]> granicus.if.org Git - postgresql/blob - src/backend/optimizer/plan/planner.c
Alphabetically order reference to include files, "N" - "S".
[postgresql] / src / backend / optimizer / plan / planner.c
1 /*-------------------------------------------------------------------------
2  *
3  * planner.c
4  *        The query optimizer external interface.
5  *
6  * Portions Copyright (c) 1996-2006, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  *        $PostgreSQL: pgsql/src/backend/optimizer/plan/planner.c,v 1.202 2006/07/11 17:26:58 momjian Exp $
12  *
13  *-------------------------------------------------------------------------
14  */
15
16 #include "postgres.h"
17
18 #include <limits.h>
19
20 #include "catalog/pg_operator.h"
21 #include "catalog/pg_type.h"
22 #include "executor/executor.h"
23 #include "executor/nodeAgg.h"
24 #include "miscadmin.h"
25 #include "nodes/makefuncs.h"
26 #include "optimizer/clauses.h"
27 #include "optimizer/cost.h"
28 #include "optimizer/pathnode.h"
29 #include "optimizer/paths.h"
30 #include "optimizer/planmain.h"
31 #include "optimizer/planner.h"
32 #include "optimizer/prep.h"
33 #include "optimizer/subselect.h"
34 #include "optimizer/tlist.h"
35 #include "optimizer/var.h"
36 #ifdef OPTIMIZER_DEBUG
37 #include "nodes/print.h"
38 #endif
39 #include "parser/parse_expr.h"
40 #include "parser/parse_oper.h"
41 #include "parser/parsetree.h"
42 #include "utils/selfuncs.h"
43 #include "utils/syscache.h"
44
45
46 ParamListInfo PlannerBoundParamList = NULL;             /* current boundParams */
47
48
49 /* Expression kind codes for preprocess_expression */
50 #define EXPRKIND_QUAL           0
51 #define EXPRKIND_TARGET         1
52 #define EXPRKIND_RTFUNC         2
53 #define EXPRKIND_LIMIT          3
54 #define EXPRKIND_ININFO         4
55 #define EXPRKIND_APPINFO        5
56
57
58 static Node *preprocess_expression(PlannerInfo *root, Node *expr, int kind);
59 static void preprocess_qual_conditions(PlannerInfo *root, Node *jtnode);
60 static Plan *inheritance_planner(PlannerInfo *root);
61 static Plan *grouping_planner(PlannerInfo *root, double tuple_fraction);
62 static double preprocess_limit(PlannerInfo *root,
63                                  double tuple_fraction,
64                                  int *offset_est, int *count_est);
65 static bool choose_hashed_grouping(PlannerInfo *root, double tuple_fraction,
66                                            Path *cheapest_path, Path *sorted_path,
67                                            double dNumGroups, AggClauseCounts *agg_counts);
68 static bool hash_safe_grouping(PlannerInfo *root);
69 static List *make_subplanTargetList(PlannerInfo *root, List *tlist,
70                                            AttrNumber **groupColIdx, bool *need_tlist_eval);
71 static void locate_grouping_columns(PlannerInfo *root,
72                                                 List *tlist,
73                                                 List *sub_tlist,
74                                                 AttrNumber *groupColIdx);
75 static List *postprocess_setop_tlist(List *new_tlist, List *orig_tlist);
76
77
78 /*****************************************************************************
79  *
80  *         Query optimizer entry point
81  *
82  *****************************************************************************/
83 Plan *
84 planner(Query *parse, bool isCursor, int cursorOptions,
85                 ParamListInfo boundParams)
86 {
87         double          tuple_fraction;
88         Plan       *result_plan;
89         Index           save_PlannerQueryLevel;
90         List       *save_PlannerParamList;
91         ParamListInfo save_PlannerBoundParamList;
92
93         /*
94          * The planner can be called recursively (an example is when
95          * eval_const_expressions tries to pre-evaluate an SQL function). So,
96          * these global state variables must be saved and restored.
97          *
98          * Query level and the param list cannot be moved into the per-query
99          * PlannerInfo structure since their whole purpose is communication across
100          * multiple sub-queries. Also, boundParams is explicitly info from outside
101          * the query, and so is likewise better handled as a global variable.
102          *
103          * Note we do NOT save and restore PlannerPlanId: it exists to assign
104          * unique IDs to SubPlan nodes, and we want those IDs to be unique for the
105          * life of a backend.  Also, PlannerInitPlan is saved/restored in
106          * subquery_planner, not here.
107          */
108         save_PlannerQueryLevel = PlannerQueryLevel;
109         save_PlannerParamList = PlannerParamList;
110         save_PlannerBoundParamList = PlannerBoundParamList;
111
112         /* Initialize state for handling outer-level references and params */
113         PlannerQueryLevel = 0;          /* will be 1 in top-level subquery_planner */
114         PlannerParamList = NIL;
115         PlannerBoundParamList = boundParams;
116
117         /* Determine what fraction of the plan is likely to be scanned */
118         if (isCursor)
119         {
120                 /*
121                  * We have no real idea how many tuples the user will ultimately FETCH
122                  * from a cursor, but it seems a good bet that he doesn't want 'em
123                  * all.  Optimize for 10% retrieval (you gotta better number?  Should
124                  * this be a SETtable parameter?)
125                  */
126                 tuple_fraction = 0.10;
127         }
128         else
129         {
130                 /* Default assumption is we need all the tuples */
131                 tuple_fraction = 0.0;
132         }
133
134         /* primary planning entry point (may recurse for subqueries) */
135         result_plan = subquery_planner(parse, tuple_fraction, NULL);
136
137         /* check we popped out the right number of levels */
138         Assert(PlannerQueryLevel == 0);
139
140         /*
141          * If creating a plan for a scrollable cursor, make sure it can run
142          * backwards on demand.  Add a Material node at the top at need.
143          */
144         if (isCursor && (cursorOptions & CURSOR_OPT_SCROLL))
145         {
146                 if (!ExecSupportsBackwardScan(result_plan))
147                         result_plan = materialize_finished_plan(result_plan);
148         }
149
150         /* final cleanup of the plan */
151         result_plan = set_plan_references(result_plan, parse->rtable);
152
153         /* executor wants to know total number of Params used overall */
154         result_plan->nParamExec = list_length(PlannerParamList);
155
156         /* restore state for outer planner, if any */
157         PlannerQueryLevel = save_PlannerQueryLevel;
158         PlannerParamList = save_PlannerParamList;
159         PlannerBoundParamList = save_PlannerBoundParamList;
160
161         return result_plan;
162 }
163
164
165 /*--------------------
166  * subquery_planner
167  *        Invokes the planner on a subquery.  We recurse to here for each
168  *        sub-SELECT found in the query tree.
169  *
170  * parse is the querytree produced by the parser & rewriter.
171  * tuple_fraction is the fraction of tuples we expect will be retrieved.
172  * tuple_fraction is interpreted as explained for grouping_planner, below.
173  *
174  * If subquery_pathkeys isn't NULL, it receives a list of pathkeys indicating
175  * the output sort ordering of the completed plan.
176  *
177  * Basically, this routine does the stuff that should only be done once
178  * per Query object.  It then calls grouping_planner.  At one time,
179  * grouping_planner could be invoked recursively on the same Query object;
180  * that's not currently true, but we keep the separation between the two
181  * routines anyway, in case we need it again someday.
182  *
183  * subquery_planner will be called recursively to handle sub-Query nodes
184  * found within the query's expressions and rangetable.
185  *
186  * Returns a query plan.
187  *--------------------
188  */
189 Plan *
190 subquery_planner(Query *parse, double tuple_fraction,
191                                  List **subquery_pathkeys)
192 {
193         List       *saved_initplan = PlannerInitPlan;
194         int                     saved_planid = PlannerPlanId;
195         PlannerInfo *root;
196         Plan       *plan;
197         List       *newHaving;
198         ListCell   *l;
199
200         /* Set up for a new level of subquery */
201         PlannerQueryLevel++;
202         PlannerInitPlan = NIL;
203
204         /* Create a PlannerInfo data structure for this subquery */
205         root = makeNode(PlannerInfo);
206         root->parse = parse;
207         root->in_info_list = NIL;
208         root->append_rel_list = NIL;
209
210         /*
211          * Look for IN clauses at the top level of WHERE, and transform them into
212          * joins.  Note that this step only handles IN clauses originally at top
213          * level of WHERE; if we pull up any subqueries in the next step, their
214          * INs are processed just before pulling them up.
215          */
216         if (parse->hasSubLinks)
217                 parse->jointree->quals = pull_up_IN_clauses(root,
218                                                                                                         parse->jointree->quals);
219
220         /*
221          * Check to see if any subqueries in the rangetable can be merged into
222          * this query.
223          */
224         parse->jointree = (FromExpr *)
225                 pull_up_subqueries(root, (Node *) parse->jointree, false, false);
226
227         /*
228          * Detect whether any rangetable entries are RTE_JOIN kind; if not, we can
229          * avoid the expense of doing flatten_join_alias_vars().  Also check for
230          * outer joins --- if none, we can skip reduce_outer_joins() and some
231          * other processing.  This must be done after we have done
232          * pull_up_subqueries, of course.
233          *
234          * Note: if reduce_outer_joins manages to eliminate all outer joins,
235          * root->hasOuterJoins is not reset currently.  This is OK since its
236          * purpose is merely to suppress unnecessary processing in simple cases.
237          */
238         root->hasJoinRTEs = false;
239         root->hasOuterJoins = false;
240         foreach(l, parse->rtable)
241         {
242                 RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
243
244                 if (rte->rtekind == RTE_JOIN)
245                 {
246                         root->hasJoinRTEs = true;
247                         if (IS_OUTER_JOIN(rte->jointype))
248                         {
249                                 root->hasOuterJoins = true;
250                                 /* Can quit scanning once we find an outer join */
251                                 break;
252                         }
253                 }
254         }
255
256         /*
257          * Expand any rangetable entries that are inheritance sets into "append
258          * relations".  This can add entries to the rangetable, but they must be
259          * plain base relations not joins, so it's OK (and marginally more
260          * efficient) to do it after checking for join RTEs.  We must do it after
261          * pulling up subqueries, else we'd fail to handle inherited tables in
262          * subqueries.
263          */
264         expand_inherited_tables(root);
265
266         /*
267          * Set hasHavingQual to remember if HAVING clause is present.  Needed
268          * because preprocess_expression will reduce a constant-true condition to
269          * an empty qual list ... but "HAVING TRUE" is not a semantic no-op.
270          */
271         root->hasHavingQual = (parse->havingQual != NULL);
272
273         /* Clear this flag; might get set in distribute_qual_to_rels */
274         root->hasPseudoConstantQuals = false;
275
276         /*
277          * Do expression preprocessing on targetlist and quals.
278          */
279         parse->targetList = (List *)
280                 preprocess_expression(root, (Node *) parse->targetList,
281                                                           EXPRKIND_TARGET);
282
283         preprocess_qual_conditions(root, (Node *) parse->jointree);
284
285         parse->havingQual = preprocess_expression(root, parse->havingQual,
286                                                                                           EXPRKIND_QUAL);
287
288         parse->limitOffset = preprocess_expression(root, parse->limitOffset,
289                                                                                            EXPRKIND_LIMIT);
290         parse->limitCount = preprocess_expression(root, parse->limitCount,
291                                                                                           EXPRKIND_LIMIT);
292
293         root->in_info_list = (List *)
294                 preprocess_expression(root, (Node *) root->in_info_list,
295                                                           EXPRKIND_ININFO);
296         root->append_rel_list = (List *)
297                 preprocess_expression(root, (Node *) root->append_rel_list,
298                                                           EXPRKIND_APPINFO);
299
300         /* Also need to preprocess expressions for function RTEs */
301         foreach(l, parse->rtable)
302         {
303                 RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
304
305                 if (rte->rtekind == RTE_FUNCTION)
306                         rte->funcexpr = preprocess_expression(root, rte->funcexpr,
307                                                                                                   EXPRKIND_RTFUNC);
308         }
309
310         /*
311          * In some cases we may want to transfer a HAVING clause into WHERE. We
312          * cannot do so if the HAVING clause contains aggregates (obviously) or
313          * volatile functions (since a HAVING clause is supposed to be executed
314          * only once per group).  Also, it may be that the clause is so expensive
315          * to execute that we're better off doing it only once per group, despite
316          * the loss of selectivity.  This is hard to estimate short of doing the
317          * entire planning process twice, so we use a heuristic: clauses
318          * containing subplans are left in HAVING.      Otherwise, we move or copy the
319          * HAVING clause into WHERE, in hopes of eliminating tuples before
320          * aggregation instead of after.
321          *
322          * If the query has explicit grouping then we can simply move such a
323          * clause into WHERE; any group that fails the clause will not be in the
324          * output because none of its tuples will reach the grouping or
325          * aggregation stage.  Otherwise we must have a degenerate (variable-free)
326          * HAVING clause, which we put in WHERE so that query_planner() can use it
327          * in a gating Result node, but also keep in HAVING to ensure that we
328          * don't emit a bogus aggregated row. (This could be done better, but it
329          * seems not worth optimizing.)
330          *
331          * Note that both havingQual and parse->jointree->quals are in
332          * implicitly-ANDed-list form at this point, even though they are declared
333          * as Node *.
334          */
335         newHaving = NIL;
336         foreach(l, (List *) parse->havingQual)
337         {
338                 Node       *havingclause = (Node *) lfirst(l);
339
340                 if (contain_agg_clause(havingclause) ||
341                         contain_volatile_functions(havingclause) ||
342                         contain_subplans(havingclause))
343                 {
344                         /* keep it in HAVING */
345                         newHaving = lappend(newHaving, havingclause);
346                 }
347                 else if (parse->groupClause)
348                 {
349                         /* move it to WHERE */
350                         parse->jointree->quals = (Node *)
351                                 lappend((List *) parse->jointree->quals, havingclause);
352                 }
353                 else
354                 {
355                         /* put a copy in WHERE, keep it in HAVING */
356                         parse->jointree->quals = (Node *)
357                                 lappend((List *) parse->jointree->quals,
358                                                 copyObject(havingclause));
359                         newHaving = lappend(newHaving, havingclause);
360                 }
361         }
362         parse->havingQual = (Node *) newHaving;
363
364         /*
365          * If we have any outer joins, try to reduce them to plain inner joins.
366          * This step is most easily done after we've done expression
367          * preprocessing.
368          */
369         if (root->hasOuterJoins)
370                 reduce_outer_joins(root);
371
372         /*
373          * Do the main planning.  If we have an inherited target relation, that
374          * needs special processing, else go straight to grouping_planner.
375          */
376         if (parse->resultRelation &&
377                 rt_fetch(parse->resultRelation, parse->rtable)->inh)
378                 plan = inheritance_planner(root);
379         else
380                 plan = grouping_planner(root, tuple_fraction);
381
382         /*
383          * If any subplans were generated, or if we're inside a subplan, build
384          * initPlan list and extParam/allParam sets for plan nodes, and attach the
385          * initPlans to the top plan node.
386          */
387         if (PlannerPlanId != saved_planid || PlannerQueryLevel > 1)
388                 SS_finalize_plan(plan, parse->rtable);
389
390         /* Return sort ordering info if caller wants it */
391         if (subquery_pathkeys)
392                 *subquery_pathkeys = root->query_pathkeys;
393
394         /* Return to outer subquery context */
395         PlannerQueryLevel--;
396         PlannerInitPlan = saved_initplan;
397         /* we do NOT restore PlannerPlanId; that's not an oversight! */
398
399         return plan;
400 }
401
402 /*
403  * preprocess_expression
404  *              Do subquery_planner's preprocessing work for an expression,
405  *              which can be a targetlist, a WHERE clause (including JOIN/ON
406  *              conditions), or a HAVING clause.
407  */
408 static Node *
409 preprocess_expression(PlannerInfo *root, Node *expr, int kind)
410 {
411         /*
412          * Fall out quickly if expression is empty.  This occurs often enough to
413          * be worth checking.  Note that null->null is the correct conversion for
414          * implicit-AND result format, too.
415          */
416         if (expr == NULL)
417                 return NULL;
418
419         /*
420          * If the query has any join RTEs, replace join alias variables with
421          * base-relation variables. We must do this before sublink processing,
422          * else sublinks expanded out from join aliases wouldn't get processed.
423          */
424         if (root->hasJoinRTEs)
425                 expr = flatten_join_alias_vars(root, expr);
426
427         /*
428          * Simplify constant expressions.
429          *
430          * Note: this also flattens nested AND and OR expressions into N-argument
431          * form.  All processing of a qual expression after this point must be
432          * careful to maintain AND/OR flatness --- that is, do not generate a tree
433          * with AND directly under AND, nor OR directly under OR.
434          *
435          * Because this is a relatively expensive process, we skip it when the
436          * query is trivial, such as "SELECT 2+2;" or "INSERT ... VALUES()". The
437          * expression will only be evaluated once anyway, so no point in
438          * pre-simplifying; we can't execute it any faster than the executor can,
439          * and we will waste cycles copying the tree.  Notice however that we
440          * still must do it for quals (to get AND/OR flatness); and if we are in a
441          * subquery we should not assume it will be done only once.
442          */
443         if (root->parse->jointree->fromlist != NIL ||
444                 kind == EXPRKIND_QUAL ||
445                 PlannerQueryLevel > 1)
446                 expr = eval_const_expressions(expr);
447
448         /*
449          * If it's a qual or havingQual, canonicalize it.
450          */
451         if (kind == EXPRKIND_QUAL)
452         {
453                 expr = (Node *) canonicalize_qual((Expr *) expr);
454
455 #ifdef OPTIMIZER_DEBUG
456                 printf("After canonicalize_qual()\n");
457                 pprint(expr);
458 #endif
459         }
460
461         /* Expand SubLinks to SubPlans */
462         if (root->parse->hasSubLinks)
463                 expr = SS_process_sublinks(expr, (kind == EXPRKIND_QUAL));
464
465         /*
466          * XXX do not insert anything here unless you have grokked the comments in
467          * SS_replace_correlation_vars ...
468          */
469
470         /* Replace uplevel vars with Param nodes */
471         if (PlannerQueryLevel > 1)
472                 expr = SS_replace_correlation_vars(expr);
473
474         /*
475          * If it's a qual or havingQual, convert it to implicit-AND format. (We
476          * don't want to do this before eval_const_expressions, since the latter
477          * would be unable to simplify a top-level AND correctly. Also,
478          * SS_process_sublinks expects explicit-AND format.)
479          */
480         if (kind == EXPRKIND_QUAL)
481                 expr = (Node *) make_ands_implicit((Expr *) expr);
482
483         return expr;
484 }
485
486 /*
487  * preprocess_qual_conditions
488  *              Recursively scan the query's jointree and do subquery_planner's
489  *              preprocessing work on each qual condition found therein.
490  */
491 static void
492 preprocess_qual_conditions(PlannerInfo *root, Node *jtnode)
493 {
494         if (jtnode == NULL)
495                 return;
496         if (IsA(jtnode, RangeTblRef))
497         {
498                 /* nothing to do here */
499         }
500         else if (IsA(jtnode, FromExpr))
501         {
502                 FromExpr   *f = (FromExpr *) jtnode;
503                 ListCell   *l;
504
505                 foreach(l, f->fromlist)
506                         preprocess_qual_conditions(root, lfirst(l));
507
508                 f->quals = preprocess_expression(root, f->quals, EXPRKIND_QUAL);
509         }
510         else if (IsA(jtnode, JoinExpr))
511         {
512                 JoinExpr   *j = (JoinExpr *) jtnode;
513
514                 preprocess_qual_conditions(root, j->larg);
515                 preprocess_qual_conditions(root, j->rarg);
516
517                 j->quals = preprocess_expression(root, j->quals, EXPRKIND_QUAL);
518         }
519         else
520                 elog(ERROR, "unrecognized node type: %d",
521                          (int) nodeTag(jtnode));
522 }
523
524 /*
525  * inheritance_planner
526  *        Generate a plan in the case where the result relation is an
527  *        inheritance set.
528  *
529  * We have to handle this case differently from cases where a source relation
530  * is an inheritance set. Source inheritance is expanded at the bottom of the
531  * plan tree (see allpaths.c), but target inheritance has to be expanded at
532  * the top.  The reason is that for UPDATE, each target relation needs a
533  * different targetlist matching its own column set.  Also, for both UPDATE
534  * and DELETE, the executor needs the Append plan node at the top, else it
535  * can't keep track of which table is the current target table.  Fortunately,
536  * the UPDATE/DELETE target can never be the nullable side of an outer join,
537  * so it's OK to generate the plan this way.
538  *
539  * Returns a query plan.
540  */
541 static Plan *
542 inheritance_planner(PlannerInfo *root)
543 {
544         Query      *parse = root->parse;
545         int                     parentRTindex = parse->resultRelation;
546         List       *subplans = NIL;
547         List       *tlist = NIL;
548         PlannerInfo subroot;
549         ListCell   *l;
550
551         subroot.parse = NULL;           /* catch it if no matches in loop */
552
553         parse->resultRelations = NIL;
554
555         foreach(l, root->append_rel_list)
556         {
557                 AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(l);
558                 Plan       *subplan;
559
560                 /* append_rel_list contains all append rels; ignore others */
561                 if (appinfo->parent_relid != parentRTindex)
562                         continue;
563
564                 /* Build target-relations list for the executor */
565                 parse->resultRelations = lappend_int(parse->resultRelations,
566                                                                                          appinfo->child_relid);
567
568                 /*
569                  * Generate modified query with this rel as target.  We have to be
570                  * prepared to translate varnos in in_info_list as well as in the
571                  * Query proper.
572                  */
573                 memcpy(&subroot, root, sizeof(PlannerInfo));
574                 subroot.parse = (Query *)
575                         adjust_appendrel_attrs((Node *) parse,
576                                                                    appinfo);
577                 subroot.in_info_list = (List *)
578                         adjust_appendrel_attrs((Node *) root->in_info_list,
579                                                                    appinfo);
580                 /* There shouldn't be any OJ info to translate, as yet */
581                 Assert(subroot.oj_info_list == NIL);
582
583                 /* Generate plan */
584                 subplan = grouping_planner(&subroot, 0.0 /* retrieve all tuples */ );
585
586                 subplans = lappend(subplans, subplan);
587
588                 /* Save preprocessed tlist from first rel for use in Append */
589                 if (tlist == NIL)
590                         tlist = subplan->targetlist;
591         }
592
593         /*
594          * Planning might have modified the rangetable, due to changes of the
595          * Query structures inside subquery RTEs.  We have to ensure that this
596          * gets propagated back to the master copy.  But can't do this until we
597          * are done planning, because all the calls to grouping_planner need
598          * virgin sub-Queries to work from.  (We are effectively assuming that
599          * sub-Queries will get planned identically each time, or at least that
600          * the impacts on their rangetables will be the same each time.)
601          *
602          * XXX should clean this up someday
603          */
604         parse->rtable = subroot.parse->rtable;
605
606         /* Mark result as unordered (probably unnecessary) */
607         root->query_pathkeys = NIL;
608
609         return (Plan *) make_append(subplans, true, tlist);
610 }
611
612 /*--------------------
613  * grouping_planner
614  *        Perform planning steps related to grouping, aggregation, etc.
615  *        This primarily means adding top-level processing to the basic
616  *        query plan produced by query_planner.
617  *
618  * tuple_fraction is the fraction of tuples we expect will be retrieved
619  *
620  * tuple_fraction is interpreted as follows:
621  *        0: expect all tuples to be retrieved (normal case)
622  *        0 < tuple_fraction < 1: expect the given fraction of tuples available
623  *              from the plan to be retrieved
624  *        tuple_fraction >= 1: tuple_fraction is the absolute number of tuples
625  *              expected to be retrieved (ie, a LIMIT specification)
626  *
627  * Returns a query plan.  Also, root->query_pathkeys is returned as the
628  * actual output ordering of the plan (in pathkey format).
629  *--------------------
630  */
631 static Plan *
632 grouping_planner(PlannerInfo *root, double tuple_fraction)
633 {
634         Query      *parse = root->parse;
635         List       *tlist = parse->targetList;
636         int                     offset_est = 0;
637         int                     count_est = 0;
638         Plan       *result_plan;
639         List       *current_pathkeys;
640         List       *sort_pathkeys;
641         double          dNumGroups = 0;
642
643         /* Tweak caller-supplied tuple_fraction if have LIMIT/OFFSET */
644         if (parse->limitCount || parse->limitOffset)
645                 tuple_fraction = preprocess_limit(root, tuple_fraction,
646                                                                                   &offset_est, &count_est);
647
648         if (parse->setOperations)
649         {
650                 List       *set_sortclauses;
651
652                 /*
653                  * If there's a top-level ORDER BY, assume we have to fetch all the
654                  * tuples.      This might seem too simplistic given all the hackery below
655                  * to possibly avoid the sort ... but a nonzero tuple_fraction is only
656                  * of use to plan_set_operations() when the setop is UNION ALL, and
657                  * the result of UNION ALL is always unsorted.
658                  */
659                 if (parse->sortClause)
660                         tuple_fraction = 0.0;
661
662                 /*
663                  * Construct the plan for set operations.  The result will not need
664                  * any work except perhaps a top-level sort and/or LIMIT.
665                  */
666                 result_plan = plan_set_operations(root, tuple_fraction,
667                                                                                   &set_sortclauses);
668
669                 /*
670                  * Calculate pathkeys representing the sort order (if any) of the set
671                  * operation's result.  We have to do this before overwriting the sort
672                  * key information...
673                  */
674                 current_pathkeys = make_pathkeys_for_sortclauses(set_sortclauses,
675                                                                                                         result_plan->targetlist);
676                 current_pathkeys = canonicalize_pathkeys(root, current_pathkeys);
677
678                 /*
679                  * We should not need to call preprocess_targetlist, since we must be
680                  * in a SELECT query node.      Instead, use the targetlist returned by
681                  * plan_set_operations (since this tells whether it returned any
682                  * resjunk columns!), and transfer any sort key information from the
683                  * original tlist.
684                  */
685                 Assert(parse->commandType == CMD_SELECT);
686
687                 tlist = postprocess_setop_tlist(result_plan->targetlist, tlist);
688
689                 /*
690                  * Can't handle FOR UPDATE/SHARE here (parser should have checked
691                  * already, but let's make sure).
692                  */
693                 if (parse->rowMarks)
694                         ereport(ERROR,
695                                         (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
696                                          errmsg("SELECT FOR UPDATE/SHARE is not allowed with UNION/INTERSECT/EXCEPT")));
697
698                 /*
699                  * Calculate pathkeys that represent result ordering requirements
700                  */
701                 sort_pathkeys = make_pathkeys_for_sortclauses(parse->sortClause,
702                                                                                                           tlist);
703                 sort_pathkeys = canonicalize_pathkeys(root, sort_pathkeys);
704         }
705         else
706         {
707                 /* No set operations, do regular planning */
708                 List       *sub_tlist;
709                 List       *group_pathkeys;
710                 AttrNumber *groupColIdx = NULL;
711                 bool            need_tlist_eval = true;
712                 QualCost        tlist_cost;
713                 Path       *cheapest_path;
714                 Path       *sorted_path;
715                 Path       *best_path;
716                 long            numGroups = 0;
717                 AggClauseCounts agg_counts;
718                 int                     numGroupCols = list_length(parse->groupClause);
719                 bool            use_hashed_grouping = false;
720
721                 MemSet(&agg_counts, 0, sizeof(AggClauseCounts));
722
723                 /* Preprocess targetlist */
724                 tlist = preprocess_targetlist(root, tlist);
725
726                 /*
727                  * Generate appropriate target list for subplan; may be different from
728                  * tlist if grouping or aggregation is needed.
729                  */
730                 sub_tlist = make_subplanTargetList(root, tlist,
731                                                                                    &groupColIdx, &need_tlist_eval);
732
733                 /*
734                  * Calculate pathkeys that represent grouping/ordering requirements.
735                  * Stash them in PlannerInfo so that query_planner can canonicalize
736                  * them.
737                  */
738                 root->group_pathkeys =
739                         make_pathkeys_for_sortclauses(parse->groupClause, tlist);
740                 root->sort_pathkeys =
741                         make_pathkeys_for_sortclauses(parse->sortClause, tlist);
742
743                 /*
744                  * Will need actual number of aggregates for estimating costs.
745                  *
746                  * Note: we do not attempt to detect duplicate aggregates here; a
747                  * somewhat-overestimated count is okay for our present purposes.
748                  *
749                  * Note: think not that we can turn off hasAggs if we find no aggs. It
750                  * is possible for constant-expression simplification to remove all
751                  * explicit references to aggs, but we still have to follow the
752                  * aggregate semantics (eg, producing only one output row).
753                  */
754                 if (parse->hasAggs)
755                 {
756                         count_agg_clauses((Node *) tlist, &agg_counts);
757                         count_agg_clauses(parse->havingQual, &agg_counts);
758                 }
759
760                 /*
761                  * Figure out whether we need a sorted result from query_planner.
762                  *
763                  * If we have a GROUP BY clause, then we want a result sorted properly
764                  * for grouping.  Otherwise, if there is an ORDER BY clause, we want
765                  * to sort by the ORDER BY clause.      (Note: if we have both, and ORDER
766                  * BY is a superset of GROUP BY, it would be tempting to request sort
767                  * by ORDER BY --- but that might just leave us failing to exploit an
768                  * available sort order at all. Needs more thought...)
769                  */
770                 if (parse->groupClause)
771                         root->query_pathkeys = root->group_pathkeys;
772                 else if (parse->sortClause)
773                         root->query_pathkeys = root->sort_pathkeys;
774                 else
775                         root->query_pathkeys = NIL;
776
777                 /*
778                  * Generate the best unsorted and presorted paths for this Query (but
779                  * note there may not be any presorted path).  query_planner will also
780                  * estimate the number of groups in the query, and canonicalize all
781                  * the pathkeys.
782                  */
783                 query_planner(root, sub_tlist, tuple_fraction,
784                                           &cheapest_path, &sorted_path, &dNumGroups);
785
786                 group_pathkeys = root->group_pathkeys;
787                 sort_pathkeys = root->sort_pathkeys;
788
789                 /*
790                  * If grouping, decide whether we want to use hashed grouping.
791                  */
792                 if (parse->groupClause)
793                 {
794                         use_hashed_grouping =
795                                 choose_hashed_grouping(root, tuple_fraction,
796                                                                            cheapest_path, sorted_path,
797                                                                            dNumGroups, &agg_counts);
798
799                         /* Also convert # groups to long int --- but 'ware overflow! */
800                         numGroups = (long) Min(dNumGroups, (double) LONG_MAX);
801                 }
802
803                 /*
804                  * Select the best path.  If we are doing hashed grouping, we will
805                  * always read all the input tuples, so use the cheapest-total path.
806                  * Otherwise, trust query_planner's decision about which to use.
807                  */
808                 if (use_hashed_grouping || !sorted_path)
809                         best_path = cheapest_path;
810                 else
811                         best_path = sorted_path;
812
813                 /*
814                  * Check to see if it's possible to optimize MIN/MAX aggregates. If
815                  * so, we will forget all the work we did so far to choose a "regular"
816                  * path ... but we had to do it anyway to be able to tell which way is
817                  * cheaper.
818                  */
819                 result_plan = optimize_minmax_aggregates(root,
820                                                                                                  tlist,
821                                                                                                  best_path);
822                 if (result_plan != NULL)
823                 {
824                         /*
825                          * optimize_minmax_aggregates generated the full plan, with the
826                          * right tlist, and it has no sort order.
827                          */
828                         current_pathkeys = NIL;
829                 }
830                 else
831                 {
832                         /*
833                          * Normal case --- create a plan according to query_planner's
834                          * results.
835                          */
836                         result_plan = create_plan(root, best_path);
837                         current_pathkeys = best_path->pathkeys;
838
839                         /*
840                          * create_plan() returns a plan with just a "flat" tlist of
841                          * required Vars.  Usually we need to insert the sub_tlist as the
842                          * tlist of the top plan node.  However, we can skip that if we
843                          * determined that whatever query_planner chose to return will be
844                          * good enough.
845                          */
846                         if (need_tlist_eval)
847                         {
848                                 /*
849                                  * If the top-level plan node is one that cannot do expression
850                                  * evaluation, we must insert a Result node to project the
851                                  * desired tlist.
852                                  */
853                                 if (!is_projection_capable_plan(result_plan))
854                                 {
855                                         result_plan = (Plan *) make_result(sub_tlist, NULL,
856                                                                                                            result_plan);
857                                 }
858                                 else
859                                 {
860                                         /*
861                                          * Otherwise, just replace the subplan's flat tlist with
862                                          * the desired tlist.
863                                          */
864                                         result_plan->targetlist = sub_tlist;
865                                 }
866
867                                 /*
868                                  * Also, account for the cost of evaluation of the sub_tlist.
869                                  *
870                                  * Up to now, we have only been dealing with "flat" tlists,
871                                  * containing just Vars.  So their evaluation cost is zero
872                                  * according to the model used by cost_qual_eval() (or if you
873                                  * prefer, the cost is factored into cpu_tuple_cost).  Thus we
874                                  * can avoid accounting for tlist cost throughout
875                                  * query_planner() and subroutines.  But now we've inserted a
876                                  * tlist that might contain actual operators, sub-selects, etc
877                                  * --- so we'd better account for its cost.
878                                  *
879                                  * Below this point, any tlist eval cost for added-on nodes
880                                  * should be accounted for as we create those nodes.
881                                  * Presently, of the node types we can add on, only Agg and
882                                  * Group project new tlists (the rest just copy their input
883                                  * tuples) --- so make_agg() and make_group() are responsible
884                                  * for computing the added cost.
885                                  */
886                                 cost_qual_eval(&tlist_cost, sub_tlist);
887                                 result_plan->startup_cost += tlist_cost.startup;
888                                 result_plan->total_cost += tlist_cost.startup +
889                                         tlist_cost.per_tuple * result_plan->plan_rows;
890                         }
891                         else
892                         {
893                                 /*
894                                  * Since we're using query_planner's tlist and not the one
895                                  * make_subplanTargetList calculated, we have to refigure any
896                                  * grouping-column indexes make_subplanTargetList computed.
897                                  */
898                                 locate_grouping_columns(root, tlist, result_plan->targetlist,
899                                                                                 groupColIdx);
900                         }
901
902                         /*
903                          * Insert AGG or GROUP node if needed, plus an explicit sort step
904                          * if necessary.
905                          *
906                          * HAVING clause, if any, becomes qual of the Agg or Group node.
907                          */
908                         if (use_hashed_grouping)
909                         {
910                                 /* Hashed aggregate plan --- no sort needed */
911                                 result_plan = (Plan *) make_agg(root,
912                                                                                                 tlist,
913                                                                                                 (List *) parse->havingQual,
914                                                                                                 AGG_HASHED,
915                                                                                                 numGroupCols,
916                                                                                                 groupColIdx,
917                                                                                                 numGroups,
918                                                                                                 agg_counts.numAggs,
919                                                                                                 result_plan);
920                                 /* Hashed aggregation produces randomly-ordered results */
921                                 current_pathkeys = NIL;
922                         }
923                         else if (parse->hasAggs)
924                         {
925                                 /* Plain aggregate plan --- sort if needed */
926                                 AggStrategy aggstrategy;
927
928                                 if (parse->groupClause)
929                                 {
930                                         if (!pathkeys_contained_in(group_pathkeys,
931                                                                                            current_pathkeys))
932                                         {
933                                                 result_plan = (Plan *)
934                                                         make_sort_from_groupcols(root,
935                                                                                                          parse->groupClause,
936                                                                                                          groupColIdx,
937                                                                                                          result_plan);
938                                                 current_pathkeys = group_pathkeys;
939                                         }
940                                         aggstrategy = AGG_SORTED;
941
942                                         /*
943                                          * The AGG node will not change the sort ordering of its
944                                          * groups, so current_pathkeys describes the result too.
945                                          */
946                                 }
947                                 else
948                                 {
949                                         aggstrategy = AGG_PLAIN;
950                                         /* Result will be only one row anyway; no sort order */
951                                         current_pathkeys = NIL;
952                                 }
953
954                                 result_plan = (Plan *) make_agg(root,
955                                                                                                 tlist,
956                                                                                                 (List *) parse->havingQual,
957                                                                                                 aggstrategy,
958                                                                                                 numGroupCols,
959                                                                                                 groupColIdx,
960                                                                                                 numGroups,
961                                                                                                 agg_counts.numAggs,
962                                                                                                 result_plan);
963                         }
964                         else if (parse->groupClause)
965                         {
966                                 /*
967                                  * GROUP BY without aggregation, so insert a group node (plus
968                                  * the appropriate sort node, if necessary).
969                                  *
970                                  * Add an explicit sort if we couldn't make the path come out
971                                  * the way the GROUP node needs it.
972                                  */
973                                 if (!pathkeys_contained_in(group_pathkeys, current_pathkeys))
974                                 {
975                                         result_plan = (Plan *)
976                                                 make_sort_from_groupcols(root,
977                                                                                                  parse->groupClause,
978                                                                                                  groupColIdx,
979                                                                                                  result_plan);
980                                         current_pathkeys = group_pathkeys;
981                                 }
982
983                                 result_plan = (Plan *) make_group(root,
984                                                                                                   tlist,
985                                                                                                   (List *) parse->havingQual,
986                                                                                                   numGroupCols,
987                                                                                                   groupColIdx,
988                                                                                                   dNumGroups,
989                                                                                                   result_plan);
990                                 /* The Group node won't change sort ordering */
991                         }
992                         else if (root->hasHavingQual)
993                         {
994                                 /*
995                                  * No aggregates, and no GROUP BY, but we have a HAVING qual.
996                                  * This is a degenerate case in which we are supposed to emit
997                                  * either 0 or 1 row depending on whether HAVING succeeds.
998                                  * Furthermore, there cannot be any variables in either HAVING
999                                  * or the targetlist, so we actually do not need the FROM
1000                                  * table at all!  We can just throw away the plan-so-far and
1001                                  * generate a Result node.      This is a sufficiently unusual
1002                                  * corner case that it's not worth contorting the structure of
1003                                  * this routine to avoid having to generate the plan in the
1004                                  * first place.
1005                                  */
1006                                 result_plan = (Plan *) make_result(tlist,
1007                                                                                                    parse->havingQual,
1008                                                                                                    NULL);
1009                         }
1010                 }                                               /* end of non-minmax-aggregate case */
1011         }                                                       /* end of if (setOperations) */
1012
1013         /*
1014          * If we were not able to make the plan come out in the right order, add
1015          * an explicit sort step.
1016          */
1017         if (parse->sortClause)
1018         {
1019                 if (!pathkeys_contained_in(sort_pathkeys, current_pathkeys))
1020                 {
1021                         result_plan = (Plan *)
1022                                 make_sort_from_sortclauses(root,
1023                                                                                    parse->sortClause,
1024                                                                                    result_plan);
1025                         current_pathkeys = sort_pathkeys;
1026                 }
1027         }
1028
1029         /*
1030          * If there is a DISTINCT clause, add the UNIQUE node.
1031          */
1032         if (parse->distinctClause)
1033         {
1034                 result_plan = (Plan *) make_unique(result_plan, parse->distinctClause);
1035
1036                 /*
1037                  * If there was grouping or aggregation, leave plan_rows as-is (ie,
1038                  * assume the result was already mostly unique).  If not, use the
1039                  * number of distinct-groups calculated by query_planner.
1040                  */
1041                 if (!parse->groupClause && !root->hasHavingQual && !parse->hasAggs)
1042                         result_plan->plan_rows = dNumGroups;
1043         }
1044
1045         /*
1046          * Finally, if there is a LIMIT/OFFSET clause, add the LIMIT node.
1047          */
1048         if (parse->limitCount || parse->limitOffset)
1049         {
1050                 result_plan = (Plan *) make_limit(result_plan,
1051                                                                                   parse->limitOffset,
1052                                                                                   parse->limitCount,
1053                                                                                   offset_est,
1054                                                                                   count_est);
1055         }
1056
1057         /*
1058          * Return the actual output ordering in query_pathkeys for possible use by
1059          * an outer query level.
1060          */
1061         root->query_pathkeys = current_pathkeys;
1062
1063         return result_plan;
1064 }
1065
1066 /*
1067  * preprocess_limit - do pre-estimation for LIMIT and/or OFFSET clauses
1068  *
1069  * We try to estimate the values of the LIMIT/OFFSET clauses, and pass the
1070  * results back in *count_est and *offset_est.  These variables are set to
1071  * 0 if the corresponding clause is not present, and -1 if it's present
1072  * but we couldn't estimate the value for it.  (The "0" convention is OK
1073  * for OFFSET but a little bit bogus for LIMIT: effectively we estimate
1074  * LIMIT 0 as though it were LIMIT 1.  But this is in line with the planner's
1075  * usual practice of never estimating less than one row.)  These values will
1076  * be passed to make_limit, which see if you change this code.
1077  *
1078  * The return value is the suitably adjusted tuple_fraction to use for
1079  * planning the query.  This adjustment is not overridable, since it reflects
1080  * plan actions that grouping_planner() will certainly take, not assumptions
1081  * about context.
1082  */
1083 static double
1084 preprocess_limit(PlannerInfo *root, double tuple_fraction,
1085                                  int *offset_est, int *count_est)
1086 {
1087         Query      *parse = root->parse;
1088         Node       *est;
1089         double          limit_fraction;
1090
1091         /* Should not be called unless LIMIT or OFFSET */
1092         Assert(parse->limitCount || parse->limitOffset);
1093
1094         /*
1095          * Try to obtain the clause values.  We use estimate_expression_value
1096          * primarily because it can sometimes do something useful with Params.
1097          */
1098         if (parse->limitCount)
1099         {
1100                 est = estimate_expression_value(parse->limitCount);
1101                 if (est && IsA(est, Const))
1102                 {
1103                         if (((Const *) est)->constisnull)
1104                         {
1105                                 /* NULL indicates LIMIT ALL, ie, no limit */
1106                                 *count_est = 0; /* treat as not present */
1107                         }
1108                         else
1109                         {
1110                                 *count_est = DatumGetInt32(((Const *) est)->constvalue);
1111                                 if (*count_est <= 0)
1112                                         *count_est = 1;         /* force to at least 1 */
1113                         }
1114                 }
1115                 else
1116                         *count_est = -1;        /* can't estimate */
1117         }
1118         else
1119                 *count_est = 0;                 /* not present */
1120
1121         if (parse->limitOffset)
1122         {
1123                 est = estimate_expression_value(parse->limitOffset);
1124                 if (est && IsA(est, Const))
1125                 {
1126                         if (((Const *) est)->constisnull)
1127                         {
1128                                 /* Treat NULL as no offset; the executor will too */
1129                                 *offset_est = 0;        /* treat as not present */
1130                         }
1131                         else
1132                         {
1133                                 *offset_est = DatumGetInt32(((Const *) est)->constvalue);
1134                                 if (*offset_est < 0)
1135                                         *offset_est = 0;        /* less than 0 is same as 0 */
1136                         }
1137                 }
1138                 else
1139                         *offset_est = -1;       /* can't estimate */
1140         }
1141         else
1142                 *offset_est = 0;                /* not present */
1143
1144         if (*count_est != 0)
1145         {
1146                 /*
1147                  * A LIMIT clause limits the absolute number of tuples returned.
1148                  * However, if it's not a constant LIMIT then we have to guess; for
1149                  * lack of a better idea, assume 10% of the plan's result is wanted.
1150                  */
1151                 if (*count_est < 0 || *offset_est < 0)
1152                 {
1153                         /* LIMIT or OFFSET is an expression ... punt ... */
1154                         limit_fraction = 0.10;
1155                 }
1156                 else
1157                 {
1158                         /* LIMIT (plus OFFSET, if any) is max number of tuples needed */
1159                         limit_fraction = (double) *count_est + (double) *offset_est;
1160                 }
1161
1162                 /*
1163                  * If we have absolute limits from both caller and LIMIT, use the
1164                  * smaller value; likewise if they are both fractional.  If one is
1165                  * fractional and the other absolute, we can't easily determine which
1166                  * is smaller, but we use the heuristic that the absolute will usually
1167                  * be smaller.
1168                  */
1169                 if (tuple_fraction >= 1.0)
1170                 {
1171                         if (limit_fraction >= 1.0)
1172                         {
1173                                 /* both absolute */
1174                                 tuple_fraction = Min(tuple_fraction, limit_fraction);
1175                         }
1176                         else
1177                         {
1178                                 /* caller absolute, limit fractional; use caller's value */
1179                         }
1180                 }
1181                 else if (tuple_fraction > 0.0)
1182                 {
1183                         if (limit_fraction >= 1.0)
1184                         {
1185                                 /* caller fractional, limit absolute; use limit */
1186                                 tuple_fraction = limit_fraction;
1187                         }
1188                         else
1189                         {
1190                                 /* both fractional */
1191                                 tuple_fraction = Min(tuple_fraction, limit_fraction);
1192                         }
1193                 }
1194                 else
1195                 {
1196                         /* no info from caller, just use limit */
1197                         tuple_fraction = limit_fraction;
1198                 }
1199         }
1200         else if (*offset_est != 0 && tuple_fraction > 0.0)
1201         {
1202                 /*
1203                  * We have an OFFSET but no LIMIT.      This acts entirely differently
1204                  * from the LIMIT case: here, we need to increase rather than decrease
1205                  * the caller's tuple_fraction, because the OFFSET acts to cause more
1206                  * tuples to be fetched instead of fewer.  This only matters if we got
1207                  * a tuple_fraction > 0, however.
1208                  *
1209                  * As above, use 10% if OFFSET is present but unestimatable.
1210                  */
1211                 if (*offset_est < 0)
1212                         limit_fraction = 0.10;
1213                 else
1214                         limit_fraction = (double) *offset_est;
1215
1216                 /*
1217                  * If we have absolute counts from both caller and OFFSET, add them
1218                  * together; likewise if they are both fractional.      If one is
1219                  * fractional and the other absolute, we want to take the larger, and
1220                  * we heuristically assume that's the fractional one.
1221                  */
1222                 if (tuple_fraction >= 1.0)
1223                 {
1224                         if (limit_fraction >= 1.0)
1225                         {
1226                                 /* both absolute, so add them together */
1227                                 tuple_fraction += limit_fraction;
1228                         }
1229                         else
1230                         {
1231                                 /* caller absolute, limit fractional; use limit */
1232                                 tuple_fraction = limit_fraction;
1233                         }
1234                 }
1235                 else
1236                 {
1237                         if (limit_fraction >= 1.0)
1238                         {
1239                                 /* caller fractional, limit absolute; use caller's value */
1240                         }
1241                         else
1242                         {
1243                                 /* both fractional, so add them together */
1244                                 tuple_fraction += limit_fraction;
1245                                 if (tuple_fraction >= 1.0)
1246                                         tuple_fraction = 0.0;           /* assume fetch all */
1247                         }
1248                 }
1249         }
1250
1251         return tuple_fraction;
1252 }
1253
1254 /*
1255  * choose_hashed_grouping - should we use hashed grouping?
1256  */
1257 static bool
1258 choose_hashed_grouping(PlannerInfo *root, double tuple_fraction,
1259                                            Path *cheapest_path, Path *sorted_path,
1260                                            double dNumGroups, AggClauseCounts *agg_counts)
1261 {
1262         int                     numGroupCols = list_length(root->parse->groupClause);
1263         double          cheapest_path_rows;
1264         int                     cheapest_path_width;
1265         Size            hashentrysize;
1266         List       *current_pathkeys;
1267         Path            hashed_p;
1268         Path            sorted_p;
1269
1270         /*
1271          * Check can't-do-it conditions, including whether the grouping operators
1272          * are hashjoinable.
1273          *
1274          * Executor doesn't support hashed aggregation with DISTINCT aggregates.
1275          * (Doing so would imply storing *all* the input values in the hash table,
1276          * which seems like a certain loser.)
1277          */
1278         if (!enable_hashagg)
1279                 return false;
1280         if (agg_counts->numDistinctAggs != 0)
1281                 return false;
1282         if (!hash_safe_grouping(root))
1283                 return false;
1284
1285         /*
1286          * Don't do it if it doesn't look like the hashtable will fit into
1287          * work_mem.
1288          *
1289          * Beware here of the possibility that cheapest_path->parent is NULL. This
1290          * could happen if user does something silly like SELECT 'foo' GROUP BY 1;
1291          */
1292         if (cheapest_path->parent)
1293         {
1294                 cheapest_path_rows = cheapest_path->parent->rows;
1295                 cheapest_path_width = cheapest_path->parent->width;
1296         }
1297         else
1298         {
1299                 cheapest_path_rows = 1; /* assume non-set result */
1300                 cheapest_path_width = 100;              /* arbitrary */
1301         }
1302
1303         /* Estimate per-hash-entry space at tuple width... */
1304         hashentrysize = MAXALIGN(cheapest_path_width) + MAXALIGN(sizeof(MinimalTupleData));
1305         /* plus space for pass-by-ref transition values... */
1306         hashentrysize += agg_counts->transitionSpace;
1307         /* plus the per-hash-entry overhead */
1308         hashentrysize += hash_agg_entry_size(agg_counts->numAggs);
1309
1310         if (hashentrysize * dNumGroups > work_mem * 1024L)
1311                 return false;
1312
1313         /*
1314          * See if the estimated cost is no more than doing it the other way. While
1315          * avoiding the need for sorted input is usually a win, the fact that the
1316          * output won't be sorted may be a loss; so we need to do an actual cost
1317          * comparison.
1318          *
1319          * We need to consider cheapest_path + hashagg [+ final sort] versus
1320          * either cheapest_path [+ sort] + group or agg [+ final sort] or
1321          * presorted_path + group or agg [+ final sort] where brackets indicate a
1322          * step that may not be needed. We assume query_planner() will have
1323          * returned a presorted path only if it's a winner compared to
1324          * cheapest_path for this purpose.
1325          *
1326          * These path variables are dummies that just hold cost fields; we don't
1327          * make actual Paths for these steps.
1328          */
1329         cost_agg(&hashed_p, root, AGG_HASHED, agg_counts->numAggs,
1330                          numGroupCols, dNumGroups,
1331                          cheapest_path->startup_cost, cheapest_path->total_cost,
1332                          cheapest_path_rows);
1333         /* Result of hashed agg is always unsorted */
1334         if (root->sort_pathkeys)
1335                 cost_sort(&hashed_p, root, root->sort_pathkeys, hashed_p.total_cost,
1336                                   dNumGroups, cheapest_path_width);
1337
1338         if (sorted_path)
1339         {
1340                 sorted_p.startup_cost = sorted_path->startup_cost;
1341                 sorted_p.total_cost = sorted_path->total_cost;
1342                 current_pathkeys = sorted_path->pathkeys;
1343         }
1344         else
1345         {
1346                 sorted_p.startup_cost = cheapest_path->startup_cost;
1347                 sorted_p.total_cost = cheapest_path->total_cost;
1348                 current_pathkeys = cheapest_path->pathkeys;
1349         }
1350         if (!pathkeys_contained_in(root->group_pathkeys, current_pathkeys))
1351         {
1352                 cost_sort(&sorted_p, root, root->group_pathkeys, sorted_p.total_cost,
1353                                   cheapest_path_rows, cheapest_path_width);
1354                 current_pathkeys = root->group_pathkeys;
1355         }
1356
1357         if (root->parse->hasAggs)
1358                 cost_agg(&sorted_p, root, AGG_SORTED, agg_counts->numAggs,
1359                                  numGroupCols, dNumGroups,
1360                                  sorted_p.startup_cost, sorted_p.total_cost,
1361                                  cheapest_path_rows);
1362         else
1363                 cost_group(&sorted_p, root, numGroupCols, dNumGroups,
1364                                    sorted_p.startup_cost, sorted_p.total_cost,
1365                                    cheapest_path_rows);
1366         /* The Agg or Group node will preserve ordering */
1367         if (root->sort_pathkeys &&
1368                 !pathkeys_contained_in(root->sort_pathkeys, current_pathkeys))
1369                 cost_sort(&sorted_p, root, root->sort_pathkeys, sorted_p.total_cost,
1370                                   dNumGroups, cheapest_path_width);
1371
1372         /*
1373          * Now make the decision using the top-level tuple fraction.  First we
1374          * have to convert an absolute count (LIMIT) into fractional form.
1375          */
1376         if (tuple_fraction >= 1.0)
1377                 tuple_fraction /= dNumGroups;
1378
1379         if (compare_fractional_path_costs(&hashed_p, &sorted_p,
1380                                                                           tuple_fraction) < 0)
1381         {
1382                 /* Hashed is cheaper, so use it */
1383                 return true;
1384         }
1385         return false;
1386 }
1387
1388 /*
1389  * hash_safe_grouping - are grouping operators hashable?
1390  *
1391  * We assume hashed aggregation will work if the datatype's equality operator
1392  * is marked hashjoinable.
1393  */
1394 static bool
1395 hash_safe_grouping(PlannerInfo *root)
1396 {
1397         ListCell   *gl;
1398
1399         foreach(gl, root->parse->groupClause)
1400         {
1401                 GroupClause *grpcl = (GroupClause *) lfirst(gl);
1402                 TargetEntry *tle = get_sortgroupclause_tle(grpcl,
1403                                                                                                    root->parse->targetList);
1404                 Operator        optup;
1405                 bool            oprcanhash;
1406
1407                 optup = equality_oper(exprType((Node *) tle->expr), true);
1408                 if (!optup)
1409                         return false;
1410                 oprcanhash = ((Form_pg_operator) GETSTRUCT(optup))->oprcanhash;
1411                 ReleaseSysCache(optup);
1412                 if (!oprcanhash)
1413                         return false;
1414         }
1415         return true;
1416 }
1417
1418 /*---------------
1419  * make_subplanTargetList
1420  *        Generate appropriate target list when grouping is required.
1421  *
1422  * When grouping_planner inserts Aggregate, Group, or Result plan nodes
1423  * above the result of query_planner, we typically want to pass a different
1424  * target list to query_planner than the outer plan nodes should have.
1425  * This routine generates the correct target list for the subplan.
1426  *
1427  * The initial target list passed from the parser already contains entries
1428  * for all ORDER BY and GROUP BY expressions, but it will not have entries
1429  * for variables used only in HAVING clauses; so we need to add those
1430  * variables to the subplan target list.  Also, we flatten all expressions
1431  * except GROUP BY items into their component variables; the other expressions
1432  * will be computed by the inserted nodes rather than by the subplan.
1433  * For example, given a query like
1434  *              SELECT a+b,SUM(c+d) FROM table GROUP BY a+b;
1435  * we want to pass this targetlist to the subplan:
1436  *              a,b,c,d,a+b
1437  * where the a+b target will be used by the Sort/Group steps, and the
1438  * other targets will be used for computing the final results.  (In the
1439  * above example we could theoretically suppress the a and b targets and
1440  * pass down only c,d,a+b, but it's not really worth the trouble to
1441  * eliminate simple var references from the subplan.  We will avoid doing
1442  * the extra computation to recompute a+b at the outer level; see
1443  * replace_vars_with_subplan_refs() in setrefs.c.)
1444  *
1445  * If we are grouping or aggregating, *and* there are no non-Var grouping
1446  * expressions, then the returned tlist is effectively dummy; we do not
1447  * need to force it to be evaluated, because all the Vars it contains
1448  * should be present in the output of query_planner anyway.
1449  *
1450  * 'tlist' is the query's target list.
1451  * 'groupColIdx' receives an array of column numbers for the GROUP BY
1452  *                      expressions (if there are any) in the subplan's target list.
1453  * 'need_tlist_eval' is set true if we really need to evaluate the
1454  *                      result tlist.
1455  *
1456  * The result is the targetlist to be passed to the subplan.
1457  *---------------
1458  */
1459 static List *
1460 make_subplanTargetList(PlannerInfo *root,
1461                                            List *tlist,
1462                                            AttrNumber **groupColIdx,
1463                                            bool *need_tlist_eval)
1464 {
1465         Query      *parse = root->parse;
1466         List       *sub_tlist;
1467         List       *extravars;
1468         int                     numCols;
1469
1470         *groupColIdx = NULL;
1471
1472         /*
1473          * If we're not grouping or aggregating, there's nothing to do here;
1474          * query_planner should receive the unmodified target list.
1475          */
1476         if (!parse->hasAggs && !parse->groupClause && !root->hasHavingQual)
1477         {
1478                 *need_tlist_eval = true;
1479                 return tlist;
1480         }
1481
1482         /*
1483          * Otherwise, start with a "flattened" tlist (having just the vars
1484          * mentioned in the targetlist and HAVING qual --- but not upper- level
1485          * Vars; they will be replaced by Params later on).
1486          */
1487         sub_tlist = flatten_tlist(tlist);
1488         extravars = pull_var_clause(parse->havingQual, false);
1489         sub_tlist = add_to_flat_tlist(sub_tlist, extravars);
1490         list_free(extravars);
1491         *need_tlist_eval = false;       /* only eval if not flat tlist */
1492
1493         /*
1494          * If grouping, create sub_tlist entries for all GROUP BY expressions
1495          * (GROUP BY items that are simple Vars should be in the list already),
1496          * and make an array showing where the group columns are in the sub_tlist.
1497          */
1498         numCols = list_length(parse->groupClause);
1499         if (numCols > 0)
1500         {
1501                 int                     keyno = 0;
1502                 AttrNumber *grpColIdx;
1503                 ListCell   *gl;
1504
1505                 grpColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols);
1506                 *groupColIdx = grpColIdx;
1507
1508                 foreach(gl, parse->groupClause)
1509                 {
1510                         GroupClause *grpcl = (GroupClause *) lfirst(gl);
1511                         Node       *groupexpr = get_sortgroupclause_expr(grpcl, tlist);
1512                         TargetEntry *te = NULL;
1513                         ListCell   *sl;
1514
1515                         /* Find or make a matching sub_tlist entry */
1516                         foreach(sl, sub_tlist)
1517                         {
1518                                 te = (TargetEntry *) lfirst(sl);
1519                                 if (equal(groupexpr, te->expr))
1520                                         break;
1521                         }
1522                         if (!sl)
1523                         {
1524                                 te = makeTargetEntry((Expr *) groupexpr,
1525                                                                          list_length(sub_tlist) + 1,
1526                                                                          NULL,
1527                                                                          false);
1528                                 sub_tlist = lappend(sub_tlist, te);
1529                                 *need_tlist_eval = true;                /* it's not flat anymore */
1530                         }
1531
1532                         /* and save its resno */
1533                         grpColIdx[keyno++] = te->resno;
1534                 }
1535         }
1536
1537         return sub_tlist;
1538 }
1539
1540 /*
1541  * locate_grouping_columns
1542  *              Locate grouping columns in the tlist chosen by query_planner.
1543  *
1544  * This is only needed if we don't use the sub_tlist chosen by
1545  * make_subplanTargetList.      We have to forget the column indexes found
1546  * by that routine and re-locate the grouping vars in the real sub_tlist.
1547  */
1548 static void
1549 locate_grouping_columns(PlannerInfo *root,
1550                                                 List *tlist,
1551                                                 List *sub_tlist,
1552                                                 AttrNumber *groupColIdx)
1553 {
1554         int                     keyno = 0;
1555         ListCell   *gl;
1556
1557         /*
1558          * No work unless grouping.
1559          */
1560         if (!root->parse->groupClause)
1561         {
1562                 Assert(groupColIdx == NULL);
1563                 return;
1564         }
1565         Assert(groupColIdx != NULL);
1566
1567         foreach(gl, root->parse->groupClause)
1568         {
1569                 GroupClause *grpcl = (GroupClause *) lfirst(gl);
1570                 Node       *groupexpr = get_sortgroupclause_expr(grpcl, tlist);
1571                 TargetEntry *te = NULL;
1572                 ListCell   *sl;
1573
1574                 foreach(sl, sub_tlist)
1575                 {
1576                         te = (TargetEntry *) lfirst(sl);
1577                         if (equal(groupexpr, te->expr))
1578                                 break;
1579                 }
1580                 if (!sl)
1581                         elog(ERROR, "failed to locate grouping columns");
1582
1583                 groupColIdx[keyno++] = te->resno;
1584         }
1585 }
1586
1587 /*
1588  * postprocess_setop_tlist
1589  *        Fix up targetlist returned by plan_set_operations().
1590  *
1591  * We need to transpose sort key info from the orig_tlist into new_tlist.
1592  * NOTE: this would not be good enough if we supported resjunk sort keys
1593  * for results of set operations --- then, we'd need to project a whole
1594  * new tlist to evaluate the resjunk columns.  For now, just ereport if we
1595  * find any resjunk columns in orig_tlist.
1596  */
1597 static List *
1598 postprocess_setop_tlist(List *new_tlist, List *orig_tlist)
1599 {
1600         ListCell   *l;
1601         ListCell   *orig_tlist_item = list_head(orig_tlist);
1602
1603         foreach(l, new_tlist)
1604         {
1605                 TargetEntry *new_tle = (TargetEntry *) lfirst(l);
1606                 TargetEntry *orig_tle;
1607
1608                 /* ignore resjunk columns in setop result */
1609                 if (new_tle->resjunk)
1610                         continue;
1611
1612                 Assert(orig_tlist_item != NULL);
1613                 orig_tle = (TargetEntry *) lfirst(orig_tlist_item);
1614                 orig_tlist_item = lnext(orig_tlist_item);
1615                 if (orig_tle->resjunk)  /* should not happen */
1616                         elog(ERROR, "resjunk output columns are not implemented");
1617                 Assert(new_tle->resno == orig_tle->resno);
1618                 new_tle->ressortgroupref = orig_tle->ressortgroupref;
1619         }
1620         if (orig_tlist_item != NULL)
1621                 elog(ERROR, "resjunk output columns are not implemented");
1622         return new_tlist;
1623 }