]> granicus.if.org Git - postgresql/blob - src/backend/optimizer/plan/planner.c
Improve planner's estimation of the space needed for HashAgg plans:
[postgresql] / src / backend / optimizer / plan / planner.c
1 /*-------------------------------------------------------------------------
2  *
3  * planner.c
4  *        The query optimizer external interface.
5  *
6  * Portions Copyright (c) 1996-2005, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  *        $PostgreSQL: pgsql/src/backend/optimizer/plan/planner.c,v 1.178 2005/01/28 19:34:05 tgl Exp $
12  *
13  *-------------------------------------------------------------------------
14  */
15
16 #include "postgres.h"
17
18 #include <limits.h>
19
20 #include "catalog/pg_operator.h"
21 #include "catalog/pg_type.h"
22 #include "executor/executor.h"
23 #include "executor/nodeAgg.h"
24 #include "miscadmin.h"
25 #include "nodes/makefuncs.h"
26 #ifdef OPTIMIZER_DEBUG
27 #include "nodes/print.h"
28 #endif
29 #include "optimizer/clauses.h"
30 #include "optimizer/cost.h"
31 #include "optimizer/pathnode.h"
32 #include "optimizer/paths.h"
33 #include "optimizer/planmain.h"
34 #include "optimizer/planner.h"
35 #include "optimizer/prep.h"
36 #include "optimizer/subselect.h"
37 #include "optimizer/tlist.h"
38 #include "optimizer/var.h"
39 #include "parser/analyze.h"
40 #include "parser/parsetree.h"
41 #include "parser/parse_expr.h"
42 #include "parser/parse_oper.h"
43 #include "utils/selfuncs.h"
44 #include "utils/syscache.h"
45
46
47 ParamListInfo PlannerBoundParamList = NULL;             /* current boundParams */
48
49
50 /* Expression kind codes for preprocess_expression */
51 #define EXPRKIND_QUAL   0
52 #define EXPRKIND_TARGET 1
53 #define EXPRKIND_RTFUNC 2
54 #define EXPRKIND_LIMIT  3
55 #define EXPRKIND_ININFO 4
56
57
58 static Node *preprocess_expression(Query *parse, Node *expr, int kind);
59 static void preprocess_qual_conditions(Query *parse, Node *jtnode);
60 static Plan *inheritance_planner(Query *parse, List *inheritlist);
61 static Plan *grouping_planner(Query *parse, double tuple_fraction);
62 static bool hash_safe_grouping(Query *parse);
63 static List *make_subplanTargetList(Query *parse, List *tlist,
64                                            AttrNumber **groupColIdx, bool *need_tlist_eval);
65 static void locate_grouping_columns(Query *parse,
66                                                 List *tlist,
67                                                 List *sub_tlist,
68                                                 AttrNumber *groupColIdx);
69 static List *postprocess_setop_tlist(List *new_tlist, List *orig_tlist);
70
71
72 /*****************************************************************************
73  *
74  *         Query optimizer entry point
75  *
76  *****************************************************************************/
77 Plan *
78 planner(Query *parse, bool isCursor, int cursorOptions,
79                 ParamListInfo boundParams)
80 {
81         double          tuple_fraction;
82         Plan       *result_plan;
83         Index           save_PlannerQueryLevel;
84         List       *save_PlannerParamList;
85         ParamListInfo save_PlannerBoundParamList;
86
87         /*
88          * The planner can be called recursively (an example is when
89          * eval_const_expressions tries to pre-evaluate an SQL function). So,
90          * these global state variables must be saved and restored.
91          *
92          * Query level and the param list cannot be moved into the Query
93          * structure since their whole purpose is communication across
94          * multiple sub-Queries. Also, boundParams is explicitly info from
95          * outside the Query, and so is likewise better handled as a global
96          * variable.
97          *
98          * Note we do NOT save and restore PlannerPlanId: it exists to assign
99          * unique IDs to SubPlan nodes, and we want those IDs to be unique for
100          * the life of a backend.  Also, PlannerInitPlan is saved/restored in
101          * subquery_planner, not here.
102          */
103         save_PlannerQueryLevel = PlannerQueryLevel;
104         save_PlannerParamList = PlannerParamList;
105         save_PlannerBoundParamList = PlannerBoundParamList;
106
107         /* Initialize state for handling outer-level references and params */
108         PlannerQueryLevel = 0;          /* will be 1 in top-level subquery_planner */
109         PlannerParamList = NIL;
110         PlannerBoundParamList = boundParams;
111
112         /* Determine what fraction of the plan is likely to be scanned */
113         if (isCursor)
114         {
115                 /*
116                  * We have no real idea how many tuples the user will ultimately
117                  * FETCH from a cursor, but it seems a good bet that he doesn't
118                  * want 'em all.  Optimize for 10% retrieval (you gotta better
119                  * number?      Should this be a SETtable parameter?)
120                  */
121                 tuple_fraction = 0.10;
122         }
123         else
124         {
125                 /* Default assumption is we need all the tuples */
126                 tuple_fraction = 0.0;
127         }
128
129         /* primary planning entry point (may recurse for subqueries) */
130         result_plan = subquery_planner(parse, tuple_fraction);
131
132         Assert(PlannerQueryLevel == 0);
133
134         /*
135          * If creating a plan for a scrollable cursor, make sure it can run
136          * backwards on demand.  Add a Material node at the top at need.
137          */
138         if (isCursor && (cursorOptions & CURSOR_OPT_SCROLL))
139         {
140                 if (!ExecSupportsBackwardScan(result_plan))
141                         result_plan = materialize_finished_plan(result_plan);
142         }
143
144         /* executor wants to know total number of Params used overall */
145         result_plan->nParamExec = list_length(PlannerParamList);
146
147         /* final cleanup of the plan */
148         set_plan_references(result_plan, parse->rtable);
149
150         /* restore state for outer planner, if any */
151         PlannerQueryLevel = save_PlannerQueryLevel;
152         PlannerParamList = save_PlannerParamList;
153         PlannerBoundParamList = save_PlannerBoundParamList;
154
155         return result_plan;
156 }
157
158
159 /*--------------------
160  * subquery_planner
161  *        Invokes the planner on a subquery.  We recurse to here for each
162  *        sub-SELECT found in the query tree.
163  *
164  * parse is the querytree produced by the parser & rewriter.
165  * tuple_fraction is the fraction of tuples we expect will be retrieved.
166  * tuple_fraction is interpreted as explained for grouping_planner, below.
167  *
168  * Basically, this routine does the stuff that should only be done once
169  * per Query object.  It then calls grouping_planner.  At one time,
170  * grouping_planner could be invoked recursively on the same Query object;
171  * that's not currently true, but we keep the separation between the two
172  * routines anyway, in case we need it again someday.
173  *
174  * subquery_planner will be called recursively to handle sub-Query nodes
175  * found within the query's expressions and rangetable.
176  *
177  * Returns a query plan.
178  *--------------------
179  */
180 Plan *
181 subquery_planner(Query *parse, double tuple_fraction)
182 {
183         List       *saved_initplan = PlannerInitPlan;
184         int                     saved_planid = PlannerPlanId;
185         bool            hasOuterJoins;
186         Plan       *plan;
187         List       *newHaving;
188         List       *lst;
189         ListCell   *l;
190
191         /* Set up for a new level of subquery */
192         PlannerQueryLevel++;
193         PlannerInitPlan = NIL;
194
195         /*
196          * Look for IN clauses at the top level of WHERE, and transform them
197          * into joins.  Note that this step only handles IN clauses originally
198          * at top level of WHERE; if we pull up any subqueries in the next
199          * step, their INs are processed just before pulling them up.
200          */
201         parse->in_info_list = NIL;
202         if (parse->hasSubLinks)
203                 parse->jointree->quals = pull_up_IN_clauses(parse,
204                                                                                                  parse->jointree->quals);
205
206         /*
207          * Check to see if any subqueries in the rangetable can be merged into
208          * this query.
209          */
210         parse->jointree = (FromExpr *)
211                 pull_up_subqueries(parse, (Node *) parse->jointree, false);
212
213         /*
214          * Detect whether any rangetable entries are RTE_JOIN kind; if not, we
215          * can avoid the expense of doing flatten_join_alias_vars().  Also
216          * check for outer joins --- if none, we can skip
217          * reduce_outer_joins(). This must be done after we have done
218          * pull_up_subqueries, of course.
219          */
220         parse->hasJoinRTEs = false;
221         hasOuterJoins = false;
222         foreach(l, parse->rtable)
223         {
224                 RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
225
226                 if (rte->rtekind == RTE_JOIN)
227                 {
228                         parse->hasJoinRTEs = true;
229                         if (IS_OUTER_JOIN(rte->jointype))
230                         {
231                                 hasOuterJoins = true;
232                                 /* Can quit scanning once we find an outer join */
233                                 break;
234                         }
235                 }
236         }
237
238         /*
239          * Do expression preprocessing on targetlist and quals.
240          */
241         parse->targetList = (List *)
242                 preprocess_expression(parse, (Node *) parse->targetList,
243                                                           EXPRKIND_TARGET);
244
245         preprocess_qual_conditions(parse, (Node *) parse->jointree);
246
247         parse->havingQual = preprocess_expression(parse, parse->havingQual,
248                                                                                           EXPRKIND_QUAL);
249
250         parse->limitOffset = preprocess_expression(parse, parse->limitOffset,
251                                                                                            EXPRKIND_LIMIT);
252         parse->limitCount = preprocess_expression(parse, parse->limitCount,
253                                                                                           EXPRKIND_LIMIT);
254
255         parse->in_info_list = (List *)
256                 preprocess_expression(parse, (Node *) parse->in_info_list,
257                                                           EXPRKIND_ININFO);
258
259         /* Also need to preprocess expressions for function RTEs */
260         foreach(l, parse->rtable)
261         {
262                 RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
263
264                 if (rte->rtekind == RTE_FUNCTION)
265                         rte->funcexpr = preprocess_expression(parse, rte->funcexpr,
266                                                                                                   EXPRKIND_RTFUNC);
267         }
268
269         /*
270          * A HAVING clause without aggregates is equivalent to a WHERE clause
271          * (except it can only refer to grouped fields).  Transfer any
272          * agg-free clauses of the HAVING qual into WHERE.      This may seem like
273          * wasting cycles to cater to stupidly-written queries, but there are
274          * other reasons for doing it.  Firstly, if the query contains no aggs
275          * at all, then we aren't going to generate an Agg plan node, and so
276          * there'll be no place to execute HAVING conditions; without this
277          * transfer, we'd lose the HAVING condition entirely, which is wrong.
278          * Secondly, when we push down a qual condition into a sub-query, it's
279          * easiest to push the qual into HAVING always, in case it contains
280          * aggs, and then let this code sort it out.
281          *
282          * Note that both havingQual and parse->jointree->quals are in
283          * implicitly-ANDed-list form at this point, even though they are
284          * declared as Node *.
285          */
286         newHaving = NIL;
287         foreach(l, (List *) parse->havingQual)
288         {
289                 Node       *havingclause = (Node *) lfirst(l);
290
291                 if (contain_agg_clause(havingclause))
292                         newHaving = lappend(newHaving, havingclause);
293                 else
294                         parse->jointree->quals = (Node *)
295                                 lappend((List *) parse->jointree->quals, havingclause);
296         }
297         parse->havingQual = (Node *) newHaving;
298
299         /*
300          * If we have any outer joins, try to reduce them to plain inner
301          * joins. This step is most easily done after we've done expression
302          * preprocessing.
303          */
304         if (hasOuterJoins)
305                 reduce_outer_joins(parse);
306
307         /*
308          * See if we can simplify the jointree; opportunities for this may
309          * come from having pulled up subqueries, or from flattening explicit
310          * JOIN syntax.  We must do this after flattening JOIN alias
311          * variables, since eliminating explicit JOIN nodes from the jointree
312          * will cause get_relids_for_join() to fail.  But it should happen
313          * after reduce_outer_joins, anyway.
314          */
315         parse->jointree = (FromExpr *)
316                 simplify_jointree(parse, (Node *) parse->jointree);
317
318         /*
319          * Do the main planning.  If we have an inherited target relation,
320          * that needs special processing, else go straight to
321          * grouping_planner.
322          */
323         if (parse->resultRelation &&
324                 (lst = expand_inherited_rtentry(parse, parse->resultRelation)) != NIL)
325                 plan = inheritance_planner(parse, lst);
326         else
327                 plan = grouping_planner(parse, tuple_fraction);
328
329         /*
330          * If any subplans were generated, or if we're inside a subplan, build
331          * initPlan list and extParam/allParam sets for plan nodes.
332          */
333         if (PlannerPlanId != saved_planid || PlannerQueryLevel > 1)
334         {
335                 Cost            initplan_cost = 0;
336
337                 /* Prepare extParam/allParam sets for all nodes in tree */
338                 SS_finalize_plan(plan, parse->rtable);
339
340                 /*
341                  * SS_finalize_plan doesn't handle initPlans, so we have to
342                  * manually attach them to the topmost plan node, and add their
343                  * extParams to the topmost node's, too.
344                  *
345                  * We also add the total_cost of each initPlan to the startup cost of
346                  * the top node.  This is a conservative overestimate, since in
347                  * fact each initPlan might be executed later than plan startup,
348                  * or even not at all.
349                  */
350                 plan->initPlan = PlannerInitPlan;
351
352                 foreach(l, plan->initPlan)
353                 {
354                         SubPlan    *initplan = (SubPlan *) lfirst(l);
355
356                         plan->extParam = bms_add_members(plan->extParam,
357                                                                                          initplan->plan->extParam);
358                         /* allParam must include all members of extParam */
359                         plan->allParam = bms_add_members(plan->allParam,
360                                                                                          plan->extParam);
361                         initplan_cost += initplan->plan->total_cost;
362                 }
363
364                 plan->startup_cost += initplan_cost;
365                 plan->total_cost += initplan_cost;
366         }
367
368         /* Return to outer subquery context */
369         PlannerQueryLevel--;
370         PlannerInitPlan = saved_initplan;
371         /* we do NOT restore PlannerPlanId; that's not an oversight! */
372
373         return plan;
374 }
375
376 /*
377  * preprocess_expression
378  *              Do subquery_planner's preprocessing work for an expression,
379  *              which can be a targetlist, a WHERE clause (including JOIN/ON
380  *              conditions), or a HAVING clause.
381  */
382 static Node *
383 preprocess_expression(Query *parse, Node *expr, int kind)
384 {
385         /*
386          * If the query has any join RTEs, replace join alias variables with
387          * base-relation variables. We must do this before sublink processing,
388          * else sublinks expanded out from join aliases wouldn't get
389          * processed.
390          */
391         if (parse->hasJoinRTEs)
392                 expr = flatten_join_alias_vars(parse, expr);
393
394         /*
395          * If it's a qual or havingQual, canonicalize it.  It seems most
396          * useful to do this before applying eval_const_expressions, since the
397          * latter can optimize flattened AND/ORs better than unflattened ones.
398          *
399          * Note: all processing of a qual expression after this point must be
400          * careful to maintain AND/OR flatness --- that is, do not generate a
401          * tree with AND directly under AND, nor OR directly under OR.
402          */
403         if (kind == EXPRKIND_QUAL)
404         {
405                 expr = (Node *) canonicalize_qual((Expr *) expr);
406
407 #ifdef OPTIMIZER_DEBUG
408                 printf("After canonicalize_qual()\n");
409                 pprint(expr);
410 #endif
411         }
412
413         /*
414          * Simplify constant expressions.
415          */
416         expr = eval_const_expressions(expr);
417
418         /* Expand SubLinks to SubPlans */
419         if (parse->hasSubLinks)
420                 expr = SS_process_sublinks(expr, (kind == EXPRKIND_QUAL));
421
422         /*
423          * XXX do not insert anything here unless you have grokked the
424          * comments in SS_replace_correlation_vars ...
425          */
426
427         /* Replace uplevel vars with Param nodes */
428         if (PlannerQueryLevel > 1)
429                 expr = SS_replace_correlation_vars(expr);
430
431         /*
432          * If it's a qual or havingQual, convert it to implicit-AND format.
433          * (We don't want to do this before eval_const_expressions, since the
434          * latter would be unable to simplify a top-level AND correctly. Also,
435          * SS_process_sublinks expects explicit-AND format.)
436          */
437         if (kind == EXPRKIND_QUAL)
438                 expr = (Node *) make_ands_implicit((Expr *) expr);
439
440         return expr;
441 }
442
443 /*
444  * preprocess_qual_conditions
445  *              Recursively scan the query's jointree and do subquery_planner's
446  *              preprocessing work on each qual condition found therein.
447  */
448 static void
449 preprocess_qual_conditions(Query *parse, Node *jtnode)
450 {
451         if (jtnode == NULL)
452                 return;
453         if (IsA(jtnode, RangeTblRef))
454         {
455                 /* nothing to do here */
456         }
457         else if (IsA(jtnode, FromExpr))
458         {
459                 FromExpr   *f = (FromExpr *) jtnode;
460                 ListCell   *l;
461
462                 foreach(l, f->fromlist)
463                         preprocess_qual_conditions(parse, lfirst(l));
464
465                 f->quals = preprocess_expression(parse, f->quals, EXPRKIND_QUAL);
466         }
467         else if (IsA(jtnode, JoinExpr))
468         {
469                 JoinExpr   *j = (JoinExpr *) jtnode;
470
471                 preprocess_qual_conditions(parse, j->larg);
472                 preprocess_qual_conditions(parse, j->rarg);
473
474                 j->quals = preprocess_expression(parse, j->quals, EXPRKIND_QUAL);
475         }
476         else
477                 elog(ERROR, "unrecognized node type: %d",
478                          (int) nodeTag(jtnode));
479 }
480
481 /*--------------------
482  * inheritance_planner
483  *        Generate a plan in the case where the result relation is an
484  *        inheritance set.
485  *
486  * We have to handle this case differently from cases where a source
487  * relation is an inheritance set.      Source inheritance is expanded at
488  * the bottom of the plan tree (see allpaths.c), but target inheritance
489  * has to be expanded at the top.  The reason is that for UPDATE, each
490  * target relation needs a different targetlist matching its own column
491  * set.  (This is not so critical for DELETE, but for simplicity we treat
492  * inherited DELETE the same way.)      Fortunately, the UPDATE/DELETE target
493  * can never be the nullable side of an outer join, so it's OK to generate
494  * the plan this way.
495  *
496  * parse is the querytree produced by the parser & rewriter.
497  * inheritlist is an integer list of RT indexes for the result relation set.
498  *
499  * Returns a query plan.
500  *--------------------
501  */
502 static Plan *
503 inheritance_planner(Query *parse, List *inheritlist)
504 {
505         int                     parentRTindex = parse->resultRelation;
506         Oid                     parentOID = getrelid(parentRTindex, parse->rtable);
507         int                     mainrtlength = list_length(parse->rtable);
508         List       *subplans = NIL;
509         List       *tlist = NIL;
510         ListCell   *l;
511
512         foreach(l, inheritlist)
513         {
514                 int                     childRTindex = lfirst_int(l);
515                 Oid                     childOID = getrelid(childRTindex, parse->rtable);
516                 Query      *subquery;
517                 Plan       *subplan;
518
519                 /* Generate modified query with this rel as target */
520                 subquery = (Query *) adjust_inherited_attrs((Node *) parse,
521                                                                                                 parentRTindex, parentOID,
522                                                                                                  childRTindex, childOID);
523                 /* Generate plan */
524                 subplan = grouping_planner(subquery, 0.0 /* retrieve all tuples */ );
525                 subplans = lappend(subplans, subplan);
526
527                 /*
528                  * XXX my goodness this next bit is ugly.  Really need to think about
529                  * ways to rein in planner's habit of scribbling on its input.
530                  *
531                  * Planning of the subquery might have modified the rangetable,
532                  * either by addition of RTEs due to expansion of inherited source
533                  * tables, or by changes of the Query structures inside subquery
534                  * RTEs.  We have to ensure that this gets propagated back to the
535                  * master copy.  However, if we aren't done planning yet, we also
536                  * need to ensure that subsequent calls to grouping_planner have
537                  * virgin sub-Queries to work from.  So, if we are at the last
538                  * list entry, just copy the subquery rangetable back to the master
539                  * copy; if we are not, then extend the master copy by adding
540                  * whatever the subquery added.  (We assume these added entries
541                  * will go untouched by the future grouping_planner calls.  We are
542                  * also effectively assuming that sub-Queries will get planned
543                  * identically each time, or at least that the impacts on their
544                  * rangetables will be the same each time.  Did I say this is ugly?)
545                  */
546                 if (lnext(l) == NULL)
547                         parse->rtable = subquery->rtable;
548                 else
549                 {
550                         int             subrtlength = list_length(subquery->rtable);
551
552                         if (subrtlength > mainrtlength)
553                         {
554                                 List       *subrt;
555
556                                 subrt = list_copy_tail(subquery->rtable, mainrtlength);
557                                 parse->rtable = list_concat(parse->rtable, subrt);
558                                 mainrtlength = subrtlength;
559                         }
560                 }
561
562                 /* Save preprocessed tlist from first rel for use in Append */
563                 if (tlist == NIL)
564                         tlist = subplan->targetlist;
565         }
566
567         /* Save the target-relations list for the executor, too */
568         parse->resultRelations = inheritlist;
569
570         /* Mark result as unordered (probably unnecessary) */
571         parse->query_pathkeys = NIL;
572
573         return (Plan *) make_append(subplans, true, tlist);
574 }
575
576 /*--------------------
577  * grouping_planner
578  *        Perform planning steps related to grouping, aggregation, etc.
579  *        This primarily means adding top-level processing to the basic
580  *        query plan produced by query_planner.
581  *
582  * parse is the querytree produced by the parser & rewriter.
583  * tuple_fraction is the fraction of tuples we expect will be retrieved
584  *
585  * tuple_fraction is interpreted as follows:
586  *        0: expect all tuples to be retrieved (normal case)
587  *        0 < tuple_fraction < 1: expect the given fraction of tuples available
588  *              from the plan to be retrieved
589  *        tuple_fraction >= 1: tuple_fraction is the absolute number of tuples
590  *              expected to be retrieved (ie, a LIMIT specification)
591  *
592  * Returns a query plan.  Also, parse->query_pathkeys is returned as the
593  * actual output ordering of the plan (in pathkey format).
594  *--------------------
595  */
596 static Plan *
597 grouping_planner(Query *parse, double tuple_fraction)
598 {
599         List       *tlist = parse->targetList;
600         Plan       *result_plan;
601         List       *current_pathkeys;
602         List       *sort_pathkeys;
603
604         if (parse->setOperations)
605         {
606                 List       *set_sortclauses;
607
608                 /*
609                  * Construct the plan for set operations.  The result will not
610                  * need any work except perhaps a top-level sort and/or LIMIT.
611                  */
612                 result_plan = plan_set_operations(parse,
613                                                                                   &set_sortclauses);
614
615                 /*
616                  * Calculate pathkeys representing the sort order (if any) of the
617                  * set operation's result.  We have to do this before overwriting
618                  * the sort key information...
619                  */
620                 current_pathkeys = make_pathkeys_for_sortclauses(set_sortclauses,
621                                                                                                 result_plan->targetlist);
622                 current_pathkeys = canonicalize_pathkeys(parse, current_pathkeys);
623
624                 /*
625                  * We should not need to call preprocess_targetlist, since we must
626                  * be in a SELECT query node.  Instead, use the targetlist
627                  * returned by plan_set_operations (since this tells whether it
628                  * returned any resjunk columns!), and transfer any sort key
629                  * information from the original tlist.
630                  */
631                 Assert(parse->commandType == CMD_SELECT);
632
633                 tlist = postprocess_setop_tlist(result_plan->targetlist, tlist);
634
635                 /*
636                  * Can't handle FOR UPDATE here (parser should have checked
637                  * already, but let's make sure).
638                  */
639                 if (parse->rowMarks)
640                         ereport(ERROR,
641                                         (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
642                                          errmsg("SELECT FOR UPDATE is not allowed with UNION/INTERSECT/EXCEPT")));
643
644                 /*
645                  * Calculate pathkeys that represent result ordering requirements
646                  */
647                 sort_pathkeys = make_pathkeys_for_sortclauses(parse->sortClause,
648                                                                                                           tlist);
649                 sort_pathkeys = canonicalize_pathkeys(parse, sort_pathkeys);
650         }
651         else
652         {
653                 /* No set operations, do regular planning */
654                 List       *sub_tlist;
655                 List       *group_pathkeys;
656                 AttrNumber *groupColIdx = NULL;
657                 bool            need_tlist_eval = true;
658                 QualCost        tlist_cost;
659                 double          sub_tuple_fraction;
660                 Path       *cheapest_path;
661                 Path       *sorted_path;
662                 double          dNumGroups = 0;
663                 long            numGroups = 0;
664                 AggClauseCounts agg_counts;
665                 int                     numGroupCols = list_length(parse->groupClause);
666                 bool            use_hashed_grouping = false;
667
668                 MemSet(&agg_counts, 0, sizeof(AggClauseCounts));
669
670                 /* Preprocess targetlist in case we are inside an INSERT/UPDATE. */
671                 tlist = preprocess_targetlist(tlist,
672                                                                           parse->commandType,
673                                                                           parse->resultRelation,
674                                                                           parse->rtable);
675
676                 /*
677                  * Add TID targets for rels selected FOR UPDATE (should this be
678                  * done in preprocess_targetlist?).  The executor uses the TID to
679                  * know which rows to lock, much as for UPDATE or DELETE.
680                  */
681                 if (parse->rowMarks)
682                 {
683                         ListCell   *l;
684
685                         /*
686                          * We've got trouble if the FOR UPDATE appears inside
687                          * grouping, since grouping renders a reference to individual
688                          * tuple CTIDs invalid.  This is also checked at parse time,
689                          * but that's insufficient because of rule substitution, query
690                          * pullup, etc.
691                          */
692                         CheckSelectForUpdate(parse);
693
694                         /*
695                          * Currently the executor only supports FOR UPDATE at top
696                          * level
697                          */
698                         if (PlannerQueryLevel > 1)
699                                 ereport(ERROR,
700                                                 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
701                                                  errmsg("SELECT FOR UPDATE is not allowed in subqueries")));
702
703                         foreach(l, parse->rowMarks)
704                         {
705                                 Index           rti = lfirst_int(l);
706                                 char       *resname;
707                                 Resdom     *resdom;
708                                 Var                *var;
709                                 TargetEntry *ctid;
710
711                                 resname = (char *) palloc(32);
712                                 snprintf(resname, 32, "ctid%u", rti);
713                                 resdom = makeResdom(list_length(tlist) + 1,
714                                                                         TIDOID,
715                                                                         -1,
716                                                                         resname,
717                                                                         true);
718
719                                 var = makeVar(rti,
720                                                           SelfItemPointerAttributeNumber,
721                                                           TIDOID,
722                                                           -1,
723                                                           0);
724
725                                 ctid = makeTargetEntry(resdom, (Expr *) var);
726                                 tlist = lappend(tlist, ctid);
727                         }
728                 }
729
730                 /*
731                  * Generate appropriate target list for subplan; may be different
732                  * from tlist if grouping or aggregation is needed.
733                  */
734                 sub_tlist = make_subplanTargetList(parse, tlist,
735                                                                                  &groupColIdx, &need_tlist_eval);
736
737                 /*
738                  * Calculate pathkeys that represent grouping/ordering
739                  * requirements
740                  */
741                 group_pathkeys = make_pathkeys_for_sortclauses(parse->groupClause,
742                                                                                                            tlist);
743                 sort_pathkeys = make_pathkeys_for_sortclauses(parse->sortClause,
744                                                                                                           tlist);
745
746                 /*
747                  * Will need actual number of aggregates for estimating costs.
748                  *
749                  * Note: we do not attempt to detect duplicate aggregates here; a
750                  * somewhat-overestimated count is okay for our present purposes.
751                  *
752                  * Note: think not that we can turn off hasAggs if we find no aggs.
753                  * It is possible for constant-expression simplification to remove
754                  * all explicit references to aggs, but we still have to follow
755                  * the aggregate semantics (eg, producing only one output row).
756                  */
757                 if (parse->hasAggs)
758                 {
759                         count_agg_clauses((Node *) tlist, &agg_counts);
760                         count_agg_clauses(parse->havingQual, &agg_counts);
761                 }
762
763                 /*
764                  * Figure out whether we need a sorted result from query_planner.
765                  *
766                  * If we have a GROUP BY clause, then we want a result sorted
767                  * properly for grouping.  Otherwise, if there is an ORDER BY
768                  * clause, we want to sort by the ORDER BY clause.      (Note: if we
769                  * have both, and ORDER BY is a superset of GROUP BY, it would be
770                  * tempting to request sort by ORDER BY --- but that might just
771                  * leave us failing to exploit an available sort order at all.
772                  * Needs more thought...)
773                  */
774                 if (parse->groupClause)
775                         parse->query_pathkeys = group_pathkeys;
776                 else if (parse->sortClause)
777                         parse->query_pathkeys = sort_pathkeys;
778                 else
779                         parse->query_pathkeys = NIL;
780
781                 /*
782                  * Adjust tuple_fraction if we see that we are going to apply
783                  * limiting/grouping/aggregation/etc.  This is not overridable by
784                  * the caller, since it reflects plan actions that this routine
785                  * will certainly take, not assumptions about context.
786                  */
787                 if (parse->limitCount != NULL)
788                 {
789                         /*
790                          * A LIMIT clause limits the absolute number of tuples
791                          * returned. However, if it's not a constant LIMIT then we
792                          * have to punt; for lack of a better idea, assume 10% of the
793                          * plan's result is wanted.
794                          */
795                         double          limit_fraction = 0.0;
796
797                         if (IsA(parse->limitCount, Const))
798                         {
799                                 Const      *limitc = (Const *) parse->limitCount;
800                                 int32           count = DatumGetInt32(limitc->constvalue);
801
802                                 /*
803                                  * A NULL-constant LIMIT represents "LIMIT ALL", which we
804                                  * treat the same as no limit (ie, expect to retrieve all
805                                  * the tuples).
806                                  */
807                                 if (!limitc->constisnull && count > 0)
808                                 {
809                                         limit_fraction = (double) count;
810                                         /* We must also consider the OFFSET, if present */
811                                         if (parse->limitOffset != NULL)
812                                         {
813                                                 if (IsA(parse->limitOffset, Const))
814                                                 {
815                                                         int32           offset;
816
817                                                         limitc = (Const *) parse->limitOffset;
818                                                         offset = DatumGetInt32(limitc->constvalue);
819                                                         if (!limitc->constisnull && offset > 0)
820                                                                 limit_fraction += (double) offset;
821                                                 }
822                                                 else
823                                                 {
824                                                         /* OFFSET is an expression ... punt ... */
825                                                         limit_fraction = 0.10;
826                                                 }
827                                         }
828                                 }
829                         }
830                         else
831                         {
832                                 /* LIMIT is an expression ... punt ... */
833                                 limit_fraction = 0.10;
834                         }
835
836                         if (limit_fraction > 0.0)
837                         {
838                                 /*
839                                  * If we have absolute limits from both caller and LIMIT,
840                                  * use the smaller value; if one is fractional and the
841                                  * other absolute, treat the fraction as a fraction of the
842                                  * absolute value; else we can multiply the two fractions
843                                  * together.
844                                  */
845                                 if (tuple_fraction >= 1.0)
846                                 {
847                                         if (limit_fraction >= 1.0)
848                                         {
849                                                 /* both absolute */
850                                                 tuple_fraction = Min(tuple_fraction, limit_fraction);
851                                         }
852                                         else
853                                         {
854                                                 /* caller absolute, limit fractional */
855                                                 tuple_fraction *= limit_fraction;
856                                                 if (tuple_fraction < 1.0)
857                                                         tuple_fraction = 1.0;
858                                         }
859                                 }
860                                 else if (tuple_fraction > 0.0)
861                                 {
862                                         if (limit_fraction >= 1.0)
863                                         {
864                                                 /* caller fractional, limit absolute */
865                                                 tuple_fraction *= limit_fraction;
866                                                 if (tuple_fraction < 1.0)
867                                                         tuple_fraction = 1.0;
868                                         }
869                                         else
870                                         {
871                                                 /* both fractional */
872                                                 tuple_fraction *= limit_fraction;
873                                         }
874                                 }
875                                 else
876                                 {
877                                         /* no info from caller, just use limit */
878                                         tuple_fraction = limit_fraction;
879                                 }
880                         }
881                 }
882
883                 /*
884                  * With grouping or aggregation, the tuple fraction to pass to
885                  * query_planner() may be different from what it is at top level.
886                  */
887                 sub_tuple_fraction = tuple_fraction;
888
889                 if (parse->groupClause)
890                 {
891                         /*
892                          * In GROUP BY mode, we have the little problem that we don't
893                          * really know how many input tuples will be needed to make a
894                          * group, so we can't translate an output LIMIT count into an
895                          * input count.  For lack of a better idea, assume 25% of the
896                          * input data will be processed if there is any output limit.
897                          * However, if the caller gave us a fraction rather than an
898                          * absolute count, we can keep using that fraction (which
899                          * amounts to assuming that all the groups are about the same
900                          * size).
901                          */
902                         if (sub_tuple_fraction >= 1.0)
903                                 sub_tuple_fraction = 0.25;
904
905                         /*
906                          * If both GROUP BY and ORDER BY are specified, we will need
907                          * two levels of sort --- and, therefore, certainly need to
908                          * read all the input tuples --- unless ORDER BY is a subset
909                          * of GROUP BY.  (We have not yet canonicalized the pathkeys,
910                          * so must use the slower noncanonical comparison method.)
911                          */
912                         if (parse->groupClause && parse->sortClause &&
913                                 !noncanonical_pathkeys_contained_in(sort_pathkeys,
914                                                                                                         group_pathkeys))
915                                 sub_tuple_fraction = 0.0;
916                 }
917                 else if (parse->hasAggs)
918                 {
919                         /*
920                          * Ungrouped aggregate will certainly want all the input
921                          * tuples.
922                          */
923                         sub_tuple_fraction = 0.0;
924                 }
925                 else if (parse->distinctClause)
926                 {
927                         /*
928                          * SELECT DISTINCT, like GROUP, will absorb an unpredictable
929                          * number of input tuples per output tuple.  Handle the same
930                          * way.
931                          */
932                         if (sub_tuple_fraction >= 1.0)
933                                 sub_tuple_fraction = 0.25;
934                 }
935
936                 /*
937                  * Generate the best unsorted and presorted paths for this Query
938                  * (but note there may not be any presorted path).
939                  */
940                 query_planner(parse, sub_tlist, sub_tuple_fraction,
941                                           &cheapest_path, &sorted_path);
942
943                 /*
944                  * We couldn't canonicalize group_pathkeys and sort_pathkeys
945                  * before running query_planner(), so do it now.
946                  */
947                 group_pathkeys = canonicalize_pathkeys(parse, group_pathkeys);
948                 sort_pathkeys = canonicalize_pathkeys(parse, sort_pathkeys);
949
950                 /*
951                  * Consider whether we might want to use hashed grouping.
952                  */
953                 if (parse->groupClause)
954                 {
955                         List       *groupExprs;
956                         double          cheapest_path_rows;
957                         int                     cheapest_path_width;
958
959                         /*
960                          * Beware in this section of the possibility that
961                          * cheapest_path->parent is NULL.  This could happen if user
962                          * does something silly like SELECT 'foo' GROUP BY 1;
963                          */
964                         if (cheapest_path->parent)
965                         {
966                                 cheapest_path_rows = cheapest_path->parent->rows;
967                                 cheapest_path_width = cheapest_path->parent->width;
968                         }
969                         else
970                         {
971                                 cheapest_path_rows = 1; /* assume non-set result */
972                                 cheapest_path_width = 100;              /* arbitrary */
973                         }
974
975                         /*
976                          * Always estimate the number of groups.  We can't do this
977                          * until after running query_planner(), either.
978                          */
979                         groupExprs = get_sortgrouplist_exprs(parse->groupClause,
980                                                                                                  parse->targetList);
981                         dNumGroups = estimate_num_groups(parse,
982                                                                                          groupExprs,
983                                                                                          cheapest_path_rows);
984                         /* Also want it as a long int --- but 'ware overflow! */
985                         numGroups = (long) Min(dNumGroups, (double) LONG_MAX);
986
987                         /*
988                          * Check can't-do-it conditions, including whether the
989                          * grouping operators are hashjoinable.
990                          *
991                          * Executor doesn't support hashed aggregation with DISTINCT
992                          * aggregates.  (Doing so would imply storing *all* the input
993                          * values in the hash table, which seems like a certain
994                          * loser.)
995                          */
996                         if (!enable_hashagg || !hash_safe_grouping(parse))
997                                 use_hashed_grouping = false;
998                         else if (agg_counts.numDistinctAggs != 0)
999                                 use_hashed_grouping = false;
1000                         else
1001                         {
1002                                 /*
1003                                  * Use hashed grouping if (a) we think we can fit the
1004                                  * hashtable into work_mem, *and* (b) the estimated cost
1005                                  * is no more than doing it the other way.      While avoiding
1006                                  * the need for sorted input is usually a win, the fact
1007                                  * that the output won't be sorted may be a loss; so we
1008                                  * need to do an actual cost comparison.
1009                                  */
1010                                 Size            hashentrysize;
1011
1012                                 /* Estimate per-hash-entry space at tuple width... */
1013                                 hashentrysize = cheapest_path_width;
1014                                 /* plus space for pass-by-ref transition values... */
1015                                 hashentrysize += agg_counts.transitionSpace;
1016                                 /* plus the per-hash-entry overhead */
1017                                 hashentrysize += hash_agg_entry_size(agg_counts.numAggs);
1018
1019                                 if (hashentrysize * dNumGroups <= work_mem * 1024L)
1020                                 {
1021                                         /*
1022                                          * Okay, do the cost comparison.  We need to consider
1023                                          * cheapest_path + hashagg [+ final sort] versus
1024                                          * either cheapest_path [+ sort] + group or agg [+
1025                                          * final sort] or presorted_path + group or agg [+
1026                                          * final sort] where brackets indicate a step that may
1027                                          * not be needed. We assume query_planner() will have
1028                                          * returned a presorted path only if it's a winner
1029                                          * compared to cheapest_path for this purpose.
1030                                          *
1031                                          * These path variables are dummies that just hold cost
1032                                          * fields; we don't make actual Paths for these steps.
1033                                          */
1034                                         Path            hashed_p;
1035                                         Path            sorted_p;
1036
1037                                         cost_agg(&hashed_p, parse,
1038                                                          AGG_HASHED, agg_counts.numAggs,
1039                                                          numGroupCols, dNumGroups,
1040                                                          cheapest_path->startup_cost,
1041                                                          cheapest_path->total_cost,
1042                                                          cheapest_path_rows);
1043                                         /* Result of hashed agg is always unsorted */
1044                                         if (sort_pathkeys)
1045                                                 cost_sort(&hashed_p, parse, sort_pathkeys,
1046                                                                   hashed_p.total_cost,
1047                                                                   dNumGroups,
1048                                                                   cheapest_path_width);
1049
1050                                         if (sorted_path)
1051                                         {
1052                                                 sorted_p.startup_cost = sorted_path->startup_cost;
1053                                                 sorted_p.total_cost = sorted_path->total_cost;
1054                                                 current_pathkeys = sorted_path->pathkeys;
1055                                         }
1056                                         else
1057                                         {
1058                                                 sorted_p.startup_cost = cheapest_path->startup_cost;
1059                                                 sorted_p.total_cost = cheapest_path->total_cost;
1060                                                 current_pathkeys = cheapest_path->pathkeys;
1061                                         }
1062                                         if (!pathkeys_contained_in(group_pathkeys,
1063                                                                                            current_pathkeys))
1064                                         {
1065                                                 cost_sort(&sorted_p, parse, group_pathkeys,
1066                                                                   sorted_p.total_cost,
1067                                                                   cheapest_path_rows,
1068                                                                   cheapest_path_width);
1069                                                 current_pathkeys = group_pathkeys;
1070                                         }
1071                                         if (parse->hasAggs)
1072                                                 cost_agg(&sorted_p, parse,
1073                                                                  AGG_SORTED, agg_counts.numAggs,
1074                                                                  numGroupCols, dNumGroups,
1075                                                                  sorted_p.startup_cost,
1076                                                                  sorted_p.total_cost,
1077                                                                  cheapest_path_rows);
1078                                         else
1079                                                 cost_group(&sorted_p, parse,
1080                                                                    numGroupCols, dNumGroups,
1081                                                                    sorted_p.startup_cost,
1082                                                                    sorted_p.total_cost,
1083                                                                    cheapest_path_rows);
1084                                         /* The Agg or Group node will preserve ordering */
1085                                         if (sort_pathkeys &&
1086                                                 !pathkeys_contained_in(sort_pathkeys,
1087                                                                                            current_pathkeys))
1088                                         {
1089                                                 cost_sort(&sorted_p, parse, sort_pathkeys,
1090                                                                   sorted_p.total_cost,
1091                                                                   dNumGroups,
1092                                                                   cheapest_path_width);
1093                                         }
1094
1095                                         /*
1096                                          * Now make the decision using the top-level tuple
1097                                          * fraction.  First we have to convert an absolute
1098                                          * count (LIMIT) into fractional form.
1099                                          */
1100                                         if (tuple_fraction >= 1.0)
1101                                                 tuple_fraction /= dNumGroups;
1102
1103                                         if (compare_fractional_path_costs(&hashed_p, &sorted_p,
1104                                                                                                           tuple_fraction) < 0)
1105                                         {
1106                                                 /* Hashed is cheaper, so use it */
1107                                                 use_hashed_grouping = true;
1108                                         }
1109                                 }
1110                         }
1111                 }
1112
1113                 /*
1114                  * Select the best path and create a plan to execute it.
1115                  *
1116                  * If we are doing hashed grouping, we will always read all the input
1117                  * tuples, so use the cheapest-total path.      Otherwise, trust
1118                  * query_planner's decision about which to use.
1119                  */
1120                 if (sorted_path && !use_hashed_grouping)
1121                 {
1122                         result_plan = create_plan(parse, sorted_path);
1123                         current_pathkeys = sorted_path->pathkeys;
1124                 }
1125                 else
1126                 {
1127                         result_plan = create_plan(parse, cheapest_path);
1128                         current_pathkeys = cheapest_path->pathkeys;
1129                 }
1130
1131                 /*
1132                  * create_plan() returns a plan with just a "flat" tlist of
1133                  * required Vars.  Usually we need to insert the sub_tlist as the
1134                  * tlist of the top plan node.  However, we can skip that if we
1135                  * determined that whatever query_planner chose to return will be
1136                  * good enough.
1137                  */
1138                 if (need_tlist_eval)
1139                 {
1140                         /*
1141                          * If the top-level plan node is one that cannot do expression
1142                          * evaluation, we must insert a Result node to project the
1143                          * desired tlist.
1144                          */
1145                         if (!is_projection_capable_plan(result_plan))
1146                         {
1147                                 result_plan = (Plan *) make_result(sub_tlist, NULL,
1148                                                                                                    result_plan);
1149                         }
1150                         else
1151                         {
1152                                 /*
1153                                  * Otherwise, just replace the subplan's flat tlist with
1154                                  * the desired tlist.
1155                                  */
1156                                 result_plan->targetlist = sub_tlist;
1157                         }
1158
1159                         /*
1160                          * Also, account for the cost of evaluation of the sub_tlist.
1161                          *
1162                          * Up to now, we have only been dealing with "flat" tlists,
1163                          * containing just Vars.  So their evaluation cost is zero
1164                          * according to the model used by cost_qual_eval() (or if you
1165                          * prefer, the cost is factored into cpu_tuple_cost).  Thus we
1166                          * can avoid accounting for tlist cost throughout
1167                          * query_planner() and subroutines.  But now we've inserted a
1168                          * tlist that might contain actual operators, sub-selects, etc
1169                          * --- so we'd better account for its cost.
1170                          *
1171                          * Below this point, any tlist eval cost for added-on nodes
1172                          * should be accounted for as we create those nodes.
1173                          * Presently, of the node types we can add on, only Agg and
1174                          * Group project new tlists (the rest just copy their input
1175                          * tuples) --- so make_agg() and make_group() are responsible
1176                          * for computing the added cost.
1177                          */
1178                         cost_qual_eval(&tlist_cost, sub_tlist);
1179                         result_plan->startup_cost += tlist_cost.startup;
1180                         result_plan->total_cost += tlist_cost.startup +
1181                                 tlist_cost.per_tuple * result_plan->plan_rows;
1182                 }
1183                 else
1184                 {
1185                         /*
1186                          * Since we're using query_planner's tlist and not the one
1187                          * make_subplanTargetList calculated, we have to refigure any
1188                          * grouping-column indexes make_subplanTargetList computed.
1189                          */
1190                         locate_grouping_columns(parse, tlist, result_plan->targetlist,
1191                                                                         groupColIdx);
1192                 }
1193
1194                 /*
1195                  * Insert AGG or GROUP node if needed, plus an explicit sort step
1196                  * if necessary.
1197                  *
1198                  * HAVING clause, if any, becomes qual of the Agg node
1199                  */
1200                 if (use_hashed_grouping)
1201                 {
1202                         /* Hashed aggregate plan --- no sort needed */
1203                         result_plan = (Plan *) make_agg(parse,
1204                                                                                         tlist,
1205                                                                                         (List *) parse->havingQual,
1206                                                                                         AGG_HASHED,
1207                                                                                         numGroupCols,
1208                                                                                         groupColIdx,
1209                                                                                         numGroups,
1210                                                                                         agg_counts.numAggs,
1211                                                                                         result_plan);
1212                         /* Hashed aggregation produces randomly-ordered results */
1213                         current_pathkeys = NIL;
1214                 }
1215                 else if (parse->hasAggs)
1216                 {
1217                         /* Plain aggregate plan --- sort if needed */
1218                         AggStrategy aggstrategy;
1219
1220                         if (parse->groupClause)
1221                         {
1222                                 if (!pathkeys_contained_in(group_pathkeys, current_pathkeys))
1223                                 {
1224                                         result_plan = (Plan *)
1225                                                 make_sort_from_groupcols(parse,
1226                                                                                                  parse->groupClause,
1227                                                                                                  groupColIdx,
1228                                                                                                  result_plan);
1229                                         current_pathkeys = group_pathkeys;
1230                                 }
1231                                 aggstrategy = AGG_SORTED;
1232
1233                                 /*
1234                                  * The AGG node will not change the sort ordering of its
1235                                  * groups, so current_pathkeys describes the result too.
1236                                  */
1237                         }
1238                         else
1239                         {
1240                                 aggstrategy = AGG_PLAIN;
1241                                 /* Result will be only one row anyway; no sort order */
1242                                 current_pathkeys = NIL;
1243                         }
1244
1245                         result_plan = (Plan *) make_agg(parse,
1246                                                                                         tlist,
1247                                                                                         (List *) parse->havingQual,
1248                                                                                         aggstrategy,
1249                                                                                         numGroupCols,
1250                                                                                         groupColIdx,
1251                                                                                         numGroups,
1252                                                                                         agg_counts.numAggs,
1253                                                                                         result_plan);
1254                 }
1255                 else
1256                 {
1257                         /*
1258                          * If there are no Aggs, we shouldn't have any HAVING qual
1259                          * anymore
1260                          */
1261                         Assert(parse->havingQual == NULL);
1262
1263                         /*
1264                          * If we have a GROUP BY clause, insert a group node (plus the
1265                          * appropriate sort node, if necessary).
1266                          */
1267                         if (parse->groupClause)
1268                         {
1269                                 /*
1270                                  * Add an explicit sort if we couldn't make the path come
1271                                  * out the way the GROUP node needs it.
1272                                  */
1273                                 if (!pathkeys_contained_in(group_pathkeys, current_pathkeys))
1274                                 {
1275                                         result_plan = (Plan *)
1276                                                 make_sort_from_groupcols(parse,
1277                                                                                                  parse->groupClause,
1278                                                                                                  groupColIdx,
1279                                                                                                  result_plan);
1280                                         current_pathkeys = group_pathkeys;
1281                                 }
1282
1283                                 result_plan = (Plan *) make_group(parse,
1284                                                                                                   tlist,
1285                                                                                                   numGroupCols,
1286                                                                                                   groupColIdx,
1287                                                                                                   dNumGroups,
1288                                                                                                   result_plan);
1289                                 /* The Group node won't change sort ordering */
1290                         }
1291                 }
1292         }                                                       /* end of if (setOperations) */
1293
1294         /*
1295          * If we were not able to make the plan come out in the right order,
1296          * add an explicit sort step.
1297          */
1298         if (parse->sortClause)
1299         {
1300                 if (!pathkeys_contained_in(sort_pathkeys, current_pathkeys))
1301                 {
1302                         result_plan = (Plan *)
1303                                 make_sort_from_sortclauses(parse,
1304                                                                                    parse->sortClause,
1305                                                                                    result_plan);
1306                         current_pathkeys = sort_pathkeys;
1307                 }
1308         }
1309
1310         /*
1311          * If there is a DISTINCT clause, add the UNIQUE node.
1312          */
1313         if (parse->distinctClause)
1314         {
1315                 result_plan = (Plan *) make_unique(result_plan, parse->distinctClause);
1316
1317                 /*
1318                  * If there was grouping or aggregation, leave plan_rows as-is
1319                  * (ie, assume the result was already mostly unique).  If not,
1320                  * it's reasonable to assume the UNIQUE filter has effects
1321                  * comparable to GROUP BY.
1322                  */
1323                 if (!parse->groupClause && !parse->hasAggs)
1324                 {
1325                         List       *distinctExprs;
1326
1327                         distinctExprs = get_sortgrouplist_exprs(parse->distinctClause,
1328                                                                                                         parse->targetList);
1329                         result_plan->plan_rows = estimate_num_groups(parse,
1330                                                                                                                  distinctExprs,
1331                                                                                                  result_plan->plan_rows);
1332                 }
1333         }
1334
1335         /*
1336          * Finally, if there is a LIMIT/OFFSET clause, add the LIMIT node.
1337          */
1338         if (parse->limitOffset || parse->limitCount)
1339         {
1340                 result_plan = (Plan *) make_limit(result_plan,
1341                                                                                   parse->limitOffset,
1342                                                                                   parse->limitCount);
1343         }
1344
1345         /*
1346          * Return the actual output ordering in query_pathkeys for possible
1347          * use by an outer query level.
1348          */
1349         parse->query_pathkeys = current_pathkeys;
1350
1351         return result_plan;
1352 }
1353
1354 /*
1355  * hash_safe_grouping - are grouping operators hashable?
1356  *
1357  * We assume hashed aggregation will work if the datatype's equality operator
1358  * is marked hashjoinable.
1359  */
1360 static bool
1361 hash_safe_grouping(Query *parse)
1362 {
1363         ListCell   *gl;
1364
1365         foreach(gl, parse->groupClause)
1366         {
1367                 GroupClause *grpcl = (GroupClause *) lfirst(gl);
1368                 TargetEntry *tle = get_sortgroupclause_tle(grpcl, parse->targetList);
1369                 Operator        optup;
1370                 bool            oprcanhash;
1371
1372                 optup = equality_oper(tle->resdom->restype, true);
1373                 if (!optup)
1374                         return false;
1375                 oprcanhash = ((Form_pg_operator) GETSTRUCT(optup))->oprcanhash;
1376                 ReleaseSysCache(optup);
1377                 if (!oprcanhash)
1378                         return false;
1379         }
1380         return true;
1381 }
1382
1383 /*---------------
1384  * make_subplanTargetList
1385  *        Generate appropriate target list when grouping is required.
1386  *
1387  * When grouping_planner inserts Aggregate or Group plan nodes above
1388  * the result of query_planner, we typically want to pass a different
1389  * target list to query_planner than the outer plan nodes should have.
1390  * This routine generates the correct target list for the subplan.
1391  *
1392  * The initial target list passed from the parser already contains entries
1393  * for all ORDER BY and GROUP BY expressions, but it will not have entries
1394  * for variables used only in HAVING clauses; so we need to add those
1395  * variables to the subplan target list.  Also, if we are doing either
1396  * grouping or aggregation, we flatten all expressions except GROUP BY items
1397  * into their component variables; the other expressions will be computed by
1398  * the inserted nodes rather than by the subplan.  For example,
1399  * given a query like
1400  *              SELECT a+b,SUM(c+d) FROM table GROUP BY a+b;
1401  * we want to pass this targetlist to the subplan:
1402  *              a,b,c,d,a+b
1403  * where the a+b target will be used by the Sort/Group steps, and the
1404  * other targets will be used for computing the final results.  (In the
1405  * above example we could theoretically suppress the a and b targets and
1406  * pass down only c,d,a+b, but it's not really worth the trouble to
1407  * eliminate simple var references from the subplan.  We will avoid doing
1408  * the extra computation to recompute a+b at the outer level; see
1409  * replace_vars_with_subplan_refs() in setrefs.c.)
1410  *
1411  * If we are grouping or aggregating, *and* there are no non-Var grouping
1412  * expressions, then the returned tlist is effectively dummy; we do not
1413  * need to force it to be evaluated, because all the Vars it contains
1414  * should be present in the output of query_planner anyway.
1415  *
1416  * 'parse' is the query being processed.
1417  * 'tlist' is the query's target list.
1418  * 'groupColIdx' receives an array of column numbers for the GROUP BY
1419  *                      expressions (if there are any) in the subplan's target list.
1420  * 'need_tlist_eval' is set true if we really need to evaluate the
1421  *                      result tlist.
1422  *
1423  * The result is the targetlist to be passed to the subplan.
1424  *---------------
1425  */
1426 static List *
1427 make_subplanTargetList(Query *parse,
1428                                            List *tlist,
1429                                            AttrNumber **groupColIdx,
1430                                            bool *need_tlist_eval)
1431 {
1432         List       *sub_tlist;
1433         List       *extravars;
1434         int                     numCols;
1435
1436         *groupColIdx = NULL;
1437
1438         /*
1439          * If we're not grouping or aggregating, nothing to do here;
1440          * query_planner should receive the unmodified target list.
1441          */
1442         if (!parse->hasAggs && !parse->groupClause)
1443         {
1444                 *need_tlist_eval = true;
1445                 return tlist;
1446         }
1447
1448         /*
1449          * Otherwise, start with a "flattened" tlist (having just the vars
1450          * mentioned in the targetlist and HAVING qual --- but not upper-
1451          * level Vars; they will be replaced by Params later on).
1452          */
1453         sub_tlist = flatten_tlist(tlist);
1454         extravars = pull_var_clause(parse->havingQual, false);
1455         sub_tlist = add_to_flat_tlist(sub_tlist, extravars);
1456         list_free(extravars);
1457         *need_tlist_eval = false;       /* only eval if not flat tlist */
1458
1459         /*
1460          * If grouping, create sub_tlist entries for all GROUP BY expressions
1461          * (GROUP BY items that are simple Vars should be in the list
1462          * already), and make an array showing where the group columns are in
1463          * the sub_tlist.
1464          */
1465         numCols = list_length(parse->groupClause);
1466         if (numCols > 0)
1467         {
1468                 int                     keyno = 0;
1469                 AttrNumber *grpColIdx;
1470                 ListCell   *gl;
1471
1472                 grpColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols);
1473                 *groupColIdx = grpColIdx;
1474
1475                 foreach(gl, parse->groupClause)
1476                 {
1477                         GroupClause *grpcl = (GroupClause *) lfirst(gl);
1478                         Node       *groupexpr = get_sortgroupclause_expr(grpcl, tlist);
1479                         TargetEntry *te = NULL;
1480                         ListCell   *sl;
1481
1482                         /* Find or make a matching sub_tlist entry */
1483                         foreach(sl, sub_tlist)
1484                         {
1485                                 te = (TargetEntry *) lfirst(sl);
1486                                 if (equal(groupexpr, te->expr))
1487                                         break;
1488                         }
1489                         if (!sl)
1490                         {
1491                                 te = makeTargetEntry(makeResdom(list_length(sub_tlist) + 1,
1492                                                                                                 exprType(groupexpr),
1493                                                                                                 exprTypmod(groupexpr),
1494                                                                                                 NULL,
1495                                                                                                 false),
1496                                                                          (Expr *) groupexpr);
1497                                 sub_tlist = lappend(sub_tlist, te);
1498                                 *need_tlist_eval = true;                /* it's not flat anymore */
1499                         }
1500
1501                         /* and save its resno */
1502                         grpColIdx[keyno++] = te->resdom->resno;
1503                 }
1504         }
1505
1506         return sub_tlist;
1507 }
1508
1509 /*
1510  * locate_grouping_columns
1511  *              Locate grouping columns in the tlist chosen by query_planner.
1512  *
1513  * This is only needed if we don't use the sub_tlist chosen by
1514  * make_subplanTargetList.      We have to forget the column indexes found
1515  * by that routine and re-locate the grouping vars in the real sub_tlist.
1516  */
1517 static void
1518 locate_grouping_columns(Query *parse,
1519                                                 List *tlist,
1520                                                 List *sub_tlist,
1521                                                 AttrNumber *groupColIdx)
1522 {
1523         int                     keyno = 0;
1524         ListCell   *gl;
1525
1526         /*
1527          * No work unless grouping.
1528          */
1529         if (!parse->groupClause)
1530         {
1531                 Assert(groupColIdx == NULL);
1532                 return;
1533         }
1534         Assert(groupColIdx != NULL);
1535
1536         foreach(gl, parse->groupClause)
1537         {
1538                 GroupClause *grpcl = (GroupClause *) lfirst(gl);
1539                 Node       *groupexpr = get_sortgroupclause_expr(grpcl, tlist);
1540                 TargetEntry *te = NULL;
1541                 ListCell   *sl;
1542
1543                 foreach(sl, sub_tlist)
1544                 {
1545                         te = (TargetEntry *) lfirst(sl);
1546                         if (equal(groupexpr, te->expr))
1547                                 break;
1548                 }
1549                 if (!sl)
1550                         elog(ERROR, "failed to locate grouping columns");
1551
1552                 groupColIdx[keyno++] = te->resdom->resno;
1553         }
1554 }
1555
1556 /*
1557  * postprocess_setop_tlist
1558  *        Fix up targetlist returned by plan_set_operations().
1559  *
1560  * We need to transpose sort key info from the orig_tlist into new_tlist.
1561  * NOTE: this would not be good enough if we supported resjunk sort keys
1562  * for results of set operations --- then, we'd need to project a whole
1563  * new tlist to evaluate the resjunk columns.  For now, just ereport if we
1564  * find any resjunk columns in orig_tlist.
1565  */
1566 static List *
1567 postprocess_setop_tlist(List *new_tlist, List *orig_tlist)
1568 {
1569         ListCell   *l;
1570         ListCell   *orig_tlist_item = list_head(orig_tlist);
1571
1572         foreach(l, new_tlist)
1573         {
1574                 TargetEntry *new_tle = (TargetEntry *) lfirst(l);
1575                 TargetEntry *orig_tle;
1576
1577                 /* ignore resjunk columns in setop result */
1578                 if (new_tle->resdom->resjunk)
1579                         continue;
1580
1581                 Assert(orig_tlist_item != NULL);
1582                 orig_tle = (TargetEntry *) lfirst(orig_tlist_item);
1583                 orig_tlist_item = lnext(orig_tlist_item);
1584                 if (orig_tle->resdom->resjunk)  /* should not happen */
1585                         elog(ERROR, "resjunk output columns are not implemented");
1586                 Assert(new_tle->resdom->resno == orig_tle->resdom->resno);
1587                 Assert(new_tle->resdom->restype == orig_tle->resdom->restype);
1588                 new_tle->resdom->ressortgroupref = orig_tle->resdom->ressortgroupref;
1589         }
1590         if (orig_tlist_item != NULL)
1591                 elog(ERROR, "resjunk output columns are not implemented");
1592         return new_tlist;
1593 }