retrieved (normal case)
570  *        0 < tuple_fraction < 1: expect the given fraction of tuples available
571  *              from the plan to be retrieved
572  *        tuple_fraction >= 1: tuple_fraction is the absolute number of tuples
573  *              expected to be retrieved (ie, a LIMIT specification)
574  *
575  * Returns a query plan.  Also, parse->query_pathkeys is returned as the
576  * actual output ordering of the plan (in pathkey format).
577  *--------------------
578  */
579 static Plan *
580 grouping_planner(Query *parse, double tuple_fraction)
581 {
582         List       *tlist = parse->targetList;
583         Plan       *result_plan;
584         List       *current_pathkeys;
585         List       *sort_pathkeys;
586
587         if (parse->setOperations)
588         {
589                 List       *set_sortclauses;
590
591                 /*
592                  * Construct the plan for set operations.  The result will not
593                  * need any work except perhaps a top-level sort and/or LIMIT.
594                  */
595                 result_plan = plan_set_operations(parse,
596                                                                                   &set_sortclauses);
597
598                 /*
599                  * Calculate pathkeys representing the sort order (if any) of the
600                  * set operation's result.  We have to do this before overwriting
601                  * the sort key information...
602                  */
603                 current_pathkeys = make_pathkeys_for_sortclauses(set_sortclauses,
604                                                                                                 result_plan->targetlist);
605                 current_pathkeys = canonicalize_pathkeys(parse, current_pathkeys);
606
607                 /*
608                  * We should not need to call preprocess_targetlist, since we must
609                  * be in a SELECT query node.  Instead, use the targetlist
610                  * returned by plan_set_operations (since this tells whether it
611                  * returned any resjunk columns!), and transfer any sort key
612                  * information from the original tlist.
613                  */
614                 Assert(parse->commandType == CMD_SELECT);
615
616                 tlist = postprocess_setop_tlist(result_plan->targetlist, tlist);
617
618                 /*
619                  * Can't handle FOR UPDATE here (parser should have checked
620                  * already, but let's make sure).
621                  */
622                 if (parse->rowMarks)
623                         ereport(ERROR,
624                                         (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
625                                          errmsg("SELECT FOR UPDATE is not allowed with UNION/INTERSECT/EXCEPT")));
626
627                 /*
628                  * Calculate pathkeys that represent result ordering requirements
629                  */
630                 sort_pathkeys = make_pathkeys_for_sortclauses(parse->sortClause,
631                                                                                                           tlist);
632                 sort_pathkeys = canonicalize_pathkeys(parse, sort_pathkeys);
633         }
634         else
635         {
636                 /* No set operations, do regular planning */
637                 List       *sub_tlist;
638                 List       *group_pathkeys;
639                 AttrNumber *groupColIdx = NULL;
640                 bool            need_tlist_eval = true;
641                 QualCost        tlist_cost;
642                 double          sub_tuple_fraction;
643                 Path       *cheapest_path;
644                 Path       *sorted_path;
645                 double          dNumGroups = 0;
646                 long            numGroups = 0;
647                 int                     numAggs = 0;
648                 int                     numGroupCols = list_length(parse->groupClause);
649                 bool            use_hashed_grouping = false;
650
651                 /* Preprocess targetlist in case we are inside an INSERT/UPDATE. */
652                 tlist = preprocess_targetlist(tlist,
653                                                                           parse->commandType,
654                                                                           parse->resultRelation,
655                                                                           parse->rtable);
656
657                 /*
658                  * Add TID targets for rels selected FOR UPDATE (should this be
659                  * done in preprocess_targetlist?).  The executor uses the TID to
660                  * know which rows to lock, much as for UPDATE or DELETE.
661                  */
662                 if (parse->rowMarks)
663                 {
664                         ListCell   *l;
665
666                         /*
667                          * We've got trouble if the FOR UPDATE appears inside
668                          * grouping, since grouping renders a reference to individual
669                          * tuple CTIDs invalid.  This is also checked at parse time,
670                          * but that's insufficient because of rule substitution, query
671                          * pullup, etc.
672                          */
673                         CheckSelectForUpdate(parse);
674
675                         /*
676                          * Currently the executor only supports FOR UPDATE at top
677                          * level
678                          */
679                         if (PlannerQueryLevel > 1)
680                                 ereport(ERROR,
681                                                 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
682                                                  errmsg("SELECT FOR UPDATE is not allowed in subqueries")));
683
684                         foreach(l, parse->rowMarks)
685                         {
686                                 Index           rti = lfirst_int(l);
687                                 char       *resname;
688                                 Resdom     *resdom;
689                                 Var                *var;
690                                 TargetEntry *ctid;
691
692                                 resname = (char *) palloc(32);
693                                 snprintf(resname, 32, "ctid%u", rti);
694                                 resdom = makeResdom(list_length(tlist) + 1,
695                                                                         TIDOID,
696                                                                         -1,
697                                                                         resname,
698                                                                         true);
699
700                                 var = makeVar(rti,
701                                                           SelfItemPointerAttributeNumber,
702                                                           TIDOID,
703                                                           -1,
704                                                           0);
705
706                                 ctid = makeTargetEntry(resdom, (Expr *) var);
707                                 tlist = lappend(tlist, ctid);
708                         }
709                 }
710
711                 /*
712                  * Generate appropriate target list for subplan; may be different
713                  * from tlist if grouping or aggregation is needed.
714                  */
715                 sub_tlist = make_subplanTargetList(parse, tlist,
716                                                                                  &groupColIdx, &need_tlist_eval);
717
718                 /*
719                  * Calculate pathkeys that represent grouping/ordering
720                  * requirements
721                  */
722                 group_pathkeys = make_pathkeys_for_sortclauses(parse->groupClause,
723                                                                                                            tlist);
724                 sort_pathkeys = make_pathkeys_for_sortclauses(parse->sortClause,
725                                                                                                           tlist);
726
727                 /*
728                  * Will need actual number of aggregates for estimating costs.
729                  *
730                  * Note: we do not attempt to detect duplicate aggregates here; a
731                  * somewhat-overestimated count is okay for our present purposes.
732                  *
733                  * Note: think not that we can turn off hasAggs if we find no aggs.
734                  * It is possible for constant-expression simplification to remove
735                  * all explicit references to aggs, but we still have to follow
736                  * the aggregate semantics (eg, producing only one output row).
737                  */
738                 if (parse->hasAggs)
739                         numAggs = count_agg_clause((Node *) tlist) +
740                                 count_agg_clause(parse->havingQual);
741
742                 /*
743                  * Figure out whether we need a sorted result from query_planner.
744                  *
745                  * If we have a GROUP BY clause, then we want a result sorted
746                  * properly for grouping.  Otherwise, if there is an ORDER BY
747                  * clause, we want to sort by the ORDER BY clause.      (Note: if we
748                  * have both, and ORDER BY is a superset of GROUP BY, it would be
749                  * tempting to request sort by ORDER BY --- but that might just
750                  * leave us failing to exploit an available sort order at all.
751                  * Needs more thought...)
752                  */
753                 if (parse->groupClause)
754                         parse->query_pathkeys = group_pathkeys;
755                 else if (parse->sortClause)
756                         parse->query_pathkeys = sort_pathkeys;
757                 else
758                         parse->query_pathkeys = NIL;
759
760                 /*
761                  * Adjust tuple_fraction if we see that we are going to apply
762                  * limiting/grouping/aggregation/etc.  This is not overridable by
763                  * the caller, since it reflects plan actions that this routine
764                  * will certainly take, not assumptions about context.
765                  */
766                 if (parse->limitCount != NULL)
767                 {
768                         /*
769                          * A LIMIT clause limits the absolute number of tuples
770                          * returned. However, if it's not a constant LIMIT then we
771                          * have to punt; for lack of a better idea, assume 10% of the
772                          * plan's result is wanted.
773                          */
774                         double          limit_fraction = 0.0;
775
776                         if (IsA(parse->limitCount, Const))
777                         {
778                                 Const      *limitc = (Const *) parse->limitCount;
779                                 int32           count = DatumGetInt32(limitc->constvalue);
780
781                                 /*
782                                  * A NULL-constant LIMIT represents "LIMIT ALL", which we
783                                  * treat the same as no limit (ie, expect to retrieve all
784                                  * the tuples).
785                                  */
786                                 if (!limitc->constisnull && count > 0)
787                                 {
788                                         limit_fraction = (double) count;
789                                         /* We must also consider the OFFSET, if present */
790                                         if (parse->limitOffset != NULL)
791                                         {
792                                                 if (IsA(parse->limitOffset, Const))
793                                                 {
794                                                         int32           offset;
795
796                                                         limitc = (Const *) parse->limitOffset;
797                                                         offset = DatumGetInt32(limitc->constvalue);
798                                                         if (!limitc->constisnull && offset > 0)
799                                                                 limit_fraction += (double) offset;
800                                                 }
801                                                 else
802                                                 {
803                                                         /* OFFSET is an expression ... punt ... */
804                                                         limit_fraction = 0.10;
805                                                 }
806                                         }
807                                 }
808                         }
809                         else
810                         {
811                                 /* LIMIT is an expression ... punt ... */
812                                 limit_fraction = 0.10;
813                         }
814
815                         if (limit_fraction > 0.0)
816                         {
817                                 /*
818                                  * If we have absolute limits from both caller and LIMIT,
819                                  * use the smaller value; if one is fractional and the
820                                  * other absolute, treat the fraction as a fraction of the
821                                  * absolute value; else we can multiply the two fractions
822                                  * together.
823                                  */
824                                 if (tuple_fraction >= 1.0)
825                                 {
826                                         if (limit_fraction >= 1.0)
827                                         {
828                                                 /* both absolute */
829                                                 tuple_fraction = Min(tuple_fraction, limit_fraction);
830                                         }
831                                         else
832                                         {
833                                                 /* caller absolute, limit fractional */
834                                                 tuple_fraction *= limit_fraction;
835                                                 if (tuple_fraction < 1.0)
836                                                         tuple_fraction = 1.0;
837                                         }
838                                 }
839                                 else if (tuple_fraction > 0.0)
840                                 {
841                                         if (limit_fraction >= 1.0)
842                                         {
843                                                 /* caller fractional, limit absolute */
844                                                 tuple_fraction *= limit_fraction;
845                                                 if (tuple_fraction < 1.0)
846                                                         tuple_fraction = 1.0;
847                                         }
848                                         else
849                                         {
850                                                 /* both fractional */
851                                                 tuple_fraction *= limit_fraction;
852                                         }
853                                 }
854                                 else
855                                 {
856                                         /* no info from caller, just use limit */
857                                         tuple_fraction = limit_fraction;
858                                 }
859                         }
860                 }
861
862                 /*
863                  * With grouping or aggregation, the tuple fraction to pass to
864                  * query_planner() may be different from what it is at top level.
865                  */
866                 sub_tuple_fraction = tuple_fraction;
867
868                 if (parse->groupClause)
869                 {
870                         /*
871                          * In GROUP BY mode, we have the little problem that we don't
872                          * really know how many input tuples will be needed to make a
873                          * group, so we can't translate an output LIMIT count into an
874                          * input count.  For lack of a better idea, assume 25% of the
875                          * input data will be processed if there is any output limit.
876                          * However, if the caller gave us a fraction rather than an
877                          * absolute count, we can keep using that fraction (which
878                          * amounts to assuming that all the groups are about the same
879                          * size).
880                          */
881                         if (sub_tuple_fraction >= 1.0)
882                                 sub_tuple_fraction = 0.25;
883
884                         /*
885                          * If both GROUP BY and ORDER BY are specified, we will need
886                          * two levels of sort --- and, therefore, certainly need to
887                          * read all the input tuples --- unless ORDER BY is a subset
888                          * of GROUP BY.  (We have not yet canonicalized the pathkeys,
889                          * so must use the slower noncanonical comparison method.)
890                          */
891                         if (parse->groupClause && parse->sortClause &&
892                                 !noncanonical_pathkeys_contained_in(sort_pathkeys,
893                                                                                                         group_pathkeys))
894                                 sub_tuple_fraction = 0.0;
895                 }
896                 else if (parse->hasAggs)
897                 {
898                         /*
899                          * Ungrouped aggregate will certainly want all the input
900                          * tuples.
901                          */
902                         sub_tuple_fraction = 0.0;
903                 }
904                 else if (parse->distinctClause)
905                 {
906                         /*
907                          * SELECT DISTINCT, like GROUP, will absorb an unpredictable
908                          * number of input tuples per output tuple.  Handle the same
909                          * way.
910                          */
911                         if (sub_tuple_fraction >= 1.0)
912                                 sub_tuple_fraction = 0.25;
913                 }
914
915                 /*
916                  * Generate the best unsorted and presorted paths for this Query
917                  * (but note there may not be any presorted path).
918                  */
919                 query_planner(parse, sub_tlist, sub_tuple_fraction,
920                                           &cheapest_path, &sorted_path);
921
922                 /*
923                  * We couldn't canonicalize group_pathkeys and sort_pathkeys
924                  * before running query_planner(), so do it now.
925                  */
926                 group_pathkeys = canonicalize_pathkeys(parse, group_pathkeys);
927                 sort_pathkeys = canonicalize_pathkeys(parse, sort_pathkeys);
928
929                 /*
930                  * Consider whether we might want to use hashed grouping.
931                  */
932                 if (parse->groupClause)
933                 {
934                         List       *groupExprs;
935                         double          cheapest_path_rows;
936                         int                     cheapest_path_width;
937
938                         /*
939                          * Beware in this section of the possibility that
940                          * cheapest_path->parent is NULL.  This could happen if user
941                          * does something silly like SELECT 'foo' GROUP BY 1;
942                          */
943                         if (cheapest_path->parent)
944                         {
945                                 cheapest_path_rows = cheapest_path->parent->rows;
946                                 cheapest_path_width = cheapest_path->parent->width;
947                         }
948                         else
949                         {
950                                 cheapest_path_rows = 1; /* assume non-set result */
951                                 cheapest_path_width = 100;              /* arbitrary */
952                         }
953
954                         /*
955                          * Always estimate the number of groups.  We can't do this
956                          * until after running query_planner(), either.
957                          */
958                         groupExprs = get_sortgrouplist_exprs(parse->groupClause,
959                                                                                                  parse->targetList);
960                         dNumGroups = estimate_num_groups(parse,
961                                                                                          groupExprs,
962                                                                                          cheapest_path_rows);
963                         /* Also want it as a long int --- but 'ware overflow! */
964                         numGroups = (long) Min(dNumGroups, (double) LONG_MAX);
965
966                         /*
967                          * Check can't-do-it conditions, including whether the
968                          * grouping operators are hashjoinable.
969                          *
970                          * Executor doesn't support hashed aggregation with DISTINCT
971                          * aggregates.  (Doing so would imply storing *all* the input
972                          * values in the hash table, which seems like a certain
973                          * loser.)
974                          */
975                         if (!enable_hashagg || !hash_safe_grouping(parse))
976                                 use_hashed_grouping = false;
977                         else if (parse->hasAggs &&
978                                          (contain_distinct_agg_clause((Node *) tlist) ||
979                                           contain_distinct_agg_clause(parse->havingQual)))
980                                 use_hashed_grouping = false;
981                         else
982                         {
983                                 /*
984                                  * Use hashed grouping if (a) we think we can fit the
985                                  * hashtable into work_mem, *and* (b) the estimated cost
986                                  * is no more than doing it the other way.      While avoiding
987                                  * the need for sorted input is usually a win, the fact
988                                  * that the output won't be sorted may be a loss; so we
989                                  * need to do an actual cost comparison.
990                                  *
991                                  * In most cases we have no good way to estimate the size of
992                                  * the transition value needed by an aggregate;
993                                  * arbitrarily assume it is 100 bytes.  Also set the
994                                  * overhead per hashtable entry at 64 bytes.
995                                  */
996                                 int                     hashentrysize = cheapest_path_width + 64 + numAggs * 100;
997
998                                 if (hashentrysize * dNumGroups <= work_mem * 1024L)
999                                 {
1000                                         /*
1001                                          * Okay, do the cost comparison.  We need to consider
1002                                          * cheapest_path + hashagg [+ final sort] versus
1003                                          * either cheapest_path [+ sort] + group or agg [+
1004                                          * final sort] or presorted_path + group or agg [+
1005                                          * final sort] where brackets indicate a step that may
1006                                          * not be needed. We assume query_planner() will have
1007                                          * returned a presorted path only if it's a winner
1008                                          * compared to cheapest_path for this purpose.
1009                                          *
1010                                          * These path variables are dummies that just hold cost
1011                                          * fields; we don't make actual Paths for these steps.
1012                                          */
1013                                         Path            hashed_p;
1014                                         Path            sorted_p;
1015
1016                                         cost_agg(&hashed_p, parse,
1017                                                          AGG_HASHED, numAggs,
1018                                                          numGroupCols, dNumGroups,
1019                                                          cheapest_path->startup_cost,
1020                                                          cheapest_path->total_cost,
1021                                                          cheapest_path_rows);
1022                                         /* Result of hashed agg is always unsorted */
1023                                         if (sort_pathkeys)
1024                                                 cost_sort(&hashed_p, parse, sort_pathkeys,
1025                                                                   hashed_p.total_cost,
1026                                                                   dNumGroups,
1027                                                                   cheapest_path_width);
1028
1029                                         if (sorted_path)
1030                                         {
1031                                                 sorted_p.startup_cost = sorted_path->startup_cost;
1032                                                 sorted_p.total_cost = sorted_path->total_cost;
1033                                                 current_pathkeys = sorted_path->pathkeys;
1034                                         }
1035                                         else
1036                                         {
1037                                                 sorted_p.startup_cost = cheapest_path->startup_cost;
1038                                                 sorted_p.total_cost = cheapest_path->total_cost;
1039                                                 current_pathkeys = cheapest_path->pathkeys;
1040                                         }
1041                                         if (!pathkeys_contained_in(group_pathkeys,
1042                                                                                            current_pathkeys))
1043                                         {
1044                                                 cost_sort(&sorted_p, parse, group_pathkeys,
1045                                                                   sorted_p.total_cost,
1046                                                                   cheapest_path_rows,
1047                                                                   cheapest_path_width);
1048                                                 current_pathkeys = group_pathkeys;
1049                                         }
1050                                         if (parse->hasAggs)
1051                                                 cost_agg(&sorted_p, parse,
1052                                                                  AGG_SORTED, numAggs,
1053                                                                  numGroupCols, dNumGroups,
1054                                                                  sorted_p.startup_cost,
1055                                                                  sorted_p.total_cost,
1056                                                                  cheapest_path_rows);
1057                                         else
1058                                                 cost_group(&sorted_p, parse,
1059                                                                    numGroupCols, dNumGroups,
1060                                                                    sorted_p.startup_cost,
1061                                                                    sorted_p.total_cost,
1062                                                                    cheapest_path_rows);
1063                                         /* The Agg or Group node will preserve ordering */
1064                                         if (sort_pathkeys &&
1065                                                 !pathkeys_contained_in(sort_pathkeys,
1066                                                                                            current_pathkeys))
1067                                         {
1068                                                 cost_sort(&sorted_p, parse, sort_pathkeys,
1069                                                                   sorted_p.total_cost,
1070                                                                   dNumGroups,
1071                                                                   cheapest_path_width);
1072                                         }
1073
1074                                         /*
1075                                          * Now make the decision using the top-level tuple
1076                                          * fraction.  First we have to convert an absolute
1077                                          * count (LIMIT) into fractional form.
1078                                          */
1079                                         if (tuple_fraction >= 1.0)
1080                                                 tuple_fraction /= dNumGroups;
1081
1082                                         if (compare_fractional_path_costs(&hashed_p, &sorted_p,
1083                                                                                                           tuple_fraction) < 0)
1084                                         {
1085                                                 /* Hashed is cheaper, so use it */
1086                                                 use_hashed_grouping = true;
1087                                         }
1088                                 }
1089                         }
1090                 }
1091
1092                 /*
1093                  * Select the best path and create a plan to execute it.
1094                  *
1095                  * If we are doing hashed grouping, we will always read all the input
1096                  * tuples, so use the cheapest-total path.      Otherwise, trust
1097                  * query_planner's decision about which to use.
1098                  */
1099                 if (sorted_path && !use_hashed_grouping)
1100                 {
1101                         result_plan = create_plan(parse, sorted_path);
1102                         current_pathkeys = sorted_path->pathkeys;
1103                 }
1104                 else
1105                 {
1106                         result_plan = create_plan(parse, cheapest_path);
1107                         current_pathkeys = cheapest_path->pathkeys;
1108                 }
1109
1110                 /*
1111                  * create_plan() returns a plan with just a "flat" tlist of
1112                  * required Vars.  Usually we need to insert the sub_tlist as the
1113                  * tlist of the top plan node.  However, we can skip that if we
1114                  * determined that whatever query_planner chose to return will be
1115                  * good enough.
1116                  */
1117                 if (need_tlist_eval)
1118                 {
1119                         /*
1120                          * If the top-level plan node is one that cannot do expression
1121                          * evaluation, we must insert a Result node to project the
1122                          * desired tlist.
1123                          */
1124                         if (!is_projection_capable_plan(result_plan))
1125                         {
1126                                 result_plan = (Plan *) make_result(sub_tlist, NULL,
1127                                                                                                    result_plan);
1128                         }
1129                         else
1130                         {
1131                                 /*
1132                                  * Otherwise, just replace the subplan's flat tlist with
1133                                  * the desired tlist.
1134                                  */
1135                                 result_plan->targetlist = sub_tlist;
1136                         }
1137
1138                         /*
1139                          * Also, account for the cost of evaluation of the sub_tlist.
1140                          *
1141                          * Up to now, we have only been dealing with "flat" tlists,
1142                          * containing just Vars.  So their evaluation cost is zero
1143                          * according to the model used by cost_qual_eval() (or if you
1144                          * prefer, the cost is factored into cpu_tuple_cost).  Thus we
1145                          * can avoid accounting for tlist cost throughout
1146                          * query_planner() and subroutines.  But now we've inserted a
1147                          * tlist that might contain actual operators, sub-selects, etc
1148                          * --- so we'd better account for its cost.
1149                          *
1150                          * Below this point, any tlist eval cost for added-on nodes
1151                          * should be accounted for as we create those nodes.
1152                          * Presently, of the node types we can add on, only Agg and
1153                          * Group project new tlists (the rest just copy their input
1154                          * tuples) --- so make_agg() and make_group() are responsible
1155                          * for computing the added cost.
1156                          */
1157                         cost_qual_eval(&tlist_cost, sub_tlist);
1158                         result_plan->startup_cost += tlist_cost.startup;
1159                         result_plan->total_cost += tlist_cost.startup +
1160                                 tlist_cost.per_tuple * result_plan->plan_rows;
1161                 }
1162                 else
1163                 {
1164                         /*
1165                          * Since we're using query_planner's tlist and not the one
1166                          * make_subplanTargetList calculated, we have to refigure any
1167                          * grouping-column indexes make_subplanTargetList computed.
1168                          */
1169                         locate_grouping_columns(parse, tlist, result_plan->targetlist,
1170                                                                         groupColIdx);
1171                 }
1172
1173                 /*
1174                  * Insert AGG or GROUP node if needed, plus an explicit sort step
1175                  * if necessary.
1176                  *
1177                  * HAVING clause, if any, becomes qual of the Agg node
1178                  */
1179                 if (use_hashed_grouping)
1180                 {
1181                         /* Hashed aggregate plan --- no sort needed */
1182                         result_plan = (Plan *) make_agg(parse,
1183                                                                                         tlist,
1184                                                                                         (List *) parse->havingQual,
1185                                                                                         AGG_HASHED,
1186                                                                                         numGroupCols,
1187                                                                                         groupColIdx,
1188                                                                                         numGroups,
1189                                                                                         numAggs,
1190                                                                                         result_plan);
1191                         /* Hashed aggregation produces randomly-ordered results */
1192                         current_pathkeys = NIL;
1193                 }
1194                 else if (parse->hasAggs)
1195                 {
1196                         /* Plain aggregate plan --- sort if needed */
1197                         AggStrategy aggstrategy;
1198
1199                         if (parse->groupClause)
1200                         {
1201                                 if (!pathkeys_contained_in(group_pathkeys, current_pathkeys))
1202                                 {
1203                                         result_plan = (Plan *)
1204                                                 make_sort_from_groupcols(parse,
1205                                                                                                  parse->groupClause,
1206                                                                                                  groupColIdx,
1207                                                                                                  result_plan);
1208                                         current_pathkeys = group_pathkeys;
1209                                 }
1210                                 aggstrategy = AGG_SORTED;
1211
1212                                 /*
1213                                  * The AGG node will not change the sort ordering of its
1214                                  * groups, so current_pathkeys describes the result too.
1215                                  */
1216                         }
1217                         else
1218                         {
1219                                 aggstrategy = AGG_PLAIN;
1220                                 /* Result will be only one row anyway; no sort order */
1221                                 current_pathkeys = NIL;
1222                         }
1223
1224                         result_plan = (Plan *) make_agg(parse,
1225                                                                                         tlist,
1226                                                                                         (List *) parse->havingQual,
1227                                                                                         aggstrategy,
1228                                                                                         numGroupCols,
1229                                                                                         groupColIdx,
1230                                                                                         numGroups,
1231                                                                                         numAggs,
1232                                                                                         result_plan);
1233                 }
1234                 else
1235                 {
1236                         /*
1237                          * If there are no Aggs, we shouldn't have any HAVING qual
1238                          * anymore
1239                          */
1240                         Assert(parse->havingQual == NULL);
1241
1242                         /*
1243                          * If we have a GROUP BY clause, insert a group node (plus the
1244                          * appropriate sort node, if necessary).
1245                          */
1246                         if (parse->groupClause)
1247                         {
1248                                 /*
1249                                  * Add an explicit sort if we couldn't make the path come
1250                                  * out the way the GROUP node needs it.
1251                                  */
1252                                 if (!pathkeys_contained_in(group_pathkeys, current_pathkeys))
1253                                 {
1254                                         result_plan = (Plan *)
1255                                                 make_sort_from_groupcols(parse,
1256                                                                                                  parse->groupClause,
1257                                                                                                  groupColIdx,
1258                                                                                                  result_plan);
1259                                         current_pathkeys = group_pathkeys;
1260                                 }
1261
1262                                 result_plan = (Plan *) make_group(parse,
1263                                                                                                   tlist,
1264                                                                                                   numGroupCols,
1265                                                                                                   groupColIdx,
1266                                                                                                   dNumGroups,
1267                                                                                                   result_plan);
1268                                 /* The Group node won't change sort ordering */
1269                         }
1270                 }
1271         }                                                       /* end of if (setOperations) */
1272
1273         /*
1274          * If we were not able to make the plan come out in the right order,
1275          * add an explicit sort step.
1276          */
1277         if (parse->sortClause)
1278         {
1279                 if (!pathkeys_contained_in(sort_pathkeys, current_pathkeys))
1280                 {
1281                         result_plan = (Plan *)
1282                                 make_sort_from_sortclauses(parse,
1283                                                                                    parse->sortClause,
1284                                                                                    result_plan);
1285                         current_pathkeys = sort_pathkeys;
1286                 }
1287         }
1288
1289         /*
1290          * If there is a DISTINCT clause, add the UNIQUE node.
1291          */
1292         if (parse->distinctClause)
1293         {
1294                 result_plan = (Plan *) make_unique(result_plan, parse->distinctClause);
1295
1296                 /*
1297                  * If there was grouping or aggregation, leave plan_rows as-is
1298                  * (ie, assume the result was already mostly unique).  If not,
1299                  * it's reasonable to assume the UNIQUE filter has effects
1300                  * comparable to GROUP BY.
1301                  */
1302                 if (!parse->groupClause && !parse->hasAggs)
1303                 {
1304                         List       *distinctExprs;
1305
1306                         distinctExprs = get_sortgrouplist_exprs(parse->distinctClause,
1307                                                                                                         parse->targetList);
1308                         result_plan->plan_rows = estimate_num_groups(parse,
1309                                                                                                                  distinctExprs,
1310                                                                                                  result_plan->plan_rows);
1311                 }
1312         }
1313
1314         /*
1315          * Finally, if there is a LIMIT/OFFSET clause, add the LIMIT node.
1316          */
1317         if (parse->limitOffset || parse->limitCount)
1318         {
1319                 result_plan = (Plan *) make_limit(result_plan,
1320                                                                                   parse->limitOffset,
1321                                                                                   parse->limitCount);
1322         }
1323
1324         /*
1325          * Return the actual output ordering in query_pathkeys for possible
1326          * use by an outer query level.
1327          */
1328         parse->query_pathkeys = current_pathkeys;
1329
1330         return result_plan;
1331 }
1332
1333 /*
1334  * hash_safe_grouping - are grouping operators hashable?
1335  *
1336  * We assume hashed aggregation will work if the datatype's equality operator
1337  * is marked hashjoinable.
1338  */
1339 static bool
1340 hash_safe_grouping(Query *parse)
1341 {
1342         ListCell   *gl;
1343
1344         foreach(gl, parse->groupClause)
1345         {
1346                 GroupClause *grpcl = (GroupClause *) lfirst(gl);
1347                 TargetEntry *tle = get_sortgroupclause_tle(grpcl, parse->targetList);
1348                 Operator        optup;
1349                 bool            oprcanhash;
1350
1351                 optup = equality_oper(tle->resdom->restype, true);
1352                 if (!optup)
1353                         return false;
1354                 oprcanhash = ((Form_pg_operator) GETSTRUCT(optup))->oprcanhash;
1355                 ReleaseSysCache(optup);
1356                 if (!oprcanhash)
1357                         return false;
1358         }
1359         return true;
1360 }
1361
1362 /*---------------
1363  * make_subplanTargetList
1364  *        Generate appropriate target list when grouping is required.
1365  *
1366  * When grouping_planner inserts Aggregate or Group plan nodes above
1367  * the result of query_planner, we typically want to pass a different
1368  * target list to query_planner than the outer plan nodes should have.
1369  * This routine generates the correct target list for the subplan.
1370  *
1371  * The initial target list passed from the parser already contains entries
1372  * for all ORDER BY and GROUP BY expressions, but it will not have entries
1373  * for variables used only in HAVING clauses; so we need to add those
1374  * variables to the subplan target list.  Also, if we are doing either
1375  * grouping or aggregation, we flatten all expressions except GROUP BY items
1376  * into their component variables; the other expressions will be computed by
1377  * the inserted nodes rather than by the subplan.  For example,
1378  * given a query like
1379  *              SELECT a+b,SUM(c+d) FROM table GROUP BY a+b;
1380  * we want to pass this targetlist to the subplan:
1381  *              a,b,c,d,a+b
1382  * where the a+b target will be used by the Sort/Group steps, and the
1383  * other targets will be used for computing the final results.  (In the
1384  * above example we could theoretically suppress the a and b targets and
1385  * pass down only c,d,a+b, but it's not really worth the trouble to
1386  * eliminate simple var references from the subplan.  We will avoid doing
1387  * the extra computation to recompute a+b at the outer level; see
1388  * replace_vars_with_subplan_refs() in setrefs.c.)
1389  *
1390  * If we are grouping or aggregating, *and* there are no non-Var grouping
1391  * expressions, then the returned tlist is effectively dummy; we do not
1392  * need to force it to be evaluated, because all the Vars it contains
1393  * should be present in the output of query_planner anyway.
1394  *
1395  * 'parse' is the query being processed.
1396  * 'tlist' is the query's target list.
1397  * 'groupColIdx' receives an array of column numbers for the GROUP BY
1398  *                      expressions (if there are any) in the subplan's target list.
1399  * 'need_tlist_eval' is set true if we really need to evaluate the
1400  *                      result tlist.
1401  *
1402  * The result is the targetlist to be passed to the subplan.
1403  *---------------
1404  */
1405 static List *
1406 make_subplanTargetList(Query *parse,
1407                                            List *tlist,
1408                                            AttrNumber **groupColIdx,
1409                                            bool *need_tlist_eval)
1410 {
1411         List       *sub_tlist;
1412         List       *extravars;
1413         int                     numCols;
1414
1415         *groupColIdx = NULL;
1416
1417         /*
1418          * If we're not grouping or aggregating, nothing to do here;
1419          * query_planner should receive the unmodified target list.
1420          */
1421         if (!parse->hasAggs && !parse->groupClause)
1422         {
1423                 *need_tlist_eval = true;
1424                 return tlist;
1425         }
1426
1427         /*
1428          * Otherwise, start with a "flattened" tlist (having just the vars
1429          * mentioned in the targetlist and HAVING qual --- but not upper-
1430          * level Vars; they will be replaced by Params later on).
1431          */
1432         sub_tlist = flatten_tlist(tlist);
1433         extravars = pull_var_clause(parse->havingQual, false);
1434         sub_tlist = add_to_flat_tlist(sub_tlist, extravars);
1435         list_free(extravars);
1436         *need_tlist_eval = false;       /* only eval if not flat tlist */
1437
1438         /*
1439          * If grouping, create sub_tlist entries for all GROUP BY expressions
1440          * (GROUP BY items that are simple Vars should be in the list
1441          * already), and make an array showing where the group columns are in
1442          * the sub_tlist.
1443          */
1444         numCols = list_length(parse->groupClause);
1445         if (numCols > 0)
1446         {
1447                 int                     keyno = 0;
1448                 AttrNumber *grpColIdx;
1449                 ListCell   *gl;
1450
1451                 grpColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols);
1452                 *groupColIdx = grpColIdx;
1453
1454                 foreach(gl, parse->groupClause)
1455                 {
1456                         GroupClause *grpcl = (GroupClause *) lfirst(gl);
1457                         Node       *groupexpr = get_sortgroupclause_expr(grpcl, tlist);
1458                         TargetEntry *te = NULL;
1459                         ListCell   *sl;
1460
1461                         /* Find or make a matching sub_tlist entry */
1462                         foreach(sl, sub_tlist)
1463                         {
1464                                 te = (TargetEntry *) lfirst(sl);
1465                                 if (equal(groupexpr, te->expr))
1466                                         break;
1467                         }
1468                         if (!sl)
1469                         {
1470                                 te = makeTargetEntry(makeResdom(list_length(sub_tlist) + 1,
1471                                                                                                 exprType(groupexpr),
1472                                                                                                 exprTypmod(groupexpr),
1473                                                                                                 NULL,
1474                                                                                                 false),
1475                                                                          (Expr *) groupexpr);
1476                                 sub_tlist = lappend(sub_tlist, te);
1477                                 *need_tlist_eval = true;                /* it's not flat anymore */
1478                         }
1479
1480                         /* and save its resno */
1481                         grpColIdx[keyno++] = te->resdom->resno;
1482                 }
1483         }
1484
1485         return sub_tlist;
1486 }
1487
1488 /*
1489  * locate_grouping_columns
1490  *              Locate grouping columns in the tlist chosen by query_planner.
1491  *
1492  * This is only needed if we don't use the sub_tlist chosen by
1493  * make_subplanTargetList.      We have to forget the column indexes found
1494  * by that routine and re-locate the grouping vars in the real sub_tlist.
1495  */
1496 static void
1497 locate_grouping_columns(Query *parse,
1498                                                 List *tlist,
1499                                                 List *sub_tlist,
1500                                                 AttrNumber *groupColIdx)
1501 {
1502         int                     keyno = 0;
1503         ListCell   *gl;
1504
1505         /*
1506          * No work unless grouping.
1507          */
1508         if (!parse->groupClause)
1509         {
1510                 Assert(groupColIdx == NULL);
1511                 return;
1512         }
1513         Assert(groupColIdx != NULL);
1514
1515         foreach(gl, parse->groupClause)
1516         {
1517                 GroupClause *grpcl = (GroupClause *) lfirst(gl);
1518                 Node       *groupexpr = get_sortgroupclause_expr(grpcl, tlist);
1519                 TargetEntry *te = NULL;
1520                 ListCell   *sl;
1521
1522                 foreach(sl, sub_tlist)
1523                 {
1524                         te = (TargetEntry *) lfirst(sl);
1525                         if (equal(groupexpr, te->expr))
1526                                 break;
1527                 }
1528                 if (!sl)
1529                         elog(ERROR, "failed to locate grouping columns");
1530
1531                 groupColIdx[keyno++] = te->resdom->resno;
1532         }
1533 }
1534
1535 /*
1536  * postprocess_setop_tlist
1537  *        Fix up targetlist returned by plan_set_operations().
1538  *
1539  * We need to transpose sort key info from the orig_tlist into new_tlist.
1540  * NOTE: this would not be good enough if we supported resjunk sort keys
1541  * for results of set operations --- then, we'd need to project a whole
1542  * new tlist to evaluate the resjunk columns.  For now, just ereport if we
1543  * find any resjunk columns in orig_tlist.
1544  */
1545 static List *
1546 postprocess_setop_tlist(List *new_tlist, List *orig_tlist)
1547 {
1548         ListCell   *l;
1549         ListCell   *orig_tlist_item = list_head(orig_tlist);
1550
1551         foreach(l, new_tlist)
1552         {
1553                 TargetEntry *new_tle = (TargetEntry *) lfirst(l);
1554                 TargetEntry *orig_tle;
1555
1556                 /* ignore resjunk columns in setop result */
1557                 if (new_tle->resdom->resjunk)
1558                         continue;
1559
1560                 Assert(orig_tlist_item != NULL);
1561                 orig_tle = (TargetEntry *) lfirst(orig_tlist_item);
1562                 orig_tlist_item = lnext(orig_tlist_item);
1563                 if (orig_tle->resdom->resjunk)  /* should not happen */
1564                         elog(ERROR, "resjunk output columns are not implemented");
1565                 Assert(new_tle->resdom->resno == orig_tle->resdom->resno);
1566                 Assert(new_tle->resdom->restype == orig_tle->resdom->restype);
1567                 new_tle->resdom->ressortgroupref = orig_tle->resdom->ressortgroupref;
1568         }
1569         if (orig_tlist_item != NULL)
1570                 elog(ERROR, "resjunk output columns are not implemented");
1571         return new_tlist;
1572 }