]> granicus.if.org Git - postgresql/blob - src/backend/executor/execMain.c
Repair problems with VACUUM destroying t_ctid chains too soon, and with
[postgresql] / src / backend / executor / execMain.c
1 /*-------------------------------------------------------------------------
2  *
3  * execMain.c
4  *        top level executor interface routines
5  *
6  * INTERFACE ROUTINES
7  *      ExecutorStart()
8  *      ExecutorRun()
9  *      ExecutorEnd()
10  *
11  *      The old ExecutorMain() has been replaced by ExecutorStart(),
12  *      ExecutorRun() and ExecutorEnd()
13  *
14  *      These three procedures are the external interfaces to the executor.
15  *      In each case, the query descriptor is required as an argument.
16  *
17  *      ExecutorStart() must be called at the beginning of execution of any
18  *      query plan and ExecutorEnd() should always be called at the end of
19  *      execution of a plan.
20  *
21  *      ExecutorRun accepts direction and count arguments that specify whether
22  *      the plan is to be executed forwards, backwards, and for how many tuples.
23  *
24  * Portions Copyright (c) 1996-2005, PostgreSQL Global Development Group
25  * Portions Copyright (c) 1994, Regents of the University of California
26  *
27  *
28  * IDENTIFICATION
29  *        $PostgreSQL: pgsql/src/backend/executor/execMain.c,v 1.254 2005/08/20 00:39:55 tgl Exp $
30  *
31  *-------------------------------------------------------------------------
32  */
33 #include "postgres.h"
34
35 #include "access/heapam.h"
36 #include "access/xlog.h"
37 #include "catalog/heap.h"
38 #include "catalog/namespace.h"
39 #include "commands/tablecmds.h"
40 #include "commands/trigger.h"
41 #include "executor/execdebug.h"
42 #include "executor/execdefs.h"
43 #include "executor/instrument.h"
44 #include "miscadmin.h"
45 #include "optimizer/clauses.h"
46 #include "optimizer/var.h"
47 #include "parser/parsetree.h"
48 #include "storage/smgr.h"
49 #include "utils/acl.h"
50 #include "utils/guc.h"
51 #include "utils/lsyscache.h"
52 #include "utils/memutils.h"
53
54
55 typedef struct execRowMark
56 {
57         Relation        relation;
58         Index           rti;
59         char            resname[32];
60 } execRowMark;
61
62 typedef struct evalPlanQual
63 {
64         Index           rti;
65         EState     *estate;
66         PlanState  *planstate;
67         struct evalPlanQual *next;      /* stack of active PlanQual plans */
68         struct evalPlanQual *free;      /* list of free PlanQual plans */
69 } evalPlanQual;
70
71 /* decls for local routines only used within this module */
72 static void InitPlan(QueryDesc *queryDesc, bool explainOnly);
73 static void initResultRelInfo(ResultRelInfo *resultRelInfo,
74                                   Index resultRelationIndex,
75                                   List *rangeTable,
76                                   CmdType operation,
77                                   bool doInstrument);
78 static TupleTableSlot *ExecutePlan(EState *estate, PlanState *planstate,
79                         CmdType operation,
80                         long numberTuples,
81                         ScanDirection direction,
82                         DestReceiver *dest);
83 static void ExecSelect(TupleTableSlot *slot,
84                    DestReceiver *dest,
85                    EState *estate);
86 static void ExecInsert(TupleTableSlot *slot, ItemPointer tupleid,
87                    EState *estate);
88 static void ExecDelete(TupleTableSlot *slot, ItemPointer tupleid,
89                    EState *estate);
90 static void ExecUpdate(TupleTableSlot *slot, ItemPointer tupleid,
91                    EState *estate);
92 static TupleTableSlot *EvalPlanQualNext(EState *estate);
93 static void EndEvalPlanQual(EState *estate);
94 static void ExecCheckRTEPerms(RangeTblEntry *rte);
95 static void ExecCheckXactReadOnly(Query *parsetree);
96 static void EvalPlanQualStart(evalPlanQual *epq, EState *estate,
97                                   evalPlanQual *priorepq);
98 static void EvalPlanQualStop(evalPlanQual *epq);
99
100 /* end of local decls */
101
102
103 /* ----------------------------------------------------------------
104  *              ExecutorStart
105  *
106  *              This routine must be called at the beginning of any execution of any
107  *              query plan
108  *
109  * Takes a QueryDesc previously created by CreateQueryDesc (it's not real
110  * clear why we bother to separate the two functions, but...).  The tupDesc
111  * field of the QueryDesc is filled in to describe the tuples that will be
112  * returned, and the internal fields (estate and planstate) are set up.
113  *
114  * If explainOnly is true, we are not actually intending to run the plan,
115  * only to set up for EXPLAIN; so skip unwanted side-effects.
116  *
117  * NB: the CurrentMemoryContext when this is called will become the parent
118  * of the per-query context used for this Executor invocation.
119  * ----------------------------------------------------------------
120  */
121 void
122 ExecutorStart(QueryDesc *queryDesc, bool explainOnly)
123 {
124         EState     *estate;
125         MemoryContext oldcontext;
126
127         /* sanity checks: queryDesc must not be started already */
128         Assert(queryDesc != NULL);
129         Assert(queryDesc->estate == NULL);
130
131         /*
132          * If the transaction is read-only, we need to check if any writes are
133          * planned to non-temporary tables.
134          */
135         if (XactReadOnly && !explainOnly)
136                 ExecCheckXactReadOnly(queryDesc->parsetree);
137
138         /*
139          * Build EState, switch into per-query memory context for startup.
140          */
141         estate = CreateExecutorState();
142         queryDesc->estate = estate;
143
144         oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
145
146         /*
147          * Fill in parameters, if any, from queryDesc
148          */
149         estate->es_param_list_info = queryDesc->params;
150
151         if (queryDesc->plantree->nParamExec > 0)
152                 estate->es_param_exec_vals = (ParamExecData *)
153                         palloc0(queryDesc->plantree->nParamExec * sizeof(ParamExecData));
154
155         /*
156          * Copy other important information into the EState
157          */
158         estate->es_snapshot = queryDesc->snapshot;
159         estate->es_crosscheck_snapshot = queryDesc->crosscheck_snapshot;
160         estate->es_instrument = queryDesc->doInstrument;
161
162         /*
163          * Initialize the plan state tree
164          */
165         InitPlan(queryDesc, explainOnly);
166
167         MemoryContextSwitchTo(oldcontext);
168 }
169
170 /* ----------------------------------------------------------------
171  *              ExecutorRun
172  *
173  *              This is the main routine of the executor module. It accepts
174  *              the query descriptor from the traffic cop and executes the
175  *              query plan.
176  *
177  *              ExecutorStart must have been called already.
178  *
179  *              If direction is NoMovementScanDirection then nothing is done
180  *              except to start up/shut down the destination.  Otherwise,
181  *              we retrieve up to 'count' tuples in the specified direction.
182  *
183  *              Note: count = 0 is interpreted as no portal limit, i.e., run to
184  *              completion.
185  *
186  * ----------------------------------------------------------------
187  */
188 TupleTableSlot *
189 ExecutorRun(QueryDesc *queryDesc,
190                         ScanDirection direction, long count)
191 {
192         EState     *estate;
193         CmdType         operation;
194         DestReceiver *dest;
195         TupleTableSlot *result;
196         MemoryContext oldcontext;
197
198         /* sanity checks */
199         Assert(queryDesc != NULL);
200
201         estate = queryDesc->estate;
202
203         Assert(estate != NULL);
204
205         /*
206          * Switch into per-query memory context
207          */
208         oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
209
210         /*
211          * extract information from the query descriptor and the query
212          * feature.
213          */
214         operation = queryDesc->operation;
215         dest = queryDesc->dest;
216
217         /*
218          * startup tuple receiver
219          */
220         estate->es_processed = 0;
221         estate->es_lastoid = InvalidOid;
222
223         (*dest->rStartup) (dest, operation, queryDesc->tupDesc);
224
225         /*
226          * run plan
227          */
228         if (direction == NoMovementScanDirection)
229                 result = NULL;
230         else
231                 result = ExecutePlan(estate,
232                                                          queryDesc->planstate,
233                                                          operation,
234                                                          count,
235                                                          direction,
236                                                          dest);
237
238         /*
239          * shutdown receiver
240          */
241         (*dest->rShutdown) (dest);
242
243         MemoryContextSwitchTo(oldcontext);
244
245         return result;
246 }
247
248 /* ----------------------------------------------------------------
249  *              ExecutorEnd
250  *
251  *              This routine must be called at the end of execution of any
252  *              query plan
253  * ----------------------------------------------------------------
254  */
255 void
256 ExecutorEnd(QueryDesc *queryDesc)
257 {
258         EState     *estate;
259         MemoryContext oldcontext;
260
261         /* sanity checks */
262         Assert(queryDesc != NULL);
263
264         estate = queryDesc->estate;
265
266         Assert(estate != NULL);
267
268         /*
269          * Switch into per-query memory context to run ExecEndPlan
270          */
271         oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
272
273         ExecEndPlan(queryDesc->planstate, estate);
274
275         /*
276          * Must switch out of context before destroying it
277          */
278         MemoryContextSwitchTo(oldcontext);
279
280         /*
281          * Release EState and per-query memory context.  This should release
282          * everything the executor has allocated.
283          */
284         FreeExecutorState(estate);
285
286         /* Reset queryDesc fields that no longer point to anything */
287         queryDesc->tupDesc = NULL;
288         queryDesc->estate = NULL;
289         queryDesc->planstate = NULL;
290 }
291
292 /* ----------------------------------------------------------------
293  *              ExecutorRewind
294  *
295  *              This routine may be called on an open queryDesc to rewind it
296  *              to the start.
297  * ----------------------------------------------------------------
298  */
299 void
300 ExecutorRewind(QueryDesc *queryDesc)
301 {
302         EState     *estate;
303         MemoryContext oldcontext;
304
305         /* sanity checks */
306         Assert(queryDesc != NULL);
307
308         estate = queryDesc->estate;
309
310         Assert(estate != NULL);
311
312         /* It's probably not sensible to rescan updating queries */
313         Assert(queryDesc->operation == CMD_SELECT);
314
315         /*
316          * Switch into per-query memory context
317          */
318         oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
319
320         /*
321          * rescan plan
322          */
323         ExecReScan(queryDesc->planstate, NULL);
324
325         MemoryContextSwitchTo(oldcontext);
326 }
327
328
329 /*
330  * ExecCheckRTPerms
331  *              Check access permissions for all relations listed in a range table.
332  */
333 void
334 ExecCheckRTPerms(List *rangeTable)
335 {
336         ListCell   *l;
337
338         foreach(l, rangeTable)
339         {
340                 RangeTblEntry *rte = lfirst(l);
341
342                 ExecCheckRTEPerms(rte);
343         }
344 }
345
346 /*
347  * ExecCheckRTEPerms
348  *              Check access permissions for a single RTE.
349  */
350 static void
351 ExecCheckRTEPerms(RangeTblEntry *rte)
352 {
353         AclMode         requiredPerms;
354         Oid                     relOid;
355         Oid             userid;
356
357         /*
358          * Only plain-relation RTEs need to be checked here.  Subquery RTEs
359          * are checked by ExecInitSubqueryScan if the subquery is still a
360          * separate subquery --- if it's been pulled up into our query level
361          * then the RTEs are in our rangetable and will be checked here.
362          * Function RTEs are checked by init_fcache when the function is
363          * prepared for execution. Join and special RTEs need no checks.
364          */
365         if (rte->rtekind != RTE_RELATION)
366                 return;
367
368         /*
369          * No work if requiredPerms is empty.
370          */
371         requiredPerms = rte->requiredPerms;
372         if (requiredPerms == 0)
373                 return;
374
375         relOid = rte->relid;
376
377         /*
378          * userid to check as: current user unless we have a setuid
379          * indication.
380          *
381          * Note: GetUserId() is presently fast enough that there's no harm in
382          * calling it separately for each RTE.  If that stops being true, we
383          * could call it once in ExecCheckRTPerms and pass the userid down
384          * from there.  But for now, no need for the extra clutter.
385          */
386         userid = rte->checkAsUser ? rte->checkAsUser : GetUserId();
387
388         /*
389          * We must have *all* the requiredPerms bits, so use aclmask not
390          * aclcheck.
391          */
392         if (pg_class_aclmask(relOid, userid, requiredPerms, ACLMASK_ALL)
393                 != requiredPerms)
394                 aclcheck_error(ACLCHECK_NO_PRIV, ACL_KIND_CLASS,
395                                            get_rel_name(relOid));
396 }
397
398 /*
399  * Check that the query does not imply any writes to non-temp tables.
400  */
401 static void
402 ExecCheckXactReadOnly(Query *parsetree)
403 {
404         ListCell   *l;
405
406         /*
407          * CREATE TABLE AS or SELECT INTO?
408          *
409          * XXX should we allow this if the destination is temp?
410          */
411         if (parsetree->into != NULL)
412                 goto fail;
413
414         /* Fail if write permissions are requested on any non-temp table */
415         foreach(l, parsetree->rtable)
416         {
417                 RangeTblEntry *rte = lfirst(l);
418
419                 if (rte->rtekind == RTE_SUBQUERY)
420                 {
421                         ExecCheckXactReadOnly(rte->subquery);
422                         continue;
423                 }
424
425                 if (rte->rtekind != RTE_RELATION)
426                         continue;
427
428                 if ((rte->requiredPerms & (~ACL_SELECT)) == 0)
429                         continue;
430
431                 if (isTempNamespace(get_rel_namespace(rte->relid)))
432                         continue;
433
434                 goto fail;
435         }
436
437         return;
438
439 fail:
440         ereport(ERROR,
441                         (errcode(ERRCODE_READ_ONLY_SQL_TRANSACTION),
442                          errmsg("transaction is read-only")));
443 }
444
445
446 /* ----------------------------------------------------------------
447  *              InitPlan
448  *
449  *              Initializes the query plan: open files, allocate storage
450  *              and start up the rule manager
451  * ----------------------------------------------------------------
452  */
453 static void
454 InitPlan(QueryDesc *queryDesc, bool explainOnly)
455 {
456         CmdType         operation = queryDesc->operation;
457         Query      *parseTree = queryDesc->parsetree;
458         Plan       *plan = queryDesc->plantree;
459         EState     *estate = queryDesc->estate;
460         PlanState  *planstate;
461         List       *rangeTable;
462         Relation        intoRelationDesc;
463         bool            do_select_into;
464         TupleDesc       tupType;
465
466         /*
467          * Do permissions checks.  It's sufficient to examine the query's top
468          * rangetable here --- subplan RTEs will be checked during
469          * ExecInitSubPlan().
470          */
471         ExecCheckRTPerms(parseTree->rtable);
472
473         /*
474          * get information from query descriptor
475          */
476         rangeTable = parseTree->rtable;
477
478         /*
479          * initialize the node's execution state
480          */
481         estate->es_range_table = rangeTable;
482
483         /*
484          * if there is a result relation, initialize result relation stuff
485          */
486         if (parseTree->resultRelation != 0 && operation != CMD_SELECT)
487         {
488                 List       *resultRelations = parseTree->resultRelations;
489                 int                     numResultRelations;
490                 ResultRelInfo *resultRelInfos;
491
492                 if (resultRelations != NIL)
493                 {
494                         /*
495                          * Multiple result relations (due to inheritance)
496                          * parseTree->resultRelations identifies them all
497                          */
498                         ResultRelInfo *resultRelInfo;
499                         ListCell   *l;
500
501                         numResultRelations = list_length(resultRelations);
502                         resultRelInfos = (ResultRelInfo *)
503                                 palloc(numResultRelations * sizeof(ResultRelInfo));
504                         resultRelInfo = resultRelInfos;
505                         foreach(l, resultRelations)
506                         {
507                                 initResultRelInfo(resultRelInfo,
508                                                                   lfirst_int(l),
509                                                                   rangeTable,
510                                                                   operation,
511                                                                   estate->es_instrument);
512                                 resultRelInfo++;
513                         }
514                 }
515                 else
516                 {
517                         /*
518                          * Single result relation identified by
519                          * parseTree->resultRelation
520                          */
521                         numResultRelations = 1;
522                         resultRelInfos = (ResultRelInfo *) palloc(sizeof(ResultRelInfo));
523                         initResultRelInfo(resultRelInfos,
524                                                           parseTree->resultRelation,
525                                                           rangeTable,
526                                                           operation,
527                                                           estate->es_instrument);
528                 }
529
530                 estate->es_result_relations = resultRelInfos;
531                 estate->es_num_result_relations = numResultRelations;
532                 /* Initialize to first or only result rel */
533                 estate->es_result_relation_info = resultRelInfos;
534         }
535         else
536         {
537                 /*
538                  * if no result relation, then set state appropriately
539                  */
540                 estate->es_result_relations = NULL;
541                 estate->es_num_result_relations = 0;
542                 estate->es_result_relation_info = NULL;
543         }
544
545         /*
546          * Detect whether we're doing SELECT INTO.  If so, set the es_into_oids
547          * flag appropriately so that the plan tree will be initialized with
548          * the correct tuple descriptors.
549          */
550         do_select_into = false;
551
552         if (operation == CMD_SELECT && parseTree->into != NULL)
553         {
554                 do_select_into = true;
555                 estate->es_select_into = true;
556                 estate->es_into_oids = parseTree->intoHasOids;
557         }
558
559         /*
560          * Have to lock relations selected FOR UPDATE/FOR SHARE
561          */
562         estate->es_rowMarks = NIL;
563         estate->es_forUpdate = parseTree->forUpdate;
564         estate->es_rowNoWait = parseTree->rowNoWait;
565         if (parseTree->rowMarks != NIL)
566         {
567                 ListCell   *l;
568
569                 foreach(l, parseTree->rowMarks)
570                 {
571                         Index           rti = lfirst_int(l);
572                         Oid                     relid = getrelid(rti, rangeTable);
573                         Relation        relation;
574                         execRowMark *erm;
575
576                         relation = heap_open(relid, RowShareLock);
577                         erm = (execRowMark *) palloc(sizeof(execRowMark));
578                         erm->relation = relation;
579                         erm->rti = rti;
580                         snprintf(erm->resname, sizeof(erm->resname), "ctid%u", rti);
581                         estate->es_rowMarks = lappend(estate->es_rowMarks, erm);
582                 }
583         }
584
585         /*
586          * initialize the executor "tuple" table.  We need slots for all the
587          * plan nodes, plus possibly output slots for the junkfilter(s). At
588          * this point we aren't sure if we need junkfilters, so just add slots
589          * for them unconditionally.
590          */
591         {
592                 int                     nSlots = ExecCountSlotsNode(plan);
593
594                 if (parseTree->resultRelations != NIL)
595                         nSlots += list_length(parseTree->resultRelations);
596                 else
597                         nSlots += 1;
598                 estate->es_tupleTable = ExecCreateTupleTable(nSlots);
599         }
600
601         /* mark EvalPlanQual not active */
602         estate->es_topPlan = plan;
603         estate->es_evalPlanQual = NULL;
604         estate->es_evTupleNull = NULL;
605         estate->es_evTuple = NULL;
606         estate->es_useEvalPlan = false;
607
608         /*
609          * initialize the private state information for all the nodes in the
610          * query tree.  This opens files, allocates storage and leaves us
611          * ready to start processing tuples.
612          */
613         planstate = ExecInitNode(plan, estate);
614
615         /*
616          * Get the tuple descriptor describing the type of tuples to return.
617          * (this is especially important if we are creating a relation with
618          * "SELECT INTO")
619          */
620         tupType = ExecGetResultType(planstate);
621
622         /*
623          * Initialize the junk filter if needed.  SELECT and INSERT queries
624          * need a filter if there are any junk attrs in the tlist.      INSERT and
625          * SELECT INTO also need a filter if the plan may return raw disk
626          * tuples (else heap_insert will be scribbling on the source
627          * relation!). UPDATE and DELETE always need a filter, since there's
628          * always a junk 'ctid' attribute present --- no need to look first.
629          */
630         {
631                 bool            junk_filter_needed = false;
632                 ListCell   *tlist;
633
634                 switch (operation)
635                 {
636                         case CMD_SELECT:
637                         case CMD_INSERT:
638                                 foreach(tlist, plan->targetlist)
639                                 {
640                                         TargetEntry *tle = (TargetEntry *) lfirst(tlist);
641
642                                         if (tle->resjunk)
643                                         {
644                                                 junk_filter_needed = true;
645                                                 break;
646                                         }
647                                 }
648                                 if (!junk_filter_needed &&
649                                         (operation == CMD_INSERT || do_select_into) &&
650                                         ExecMayReturnRawTuples(planstate))
651                                         junk_filter_needed = true;
652                                 break;
653                         case CMD_UPDATE:
654                         case CMD_DELETE:
655                                 junk_filter_needed = true;
656                                 break;
657                         default:
658                                 break;
659                 }
660
661                 if (junk_filter_needed)
662                 {
663                         /*
664                          * If there are multiple result relations, each one needs its
665                          * own junk filter.  Note this is only possible for
666                          * UPDATE/DELETE, so we can't be fooled by some needing a
667                          * filter and some not.
668                          */
669                         if (parseTree->resultRelations != NIL)
670                         {
671                                 PlanState **appendplans;
672                                 int                     as_nplans;
673                                 ResultRelInfo *resultRelInfo;
674                                 int                     i;
675
676                                 /* Top plan had better be an Append here. */
677                                 Assert(IsA(plan, Append));
678                                 Assert(((Append *) plan)->isTarget);
679                                 Assert(IsA(planstate, AppendState));
680                                 appendplans = ((AppendState *) planstate)->appendplans;
681                                 as_nplans = ((AppendState *) planstate)->as_nplans;
682                                 Assert(as_nplans == estate->es_num_result_relations);
683                                 resultRelInfo = estate->es_result_relations;
684                                 for (i = 0; i < as_nplans; i++)
685                                 {
686                                         PlanState  *subplan = appendplans[i];
687                                         JunkFilter *j;
688
689                                         j = ExecInitJunkFilter(subplan->plan->targetlist,
690                                                                                    resultRelInfo->ri_RelationDesc->rd_att->tdhasoid,
691                                                                                    ExecAllocTableSlot(estate->es_tupleTable));
692                                         resultRelInfo->ri_junkFilter = j;
693                                         resultRelInfo++;
694                                 }
695
696                                 /*
697                                  * Set active junkfilter too; at this point ExecInitAppend
698                                  * has already selected an active result relation...
699                                  */
700                                 estate->es_junkFilter =
701                                         estate->es_result_relation_info->ri_junkFilter;
702                         }
703                         else
704                         {
705                                 /* Normal case with just one JunkFilter */
706                                 JunkFilter *j;
707
708                                 j = ExecInitJunkFilter(planstate->plan->targetlist,
709                                                                            tupType->tdhasoid,
710                                                           ExecAllocTableSlot(estate->es_tupleTable));
711                                 estate->es_junkFilter = j;
712                                 if (estate->es_result_relation_info)
713                                         estate->es_result_relation_info->ri_junkFilter = j;
714
715                                 /* For SELECT, want to return the cleaned tuple type */
716                                 if (operation == CMD_SELECT)
717                                         tupType = j->jf_cleanTupType;
718                         }
719                 }
720                 else
721                         estate->es_junkFilter = NULL;
722         }
723
724         /*
725          * If doing SELECT INTO, initialize the "into" relation.  We must wait
726          * till now so we have the "clean" result tuple type to create the new
727          * table from.
728          *
729          * If EXPLAIN, skip creating the "into" relation.
730          */
731         intoRelationDesc = NULL;
732
733         if (do_select_into && !explainOnly)
734         {
735                 char       *intoName;
736                 Oid                     namespaceId;
737                 AclResult       aclresult;
738                 Oid                     intoRelationId;
739                 TupleDesc       tupdesc;
740
741                 /*
742                  * find namespace to create in, check permissions
743                  */
744                 intoName = parseTree->into->relname;
745                 namespaceId = RangeVarGetCreationNamespace(parseTree->into);
746
747                 aclresult = pg_namespace_aclcheck(namespaceId, GetUserId(),
748                                                                                   ACL_CREATE);
749                 if (aclresult != ACLCHECK_OK)
750                         aclcheck_error(aclresult, ACL_KIND_NAMESPACE,
751                                                    get_namespace_name(namespaceId));
752
753                 /*
754                  * have to copy tupType to get rid of constraints
755                  */
756                 tupdesc = CreateTupleDescCopy(tupType);
757
758                 intoRelationId = heap_create_with_catalog(intoName,
759                                                                                                   namespaceId,
760                                                                                                   InvalidOid,
761                                                                                                   InvalidOid,
762                                                                                                   tupdesc,
763                                                                                                   RELKIND_RELATION,
764                                                                                                   false,
765                                                                                                   true,
766                                                                                                   0,
767                                                                                                   ONCOMMIT_NOOP,
768                                                                                                   allowSystemTableMods);
769
770                 FreeTupleDesc(tupdesc);
771
772                 /*
773                  * Advance command counter so that the newly-created relation's
774                  * catalog tuples will be visible to heap_open.
775                  */
776                 CommandCounterIncrement();
777
778                 /*
779                  * If necessary, create a TOAST table for the into relation. Note
780                  * that AlterTableCreateToastTable ends with
781                  * CommandCounterIncrement(), so that the TOAST table will be
782                  * visible for insertion.
783                  */
784                 AlterTableCreateToastTable(intoRelationId, true);
785
786                 /*
787                  * And open the constructed table for writing.
788                  */
789                 intoRelationDesc = heap_open(intoRelationId, AccessExclusiveLock);
790
791                 /* use_wal off requires rd_targblock be initially invalid */
792                 Assert(intoRelationDesc->rd_targblock == InvalidBlockNumber);
793
794                 /*
795                  * We can skip WAL-logging the insertions, unless PITR is in use.
796                  *
797                  * Note that for a non-temp INTO table, this is safe only because
798                  * we know that the catalog changes above will have been WAL-logged,
799                  * and so RecordTransactionCommit will think it needs to WAL-log the
800                  * eventual transaction commit.  Else the commit might be lost, even
801                  * though all the data is safely fsync'd ...
802                  */
803                 estate->es_into_relation_use_wal = XLogArchivingActive();
804         }
805
806         estate->es_into_relation_descriptor = intoRelationDesc;
807
808         queryDesc->tupDesc = tupType;
809         queryDesc->planstate = planstate;
810 }
811
812 /*
813  * Initialize ResultRelInfo data for one result relation
814  */
815 static void
816 initResultRelInfo(ResultRelInfo *resultRelInfo,
817                                   Index resultRelationIndex,
818                                   List *rangeTable,
819                                   CmdType operation,
820                                   bool doInstrument)
821 {
822         Oid                     resultRelationOid;
823         Relation        resultRelationDesc;
824
825         resultRelationOid = getrelid(resultRelationIndex, rangeTable);
826         resultRelationDesc = heap_open(resultRelationOid, RowExclusiveLock);
827
828         switch (resultRelationDesc->rd_rel->relkind)
829         {
830                 case RELKIND_SEQUENCE:
831                         ereport(ERROR,
832                                         (errcode(ERRCODE_WRONG_OBJECT_TYPE),
833                                          errmsg("cannot change sequence \"%s\"",
834                                                   RelationGetRelationName(resultRelationDesc))));
835                         break;
836                 case RELKIND_TOASTVALUE:
837                         ereport(ERROR,
838                                         (errcode(ERRCODE_WRONG_OBJECT_TYPE),
839                                          errmsg("cannot change TOAST relation \"%s\"",
840                                                   RelationGetRelationName(resultRelationDesc))));
841                         break;
842                 case RELKIND_VIEW:
843                         ereport(ERROR,
844                                         (errcode(ERRCODE_WRONG_OBJECT_TYPE),
845                                          errmsg("cannot change view \"%s\"",
846                                                   RelationGetRelationName(resultRelationDesc))));
847                         break;
848         }
849
850         MemSet(resultRelInfo, 0, sizeof(ResultRelInfo));
851         resultRelInfo->type = T_ResultRelInfo;
852         resultRelInfo->ri_RangeTableIndex = resultRelationIndex;
853         resultRelInfo->ri_RelationDesc = resultRelationDesc;
854         resultRelInfo->ri_NumIndices = 0;
855         resultRelInfo->ri_IndexRelationDescs = NULL;
856         resultRelInfo->ri_IndexRelationInfo = NULL;
857         /* make a copy so as not to depend on relcache info not changing... */
858         resultRelInfo->ri_TrigDesc = CopyTriggerDesc(resultRelationDesc->trigdesc);
859         if (resultRelInfo->ri_TrigDesc)
860         {
861                 int             n = resultRelInfo->ri_TrigDesc->numtriggers;
862
863                 resultRelInfo->ri_TrigFunctions = (FmgrInfo *)
864                         palloc0(n * sizeof(FmgrInfo));
865                 if (doInstrument)
866                         resultRelInfo->ri_TrigInstrument = InstrAlloc(n);
867                 else
868                         resultRelInfo->ri_TrigInstrument = NULL;
869         }
870         else
871         {
872                 resultRelInfo->ri_TrigFunctions = NULL;
873                 resultRelInfo->ri_TrigInstrument = NULL;
874         }
875         resultRelInfo->ri_ConstraintExprs = NULL;
876         resultRelInfo->ri_junkFilter = NULL;
877
878         /*
879          * If there are indices on the result relation, open them and save
880          * descriptors in the result relation info, so that we can add new
881          * index entries for the tuples we add/update.  We need not do this
882          * for a DELETE, however, since deletion doesn't affect indexes.
883          */
884         if (resultRelationDesc->rd_rel->relhasindex &&
885                 operation != CMD_DELETE)
886                 ExecOpenIndices(resultRelInfo);
887 }
888
889 /*
890  *              ExecContextForcesOids
891  *
892  * This is pretty grotty: when doing INSERT, UPDATE, or SELECT INTO,
893  * we need to ensure that result tuples have space for an OID iff they are
894  * going to be stored into a relation that has OIDs.  In other contexts
895  * we are free to choose whether to leave space for OIDs in result tuples
896  * (we generally don't want to, but we do if a physical-tlist optimization
897  * is possible).  This routine checks the plan context and returns TRUE if the
898  * choice is forced, FALSE if the choice is not forced.  In the TRUE case,
899  * *hasoids is set to the required value.
900  *
901  * One reason this is ugly is that all plan nodes in the plan tree will emit
902  * tuples with space for an OID, though we really only need the topmost node
903  * to do so.  However, node types like Sort don't project new tuples but just
904  * return their inputs, and in those cases the requirement propagates down
905  * to the input node.  Eventually we might make this code smart enough to
906  * recognize how far down the requirement really goes, but for now we just
907  * make all plan nodes do the same thing if the top level forces the choice.
908  *
909  * We assume that estate->es_result_relation_info is already set up to
910  * describe the target relation.  Note that in an UPDATE that spans an
911  * inheritance tree, some of the target relations may have OIDs and some not.
912  * We have to make the decisions on a per-relation basis as we initialize
913  * each of the child plans of the topmost Append plan.
914  *
915  * SELECT INTO is even uglier, because we don't have the INTO relation's
916  * descriptor available when this code runs; we have to look aside at a
917  * flag set by InitPlan().
918  */
919 bool
920 ExecContextForcesOids(PlanState *planstate, bool *hasoids)
921 {
922         if (planstate->state->es_select_into)
923         {
924                 *hasoids = planstate->state->es_into_oids;
925                 return true;
926         }
927         else
928         {
929                 ResultRelInfo *ri = planstate->state->es_result_relation_info;
930
931                 if (ri != NULL)
932                 {
933                         Relation        rel = ri->ri_RelationDesc;
934
935                         if (rel != NULL)
936                         {
937                                 *hasoids = rel->rd_rel->relhasoids;
938                                 return true;
939                         }
940                 }
941         }
942
943         return false;
944 }
945
946 /* ----------------------------------------------------------------
947  *              ExecEndPlan
948  *
949  *              Cleans up the query plan -- closes files and frees up storage
950  *
951  * NOTE: we are no longer very worried about freeing storage per se
952  * in this code; FreeExecutorState should be guaranteed to release all
953  * memory that needs to be released.  What we are worried about doing
954  * is closing relations and dropping buffer pins.  Thus, for example,
955  * tuple tables must be cleared or dropped to ensure pins are released.
956  * ----------------------------------------------------------------
957  */
958 void
959 ExecEndPlan(PlanState *planstate, EState *estate)
960 {
961         ResultRelInfo *resultRelInfo;
962         int                     i;
963         ListCell   *l;
964
965         /*
966          * shut down any PlanQual processing we were doing
967          */
968         if (estate->es_evalPlanQual != NULL)
969                 EndEvalPlanQual(estate);
970
971         /*
972          * shut down the node-type-specific query processing
973          */
974         ExecEndNode(planstate);
975
976         /*
977          * destroy the executor "tuple" table.
978          */
979         ExecDropTupleTable(estate->es_tupleTable, true);
980         estate->es_tupleTable = NULL;
981
982         /*
983          * close the result relation(s) if any, but hold locks until xact
984          * commit.
985          */
986         resultRelInfo = estate->es_result_relations;
987         for (i = estate->es_num_result_relations; i > 0; i--)
988         {
989                 /* Close indices and then the relation itself */
990                 ExecCloseIndices(resultRelInfo);
991                 heap_close(resultRelInfo->ri_RelationDesc, NoLock);
992                 resultRelInfo++;
993         }
994
995         /*
996          * close the "into" relation if necessary, again keeping lock
997          */
998         if (estate->es_into_relation_descriptor != NULL)
999         {
1000                 /*
1001                  * If we skipped using WAL, and it's not a temp relation,
1002                  * we must force the relation down to disk before it's
1003                  * safe to commit the transaction.  This requires forcing
1004                  * out any dirty buffers and then doing a forced fsync.
1005                  */
1006                 if (!estate->es_into_relation_use_wal &&
1007                         !estate->es_into_relation_descriptor->rd_istemp)
1008                 {
1009                         FlushRelationBuffers(estate->es_into_relation_descriptor);
1010                         smgrimmedsync(estate->es_into_relation_descriptor->rd_smgr);
1011                 }
1012
1013                 heap_close(estate->es_into_relation_descriptor, NoLock);
1014         }
1015
1016         /*
1017          * close any relations selected FOR UPDATE/FOR SHARE, again keeping locks
1018          */
1019         foreach(l, estate->es_rowMarks)
1020         {
1021                 execRowMark *erm = lfirst(l);
1022
1023                 heap_close(erm->relation, NoLock);
1024         }
1025 }
1026
1027 /* ----------------------------------------------------------------
1028  *              ExecutePlan
1029  *
1030  *              processes the query plan to retrieve 'numberTuples' tuples in the
1031  *              direction specified.
1032  *
1033  *              Retrieves all tuples if numberTuples is 0
1034  *
1035  *              result is either a slot containing the last tuple in the case
1036  *              of a SELECT or NULL otherwise.
1037  *
1038  * Note: the ctid attribute is a 'junk' attribute that is removed before the
1039  * user can see it
1040  * ----------------------------------------------------------------
1041  */
1042 static TupleTableSlot *
1043 ExecutePlan(EState *estate,
1044                         PlanState *planstate,
1045                         CmdType operation,
1046                         long numberTuples,
1047                         ScanDirection direction,
1048                         DestReceiver *dest)
1049 {
1050         JunkFilter *junkfilter;
1051         TupleTableSlot *slot;
1052         ItemPointer tupleid = NULL;
1053         ItemPointerData tuple_ctid;
1054         long            current_tuple_count;
1055         TupleTableSlot *result;
1056
1057         /*
1058          * initialize local variables
1059          */
1060         slot = NULL;
1061         current_tuple_count = 0;
1062         result = NULL;
1063
1064         /*
1065          * Set the direction.
1066          */
1067         estate->es_direction = direction;
1068
1069         /*
1070          * Process BEFORE EACH STATEMENT triggers
1071          */
1072         switch (operation)
1073         {
1074                 case CMD_UPDATE:
1075                         ExecBSUpdateTriggers(estate, estate->es_result_relation_info);
1076                         break;
1077                 case CMD_DELETE:
1078                         ExecBSDeleteTriggers(estate, estate->es_result_relation_info);
1079                         break;
1080                 case CMD_INSERT:
1081                         ExecBSInsertTriggers(estate, estate->es_result_relation_info);
1082                         break;
1083                 default:
1084                         /* do nothing */
1085                         break;
1086         }
1087
1088         /*
1089          * Loop until we've processed the proper number of tuples from the
1090          * plan.
1091          */
1092
1093         for (;;)
1094         {
1095                 /* Reset the per-output-tuple exprcontext */
1096                 ResetPerTupleExprContext(estate);
1097
1098                 /*
1099                  * Execute the plan and obtain a tuple
1100                  */
1101 lnext:  ;
1102                 if (estate->es_useEvalPlan)
1103                 {
1104                         slot = EvalPlanQualNext(estate);
1105                         if (TupIsNull(slot))
1106                                 slot = ExecProcNode(planstate);
1107                 }
1108                 else
1109                         slot = ExecProcNode(planstate);
1110
1111                 /*
1112                  * if the tuple is null, then we assume there is nothing more to
1113                  * process so we just return null...
1114                  */
1115                 if (TupIsNull(slot))
1116                 {
1117                         result = NULL;
1118                         break;
1119                 }
1120
1121                 /*
1122                  * if we have a junk filter, then project a new tuple with the
1123                  * junk removed.
1124                  *
1125                  * Store this new "clean" tuple in the junkfilter's resultSlot.
1126                  * (Formerly, we stored it back over the "dirty" tuple, which is
1127                  * WRONG because that tuple slot has the wrong descriptor.)
1128                  *
1129                  * Also, extract all the junk information we need.
1130                  */
1131                 if ((junkfilter = estate->es_junkFilter) != NULL)
1132                 {
1133                         Datum           datum;
1134                         bool            isNull;
1135
1136                         /*
1137                          * extract the 'ctid' junk attribute.
1138                          */
1139                         if (operation == CMD_UPDATE || operation == CMD_DELETE)
1140                         {
1141                                 if (!ExecGetJunkAttribute(junkfilter,
1142                                                                                   slot,
1143                                                                                   "ctid",
1144                                                                                   &datum,
1145                                                                                   &isNull))
1146                                         elog(ERROR, "could not find junk ctid column");
1147
1148                                 /* shouldn't ever get a null result... */
1149                                 if (isNull)
1150                                         elog(ERROR, "ctid is NULL");
1151
1152                                 tupleid = (ItemPointer) DatumGetPointer(datum);
1153                                 tuple_ctid = *tupleid;  /* make sure we don't free the
1154                                                                                  * ctid!! */
1155                                 tupleid = &tuple_ctid;
1156                         }
1157                         /*
1158                          * Process any FOR UPDATE or FOR SHARE locking requested.
1159                          */
1160                         else if (estate->es_rowMarks != NIL)
1161                         {
1162                                 ListCell   *l;
1163
1164                 lmark:  ;
1165                                 foreach(l, estate->es_rowMarks)
1166                                 {
1167                                         execRowMark *erm = lfirst(l);
1168                                         HeapTupleData tuple;
1169                                         Buffer          buffer;
1170                                         ItemPointerData update_ctid;
1171                                         TransactionId update_xmax;
1172                                         TupleTableSlot *newSlot;
1173                                         LockTupleMode   lockmode;
1174                                         HTSU_Result             test;
1175
1176                                         if (!ExecGetJunkAttribute(junkfilter,
1177                                                                                           slot,
1178                                                                                           erm->resname,
1179                                                                                           &datum,
1180                                                                                           &isNull))
1181                                                 elog(ERROR, "could not find junk \"%s\" column",
1182                                                          erm->resname);
1183
1184                                         /* shouldn't ever get a null result... */
1185                                         if (isNull)
1186                                                 elog(ERROR, "\"%s\" is NULL", erm->resname);
1187
1188                                         tuple.t_self = *((ItemPointer) DatumGetPointer(datum));
1189
1190                                         if (estate->es_forUpdate)
1191                                                 lockmode = LockTupleExclusive;
1192                                         else
1193                                                 lockmode = LockTupleShared;
1194
1195                                         test = heap_lock_tuple(erm->relation, &tuple, &buffer,
1196                                                                                    &update_ctid, &update_xmax,
1197                                                                                    estate->es_snapshot->curcid,
1198                                                                                    lockmode, estate->es_rowNoWait);
1199                                         ReleaseBuffer(buffer);
1200                                         switch (test)
1201                                         {
1202                                                 case HeapTupleSelfUpdated:
1203                                                         /* treat it as deleted; do not process */
1204                                                         goto lnext;
1205
1206                                                 case HeapTupleMayBeUpdated:
1207                                                         break;
1208
1209                                                 case HeapTupleUpdated:
1210                                                         if (IsXactIsoLevelSerializable)
1211                                                                 ereport(ERROR,
1212                                                                                 (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
1213                                                                                  errmsg("could not serialize access due to concurrent update")));
1214                                                         if (!ItemPointerEquals(&update_ctid,
1215                                                                                                    &tuple.t_self))
1216                                                         {
1217                                                                 /* updated, so look at updated version */
1218                                                                 newSlot = EvalPlanQual(estate,
1219                                                                                                            erm->rti,
1220                                                                                                            &update_ctid,
1221                                                                                                            update_xmax);
1222                                                                 if (!TupIsNull(newSlot))
1223                                                                 {
1224                                                                         slot = newSlot;
1225                                                                         estate->es_useEvalPlan = true;
1226                                                                         goto lmark;
1227                                                                 }
1228                                                         }
1229
1230                                                         /*
1231                                                          * if tuple was deleted or PlanQual failed for
1232                                                          * updated tuple - we must not return this
1233                                                          * tuple!
1234                                                          */
1235                                                         goto lnext;
1236
1237                                                 default:
1238                                                         elog(ERROR, "unrecognized heap_lock_tuple status: %u",
1239                                                                  test);
1240                                                         return (NULL);
1241                                         }
1242                                 }
1243                         }
1244
1245                         /*
1246                          * Finally create a new "clean" tuple with all junk attributes
1247                          * removed
1248                          */
1249                         slot = ExecFilterJunk(junkfilter, slot);
1250                 }
1251
1252                 /*
1253                  * now that we have a tuple, do the appropriate thing with it..
1254                  * either return it to the user, add it to a relation someplace,
1255                  * delete it from a relation, or modify some of its attributes.
1256                  */
1257                 switch (operation)
1258                 {
1259                         case CMD_SELECT:
1260                                 ExecSelect(slot,        /* slot containing tuple */
1261                                                    dest,        /* destination's tuple-receiver obj */
1262                                                    estate);
1263                                 result = slot;
1264                                 break;
1265
1266                         case CMD_INSERT:
1267                                 ExecInsert(slot, tupleid, estate);
1268                                 result = NULL;
1269                                 break;
1270
1271                         case CMD_DELETE:
1272                                 ExecDelete(slot, tupleid, estate);
1273                                 result = NULL;
1274                                 break;
1275
1276                         case CMD_UPDATE:
1277                                 ExecUpdate(slot, tupleid, estate);
1278                                 result = NULL;
1279                                 break;
1280
1281                         default:
1282                                 elog(ERROR, "unrecognized operation code: %d",
1283                                          (int) operation);
1284                                 result = NULL;
1285                                 break;
1286                 }
1287
1288                 /*
1289                  * check our tuple count.. if we've processed the proper number
1290                  * then quit, else loop again and process more tuples.  Zero
1291                  * numberTuples means no limit.
1292                  */
1293                 current_tuple_count++;
1294                 if (numberTuples && numberTuples == current_tuple_count)
1295                         break;
1296         }
1297
1298         /*
1299          * Process AFTER EACH STATEMENT triggers
1300          */
1301         switch (operation)
1302         {
1303                 case CMD_UPDATE:
1304                         ExecASUpdateTriggers(estate, estate->es_result_relation_info);
1305                         break;
1306                 case CMD_DELETE:
1307                         ExecASDeleteTriggers(estate, estate->es_result_relation_info);
1308                         break;
1309                 case CMD_INSERT:
1310                         ExecASInsertTriggers(estate, estate->es_result_relation_info);
1311                         break;
1312                 default:
1313                         /* do nothing */
1314                         break;
1315         }
1316
1317         /*
1318          * here, result is either a slot containing a tuple in the case of a
1319          * SELECT or NULL otherwise.
1320          */
1321         return result;
1322 }
1323
1324 /* ----------------------------------------------------------------
1325  *              ExecSelect
1326  *
1327  *              SELECTs are easy.. we just pass the tuple to the appropriate
1328  *              print function.  The only complexity is when we do a
1329  *              "SELECT INTO", in which case we insert the tuple into
1330  *              the appropriate relation (note: this is a newly created relation
1331  *              so we don't need to worry about indices or locks.)
1332  * ----------------------------------------------------------------
1333  */
1334 static void
1335 ExecSelect(TupleTableSlot *slot,
1336                    DestReceiver *dest,
1337                    EState *estate)
1338 {
1339         /*
1340          * insert the tuple into the "into relation"
1341          *
1342          * XXX this probably ought to be replaced by a separate destination
1343          */
1344         if (estate->es_into_relation_descriptor != NULL)
1345         {
1346                 HeapTuple       tuple;
1347
1348                 tuple = ExecCopySlotTuple(slot);
1349                 heap_insert(estate->es_into_relation_descriptor, tuple,
1350                                         estate->es_snapshot->curcid,
1351                                         estate->es_into_relation_use_wal,
1352                                         false);         /* never any point in using FSM */
1353                 /* we know there are no indexes to update */
1354                 heap_freetuple(tuple);
1355                 IncrAppended();
1356         }
1357
1358         /*
1359          * send the tuple to the destination
1360          */
1361         (*dest->receiveSlot) (slot, dest);
1362         IncrRetrieved();
1363         (estate->es_processed)++;
1364 }
1365
1366 /* ----------------------------------------------------------------
1367  *              ExecInsert
1368  *
1369  *              INSERTs are trickier.. we have to insert the tuple into
1370  *              the base relation and insert appropriate tuples into the
1371  *              index relations.
1372  * ----------------------------------------------------------------
1373  */
1374 static void
1375 ExecInsert(TupleTableSlot *slot,
1376                    ItemPointer tupleid,
1377                    EState *estate)
1378 {
1379         HeapTuple       tuple;
1380         ResultRelInfo *resultRelInfo;
1381         Relation        resultRelationDesc;
1382         Oid                     newId;
1383
1384         /*
1385          * get the heap tuple out of the tuple table slot, making sure
1386          * we have a writable copy
1387          */
1388         tuple = ExecMaterializeSlot(slot);
1389
1390         /*
1391          * get information on the (current) result relation
1392          */
1393         resultRelInfo = estate->es_result_relation_info;
1394         resultRelationDesc = resultRelInfo->ri_RelationDesc;
1395
1396         /* BEFORE ROW INSERT Triggers */
1397         if (resultRelInfo->ri_TrigDesc &&
1398           resultRelInfo->ri_TrigDesc->n_before_row[TRIGGER_EVENT_INSERT] > 0)
1399         {
1400                 HeapTuple       newtuple;
1401
1402                 newtuple = ExecBRInsertTriggers(estate, resultRelInfo, tuple);
1403
1404                 if (newtuple == NULL)   /* "do nothing" */
1405                         return;
1406
1407                 if (newtuple != tuple)  /* modified by Trigger(s) */
1408                 {
1409                         /*
1410                          * Insert modified tuple into tuple table slot, replacing the
1411                          * original.  We assume that it was allocated in per-tuple
1412                          * memory context, and therefore will go away by itself. The
1413                          * tuple table slot should not try to clear it.
1414                          */
1415                         ExecStoreTuple(newtuple, slot, InvalidBuffer, false);
1416                         tuple = newtuple;
1417                 }
1418         }
1419
1420         /*
1421          * Check the constraints of the tuple
1422          */
1423         if (resultRelationDesc->rd_att->constr)
1424                 ExecConstraints(resultRelInfo, slot, estate);
1425
1426         /*
1427          * insert the tuple
1428          *
1429          * Note: heap_insert returns the tid (location) of the new tuple
1430          * in the t_self field.
1431          */
1432         newId = heap_insert(resultRelationDesc, tuple,
1433                                                 estate->es_snapshot->curcid,
1434                                                 true, true);
1435
1436         IncrAppended();
1437         (estate->es_processed)++;
1438         estate->es_lastoid = newId;
1439         setLastTid(&(tuple->t_self));
1440
1441         /*
1442          * insert index entries for tuple
1443          */
1444         if (resultRelInfo->ri_NumIndices > 0)
1445                 ExecInsertIndexTuples(slot, &(tuple->t_self), estate, false);
1446
1447         /* AFTER ROW INSERT Triggers */
1448         ExecARInsertTriggers(estate, resultRelInfo, tuple);
1449 }
1450
1451 /* ----------------------------------------------------------------
1452  *              ExecDelete
1453  *
1454  *              DELETE is like UPDATE, we delete the tuple and its
1455  *              index tuples.
1456  * ----------------------------------------------------------------
1457  */
1458 static void
1459 ExecDelete(TupleTableSlot *slot,
1460                    ItemPointer tupleid,
1461                    EState *estate)
1462 {
1463         ResultRelInfo *resultRelInfo;
1464         Relation        resultRelationDesc;
1465         HTSU_Result     result;
1466         ItemPointerData update_ctid;
1467         TransactionId update_xmax;
1468
1469         /*
1470          * get information on the (current) result relation
1471          */
1472         resultRelInfo = estate->es_result_relation_info;
1473         resultRelationDesc = resultRelInfo->ri_RelationDesc;
1474
1475         /* BEFORE ROW DELETE Triggers */
1476         if (resultRelInfo->ri_TrigDesc &&
1477           resultRelInfo->ri_TrigDesc->n_before_row[TRIGGER_EVENT_DELETE] > 0)
1478         {
1479                 bool            dodelete;
1480
1481                 dodelete = ExecBRDeleteTriggers(estate, resultRelInfo, tupleid,
1482                                                                                 estate->es_snapshot->curcid);
1483
1484                 if (!dodelete)                  /* "do nothing" */
1485                         return;
1486         }
1487
1488         /*
1489          * delete the tuple
1490          *
1491          * Note: if es_crosscheck_snapshot isn't InvalidSnapshot, we check that
1492          * the row to be deleted is visible to that snapshot, and throw a can't-
1493          * serialize error if not.  This is a special-case behavior needed for
1494          * referential integrity updates in serializable transactions.
1495          */
1496 ldelete:;
1497         result = heap_delete(resultRelationDesc, tupleid,
1498                                                  &update_ctid, &update_xmax,
1499                                                  estate->es_snapshot->curcid,
1500                                                  estate->es_crosscheck_snapshot,
1501                                                  true /* wait for commit */ );
1502         switch (result)
1503         {
1504                 case HeapTupleSelfUpdated:
1505                         /* already deleted by self; nothing to do */
1506                         return;
1507
1508                 case HeapTupleMayBeUpdated:
1509                         break;
1510
1511                 case HeapTupleUpdated:
1512                         if (IsXactIsoLevelSerializable)
1513                                 ereport(ERROR,
1514                                                 (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
1515                                                  errmsg("could not serialize access due to concurrent update")));
1516                         else if (!ItemPointerEquals(tupleid, &update_ctid))
1517                         {
1518                                 TupleTableSlot *epqslot;
1519
1520                                 epqslot = EvalPlanQual(estate,
1521                                                                            resultRelInfo->ri_RangeTableIndex,
1522                                                                            &update_ctid,
1523                                                                            update_xmax);
1524                                 if (!TupIsNull(epqslot))
1525                                 {
1526                                         *tupleid = update_ctid;
1527                                         goto ldelete;
1528                                 }
1529                         }
1530                         /* tuple already deleted; nothing to do */
1531                         return;
1532
1533                 default:
1534                         elog(ERROR, "unrecognized heap_delete status: %u", result);
1535                         return;
1536         }
1537
1538         IncrDeleted();
1539         (estate->es_processed)++;
1540
1541         /*
1542          * Note: Normally one would think that we have to delete index tuples
1543          * associated with the heap tuple now..
1544          *
1545          * ... but in POSTGRES, we have no need to do this because the vacuum
1546          * daemon automatically opens an index scan and deletes index tuples
1547          * when it finds deleted heap tuples. -cim 9/27/89
1548          */
1549
1550         /* AFTER ROW DELETE Triggers */
1551         ExecARDeleteTriggers(estate, resultRelInfo, tupleid);
1552 }
1553
1554 /* ----------------------------------------------------------------
1555  *              ExecUpdate
1556  *
1557  *              note: we can't run UPDATE queries with transactions
1558  *              off because UPDATEs are actually INSERTs and our
1559  *              scan will mistakenly loop forever, updating the tuple
1560  *              it just inserted..      This should be fixed but until it
1561  *              is, we don't want to get stuck in an infinite loop
1562  *              which corrupts your database..
1563  * ----------------------------------------------------------------
1564  */
1565 static void
1566 ExecUpdate(TupleTableSlot *slot,
1567                    ItemPointer tupleid,
1568                    EState *estate)
1569 {
1570         HeapTuple       tuple;
1571         ResultRelInfo *resultRelInfo;
1572         Relation        resultRelationDesc;
1573         HTSU_Result     result;
1574         ItemPointerData update_ctid;
1575         TransactionId update_xmax;
1576
1577         /*
1578          * abort the operation if not running transactions
1579          */
1580         if (IsBootstrapProcessingMode())
1581                 elog(ERROR, "cannot UPDATE during bootstrap");
1582
1583         /*
1584          * get the heap tuple out of the tuple table slot, making sure
1585          * we have a writable copy
1586          */
1587         tuple = ExecMaterializeSlot(slot);
1588
1589         /*
1590          * get information on the (current) result relation
1591          */
1592         resultRelInfo = estate->es_result_relation_info;
1593         resultRelationDesc = resultRelInfo->ri_RelationDesc;
1594
1595         /* BEFORE ROW UPDATE Triggers */
1596         if (resultRelInfo->ri_TrigDesc &&
1597           resultRelInfo->ri_TrigDesc->n_before_row[TRIGGER_EVENT_UPDATE] > 0)
1598         {
1599                 HeapTuple       newtuple;
1600
1601                 newtuple = ExecBRUpdateTriggers(estate, resultRelInfo,
1602                                                                                 tupleid, tuple,
1603                                                                                 estate->es_snapshot->curcid);
1604
1605                 if (newtuple == NULL)   /* "do nothing" */
1606                         return;
1607
1608                 if (newtuple != tuple)  /* modified by Trigger(s) */
1609                 {
1610                         /*
1611                          * Insert modified tuple into tuple table slot, replacing the
1612                          * original.  We assume that it was allocated in per-tuple
1613                          * memory context, and therefore will go away by itself. The
1614                          * tuple table slot should not try to clear it.
1615                          */
1616                         ExecStoreTuple(newtuple, slot, InvalidBuffer, false);
1617                         tuple = newtuple;
1618                 }
1619         }
1620
1621         /*
1622          * Check the constraints of the tuple
1623          *
1624          * If we generate a new candidate tuple after EvalPlanQual testing, we
1625          * must loop back here and recheck constraints.  (We don't need to
1626          * redo triggers, however.      If there are any BEFORE triggers then
1627          * trigger.c will have done heap_lock_tuple to lock the correct tuple,
1628          * so there's no need to do them again.)
1629          */
1630 lreplace:;
1631         if (resultRelationDesc->rd_att->constr)
1632                 ExecConstraints(resultRelInfo, slot, estate);
1633
1634         /*
1635          * replace the heap tuple
1636          *
1637          * Note: if es_crosscheck_snapshot isn't InvalidSnapshot, we check that
1638          * the row to be updated is visible to that snapshot, and throw a can't-
1639          * serialize error if not.  This is a special-case behavior needed for
1640          * referential integrity updates in serializable transactions.
1641          */
1642         result = heap_update(resultRelationDesc, tupleid, tuple,
1643                                                  &update_ctid, &update_xmax,
1644                                                  estate->es_snapshot->curcid,
1645                                                  estate->es_crosscheck_snapshot,
1646                                                  true /* wait for commit */ );
1647         switch (result)
1648         {
1649                 case HeapTupleSelfUpdated:
1650                         /* already deleted by self; nothing to do */
1651                         return;
1652
1653                 case HeapTupleMayBeUpdated:
1654                         break;
1655
1656                 case HeapTupleUpdated:
1657                         if (IsXactIsoLevelSerializable)
1658                                 ereport(ERROR,
1659                                                 (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
1660                                                  errmsg("could not serialize access due to concurrent update")));
1661                         else if (!ItemPointerEquals(tupleid, &update_ctid))
1662                         {
1663                                 TupleTableSlot *epqslot;
1664
1665                                 epqslot = EvalPlanQual(estate,
1666                                                                            resultRelInfo->ri_RangeTableIndex,
1667                                                                            &update_ctid,
1668                                                                            update_xmax);
1669                                 if (!TupIsNull(epqslot))
1670                                 {
1671                                         *tupleid = update_ctid;
1672                                         slot = ExecFilterJunk(estate->es_junkFilter, epqslot);
1673                                         tuple = ExecMaterializeSlot(slot);
1674                                         goto lreplace;
1675                                 }
1676                         }
1677                         /* tuple already deleted; nothing to do */
1678                         return;
1679
1680                 default:
1681                         elog(ERROR, "unrecognized heap_update status: %u", result);
1682                         return;
1683         }
1684
1685         IncrReplaced();
1686         (estate->es_processed)++;
1687
1688         /*
1689          * Note: instead of having to update the old index tuples associated
1690          * with the heap tuple, all we do is form and insert new index tuples.
1691          * This is because UPDATEs are actually DELETEs and INSERTs, and index
1692          * tuple deletion is done automagically by the vacuum daemon. All we
1693          * do is insert new index tuples.  -cim 9/27/89
1694          */
1695
1696         /*
1697          * insert index entries for tuple
1698          *
1699          * Note: heap_update returns the tid (location) of the new tuple
1700          * in the t_self field.
1701          */
1702         if (resultRelInfo->ri_NumIndices > 0)
1703                 ExecInsertIndexTuples(slot, &(tuple->t_self), estate, false);
1704
1705         /* AFTER ROW UPDATE Triggers */
1706         ExecARUpdateTriggers(estate, resultRelInfo, tupleid, tuple);
1707 }
1708
1709 static const char *
1710 ExecRelCheck(ResultRelInfo *resultRelInfo,
1711                          TupleTableSlot *slot, EState *estate)
1712 {
1713         Relation        rel = resultRelInfo->ri_RelationDesc;
1714         int                     ncheck = rel->rd_att->constr->num_check;
1715         ConstrCheck *check = rel->rd_att->constr->check;
1716         ExprContext *econtext;
1717         MemoryContext oldContext;
1718         List       *qual;
1719         int                     i;
1720
1721         /*
1722          * If first time through for this result relation, build expression
1723          * nodetrees for rel's constraint expressions.  Keep them in the
1724          * per-query memory context so they'll survive throughout the query.
1725          */
1726         if (resultRelInfo->ri_ConstraintExprs == NULL)
1727         {
1728                 oldContext = MemoryContextSwitchTo(estate->es_query_cxt);
1729                 resultRelInfo->ri_ConstraintExprs =
1730                         (List **) palloc(ncheck * sizeof(List *));
1731                 for (i = 0; i < ncheck; i++)
1732                 {
1733                         /* ExecQual wants implicit-AND form */
1734                         qual = make_ands_implicit(stringToNode(check[i].ccbin));
1735                         resultRelInfo->ri_ConstraintExprs[i] = (List *)
1736                                 ExecPrepareExpr((Expr *) qual, estate);
1737                 }
1738                 MemoryContextSwitchTo(oldContext);
1739         }
1740
1741         /*
1742          * We will use the EState's per-tuple context for evaluating
1743          * constraint expressions (creating it if it's not already there).
1744          */
1745         econtext = GetPerTupleExprContext(estate);
1746
1747         /* Arrange for econtext's scan tuple to be the tuple under test */
1748         econtext->ecxt_scantuple = slot;
1749
1750         /* And evaluate the constraints */
1751         for (i = 0; i < ncheck; i++)
1752         {
1753                 qual = resultRelInfo->ri_ConstraintExprs[i];
1754
1755                 /*
1756                  * NOTE: SQL92 specifies that a NULL result from a constraint
1757                  * expression is not to be treated as a failure.  Therefore, tell
1758                  * ExecQual to return TRUE for NULL.
1759                  */
1760                 if (!ExecQual(qual, econtext, true))
1761                         return check[i].ccname;
1762         }
1763
1764         /* NULL result means no error */
1765         return NULL;
1766 }
1767
1768 void
1769 ExecConstraints(ResultRelInfo *resultRelInfo,
1770                                 TupleTableSlot *slot, EState *estate)
1771 {
1772         Relation        rel = resultRelInfo->ri_RelationDesc;
1773         TupleConstr *constr = rel->rd_att->constr;
1774
1775         Assert(constr);
1776
1777         if (constr->has_not_null)
1778         {
1779                 int                     natts = rel->rd_att->natts;
1780                 int                     attrChk;
1781
1782                 for (attrChk = 1; attrChk <= natts; attrChk++)
1783                 {
1784                         if (rel->rd_att->attrs[attrChk - 1]->attnotnull &&
1785                                 slot_attisnull(slot, attrChk))
1786                                 ereport(ERROR,
1787                                                 (errcode(ERRCODE_NOT_NULL_VIOLATION),
1788                                                  errmsg("null value in column \"%s\" violates not-null constraint",
1789                                         NameStr(rel->rd_att->attrs[attrChk - 1]->attname))));
1790                 }
1791         }
1792
1793         if (constr->num_check > 0)
1794         {
1795                 const char *failed;
1796
1797                 if ((failed = ExecRelCheck(resultRelInfo, slot, estate)) != NULL)
1798                         ereport(ERROR,
1799                                         (errcode(ERRCODE_CHECK_VIOLATION),
1800                                          errmsg("new row for relation \"%s\" violates check constraint \"%s\"",
1801                                                         RelationGetRelationName(rel), failed)));
1802         }
1803 }
1804
1805 /*
1806  * Check a modified tuple to see if we want to process its updated version
1807  * under READ COMMITTED rules.
1808  *
1809  * See backend/executor/README for some info about how this works.
1810  *
1811  *      estate - executor state data
1812  *      rti - rangetable index of table containing tuple
1813  *      *tid - t_ctid from the outdated tuple (ie, next updated version)
1814  *      priorXmax - t_xmax from the outdated tuple
1815  *
1816  * *tid is also an output parameter: it's modified to hold the TID of the
1817  * latest version of the tuple (note this may be changed even on failure)
1818  *
1819  * Returns a slot containing the new candidate update/delete tuple, or
1820  * NULL if we determine we shouldn't process the row.
1821  */
1822 TupleTableSlot *
1823 EvalPlanQual(EState *estate, Index rti,
1824                          ItemPointer tid, TransactionId priorXmax)
1825 {
1826         evalPlanQual *epq;
1827         EState     *epqstate;
1828         Relation        relation;
1829         HeapTupleData tuple;
1830         HeapTuple       copyTuple = NULL;
1831         bool            endNode;
1832
1833         Assert(rti != 0);
1834
1835         /*
1836          * find relation containing target tuple
1837          */
1838         if (estate->es_result_relation_info != NULL &&
1839                 estate->es_result_relation_info->ri_RangeTableIndex == rti)
1840                 relation = estate->es_result_relation_info->ri_RelationDesc;
1841         else
1842         {
1843                 ListCell   *l;
1844
1845                 relation = NULL;
1846                 foreach(l, estate->es_rowMarks)
1847                 {
1848                         if (((execRowMark *) lfirst(l))->rti == rti)
1849                         {
1850                                 relation = ((execRowMark *) lfirst(l))->relation;
1851                                 break;
1852                         }
1853                 }
1854                 if (relation == NULL)
1855                         elog(ERROR, "could not find RowMark for RT index %u", rti);
1856         }
1857
1858         /*
1859          * fetch tid tuple
1860          *
1861          * Loop here to deal with updated or busy tuples
1862          */
1863         tuple.t_self = *tid;
1864         for (;;)
1865         {
1866                 Buffer          buffer;
1867
1868                 if (heap_fetch(relation, SnapshotDirty, &tuple, &buffer, true, NULL))
1869                 {
1870                         /*
1871                          * If xmin isn't what we're expecting, the slot must have been
1872                          * recycled and reused for an unrelated tuple.  This implies
1873                          * that the latest version of the row was deleted, so we need
1874                          * do nothing.  (Should be safe to examine xmin without getting
1875                          * buffer's content lock, since xmin never changes in an existing
1876                          * tuple.)
1877                          */
1878                         if (!TransactionIdEquals(HeapTupleHeaderGetXmin(tuple.t_data),
1879                                                                          priorXmax))
1880                         {
1881                                 ReleaseBuffer(buffer);
1882                                 return NULL;
1883                         }
1884
1885                         /* otherwise xmin should not be dirty... */
1886                         if (TransactionIdIsValid(SnapshotDirty->xmin))
1887                                 elog(ERROR, "t_xmin is uncommitted in tuple to be updated");
1888
1889                         /*
1890                          * If tuple is being updated by other transaction then we have
1891                          * to wait for its commit/abort.
1892                          */
1893                         if (TransactionIdIsValid(SnapshotDirty->xmax))
1894                         {
1895                                 ReleaseBuffer(buffer);
1896                                 XactLockTableWait(SnapshotDirty->xmax);
1897                                 continue;               /* loop back to repeat heap_fetch */
1898                         }
1899
1900                         /*
1901                          * We got tuple - now copy it for use by recheck query.
1902                          */
1903                         copyTuple = heap_copytuple(&tuple);
1904                         ReleaseBuffer(buffer);
1905                         break;
1906                 }
1907
1908                 /*
1909                  * If the referenced slot was actually empty, the latest version
1910                  * of the row must have been deleted, so we need do nothing.
1911                  */
1912                 if (tuple.t_data == NULL)
1913                 {
1914                         ReleaseBuffer(buffer);
1915                         return NULL;
1916                 }
1917
1918                 /*
1919                  * As above, if xmin isn't what we're expecting, do nothing.
1920                  */
1921                 if (!TransactionIdEquals(HeapTupleHeaderGetXmin(tuple.t_data),
1922                                                                  priorXmax))
1923                 {
1924                         ReleaseBuffer(buffer);
1925                         return NULL;
1926                 }
1927
1928                 /*
1929                  * If we get here, the tuple was found but failed SnapshotDirty.
1930                  * Assuming the xmin is either a committed xact or our own xact
1931                  * (as it certainly should be if we're trying to modify the tuple),
1932                  * this must mean that the row was updated or deleted by either
1933                  * a committed xact or our own xact.  If it was deleted, we can
1934                  * ignore it; if it was updated then chain up to the next version
1935                  * and repeat the whole test.
1936                  *
1937                  * As above, it should be safe to examine xmax and t_ctid without
1938                  * the buffer content lock, because they can't be changing.
1939                  */
1940                 if (ItemPointerEquals(&tuple.t_self, &tuple.t_data->t_ctid))
1941                 {
1942                         /* deleted, so forget about it */
1943                         ReleaseBuffer(buffer);
1944                         return NULL;
1945                 }
1946
1947                 /* updated, so look at the updated row */
1948                 tuple.t_self = tuple.t_data->t_ctid;
1949                 /* updated row should have xmin matching this xmax */
1950                 priorXmax = HeapTupleHeaderGetXmax(tuple.t_data);
1951                 ReleaseBuffer(buffer);
1952                 /* loop back to fetch next in chain */
1953         }
1954
1955         /*
1956          * For UPDATE/DELETE we have to return tid of actual row we're
1957          * executing PQ for.
1958          */
1959         *tid = tuple.t_self;
1960
1961         /*
1962          * Need to run a recheck subquery.      Find or create a PQ stack entry.
1963          */
1964         epq = estate->es_evalPlanQual;
1965         endNode = true;
1966
1967         if (epq != NULL && epq->rti == 0)
1968         {
1969                 /* Top PQ stack entry is idle, so re-use it */
1970                 Assert(!(estate->es_useEvalPlan) && epq->next == NULL);
1971                 epq->rti = rti;
1972                 endNode = false;
1973         }
1974
1975         /*
1976          * If this is request for another RTE - Ra, - then we have to check
1977          * wasn't PlanQual requested for Ra already and if so then Ra' row was
1978          * updated again and we have to re-start old execution for Ra and
1979          * forget all what we done after Ra was suspended. Cool? -:))
1980          */
1981         if (epq != NULL && epq->rti != rti &&
1982                 epq->estate->es_evTuple[rti - 1] != NULL)
1983         {
1984                 do
1985                 {
1986                         evalPlanQual *oldepq;
1987
1988                         /* stop execution */
1989                         EvalPlanQualStop(epq);
1990                         /* pop previous PlanQual from the stack */
1991                         oldepq = epq->next;
1992                         Assert(oldepq && oldepq->rti != 0);
1993                         /* push current PQ to freePQ stack */
1994                         oldepq->free = epq;
1995                         epq = oldepq;
1996                         estate->es_evalPlanQual = epq;
1997                 } while (epq->rti != rti);
1998         }
1999
2000         /*
2001          * If we are requested for another RTE then we have to suspend
2002          * execution of current PlanQual and start execution for new one.
2003          */
2004         if (epq == NULL || epq->rti != rti)
2005         {
2006                 /* try to reuse plan used previously */
2007                 evalPlanQual *newepq = (epq != NULL) ? epq->free : NULL;
2008
2009                 if (newepq == NULL)             /* first call or freePQ stack is empty */
2010                 {
2011                         newepq = (evalPlanQual *) palloc0(sizeof(evalPlanQual));
2012                         newepq->free = NULL;
2013                         newepq->estate = NULL;
2014                         newepq->planstate = NULL;
2015                 }
2016                 else
2017                 {
2018                         /* recycle previously used PlanQual */
2019                         Assert(newepq->estate == NULL);
2020                         epq->free = NULL;
2021                 }
2022                 /* push current PQ to the stack */
2023                 newepq->next = epq;
2024                 epq = newepq;
2025                 estate->es_evalPlanQual = epq;
2026                 epq->rti = rti;
2027                 endNode = false;
2028         }
2029
2030         Assert(epq->rti == rti);
2031
2032         /*
2033          * Ok - we're requested for the same RTE.  Unfortunately we still have
2034          * to end and restart execution of the plan, because ExecReScan
2035          * wouldn't ensure that upper plan nodes would reset themselves.  We
2036          * could make that work if insertion of the target tuple were
2037          * integrated with the Param mechanism somehow, so that the upper plan
2038          * nodes know that their children's outputs have changed.
2039          *
2040          * Note that the stack of free evalPlanQual nodes is quite useless at the
2041          * moment, since it only saves us from pallocing/releasing the
2042          * evalPlanQual nodes themselves.  But it will be useful once we
2043          * implement ReScan instead of end/restart for re-using PlanQual
2044          * nodes.
2045          */
2046         if (endNode)
2047         {
2048                 /* stop execution */
2049                 EvalPlanQualStop(epq);
2050         }
2051
2052         /*
2053          * Initialize new recheck query.
2054          *
2055          * Note: if we were re-using PlanQual plans via ExecReScan, we'd need to
2056          * instead copy down changeable state from the top plan (including
2057          * es_result_relation_info, es_junkFilter) and reset locally
2058          * changeable state in the epq (including es_param_exec_vals,
2059          * es_evTupleNull).
2060          */
2061         EvalPlanQualStart(epq, estate, epq->next);
2062
2063         /*
2064          * free old RTE' tuple, if any, and store target tuple where
2065          * relation's scan node will see it
2066          */
2067         epqstate = epq->estate;
2068         if (epqstate->es_evTuple[rti - 1] != NULL)
2069                 heap_freetuple(epqstate->es_evTuple[rti - 1]);
2070         epqstate->es_evTuple[rti - 1] = copyTuple;
2071
2072         return EvalPlanQualNext(estate);
2073 }
2074
2075 static TupleTableSlot *
2076 EvalPlanQualNext(EState *estate)
2077 {
2078         evalPlanQual *epq = estate->es_evalPlanQual;
2079         MemoryContext oldcontext;
2080         TupleTableSlot *slot;
2081
2082         Assert(epq->rti != 0);
2083
2084 lpqnext:;
2085         oldcontext = MemoryContextSwitchTo(epq->estate->es_query_cxt);
2086         slot = ExecProcNode(epq->planstate);
2087         MemoryContextSwitchTo(oldcontext);
2088
2089         /*
2090          * No more tuples for this PQ. Continue previous one.
2091          */
2092         if (TupIsNull(slot))
2093         {
2094                 evalPlanQual *oldepq;
2095
2096                 /* stop execution */
2097                 EvalPlanQualStop(epq);
2098                 /* pop old PQ from the stack */
2099                 oldepq = epq->next;
2100                 if (oldepq == NULL)
2101                 {
2102                         /* this is the first (oldest) PQ - mark as free */
2103                         epq->rti = 0;
2104                         estate->es_useEvalPlan = false;
2105                         /* and continue Query execution */
2106                         return (NULL);
2107                 }
2108                 Assert(oldepq->rti != 0);
2109                 /* push current PQ to freePQ stack */
2110                 oldepq->free = epq;
2111                 epq = oldepq;
2112                 estate->es_evalPlanQual = epq;
2113                 goto lpqnext;
2114         }
2115
2116         return (slot);
2117 }
2118
2119 static void
2120 EndEvalPlanQual(EState *estate)
2121 {
2122         evalPlanQual *epq = estate->es_evalPlanQual;
2123
2124         if (epq->rti == 0)                      /* plans already shutdowned */
2125         {
2126                 Assert(epq->next == NULL);
2127                 return;
2128         }
2129
2130         for (;;)
2131         {
2132                 evalPlanQual *oldepq;
2133
2134                 /* stop execution */
2135                 EvalPlanQualStop(epq);
2136                 /* pop old PQ from the stack */
2137                 oldepq = epq->next;
2138                 if (oldepq == NULL)
2139                 {
2140                         /* this is the first (oldest) PQ - mark as free */
2141                         epq->rti = 0;
2142                         estate->es_useEvalPlan = false;
2143                         break;
2144                 }
2145                 Assert(oldepq->rti != 0);
2146                 /* push current PQ to freePQ stack */
2147                 oldepq->free = epq;
2148                 epq = oldepq;
2149                 estate->es_evalPlanQual = epq;
2150         }
2151 }
2152
2153 /*
2154  * Start execution of one level of PlanQual.
2155  *
2156  * This is a cut-down version of ExecutorStart(): we copy some state from
2157  * the top-level estate rather than initializing it fresh.
2158  */
2159 static void
2160 EvalPlanQualStart(evalPlanQual *epq, EState *estate, evalPlanQual *priorepq)
2161 {
2162         EState     *epqstate;
2163         int                     rtsize;
2164         MemoryContext oldcontext;
2165
2166         rtsize = list_length(estate->es_range_table);
2167
2168         epq->estate = epqstate = CreateExecutorState();
2169
2170         oldcontext = MemoryContextSwitchTo(epqstate->es_query_cxt);
2171
2172         /*
2173          * The epqstates share the top query's copy of unchanging state such
2174          * as the snapshot, rangetable, result-rel info, and external Param
2175          * info. They need their own copies of local state, including a tuple
2176          * table, es_param_exec_vals, etc.
2177          */
2178         epqstate->es_direction = ForwardScanDirection;
2179         epqstate->es_snapshot = estate->es_snapshot;
2180         epqstate->es_crosscheck_snapshot = estate->es_crosscheck_snapshot;
2181         epqstate->es_range_table = estate->es_range_table;
2182         epqstate->es_result_relations = estate->es_result_relations;
2183         epqstate->es_num_result_relations = estate->es_num_result_relations;
2184         epqstate->es_result_relation_info = estate->es_result_relation_info;
2185         epqstate->es_junkFilter = estate->es_junkFilter;
2186         epqstate->es_into_relation_descriptor = estate->es_into_relation_descriptor;
2187         epqstate->es_into_relation_use_wal = estate->es_into_relation_use_wal;
2188         epqstate->es_param_list_info = estate->es_param_list_info;
2189         if (estate->es_topPlan->nParamExec > 0)
2190                 epqstate->es_param_exec_vals = (ParamExecData *)
2191                         palloc0(estate->es_topPlan->nParamExec * sizeof(ParamExecData));
2192         epqstate->es_rowMarks = estate->es_rowMarks;
2193         epqstate->es_forUpdate = estate->es_forUpdate;
2194         epqstate->es_rowNoWait = estate->es_rowNoWait;
2195         epqstate->es_instrument = estate->es_instrument;
2196         epqstate->es_select_into = estate->es_select_into;
2197         epqstate->es_into_oids = estate->es_into_oids;
2198         epqstate->es_topPlan = estate->es_topPlan;
2199
2200         /*
2201          * Each epqstate must have its own es_evTupleNull state, but all the
2202          * stack entries share es_evTuple state.  This allows sub-rechecks to
2203          * inherit the value being examined by an outer recheck.
2204          */
2205         epqstate->es_evTupleNull = (bool *) palloc0(rtsize * sizeof(bool));
2206         if (priorepq == NULL)
2207                 /* first PQ stack entry */
2208                 epqstate->es_evTuple = (HeapTuple *)
2209                         palloc0(rtsize * sizeof(HeapTuple));
2210         else
2211                 /* later stack entries share the same storage */
2212                 epqstate->es_evTuple = priorepq->estate->es_evTuple;
2213
2214         epqstate->es_tupleTable =
2215                 ExecCreateTupleTable(estate->es_tupleTable->size);
2216
2217         epq->planstate = ExecInitNode(estate->es_topPlan, epqstate);
2218
2219         MemoryContextSwitchTo(oldcontext);
2220 }
2221
2222 /*
2223  * End execution of one level of PlanQual.
2224  *
2225  * This is a cut-down version of ExecutorEnd(); basically we want to do most
2226  * of the normal cleanup, but *not* close result relations (which we are
2227  * just sharing from the outer query).
2228  */
2229 static void
2230 EvalPlanQualStop(evalPlanQual *epq)
2231 {
2232         EState     *epqstate = epq->estate;
2233         MemoryContext oldcontext;
2234
2235         oldcontext = MemoryContextSwitchTo(epqstate->es_query_cxt);
2236
2237         ExecEndNode(epq->planstate);
2238
2239         ExecDropTupleTable(epqstate->es_tupleTable, true);
2240         epqstate->es_tupleTable = NULL;
2241
2242         if (epqstate->es_evTuple[epq->rti - 1] != NULL)
2243         {
2244                 heap_freetuple(epqstate->es_evTuple[epq->rti - 1]);
2245                 epqstate->es_evTuple[epq->rti - 1] = NULL;
2246         }
2247
2248         MemoryContextSwitchTo(oldcontext);
2249
2250         FreeExecutorState(epqstate);
2251
2252         epq->estate = NULL;
2253         epq->planstate = NULL;
2254 }