]> granicus.if.org Git - postgresql/blob - src/backend/executor/nodeGatherMerge.c
Make some small planner API cleanups.
[postgresql] / src / backend / executor / nodeGatherMerge.c
1 /*-------------------------------------------------------------------------
2  *
3  * nodeGatherMerge.c
4  *              Scan a plan in multiple workers, and do order-preserving merge.
5  *
6  * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  * IDENTIFICATION
10  *        src/backend/executor/nodeGatherMerge.c
11  *
12  *-------------------------------------------------------------------------
13  */
14
15 #include "postgres.h"
16
17 #include "access/relscan.h"
18 #include "access/xact.h"
19 #include "executor/execdebug.h"
20 #include "executor/execParallel.h"
21 #include "executor/nodeGatherMerge.h"
22 #include "executor/nodeSubplan.h"
23 #include "executor/tqueue.h"
24 #include "lib/binaryheap.h"
25 #include "miscadmin.h"
26 #include "optimizer/planmain.h"
27 #include "utils/memutils.h"
28 #include "utils/rel.h"
29
30 /*
31  * When we read tuples from workers, it's a good idea to read several at once
32  * for efficiency when possible: this minimizes context-switching overhead.
33  * But reading too many at a time wastes memory without improving performance.
34  * We'll read up to MAX_TUPLE_STORE tuples (in addition to the first one).
35  */
36 #define MAX_TUPLE_STORE 10
37
38 /*
39  * Pending-tuple array for each worker.  This holds additional tuples that
40  * we were able to fetch from the worker, but can't process yet.  In addition,
41  * this struct holds the "done" flag indicating the worker is known to have
42  * no more tuples.  (We do not use this struct for the leader; we don't keep
43  * any pending tuples for the leader, and the need_to_scan_locally flag serves
44  * as its "done" indicator.)
45  */
46 typedef struct GMReaderTupleBuffer
47 {
48         HeapTuple  *tuple;                      /* array of length MAX_TUPLE_STORE */
49         int                     nTuples;                /* number of tuples currently stored */
50         int                     readCounter;    /* index of next tuple to extract */
51         bool            done;                   /* true if reader is known exhausted */
52 } GMReaderTupleBuffer;
53
54 static TupleTableSlot *ExecGatherMerge(PlanState *pstate);
55 static int32 heap_compare_slots(Datum a, Datum b, void *arg);
56 static TupleTableSlot *gather_merge_getnext(GatherMergeState *gm_state);
57 static HeapTuple gm_readnext_tuple(GatherMergeState *gm_state, int nreader,
58                                   bool nowait, bool *done);
59 static void ExecShutdownGatherMergeWorkers(GatherMergeState *node);
60 static void gather_merge_setup(GatherMergeState *gm_state);
61 static void gather_merge_init(GatherMergeState *gm_state);
62 static void gather_merge_clear_tuples(GatherMergeState *gm_state);
63 static bool gather_merge_readnext(GatherMergeState *gm_state, int reader,
64                                           bool nowait);
65 static void load_tuple_array(GatherMergeState *gm_state, int reader);
66
67 /* ----------------------------------------------------------------
68  *              ExecInitGather
69  * ----------------------------------------------------------------
70  */
71 GatherMergeState *
72 ExecInitGatherMerge(GatherMerge *node, EState *estate, int eflags)
73 {
74         GatherMergeState *gm_state;
75         Plan       *outerNode;
76         TupleDesc       tupDesc;
77
78         /* Gather merge node doesn't have innerPlan node. */
79         Assert(innerPlan(node) == NULL);
80
81         /*
82          * create state structure
83          */
84         gm_state = makeNode(GatherMergeState);
85         gm_state->ps.plan = (Plan *) node;
86         gm_state->ps.state = estate;
87         gm_state->ps.ExecProcNode = ExecGatherMerge;
88
89         gm_state->initialized = false;
90         gm_state->gm_initialized = false;
91         gm_state->tuples_needed = -1;
92
93         /*
94          * Miscellaneous initialization
95          *
96          * create expression context for node
97          */
98         ExecAssignExprContext(estate, &gm_state->ps);
99
100         /*
101          * GatherMerge doesn't support checking a qual (it's always more efficient
102          * to do it in the child node).
103          */
104         Assert(!node->plan.qual);
105
106         /*
107          * now initialize outer plan
108          */
109         outerNode = outerPlan(node);
110         outerPlanState(gm_state) = ExecInitNode(outerNode, estate, eflags);
111
112         /*
113          * Leader may access ExecProcNode result directly (if
114          * need_to_scan_locally), or from workers via tuple queue.  So we can't
115          * trivially rely on the slot type being fixed for expressions evaluated
116          * within this node.
117          */
118         gm_state->ps.outeropsset = true;
119         gm_state->ps.outeropsfixed = false;
120
121         /*
122          * Store the tuple descriptor into gather merge state, so we can use it
123          * while initializing the gather merge slots.
124          */
125         tupDesc = ExecGetResultType(outerPlanState(gm_state));
126         gm_state->tupDesc = tupDesc;
127
128         /*
129          * Initialize result type and projection.
130          */
131         ExecInitResultTypeTL(&gm_state->ps);
132         ExecConditionalAssignProjectionInfo(&gm_state->ps, tupDesc, OUTER_VAR);
133
134         /*
135          * Without projections result slot type is not trivially known, see
136          * comment above.
137          */
138         if (gm_state->ps.ps_ProjInfo == NULL)
139         {
140                 gm_state->ps.resultopsset = true;
141                 gm_state->ps.resultopsfixed = false;
142         }
143
144         /*
145          * initialize sort-key information
146          */
147         if (node->numCols)
148         {
149                 int                     i;
150
151                 gm_state->gm_nkeys = node->numCols;
152                 gm_state->gm_sortkeys =
153                         palloc0(sizeof(SortSupportData) * node->numCols);
154
155                 for (i = 0; i < node->numCols; i++)
156                 {
157                         SortSupport sortKey = gm_state->gm_sortkeys + i;
158
159                         sortKey->ssup_cxt = CurrentMemoryContext;
160                         sortKey->ssup_collation = node->collations[i];
161                         sortKey->ssup_nulls_first = node->nullsFirst[i];
162                         sortKey->ssup_attno = node->sortColIdx[i];
163
164                         /*
165                          * We don't perform abbreviated key conversion here, for the same
166                          * reasons that it isn't used in MergeAppend
167                          */
168                         sortKey->abbreviate = false;
169
170                         PrepareSortSupportFromOrderingOp(node->sortOperators[i], sortKey);
171                 }
172         }
173
174         /* Now allocate the workspace for gather merge */
175         gather_merge_setup(gm_state);
176
177         return gm_state;
178 }
179
180 /* ----------------------------------------------------------------
181  *              ExecGatherMerge(node)
182  *
183  *              Scans the relation via multiple workers and returns
184  *              the next qualifying tuple.
185  * ----------------------------------------------------------------
186  */
187 static TupleTableSlot *
188 ExecGatherMerge(PlanState *pstate)
189 {
190         GatherMergeState *node = castNode(GatherMergeState, pstate);
191         TupleTableSlot *slot;
192         ExprContext *econtext;
193
194         CHECK_FOR_INTERRUPTS();
195
196         /*
197          * As with Gather, we don't launch workers until this node is actually
198          * executed.
199          */
200         if (!node->initialized)
201         {
202                 EState     *estate = node->ps.state;
203                 GatherMerge *gm = castNode(GatherMerge, node->ps.plan);
204
205                 /*
206                  * Sometimes we might have to run without parallelism; but if parallel
207                  * mode is active then we can try to fire up some workers.
208                  */
209                 if (gm->num_workers > 0 && estate->es_use_parallel_mode)
210                 {
211                         ParallelContext *pcxt;
212
213                         /* Initialize, or re-initialize, shared state needed by workers. */
214                         if (!node->pei)
215                                 node->pei = ExecInitParallelPlan(node->ps.lefttree,
216                                                                                                  estate,
217                                                                                                  gm->initParam,
218                                                                                                  gm->num_workers,
219                                                                                                  node->tuples_needed);
220                         else
221                                 ExecParallelReinitialize(node->ps.lefttree,
222                                                                                  node->pei,
223                                                                                  gm->initParam);
224
225                         /* Try to launch workers. */
226                         pcxt = node->pei->pcxt;
227                         LaunchParallelWorkers(pcxt);
228                         /* We save # workers launched for the benefit of EXPLAIN */
229                         node->nworkers_launched = pcxt->nworkers_launched;
230
231                         /* Set up tuple queue readers to read the results. */
232                         if (pcxt->nworkers_launched > 0)
233                         {
234                                 ExecParallelCreateReaders(node->pei);
235                                 /* Make a working array showing the active readers */
236                                 node->nreaders = pcxt->nworkers_launched;
237                                 node->reader = (TupleQueueReader **)
238                                         palloc(node->nreaders * sizeof(TupleQueueReader *));
239                                 memcpy(node->reader, node->pei->reader,
240                                            node->nreaders * sizeof(TupleQueueReader *));
241                         }
242                         else
243                         {
244                                 /* No workers?  Then never mind. */
245                                 node->nreaders = 0;
246                                 node->reader = NULL;
247                         }
248                 }
249
250                 /* allow leader to participate if enabled or no choice */
251                 if (parallel_leader_participation || node->nreaders == 0)
252                         node->need_to_scan_locally = true;
253                 node->initialized = true;
254         }
255
256         /*
257          * Reset per-tuple memory context to free any expression evaluation
258          * storage allocated in the previous tuple cycle.
259          */
260         econtext = node->ps.ps_ExprContext;
261         ResetExprContext(econtext);
262
263         /*
264          * Get next tuple, either from one of our workers, or by running the plan
265          * ourselves.
266          */
267         slot = gather_merge_getnext(node);
268         if (TupIsNull(slot))
269                 return NULL;
270
271         /* If no projection is required, we're done. */
272         if (node->ps.ps_ProjInfo == NULL)
273                 return slot;
274
275         /*
276          * Form the result tuple using ExecProject(), and return it.
277          */
278         econtext->ecxt_outertuple = slot;
279         return ExecProject(node->ps.ps_ProjInfo);
280 }
281
282 /* ----------------------------------------------------------------
283  *              ExecEndGatherMerge
284  *
285  *              frees any storage allocated through C routines.
286  * ----------------------------------------------------------------
287  */
288 void
289 ExecEndGatherMerge(GatherMergeState *node)
290 {
291         ExecEndNode(outerPlanState(node));      /* let children clean up first */
292         ExecShutdownGatherMerge(node);
293         ExecFreeExprContext(&node->ps);
294         if (node->ps.ps_ResultTupleSlot)
295                 ExecClearTuple(node->ps.ps_ResultTupleSlot);
296 }
297
298 /* ----------------------------------------------------------------
299  *              ExecShutdownGatherMerge
300  *
301  *              Destroy the setup for parallel workers including parallel context.
302  * ----------------------------------------------------------------
303  */
304 void
305 ExecShutdownGatherMerge(GatherMergeState *node)
306 {
307         ExecShutdownGatherMergeWorkers(node);
308
309         /* Now destroy the parallel context. */
310         if (node->pei != NULL)
311         {
312                 ExecParallelCleanup(node->pei);
313                 node->pei = NULL;
314         }
315 }
316
317 /* ----------------------------------------------------------------
318  *              ExecShutdownGatherMergeWorkers
319  *
320  *              Stop all the parallel workers.
321  * ----------------------------------------------------------------
322  */
323 static void
324 ExecShutdownGatherMergeWorkers(GatherMergeState *node)
325 {
326         if (node->pei != NULL)
327                 ExecParallelFinish(node->pei);
328
329         /* Flush local copy of reader array */
330         if (node->reader)
331                 pfree(node->reader);
332         node->reader = NULL;
333 }
334
335 /* ----------------------------------------------------------------
336  *              ExecReScanGatherMerge
337  *
338  *              Prepare to re-scan the result of a GatherMerge.
339  * ----------------------------------------------------------------
340  */
341 void
342 ExecReScanGatherMerge(GatherMergeState *node)
343 {
344         GatherMerge *gm = (GatherMerge *) node->ps.plan;
345         PlanState  *outerPlan = outerPlanState(node);
346
347         /* Make sure any existing workers are gracefully shut down */
348         ExecShutdownGatherMergeWorkers(node);
349
350         /* Free any unused tuples, so we don't leak memory across rescans */
351         gather_merge_clear_tuples(node);
352
353         /* Mark node so that shared state will be rebuilt at next call */
354         node->initialized = false;
355         node->gm_initialized = false;
356
357         /*
358          * Set child node's chgParam to tell it that the next scan might deliver a
359          * different set of rows within the leader process.  (The overall rowset
360          * shouldn't change, but the leader process's subset might; hence nodes
361          * between here and the parallel table scan node mustn't optimize on the
362          * assumption of an unchanging rowset.)
363          */
364         if (gm->rescan_param >= 0)
365                 outerPlan->chgParam = bms_add_member(outerPlan->chgParam,
366                                                                                          gm->rescan_param);
367
368         /*
369          * If chgParam of subnode is not null then plan will be re-scanned by
370          * first ExecProcNode.  Note: because this does nothing if we have a
371          * rescan_param, it's currently guaranteed that parallel-aware child nodes
372          * will not see a ReScan call until after they get a ReInitializeDSM call.
373          * That ordering might not be something to rely on, though.  A good rule
374          * of thumb is that ReInitializeDSM should reset only shared state, ReScan
375          * should reset only local state, and anything that depends on both of
376          * those steps being finished must wait until the first ExecProcNode call.
377          */
378         if (outerPlan->chgParam == NULL)
379                 ExecReScan(outerPlan);
380 }
381
382 /*
383  * Set up the data structures that we'll need for Gather Merge.
384  *
385  * We allocate these once on the basis of gm->num_workers, which is an
386  * upper bound for the number of workers we'll actually have.  During
387  * a rescan, we reset the structures to empty.  This approach simplifies
388  * not leaking memory across rescans.
389  *
390  * In the gm_slots[] array, index 0 is for the leader, and indexes 1 to n
391  * are for workers.  The values placed into gm_heap correspond to indexes
392  * in gm_slots[].  The gm_tuple_buffers[] array, however, is indexed from
393  * 0 to n-1; it has no entry for the leader.
394  */
395 static void
396 gather_merge_setup(GatherMergeState *gm_state)
397 {
398         GatherMerge *gm = castNode(GatherMerge, gm_state->ps.plan);
399         int                     nreaders = gm->num_workers;
400         int                     i;
401
402         /*
403          * Allocate gm_slots for the number of workers + one more slot for leader.
404          * Slot 0 is always for the leader.  Leader always calls ExecProcNode() to
405          * read the tuple, and then stores it directly into its gm_slots entry.
406          * For other slots, code below will call ExecInitExtraTupleSlot() to
407          * create a slot for the worker's results.  Note that during any single
408          * scan, we might have fewer than num_workers available workers, in which
409          * case the extra array entries go unused.
410          */
411         gm_state->gm_slots = (TupleTableSlot **)
412                 palloc0((nreaders + 1) * sizeof(TupleTableSlot *));
413
414         /* Allocate the tuple slot and tuple array for each worker */
415         gm_state->gm_tuple_buffers = (GMReaderTupleBuffer *)
416                 palloc0(nreaders * sizeof(GMReaderTupleBuffer));
417
418         for (i = 0; i < nreaders; i++)
419         {
420                 /* Allocate the tuple array with length MAX_TUPLE_STORE */
421                 gm_state->gm_tuple_buffers[i].tuple =
422                         (HeapTuple *) palloc0(sizeof(HeapTuple) * MAX_TUPLE_STORE);
423
424                 /* Initialize tuple slot for worker */
425                 gm_state->gm_slots[i + 1] =
426                         ExecInitExtraTupleSlot(gm_state->ps.state, gm_state->tupDesc,
427                                                                    &TTSOpsHeapTuple);
428         }
429
430         /* Allocate the resources for the merge */
431         gm_state->gm_heap = binaryheap_allocate(nreaders + 1,
432                                                                                         heap_compare_slots,
433                                                                                         gm_state);
434 }
435
436 /*
437  * Initialize the Gather Merge.
438  *
439  * Reset data structures to ensure they're empty.  Then pull at least one
440  * tuple from leader + each worker (or set its "done" indicator), and set up
441  * the heap.
442  */
443 static void
444 gather_merge_init(GatherMergeState *gm_state)
445 {
446         int                     nreaders = gm_state->nreaders;
447         bool            nowait = true;
448         int                     i;
449
450         /* Assert that gather_merge_setup made enough space */
451         Assert(nreaders <= castNode(GatherMerge, gm_state->ps.plan)->num_workers);
452
453         /* Reset leader's tuple slot to empty */
454         gm_state->gm_slots[0] = NULL;
455
456         /* Reset the tuple slot and tuple array for each worker */
457         for (i = 0; i < nreaders; i++)
458         {
459                 /* Reset tuple array to empty */
460                 gm_state->gm_tuple_buffers[i].nTuples = 0;
461                 gm_state->gm_tuple_buffers[i].readCounter = 0;
462                 /* Reset done flag to not-done */
463                 gm_state->gm_tuple_buffers[i].done = false;
464                 /* Ensure output slot is empty */
465                 ExecClearTuple(gm_state->gm_slots[i + 1]);
466         }
467
468         /* Reset binary heap to empty */
469         binaryheap_reset(gm_state->gm_heap);
470
471         /*
472          * First, try to read a tuple from each worker (including leader) in
473          * nowait mode.  After this, if not all workers were able to produce a
474          * tuple (or a "done" indication), then re-read from remaining workers,
475          * this time using wait mode.  Add all live readers (those producing at
476          * least one tuple) to the heap.
477          */
478 reread:
479         for (i = 0; i <= nreaders; i++)
480         {
481                 CHECK_FOR_INTERRUPTS();
482
483                 /* skip this source if already known done */
484                 if ((i == 0) ? gm_state->need_to_scan_locally :
485                         !gm_state->gm_tuple_buffers[i - 1].done)
486                 {
487                         if (TupIsNull(gm_state->gm_slots[i]))
488                         {
489                                 /* Don't have a tuple yet, try to get one */
490                                 if (gather_merge_readnext(gm_state, i, nowait))
491                                         binaryheap_add_unordered(gm_state->gm_heap,
492                                                                                          Int32GetDatum(i));
493                         }
494                         else
495                         {
496                                 /*
497                                  * We already got at least one tuple from this worker, but
498                                  * might as well see if it has any more ready by now.
499                                  */
500                                 load_tuple_array(gm_state, i);
501                         }
502                 }
503         }
504
505         /* need not recheck leader, since nowait doesn't matter for it */
506         for (i = 1; i <= nreaders; i++)
507         {
508                 if (!gm_state->gm_tuple_buffers[i - 1].done &&
509                         TupIsNull(gm_state->gm_slots[i]))
510                 {
511                         nowait = false;
512                         goto reread;
513                 }
514         }
515
516         /* Now heapify the heap. */
517         binaryheap_build(gm_state->gm_heap);
518
519         gm_state->gm_initialized = true;
520 }
521
522 /*
523  * Clear out the tuple table slot, and any unused pending tuples,
524  * for each gather merge input.
525  */
526 static void
527 gather_merge_clear_tuples(GatherMergeState *gm_state)
528 {
529         int                     i;
530
531         for (i = 0; i < gm_state->nreaders; i++)
532         {
533                 GMReaderTupleBuffer *tuple_buffer = &gm_state->gm_tuple_buffers[i];
534
535                 while (tuple_buffer->readCounter < tuple_buffer->nTuples)
536                         heap_freetuple(tuple_buffer->tuple[tuple_buffer->readCounter++]);
537
538                 ExecClearTuple(gm_state->gm_slots[i + 1]);
539         }
540 }
541
542 /*
543  * Read the next tuple for gather merge.
544  *
545  * Fetch the sorted tuple out of the heap.
546  */
547 static TupleTableSlot *
548 gather_merge_getnext(GatherMergeState *gm_state)
549 {
550         int                     i;
551
552         if (!gm_state->gm_initialized)
553         {
554                 /*
555                  * First time through: pull the first tuple from each participant, and
556                  * set up the heap.
557                  */
558                 gather_merge_init(gm_state);
559         }
560         else
561         {
562                 /*
563                  * Otherwise, pull the next tuple from whichever participant we
564                  * returned from last time, and reinsert that participant's index into
565                  * the heap, because it might now compare differently against the
566                  * other elements of the heap.
567                  */
568                 i = DatumGetInt32(binaryheap_first(gm_state->gm_heap));
569
570                 if (gather_merge_readnext(gm_state, i, false))
571                         binaryheap_replace_first(gm_state->gm_heap, Int32GetDatum(i));
572                 else
573                 {
574                         /* reader exhausted, remove it from heap */
575                         (void) binaryheap_remove_first(gm_state->gm_heap);
576                 }
577         }
578
579         if (binaryheap_empty(gm_state->gm_heap))
580         {
581                 /* All the queues are exhausted, and so is the heap */
582                 gather_merge_clear_tuples(gm_state);
583                 return NULL;
584         }
585         else
586         {
587                 /* Return next tuple from whichever participant has the leading one */
588                 i = DatumGetInt32(binaryheap_first(gm_state->gm_heap));
589                 return gm_state->gm_slots[i];
590         }
591 }
592
593 /*
594  * Read tuple(s) for given reader in nowait mode, and load into its tuple
595  * array, until we have MAX_TUPLE_STORE of them or would have to block.
596  */
597 static void
598 load_tuple_array(GatherMergeState *gm_state, int reader)
599 {
600         GMReaderTupleBuffer *tuple_buffer;
601         int                     i;
602
603         /* Don't do anything if this is the leader. */
604         if (reader == 0)
605                 return;
606
607         tuple_buffer = &gm_state->gm_tuple_buffers[reader - 1];
608
609         /* If there's nothing in the array, reset the counters to zero. */
610         if (tuple_buffer->nTuples == tuple_buffer->readCounter)
611                 tuple_buffer->nTuples = tuple_buffer->readCounter = 0;
612
613         /* Try to fill additional slots in the array. */
614         for (i = tuple_buffer->nTuples; i < MAX_TUPLE_STORE; i++)
615         {
616                 HeapTuple       tuple;
617
618                 tuple = gm_readnext_tuple(gm_state,
619                                                                   reader,
620                                                                   true,
621                                                                   &tuple_buffer->done);
622                 if (!HeapTupleIsValid(tuple))
623                         break;
624                 tuple_buffer->tuple[i] = tuple;
625                 tuple_buffer->nTuples++;
626         }
627 }
628
629 /*
630  * Store the next tuple for a given reader into the appropriate slot.
631  *
632  * Returns true if successful, false if not (either reader is exhausted,
633  * or we didn't want to wait for a tuple).  Sets done flag if reader
634  * is found to be exhausted.
635  */
636 static bool
637 gather_merge_readnext(GatherMergeState *gm_state, int reader, bool nowait)
638 {
639         GMReaderTupleBuffer *tuple_buffer;
640         HeapTuple       tup;
641
642         /*
643          * If we're being asked to generate a tuple from the leader, then we just
644          * call ExecProcNode as normal to produce one.
645          */
646         if (reader == 0)
647         {
648                 if (gm_state->need_to_scan_locally)
649                 {
650                         PlanState  *outerPlan = outerPlanState(gm_state);
651                         TupleTableSlot *outerTupleSlot;
652                         EState     *estate = gm_state->ps.state;
653
654                         /* Install our DSA area while executing the plan. */
655                         estate->es_query_dsa = gm_state->pei ? gm_state->pei->area : NULL;
656                         outerTupleSlot = ExecProcNode(outerPlan);
657                         estate->es_query_dsa = NULL;
658
659                         if (!TupIsNull(outerTupleSlot))
660                         {
661                                 gm_state->gm_slots[0] = outerTupleSlot;
662                                 return true;
663                         }
664                         /* need_to_scan_locally serves as "done" flag for leader */
665                         gm_state->need_to_scan_locally = false;
666                 }
667                 return false;
668         }
669
670         /* Otherwise, check the state of the relevant tuple buffer. */
671         tuple_buffer = &gm_state->gm_tuple_buffers[reader - 1];
672
673         if (tuple_buffer->nTuples > tuple_buffer->readCounter)
674         {
675                 /* Return any tuple previously read that is still buffered. */
676                 tup = tuple_buffer->tuple[tuple_buffer->readCounter++];
677         }
678         else if (tuple_buffer->done)
679         {
680                 /* Reader is known to be exhausted. */
681                 return false;
682         }
683         else
684         {
685                 /* Read and buffer next tuple. */
686                 tup = gm_readnext_tuple(gm_state,
687                                                                 reader,
688                                                                 nowait,
689                                                                 &tuple_buffer->done);
690                 if (!HeapTupleIsValid(tup))
691                         return false;
692
693                 /*
694                  * Attempt to read more tuples in nowait mode and store them in the
695                  * pending-tuple array for the reader.
696                  */
697                 load_tuple_array(gm_state, reader);
698         }
699
700         Assert(HeapTupleIsValid(tup));
701
702         /* Build the TupleTableSlot for the given tuple */
703         ExecStoreHeapTuple(tup,                 /* tuple to store */
704                                            gm_state->gm_slots[reader],  /* slot in which to store
705                                                                                                          * the tuple */
706                                            true);               /* pfree tuple when done with it */
707
708         return true;
709 }
710
711 /*
712  * Attempt to read a tuple from given worker.
713  */
714 static HeapTuple
715 gm_readnext_tuple(GatherMergeState *gm_state, int nreader, bool nowait,
716                                   bool *done)
717 {
718         TupleQueueReader *reader;
719         HeapTuple       tup;
720
721         /* Check for async events, particularly messages from workers. */
722         CHECK_FOR_INTERRUPTS();
723
724         /*
725          * Attempt to read a tuple.
726          *
727          * Note that TupleQueueReaderNext will just return NULL for a worker which
728          * fails to initialize.  We'll treat that worker as having produced no
729          * tuples; WaitForParallelWorkersToFinish will error out when we get
730          * there.
731          */
732         reader = gm_state->reader[nreader - 1];
733         tup = TupleQueueReaderNext(reader, nowait, done);
734
735         return tup;
736 }
737
738 /*
739  * We have one slot for each item in the heap array.  We use SlotNumber
740  * to store slot indexes.  This doesn't actually provide any formal
741  * type-safety, but it makes the code more self-documenting.
742  */
743 typedef int32 SlotNumber;
744
745 /*
746  * Compare the tuples in the two given slots.
747  */
748 static int32
749 heap_compare_slots(Datum a, Datum b, void *arg)
750 {
751         GatherMergeState *node = (GatherMergeState *) arg;
752         SlotNumber      slot1 = DatumGetInt32(a);
753         SlotNumber      slot2 = DatumGetInt32(b);
754
755         TupleTableSlot *s1 = node->gm_slots[slot1];
756         TupleTableSlot *s2 = node->gm_slots[slot2];
757         int                     nkey;
758
759         Assert(!TupIsNull(s1));
760         Assert(!TupIsNull(s2));
761
762         for (nkey = 0; nkey < node->gm_nkeys; nkey++)
763         {
764                 SortSupport sortKey = node->gm_sortkeys + nkey;
765                 AttrNumber      attno = sortKey->ssup_attno;
766                 Datum           datum1,
767                                         datum2;
768                 bool            isNull1,
769                                         isNull2;
770                 int                     compare;
771
772                 datum1 = slot_getattr(s1, attno, &isNull1);
773                 datum2 = slot_getattr(s2, attno, &isNull2);
774
775                 compare = ApplySortComparator(datum1, isNull1,
776                                                                           datum2, isNull2,
777                                                                           sortKey);
778                 if (compare != 0)
779                 {
780                         INVERT_COMPARE_RESULT(compare);
781                         return compare;
782                 }
783         }
784         return 0;
785 }