]> granicus.if.org Git - postgresql/blob - src/backend/executor/execMain.c
Adjust 'permission denied' messages to be more useful and consistent.
[postgresql] / src / backend / executor / execMain.c
1 /*-------------------------------------------------------------------------
2  *
3  * execMain.c
4  *        top level executor interface routines
5  *
6  * INTERFACE ROUTINES
7  *      ExecutorStart()
8  *      ExecutorRun()
9  *      ExecutorEnd()
10  *
11  *      The old ExecutorMain() has been replaced by ExecutorStart(),
12  *      ExecutorRun() and ExecutorEnd()
13  *
14  *      These three procedures are the external interfaces to the executor.
15  *      In each case, the query descriptor is required as an argument.
16  *
17  *      ExecutorStart() must be called at the beginning of execution of any
18  *      query plan and ExecutorEnd() should always be called at the end of
19  *      execution of a plan.
20  *
21  *      ExecutorRun accepts direction and count arguments that specify whether
22  *      the plan is to be executed forwards, backwards, and for how many tuples.
23  *
24  * Portions Copyright (c) 1996-2002, PostgreSQL Global Development Group
25  * Portions Copyright (c) 1994, Regents of the University of California
26  *
27  *
28  * IDENTIFICATION
29  *        $Header: /cvsroot/pgsql/src/backend/executor/execMain.c,v 1.212 2003/08/01 00:15:20 tgl Exp $
30  *
31  *-------------------------------------------------------------------------
32  */
33 #include "postgres.h"
34
35 #include "access/heapam.h"
36 #include "catalog/heap.h"
37 #include "catalog/namespace.h"
38 #include "commands/tablecmds.h"
39 #include "commands/trigger.h"
40 #include "executor/execdebug.h"
41 #include "executor/execdefs.h"
42 #include "miscadmin.h"
43 #include "optimizer/var.h"
44 #include "parser/parsetree.h"
45 #include "utils/acl.h"
46 #include "utils/lsyscache.h"
47
48
49 typedef struct execRowMark
50 {
51         Relation        relation;
52         Index           rti;
53         char            resname[32];
54 } execRowMark;
55
56 typedef struct evalPlanQual
57 {
58         Index           rti;
59         EState     *estate;
60         PlanState  *planstate;
61         struct evalPlanQual *next;      /* stack of active PlanQual plans */
62         struct evalPlanQual *free;      /* list of free PlanQual plans */
63 } evalPlanQual;
64
65 /* decls for local routines only used within this module */
66 static void InitPlan(QueryDesc *queryDesc, bool explainOnly);
67 static void initResultRelInfo(ResultRelInfo *resultRelInfo,
68                                   Index resultRelationIndex,
69                                   List *rangeTable,
70                                   CmdType operation);
71 static TupleTableSlot *ExecutePlan(EState *estate, PlanState *planstate,
72                         CmdType operation,
73                         long numberTuples,
74                         ScanDirection direction,
75                         DestReceiver *dest);
76 static void ExecSelect(TupleTableSlot *slot,
77                    DestReceiver *dest,
78                    EState *estate);
79 static void ExecInsert(TupleTableSlot *slot, ItemPointer tupleid,
80                    EState *estate);
81 static void ExecDelete(TupleTableSlot *slot, ItemPointer tupleid,
82                    EState *estate);
83 static void ExecUpdate(TupleTableSlot *slot, ItemPointer tupleid,
84                    EState *estate);
85 static TupleTableSlot *EvalPlanQualNext(EState *estate);
86 static void EndEvalPlanQual(EState *estate);
87 static void ExecCheckRTEPerms(RangeTblEntry *rte, CmdType operation);
88 static void ExecCheckXactReadOnly(Query *parsetree, CmdType operation);
89 static void EvalPlanQualStart(evalPlanQual *epq, EState *estate,
90                                                           evalPlanQual *priorepq);
91 static void EvalPlanQualStop(evalPlanQual *epq);
92
93 /* end of local decls */
94
95
96 /* ----------------------------------------------------------------
97  *              ExecutorStart
98  *
99  *              This routine must be called at the beginning of any execution of any
100  *              query plan
101  *
102  * Takes a QueryDesc previously created by CreateQueryDesc (it's not real
103  * clear why we bother to separate the two functions, but...).  The tupDesc
104  * field of the QueryDesc is filled in to describe the tuples that will be
105  * returned, and the internal fields (estate and planstate) are set up.
106  *
107  * If explainOnly is true, we are not actually intending to run the plan,
108  * only to set up for EXPLAIN; so skip unwanted side-effects.
109  *
110  * NB: the CurrentMemoryContext when this is called will become the parent
111  * of the per-query context used for this Executor invocation.
112  * ----------------------------------------------------------------
113  */
114 void
115 ExecutorStart(QueryDesc *queryDesc, bool explainOnly)
116 {
117         EState     *estate;
118         MemoryContext oldcontext;
119
120         /* sanity checks: queryDesc must not be started already */
121         Assert(queryDesc != NULL);
122         Assert(queryDesc->estate == NULL);
123
124         /*
125          * If the transaction is read-only, we need to check if any writes
126          * are planned to non-temporary tables.
127          */
128         if (!explainOnly)
129                 ExecCheckXactReadOnly(queryDesc->parsetree, queryDesc->operation);
130
131         /*
132          * Build EState, switch into per-query memory context for startup.
133          */
134         estate = CreateExecutorState();
135         queryDesc->estate = estate;
136
137         oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
138
139         /*
140          * Fill in parameters, if any, from queryDesc
141          */
142         estate->es_param_list_info = queryDesc->params;
143
144         if (queryDesc->plantree->nParamExec > 0)
145                 estate->es_param_exec_vals = (ParamExecData *)
146                         palloc0(queryDesc->plantree->nParamExec * sizeof(ParamExecData));
147
148         estate->es_instrument = queryDesc->doInstrument;
149
150         /*
151          * Make our own private copy of the current query snapshot data.
152          *
153          * This "freezes" our idea of which tuples are good and which are not for
154          * the life of this query, even if it outlives the current command and
155          * current snapshot.
156          */
157         estate->es_snapshot = CopyQuerySnapshot();
158
159         /*
160          * Initialize the plan state tree
161          */
162         InitPlan(queryDesc, explainOnly);
163
164         MemoryContextSwitchTo(oldcontext);
165 }
166
167 /* ----------------------------------------------------------------
168  *              ExecutorRun
169  *
170  *              This is the main routine of the executor module. It accepts
171  *              the query descriptor from the traffic cop and executes the
172  *              query plan.
173  *
174  *              ExecutorStart must have been called already.
175  *
176  *              If direction is NoMovementScanDirection then nothing is done
177  *              except to start up/shut down the destination.  Otherwise,
178  *              we retrieve up to 'count' tuples in the specified direction.
179  *
180  *              Note: count = 0 is interpreted as no portal limit, i.e., run to
181  *              completion.
182  *
183  * ----------------------------------------------------------------
184  */
185 TupleTableSlot *
186 ExecutorRun(QueryDesc *queryDesc,
187                         ScanDirection direction, long count)
188 {
189         EState     *estate;
190         CmdType         operation;
191         DestReceiver *dest;
192         TupleTableSlot *result;
193         MemoryContext oldcontext;
194
195         /* sanity checks */
196         Assert(queryDesc != NULL);
197
198         estate = queryDesc->estate;
199
200         Assert(estate != NULL);
201
202         /*
203          * Switch into per-query memory context
204          */
205         oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
206
207         /*
208          * extract information from the query descriptor and the query
209          * feature.
210          */
211         operation = queryDesc->operation;
212         dest = queryDesc->dest;
213
214         /*
215          * startup tuple receiver
216          */
217         estate->es_processed = 0;
218         estate->es_lastoid = InvalidOid;
219
220         (*dest->startup) (dest, operation, queryDesc->tupDesc);
221
222         /*
223          * run plan
224          */
225         if (direction == NoMovementScanDirection)
226                 result = NULL;
227         else
228                 result = ExecutePlan(estate,
229                                                          queryDesc->planstate,
230                                                          operation,
231                                                          count,
232                                                          direction,
233                                                          dest);
234
235         /*
236          * shutdown receiver
237          */
238         (*dest->shutdown) (dest);
239
240         MemoryContextSwitchTo(oldcontext);
241
242         return result;
243 }
244
245 /* ----------------------------------------------------------------
246  *              ExecutorEnd
247  *
248  *              This routine must be called at the end of execution of any
249  *              query plan
250  * ----------------------------------------------------------------
251  */
252 void
253 ExecutorEnd(QueryDesc *queryDesc)
254 {
255         EState     *estate;
256         MemoryContext oldcontext;
257
258         /* sanity checks */
259         Assert(queryDesc != NULL);
260
261         estate = queryDesc->estate;
262
263         Assert(estate != NULL);
264
265         /*
266          * Switch into per-query memory context to run ExecEndPlan
267          */
268         oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
269
270         ExecEndPlan(queryDesc->planstate, estate);
271
272         /*
273          * Must switch out of context before destroying it
274          */
275         MemoryContextSwitchTo(oldcontext);
276
277         /*
278          * Release EState and per-query memory context.  This should release
279          * everything the executor has allocated.
280          */
281         FreeExecutorState(estate);
282
283         /* Reset queryDesc fields that no longer point to anything */
284         queryDesc->tupDesc = NULL;
285         queryDesc->estate = NULL;
286         queryDesc->planstate = NULL;
287 }
288
289 /* ----------------------------------------------------------------
290  *              ExecutorRewind
291  *
292  *              This routine may be called on an open queryDesc to rewind it
293  *              to the start.
294  * ----------------------------------------------------------------
295  */
296 void
297 ExecutorRewind(QueryDesc *queryDesc)
298 {
299         EState     *estate;
300         MemoryContext oldcontext;
301
302         /* sanity checks */
303         Assert(queryDesc != NULL);
304
305         estate = queryDesc->estate;
306
307         Assert(estate != NULL);
308
309         /* It's probably not sensible to rescan updating queries */
310         Assert(queryDesc->operation == CMD_SELECT);
311
312         /*
313          * Switch into per-query memory context
314          */
315         oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
316
317         /*
318          * rescan plan
319          */
320         ExecReScan(queryDesc->planstate, NULL);
321
322         MemoryContextSwitchTo(oldcontext);
323 }
324
325
326 /*
327  * ExecCheckRTPerms
328  *              Check access permissions for all relations listed in a range table.
329  */
330 void
331 ExecCheckRTPerms(List *rangeTable, CmdType operation)
332 {
333         List       *lp;
334
335         foreach(lp, rangeTable)
336         {
337                 RangeTblEntry *rte = lfirst(lp);
338
339                 ExecCheckRTEPerms(rte, operation);
340         }
341 }
342
343 /*
344  * ExecCheckRTEPerms
345  *              Check access permissions for a single RTE.
346  */
347 static void
348 ExecCheckRTEPerms(RangeTblEntry *rte, CmdType operation)
349 {
350         Oid                     relOid;
351         AclId           userid;
352         AclResult       aclcheck_result;
353
354         /*
355          * If it's a subquery, recursively examine its rangetable.
356          */
357         if (rte->rtekind == RTE_SUBQUERY)
358         {
359                 ExecCheckRTPerms(rte->subquery->rtable, operation);
360                 return;
361         }
362
363         /*
364          * Otherwise, only plain-relation RTEs need to be checked here.
365          * Function RTEs are checked by init_fcache when the function is prepared
366          * for execution. Join and special RTEs need no checks.
367          */
368         if (rte->rtekind != RTE_RELATION)
369                 return;
370
371         relOid = rte->relid;
372
373         /*
374          * userid to check as: current user unless we have a setuid
375          * indication.
376          *
377          * Note: GetUserId() is presently fast enough that there's no harm in
378          * calling it separately for each RTE.  If that stops being true, we
379          * could call it once in ExecCheckRTPerms and pass the userid down
380          * from there.  But for now, no need for the extra clutter.
381          */
382         userid = rte->checkAsUser ? rte->checkAsUser : GetUserId();
383
384 #define CHECK(MODE)             pg_class_aclcheck(relOid, userid, MODE)
385
386         if (rte->checkForRead)
387         {
388                 aclcheck_result = CHECK(ACL_SELECT);
389                 if (aclcheck_result != ACLCHECK_OK)
390                         aclcheck_error(aclcheck_result, ACL_KIND_CLASS,
391                                                    get_rel_name(relOid));
392         }
393
394         if (rte->checkForWrite)
395         {
396                 /*
397                  * Note: write access in a SELECT context means SELECT FOR UPDATE.
398                  * Right now we don't distinguish that from true update as far as
399                  * permissions checks are concerned.
400                  */
401                 switch (operation)
402                 {
403                         case CMD_INSERT:
404                                 aclcheck_result = CHECK(ACL_INSERT);
405                                 break;
406                         case CMD_SELECT:
407                         case CMD_UPDATE:
408                                 aclcheck_result = CHECK(ACL_UPDATE);
409                                 break;
410                         case CMD_DELETE:
411                                 aclcheck_result = CHECK(ACL_DELETE);
412                                 break;
413                         default:
414                                 elog(ERROR, "unrecognized operation code: %d",
415                                          (int) operation);
416                                 aclcheck_result = ACLCHECK_OK;  /* keep compiler quiet */
417                                 break;
418                 }
419                 if (aclcheck_result != ACLCHECK_OK)
420                         aclcheck_error(aclcheck_result, ACL_KIND_CLASS,
421                                                    get_rel_name(relOid));
422         }
423 }
424
425 static void
426 ExecCheckXactReadOnly(Query *parsetree, CmdType operation)
427 {
428         if (!XactReadOnly)
429                 return;
430
431         /* CREATE TABLE AS or SELECT INTO */
432         if (operation == CMD_SELECT && parsetree->into != NULL)
433                 goto fail;
434
435         if (operation == CMD_DELETE || operation == CMD_INSERT
436                 || operation == CMD_UPDATE)
437         {
438                 List *lp;
439
440                 foreach(lp, parsetree->rtable)
441                 {
442                         RangeTblEntry *rte = lfirst(lp);
443
444                         if (rte->rtekind != RTE_RELATION)
445                                 continue;
446
447                         if (!rte->checkForWrite)
448                                 continue;
449
450                         if (isTempNamespace(get_rel_namespace(rte->relid)))
451                                 continue;
452
453                         goto fail;
454                 }
455         }
456
457         return;
458
459 fail:
460         ereport(ERROR,
461                         (errcode(ERRCODE_READ_ONLY_SQL_TRANSACTION),
462                          errmsg("transaction is read-only")));
463 }
464
465
466 /* ----------------------------------------------------------------
467  *              InitPlan
468  *
469  *              Initializes the query plan: open files, allocate storage
470  *              and start up the rule manager
471  * ----------------------------------------------------------------
472  */
473 static void
474 InitPlan(QueryDesc *queryDesc, bool explainOnly)
475 {
476         CmdType         operation = queryDesc->operation;
477         Query *parseTree = queryDesc->parsetree;
478         Plan *plan = queryDesc->plantree;
479         EState *estate = queryDesc->estate;
480         PlanState  *planstate;
481         List       *rangeTable;
482         Relation        intoRelationDesc;
483         bool            do_select_into;
484         TupleDesc       tupType;
485
486         /*
487          * Do permissions checks.  It's sufficient to examine the query's
488          * top rangetable here --- subplan RTEs will be checked during
489          * ExecInitSubPlan().
490          */
491         ExecCheckRTPerms(parseTree->rtable, operation);
492
493         /*
494          * get information from query descriptor
495          */
496         rangeTable = parseTree->rtable;
497
498         /*
499          * initialize the node's execution state
500          */
501         estate->es_range_table = rangeTable;
502
503         /*
504          * if there is a result relation, initialize result relation stuff
505          */
506         if (parseTree->resultRelation != 0 && operation != CMD_SELECT)
507         {
508                 List       *resultRelations = parseTree->resultRelations;
509                 int                     numResultRelations;
510                 ResultRelInfo *resultRelInfos;
511
512                 if (resultRelations != NIL)
513                 {
514                         /*
515                          * Multiple result relations (due to inheritance)
516                          * parseTree->resultRelations identifies them all
517                          */
518                         ResultRelInfo *resultRelInfo;
519
520                         numResultRelations = length(resultRelations);
521                         resultRelInfos = (ResultRelInfo *)
522                                 palloc(numResultRelations * sizeof(ResultRelInfo));
523                         resultRelInfo = resultRelInfos;
524                         while (resultRelations != NIL)
525                         {
526                                 initResultRelInfo(resultRelInfo,
527                                                                   lfirsti(resultRelations),
528                                                                   rangeTable,
529                                                                   operation);
530                                 resultRelInfo++;
531                                 resultRelations = lnext(resultRelations);
532                         }
533                 }
534                 else
535                 {
536                         /*
537                          * Single result relation identified by
538                          * parseTree->resultRelation
539                          */
540                         numResultRelations = 1;
541                         resultRelInfos = (ResultRelInfo *) palloc(sizeof(ResultRelInfo));
542                         initResultRelInfo(resultRelInfos,
543                                                           parseTree->resultRelation,
544                                                           rangeTable,
545                                                           operation);
546                 }
547
548                 estate->es_result_relations = resultRelInfos;
549                 estate->es_num_result_relations = numResultRelations;
550                 /* Initialize to first or only result rel */
551                 estate->es_result_relation_info = resultRelInfos;
552         }
553         else
554         {
555                 /*
556                  * if no result relation, then set state appropriately
557                  */
558                 estate->es_result_relations = NULL;
559                 estate->es_num_result_relations = 0;
560                 estate->es_result_relation_info = NULL;
561         }
562
563         /*
564          * Detect whether we're doing SELECT INTO.  If so, set the force_oids
565          * flag appropriately so that the plan tree will be initialized with
566          * the correct tuple descriptors.
567          */
568         do_select_into = false;
569
570         if (operation == CMD_SELECT && parseTree->into != NULL)
571         {
572                 do_select_into = true;
573                 /*
574                  * For now, always create OIDs in SELECT INTO; this is for backwards
575                  * compatibility with pre-7.3 behavior.  Eventually we might want
576                  * to allow the user to choose.
577                  */
578                 estate->es_force_oids = true;
579         }
580
581         /*
582          * Have to lock relations selected for update
583          */
584         estate->es_rowMark = NIL;
585         if (parseTree->rowMarks != NIL)
586         {
587                 List       *l;
588
589                 foreach(l, parseTree->rowMarks)
590                 {
591                         Index           rti = lfirsti(l);
592                         Oid                     relid = getrelid(rti, rangeTable);
593                         Relation        relation;
594                         execRowMark *erm;
595
596                         relation = heap_open(relid, RowShareLock);
597                         erm = (execRowMark *) palloc(sizeof(execRowMark));
598                         erm->relation = relation;
599                         erm->rti = rti;
600                         snprintf(erm->resname, sizeof(erm->resname), "ctid%u", rti);
601                         estate->es_rowMark = lappend(estate->es_rowMark, erm);
602                 }
603         }
604
605         /*
606          * initialize the executor "tuple" table.  We need slots for all the
607          * plan nodes, plus possibly output slots for the junkfilter(s). At
608          * this point we aren't sure if we need junkfilters, so just add slots
609          * for them unconditionally.
610          */
611         {
612                 int                     nSlots = ExecCountSlotsNode(plan);
613
614                 if (parseTree->resultRelations != NIL)
615                         nSlots += length(parseTree->resultRelations);
616                 else
617                         nSlots += 1;
618                 estate->es_tupleTable = ExecCreateTupleTable(nSlots);
619         }
620
621         /* mark EvalPlanQual not active */
622         estate->es_topPlan = plan;
623         estate->es_evalPlanQual = NULL;
624         estate->es_evTupleNull = NULL;
625         estate->es_evTuple = NULL;
626         estate->es_useEvalPlan = false;
627
628         /*
629          * initialize the private state information for all the nodes in the
630          * query tree.  This opens files, allocates storage and leaves us
631          * ready to start processing tuples.
632          */
633         planstate = ExecInitNode(plan, estate);
634
635         /*
636          * Get the tuple descriptor describing the type of tuples to return.
637          * (this is especially important if we are creating a relation with
638          * "SELECT INTO")
639          */
640         tupType = ExecGetResultType(planstate);
641
642         /*
643          * Initialize the junk filter if needed.  SELECT and INSERT queries need a
644          * filter if there are any junk attrs in the tlist.  INSERT and SELECT
645          * INTO also need a filter if the top plan node is a scan node that's not
646          * doing projection (else we'll be scribbling on the scan tuple!)  UPDATE
647          * and DELETE always need a filter, since there's always a junk 'ctid'
648          * attribute present --- no need to look first.
649          */
650         {
651                 bool            junk_filter_needed = false;
652                 List       *tlist;
653
654                 switch (operation)
655                 {
656                         case CMD_SELECT:
657                         case CMD_INSERT:
658                                 foreach(tlist, plan->targetlist)
659                                 {
660                                         TargetEntry *tle = (TargetEntry *) lfirst(tlist);
661
662                                         if (tle->resdom->resjunk)
663                                         {
664                                                 junk_filter_needed = true;
665                                                 break;
666                                         }
667                                 }
668                                 if (!junk_filter_needed &&
669                                         (operation == CMD_INSERT || do_select_into))
670                                 {
671                                         if (IsA(planstate, SeqScanState) ||
672                                                 IsA(planstate, IndexScanState) ||
673                                                 IsA(planstate, TidScanState) ||
674                                                 IsA(planstate, SubqueryScanState) ||
675                                                 IsA(planstate, FunctionScanState))
676                                         {
677                                                 if (planstate->ps_ProjInfo == NULL)
678                                                         junk_filter_needed = true;
679                                         }
680                                 }
681                                 break;
682                         case CMD_UPDATE:
683                         case CMD_DELETE:
684                                 junk_filter_needed = true;
685                                 break;
686                         default:
687                                 break;
688                 }
689
690                 if (junk_filter_needed)
691                 {
692                         /*
693                          * If there are multiple result relations, each one needs its
694                          * own junk filter.  Note this is only possible for
695                          * UPDATE/DELETE, so we can't be fooled by some needing a
696                          * filter and some not.
697                          */
698                         if (parseTree->resultRelations != NIL)
699                         {
700                                 PlanState **appendplans;
701                                 int                     as_nplans;
702                                 ResultRelInfo *resultRelInfo;
703                                 int                     i;
704
705                                 /* Top plan had better be an Append here. */
706                                 Assert(IsA(plan, Append));
707                                 Assert(((Append *) plan)->isTarget);
708                                 Assert(IsA(planstate, AppendState));
709                                 appendplans = ((AppendState *) planstate)->appendplans;
710                                 as_nplans = ((AppendState *) planstate)->as_nplans;
711                                 Assert(as_nplans == estate->es_num_result_relations);
712                                 resultRelInfo = estate->es_result_relations;
713                                 for (i = 0; i < as_nplans; i++)
714                                 {
715                                         PlanState  *subplan = appendplans[i];
716                                         JunkFilter *j;
717
718                                         j = ExecInitJunkFilter(subplan->plan->targetlist,
719                                                                                    ExecGetResultType(subplan),
720                                                           ExecAllocTableSlot(estate->es_tupleTable));
721                                         resultRelInfo->ri_junkFilter = j;
722                                         resultRelInfo++;
723                                 }
724
725                                 /*
726                                  * Set active junkfilter too; at this point ExecInitAppend
727                                  * has already selected an active result relation...
728                                  */
729                                 estate->es_junkFilter =
730                                         estate->es_result_relation_info->ri_junkFilter;
731                         }
732                         else
733                         {
734                                 /* Normal case with just one JunkFilter */
735                                 JunkFilter *j;
736
737                                 j = ExecInitJunkFilter(planstate->plan->targetlist,
738                                                                            tupType,
739                                                           ExecAllocTableSlot(estate->es_tupleTable));
740                                 estate->es_junkFilter = j;
741                                 if (estate->es_result_relation_info)
742                                         estate->es_result_relation_info->ri_junkFilter = j;
743
744                                 /* For SELECT, want to return the cleaned tuple type */
745                                 if (operation == CMD_SELECT)
746                                         tupType = j->jf_cleanTupType;
747                         }
748                 }
749                 else
750                         estate->es_junkFilter = NULL;
751         }
752
753         /*
754          * If doing SELECT INTO, initialize the "into" relation.  We must wait
755          * till now so we have the "clean" result tuple type to create the
756          * new table from.
757          *
758          * If EXPLAIN, skip creating the "into" relation.
759          */
760         intoRelationDesc = (Relation) NULL;
761
762         if (do_select_into && !explainOnly)
763         {
764                 char       *intoName;
765                 Oid                     namespaceId;
766                 AclResult       aclresult;
767                 Oid                     intoRelationId;
768                 TupleDesc       tupdesc;
769
770                 /*
771                  * find namespace to create in, check permissions
772                  */
773                 intoName = parseTree->into->relname;
774                 namespaceId = RangeVarGetCreationNamespace(parseTree->into);
775
776                 aclresult = pg_namespace_aclcheck(namespaceId, GetUserId(),
777                                                                                   ACL_CREATE);
778                 if (aclresult != ACLCHECK_OK)
779                         aclcheck_error(aclresult, ACL_KIND_NAMESPACE,
780                                                    get_namespace_name(namespaceId));
781
782                 /*
783                  * have to copy tupType to get rid of constraints
784                  */
785                 tupdesc = CreateTupleDescCopy(tupType);
786
787                 intoRelationId = heap_create_with_catalog(intoName,
788                                                                                                   namespaceId,
789                                                                                                   tupdesc,
790                                                                                                   RELKIND_RELATION,
791                                                                                                   false,
792                                                                                                   ONCOMMIT_NOOP,
793                                                                                                   allowSystemTableMods);
794
795                 FreeTupleDesc(tupdesc);
796
797                 /*
798                  * Advance command counter so that the newly-created
799                  * relation's catalog tuples will be visible to heap_open.
800                  */
801                 CommandCounterIncrement();
802
803                 /*
804                  * If necessary, create a TOAST table for the into
805                  * relation. Note that AlterTableCreateToastTable ends
806                  * with CommandCounterIncrement(), so that the TOAST table
807                  * will be visible for insertion.
808                  */
809                 AlterTableCreateToastTable(intoRelationId, true);
810
811                 /*
812                  * And open the constructed table for writing.
813                  */
814                 intoRelationDesc = heap_open(intoRelationId, AccessExclusiveLock);
815         }
816
817         estate->es_into_relation_descriptor = intoRelationDesc;
818
819         queryDesc->tupDesc = tupType;
820         queryDesc->planstate = planstate;
821 }
822
823 /*
824  * Initialize ResultRelInfo data for one result relation
825  */
826 static void
827 initResultRelInfo(ResultRelInfo *resultRelInfo,
828                                   Index resultRelationIndex,
829                                   List *rangeTable,
830                                   CmdType operation)
831 {
832         Oid                     resultRelationOid;
833         Relation        resultRelationDesc;
834
835         resultRelationOid = getrelid(resultRelationIndex, rangeTable);
836         resultRelationDesc = heap_open(resultRelationOid, RowExclusiveLock);
837
838         switch (resultRelationDesc->rd_rel->relkind)
839         {
840                 case RELKIND_SEQUENCE:
841                         ereport(ERROR,
842                                         (errcode(ERRCODE_WRONG_OBJECT_TYPE),
843                                          errmsg("cannot change sequence relation \"%s\"",
844                                                         RelationGetRelationName(resultRelationDesc))));
845                         break;
846                 case RELKIND_TOASTVALUE:
847                         ereport(ERROR,
848                                         (errcode(ERRCODE_WRONG_OBJECT_TYPE),
849                                          errmsg("cannot change toast relation \"%s\"",
850                                                         RelationGetRelationName(resultRelationDesc))));
851                         break;
852                 case RELKIND_VIEW:
853                         ereport(ERROR,
854                                         (errcode(ERRCODE_WRONG_OBJECT_TYPE),
855                                          errmsg("cannot change view relation \"%s\"",
856                                                         RelationGetRelationName(resultRelationDesc))));
857                         break;
858         }
859
860         MemSet(resultRelInfo, 0, sizeof(ResultRelInfo));
861         resultRelInfo->type = T_ResultRelInfo;
862         resultRelInfo->ri_RangeTableIndex = resultRelationIndex;
863         resultRelInfo->ri_RelationDesc = resultRelationDesc;
864         resultRelInfo->ri_NumIndices = 0;
865         resultRelInfo->ri_IndexRelationDescs = NULL;
866         resultRelInfo->ri_IndexRelationInfo = NULL;
867         /* make a copy so as not to depend on relcache info not changing... */
868         resultRelInfo->ri_TrigDesc = CopyTriggerDesc(resultRelationDesc->trigdesc);
869         resultRelInfo->ri_TrigFunctions = NULL;
870         resultRelInfo->ri_ConstraintExprs = NULL;
871         resultRelInfo->ri_junkFilter = NULL;
872
873         /*
874          * If there are indices on the result relation, open them and save
875          * descriptors in the result relation info, so that we can add new
876          * index entries for the tuples we add/update.  We need not do this
877          * for a DELETE, however, since deletion doesn't affect indexes.
878          */
879         if (resultRelationDesc->rd_rel->relhasindex &&
880                 operation != CMD_DELETE)
881                 ExecOpenIndices(resultRelInfo);
882 }
883
884 /* ----------------------------------------------------------------
885  *              ExecEndPlan
886  *
887  *              Cleans up the query plan -- closes files and frees up storage
888  *
889  * NOTE: we are no longer very worried about freeing storage per se
890  * in this code; FreeExecutorState should be guaranteed to release all
891  * memory that needs to be released.  What we are worried about doing
892  * is closing relations and dropping buffer pins.  Thus, for example,
893  * tuple tables must be cleared or dropped to ensure pins are released.
894  * ----------------------------------------------------------------
895  */
896 void
897 ExecEndPlan(PlanState *planstate, EState *estate)
898 {
899         ResultRelInfo *resultRelInfo;
900         int                     i;
901         List       *l;
902
903         /*
904          * shut down any PlanQual processing we were doing
905          */
906         if (estate->es_evalPlanQual != NULL)
907                 EndEvalPlanQual(estate);
908
909         /*
910          * shut down the node-type-specific query processing
911          */
912         ExecEndNode(planstate);
913
914         /*
915          * destroy the executor "tuple" table.
916          */
917         ExecDropTupleTable(estate->es_tupleTable, true);
918         estate->es_tupleTable = NULL;
919
920         /*
921          * close the result relation(s) if any, but hold locks until xact
922          * commit.
923          */
924         resultRelInfo = estate->es_result_relations;
925         for (i = estate->es_num_result_relations; i > 0; i--)
926         {
927                 /* Close indices and then the relation itself */
928                 ExecCloseIndices(resultRelInfo);
929                 heap_close(resultRelInfo->ri_RelationDesc, NoLock);
930                 resultRelInfo++;
931         }
932
933         /*
934          * close the "into" relation if necessary, again keeping lock
935          */
936         if (estate->es_into_relation_descriptor != NULL)
937                 heap_close(estate->es_into_relation_descriptor, NoLock);
938
939         /*
940          * close any relations selected FOR UPDATE, again keeping locks
941          */
942         foreach(l, estate->es_rowMark)
943         {
944                 execRowMark *erm = lfirst(l);
945
946                 heap_close(erm->relation, NoLock);
947         }
948 }
949
950 /* ----------------------------------------------------------------
951  *              ExecutePlan
952  *
953  *              processes the query plan to retrieve 'numberTuples' tuples in the
954  *              direction specified.
955  *
956  *              Retrieves all tuples if numberTuples is 0
957  *
958  *              result is either a slot containing the last tuple in the case
959  *              of a SELECT or NULL otherwise.
960  *
961  * Note: the ctid attribute is a 'junk' attribute that is removed before the
962  * user can see it
963  * ----------------------------------------------------------------
964  */
965 static TupleTableSlot *
966 ExecutePlan(EState *estate,
967                         PlanState *planstate,
968                         CmdType operation,
969                         long numberTuples,
970                         ScanDirection direction,
971                         DestReceiver *dest)
972 {
973         JunkFilter                      *junkfilter;
974         TupleTableSlot          *slot;
975         ItemPointer                      tupleid = NULL;
976         ItemPointerData          tuple_ctid;
977         long                             current_tuple_count;
978         TupleTableSlot          *result;
979
980         /*
981          * initialize local variables
982          */
983         slot = NULL;
984         current_tuple_count = 0;
985         result = NULL;
986
987         /*
988          * Set the direction.
989          */
990         estate->es_direction = direction;
991
992         /*
993          * Process BEFORE EACH STATEMENT triggers
994          */
995         switch (operation)
996         {
997                 case CMD_UPDATE:
998                         ExecBSUpdateTriggers(estate, estate->es_result_relation_info);
999                         break;
1000                 case CMD_DELETE:
1001                         ExecBSDeleteTriggers(estate, estate->es_result_relation_info);
1002                         break;
1003                 case CMD_INSERT:
1004                         ExecBSInsertTriggers(estate, estate->es_result_relation_info);
1005                         break;
1006                 default:
1007                         /* do nothing */
1008                         break;
1009         }
1010
1011         /*
1012          * Loop until we've processed the proper number of tuples from the
1013          * plan.
1014          */
1015
1016         for (;;)
1017         {
1018                 /* Reset the per-output-tuple exprcontext */
1019                 ResetPerTupleExprContext(estate);
1020
1021                 /*
1022                  * Execute the plan and obtain a tuple
1023                  */
1024 lnext:  ;
1025                 if (estate->es_useEvalPlan)
1026                 {
1027                         slot = EvalPlanQualNext(estate);
1028                         if (TupIsNull(slot))
1029                                 slot = ExecProcNode(planstate);
1030                 }
1031                 else
1032                         slot = ExecProcNode(planstate);
1033
1034                 /*
1035                  * if the tuple is null, then we assume there is nothing more to
1036                  * process so we just return null...
1037                  */
1038                 if (TupIsNull(slot))
1039                 {
1040                         result = NULL;
1041                         break;
1042                 }
1043
1044                 /*
1045                  * if we have a junk filter, then project a new tuple with the
1046                  * junk removed.
1047                  *
1048                  * Store this new "clean" tuple in the junkfilter's resultSlot.
1049                  * (Formerly, we stored it back over the "dirty" tuple, which is
1050                  * WRONG because that tuple slot has the wrong descriptor.)
1051                  *
1052                  * Also, extract all the junk information we need.
1053                  */
1054                 if ((junkfilter = estate->es_junkFilter) != (JunkFilter *) NULL)
1055                 {
1056                         Datum           datum;
1057                         HeapTuple       newTuple;
1058                         bool            isNull;
1059
1060                         /*
1061                          * extract the 'ctid' junk attribute.
1062                          */
1063                         if (operation == CMD_UPDATE || operation == CMD_DELETE)
1064                         {
1065                                 if (!ExecGetJunkAttribute(junkfilter,
1066                                                                                   slot,
1067                                                                                   "ctid",
1068                                                                                   &datum,
1069                                                                                   &isNull))
1070                                         elog(ERROR, "could not find junk ctid column");
1071
1072                                 /* shouldn't ever get a null result... */
1073                                 if (isNull)
1074                                         elog(ERROR, "ctid is NULL");
1075
1076                                 tupleid = (ItemPointer) DatumGetPointer(datum);
1077                                 tuple_ctid = *tupleid;  /* make sure we don't free the
1078                                                                                  * ctid!! */
1079                                 tupleid = &tuple_ctid;
1080                         }
1081                         else if (estate->es_rowMark != NIL)
1082                         {
1083                                 List       *l;
1084
1085                 lmark:  ;
1086                                 foreach(l, estate->es_rowMark)
1087                                 {
1088                                         execRowMark *erm = lfirst(l);
1089                                         Buffer          buffer;
1090                                         HeapTupleData tuple;
1091                                         TupleTableSlot *newSlot;
1092                                         int                     test;
1093
1094                                         if (!ExecGetJunkAttribute(junkfilter,
1095                                                                                           slot,
1096                                                                                           erm->resname,
1097                                                                                           &datum,
1098                                                                                           &isNull))
1099                                                 elog(ERROR, "could not find junk \"%s\" column",
1100                                                          erm->resname);
1101
1102                                         /* shouldn't ever get a null result... */
1103                                         if (isNull)
1104                                                 elog(ERROR, "\"%s\" is NULL", erm->resname);
1105
1106                                         tuple.t_self = *((ItemPointer) DatumGetPointer(datum));
1107                                         test = heap_mark4update(erm->relation, &tuple, &buffer,
1108                                                                                         estate->es_snapshot->curcid);
1109                                         ReleaseBuffer(buffer);
1110                                         switch (test)
1111                                         {
1112                                                 case HeapTupleSelfUpdated:
1113                                                         /* treat it as deleted; do not process */
1114                                                         goto lnext;
1115
1116                                                 case HeapTupleMayBeUpdated:
1117                                                         break;
1118
1119                                                 case HeapTupleUpdated:
1120                                                         if (XactIsoLevel == XACT_SERIALIZABLE)
1121                                                                 ereport(ERROR,
1122                                                                                 (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
1123                                                                                  errmsg("could not serialize access due to concurrent update")));
1124                                                         if (!(ItemPointerEquals(&(tuple.t_self),
1125                                                                   (ItemPointer) DatumGetPointer(datum))))
1126                                                         {
1127                                                                 newSlot = EvalPlanQual(estate, erm->rti, &(tuple.t_self));
1128                                                                 if (!(TupIsNull(newSlot)))
1129                                                                 {
1130                                                                         slot = newSlot;
1131                                                                         estate->es_useEvalPlan = true;
1132                                                                         goto lmark;
1133                                                                 }
1134                                                         }
1135
1136                                                         /*
1137                                                          * if tuple was deleted or PlanQual failed for
1138                                                          * updated tuple - we must not return this
1139                                                          * tuple!
1140                                                          */
1141                                                         goto lnext;
1142
1143                                                 default:
1144                                                         elog(ERROR, "unrecognized heap_mark4update status: %u",
1145                                                                  test);
1146                                                         return (NULL);
1147                                         }
1148                                 }
1149                         }
1150
1151                         /*
1152                          * Finally create a new "clean" tuple with all junk attributes
1153                          * removed
1154                          */
1155                         newTuple = ExecRemoveJunk(junkfilter, slot);
1156
1157                         slot = ExecStoreTuple(newTuple,         /* tuple to store */
1158                                                                   junkfilter->jf_resultSlot,    /* dest slot */
1159                                                                   InvalidBuffer,                /* this tuple has no
1160                                                                                                                  * buffer */
1161                                                                   true);                /* tuple should be pfreed */
1162                 }
1163
1164                 /*
1165                  * now that we have a tuple, do the appropriate thing with it..
1166                  * either return it to the user, add it to a relation someplace,
1167                  * delete it from a relation, or modify some of its attributes.
1168                  */
1169                 switch (operation)
1170                 {
1171                         case CMD_SELECT:
1172                                 ExecSelect(slot,        /* slot containing tuple */
1173                                                    dest,        /* destination's tuple-receiver obj */
1174                                                    estate);
1175                                 result = slot;
1176                                 break;
1177
1178                         case CMD_INSERT:
1179                                 ExecInsert(slot, tupleid, estate);
1180                                 result = NULL;
1181                                 break;
1182
1183                         case CMD_DELETE:
1184                                 ExecDelete(slot, tupleid, estate);
1185                                 result = NULL;
1186                                 break;
1187
1188                         case CMD_UPDATE:
1189                                 ExecUpdate(slot, tupleid, estate);
1190                                 result = NULL;
1191                                 break;
1192
1193                         default:
1194                                 elog(ERROR, "unrecognized operation code: %d",
1195                                          (int) operation);
1196                                 result = NULL;
1197                                 break;
1198                 }
1199
1200                 /*
1201                  * check our tuple count.. if we've processed the proper number
1202                  * then quit, else loop again and process more tuples.  Zero
1203                  * numberTuples means no limit.
1204                  */
1205                 current_tuple_count++;
1206                 if (numberTuples && numberTuples == current_tuple_count)
1207                         break;
1208         }
1209
1210         /*
1211          * Process AFTER EACH STATEMENT triggers
1212          */
1213         switch (operation)
1214         {
1215                 case CMD_UPDATE:
1216                         ExecASUpdateTriggers(estate, estate->es_result_relation_info);
1217                         break;
1218                 case CMD_DELETE:
1219                         ExecASDeleteTriggers(estate, estate->es_result_relation_info);
1220                         break;
1221                 case CMD_INSERT:
1222                         ExecASInsertTriggers(estate, estate->es_result_relation_info);
1223                         break;
1224                 default:
1225                         /* do nothing */
1226                         break;
1227         }
1228
1229         /*
1230          * here, result is either a slot containing a tuple in the case of a
1231          * SELECT or NULL otherwise.
1232          */
1233         return result;
1234 }
1235
1236 /* ----------------------------------------------------------------
1237  *              ExecSelect
1238  *
1239  *              SELECTs are easy.. we just pass the tuple to the appropriate
1240  *              print function.  The only complexity is when we do a
1241  *              "SELECT INTO", in which case we insert the tuple into
1242  *              the appropriate relation (note: this is a newly created relation
1243  *              so we don't need to worry about indices or locks.)
1244  * ----------------------------------------------------------------
1245  */
1246 static void
1247 ExecSelect(TupleTableSlot *slot,
1248                    DestReceiver *dest,
1249                    EState *estate)
1250 {
1251         HeapTuple       tuple;
1252         TupleDesc       attrtype;
1253
1254         /*
1255          * get the heap tuple out of the tuple table slot
1256          */
1257         tuple = slot->val;
1258         attrtype = slot->ttc_tupleDescriptor;
1259
1260         /*
1261          * insert the tuple into the "into relation"
1262          *
1263          * XXX this probably ought to be replaced by a separate destination
1264          */
1265         if (estate->es_into_relation_descriptor != NULL)
1266         {
1267                 heap_insert(estate->es_into_relation_descriptor, tuple,
1268                                         estate->es_snapshot->curcid);
1269                 IncrAppended();
1270         }
1271
1272         /*
1273          * send the tuple to the destination
1274          */
1275         (*dest->receiveTuple) (tuple, attrtype, dest);
1276         IncrRetrieved();
1277         (estate->es_processed)++;
1278 }
1279
1280 /* ----------------------------------------------------------------
1281  *              ExecInsert
1282  *
1283  *              INSERTs are trickier.. we have to insert the tuple into
1284  *              the base relation and insert appropriate tuples into the
1285  *              index relations.
1286  * ----------------------------------------------------------------
1287  */
1288 static void
1289 ExecInsert(TupleTableSlot *slot,
1290                    ItemPointer tupleid,
1291                    EState *estate)
1292 {
1293         HeapTuple       tuple;
1294         ResultRelInfo *resultRelInfo;
1295         Relation        resultRelationDesc;
1296         int                     numIndices;
1297         Oid                     newId;
1298
1299         /*
1300          * get the heap tuple out of the tuple table slot
1301          */
1302         tuple = slot->val;
1303
1304         /*
1305          * get information on the (current) result relation
1306          */
1307         resultRelInfo = estate->es_result_relation_info;
1308         resultRelationDesc = resultRelInfo->ri_RelationDesc;
1309
1310         /* BEFORE ROW INSERT Triggers */
1311         if (resultRelInfo->ri_TrigDesc &&
1312                 resultRelInfo->ri_TrigDesc->n_before_row[TRIGGER_EVENT_INSERT] > 0)
1313         {
1314                 HeapTuple       newtuple;
1315
1316                 newtuple = ExecBRInsertTriggers(estate, resultRelInfo, tuple);
1317
1318                 if (newtuple == NULL)   /* "do nothing" */
1319                         return;
1320
1321                 if (newtuple != tuple)  /* modified by Trigger(s) */
1322                 {
1323                         /*
1324                          * Insert modified tuple into tuple table slot, replacing the
1325                          * original.  We assume that it was allocated in per-tuple
1326                          * memory context, and therefore will go away by itself. The
1327                          * tuple table slot should not try to clear it.
1328                          */
1329                         ExecStoreTuple(newtuple, slot, InvalidBuffer, false);
1330                         tuple = newtuple;
1331                 }
1332         }
1333
1334         /*
1335          * Check the constraints of the tuple
1336          */
1337         if (resultRelationDesc->rd_att->constr)
1338                 ExecConstraints(resultRelInfo, slot, estate);
1339
1340         /*
1341          * insert the tuple
1342          */
1343         newId = heap_insert(resultRelationDesc, tuple,
1344                                                 estate->es_snapshot->curcid);
1345
1346         IncrAppended();
1347         (estate->es_processed)++;
1348         estate->es_lastoid = newId;
1349         setLastTid(&(tuple->t_self));
1350
1351         /*
1352          * process indices
1353          *
1354          * Note: heap_insert adds a new tuple to a relation.  As a side effect,
1355          * the tupleid of the new tuple is placed in the new tuple's t_ctid
1356          * field.
1357          */
1358         numIndices = resultRelInfo->ri_NumIndices;
1359         if (numIndices > 0)
1360                 ExecInsertIndexTuples(slot, &(tuple->t_self), estate, false);
1361
1362         /* AFTER ROW INSERT Triggers */
1363         ExecARInsertTriggers(estate, resultRelInfo, tuple);
1364 }
1365
1366 /* ----------------------------------------------------------------
1367  *              ExecDelete
1368  *
1369  *              DELETE is like UPDATE, we delete the tuple and its
1370  *              index tuples.
1371  * ----------------------------------------------------------------
1372  */
1373 static void
1374 ExecDelete(TupleTableSlot *slot,
1375                    ItemPointer tupleid,
1376                    EState *estate)
1377 {
1378         ResultRelInfo *resultRelInfo;
1379         Relation        resultRelationDesc;
1380         ItemPointerData ctid;
1381         int                     result;
1382
1383         /*
1384          * get information on the (current) result relation
1385          */
1386         resultRelInfo = estate->es_result_relation_info;
1387         resultRelationDesc = resultRelInfo->ri_RelationDesc;
1388
1389         /* BEFORE ROW DELETE Triggers */
1390         if (resultRelInfo->ri_TrigDesc &&
1391           resultRelInfo->ri_TrigDesc->n_before_row[TRIGGER_EVENT_DELETE] > 0)
1392         {
1393                 bool            dodelete;
1394
1395                 dodelete = ExecBRDeleteTriggers(estate, resultRelInfo, tupleid,
1396                                                                                 estate->es_snapshot->curcid);
1397
1398                 if (!dodelete)                  /* "do nothing" */
1399                         return;
1400         }
1401
1402         /*
1403          * delete the tuple
1404          */
1405 ldelete:;
1406         result = heap_delete(resultRelationDesc, tupleid,
1407                                                  &ctid,
1408                                                  estate->es_snapshot->curcid);
1409         switch (result)
1410         {
1411                 case HeapTupleSelfUpdated:
1412                         /* already deleted by self; nothing to do */
1413                         return;
1414
1415                 case HeapTupleMayBeUpdated:
1416                         break;
1417
1418                 case HeapTupleUpdated:
1419                         if (XactIsoLevel == XACT_SERIALIZABLE)
1420                                 ereport(ERROR,
1421                                                 (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
1422                                                  errmsg("could not serialize access due to concurrent update")));
1423                         else if (!(ItemPointerEquals(tupleid, &ctid)))
1424                         {
1425                                 TupleTableSlot *epqslot = EvalPlanQual(estate,
1426                                                            resultRelInfo->ri_RangeTableIndex, &ctid);
1427
1428                                 if (!TupIsNull(epqslot))
1429                                 {
1430                                         *tupleid = ctid;
1431                                         goto ldelete;
1432                                 }
1433                         }
1434                         /* tuple already deleted; nothing to do */
1435                         return;
1436
1437                 default:
1438                         elog(ERROR, "unrecognized heap_delete status: %u", result);
1439                         return;
1440         }
1441
1442         IncrDeleted();
1443         (estate->es_processed)++;
1444
1445         /*
1446          * Note: Normally one would think that we have to delete index tuples
1447          * associated with the heap tuple now..
1448          *
1449          * ... but in POSTGRES, we have no need to do this because the vacuum
1450          * daemon automatically opens an index scan and deletes index tuples
1451          * when it finds deleted heap tuples. -cim 9/27/89
1452          */
1453
1454         /* AFTER ROW DELETE Triggers */
1455         ExecARDeleteTriggers(estate, resultRelInfo, tupleid);
1456 }
1457
1458 /* ----------------------------------------------------------------
1459  *              ExecUpdate
1460  *
1461  *              note: we can't run UPDATE queries with transactions
1462  *              off because UPDATEs are actually INSERTs and our
1463  *              scan will mistakenly loop forever, updating the tuple
1464  *              it just inserted..      This should be fixed but until it
1465  *              is, we don't want to get stuck in an infinite loop
1466  *              which corrupts your database..
1467  * ----------------------------------------------------------------
1468  */
1469 static void
1470 ExecUpdate(TupleTableSlot *slot,
1471                    ItemPointer tupleid,
1472                    EState *estate)
1473 {
1474         HeapTuple       tuple;
1475         ResultRelInfo *resultRelInfo;
1476         Relation        resultRelationDesc;
1477         ItemPointerData ctid;
1478         int                     result;
1479         int                     numIndices;
1480
1481         /*
1482          * abort the operation if not running transactions
1483          */
1484         if (IsBootstrapProcessingMode())
1485                 elog(ERROR, "cannot UPDATE during bootstrap");
1486
1487         /*
1488          * get the heap tuple out of the tuple table slot
1489          */
1490         tuple = slot->val;
1491
1492         /*
1493          * get information on the (current) result relation
1494          */
1495         resultRelInfo = estate->es_result_relation_info;
1496         resultRelationDesc = resultRelInfo->ri_RelationDesc;
1497
1498         /* BEFORE ROW UPDATE Triggers */
1499         if (resultRelInfo->ri_TrigDesc &&
1500           resultRelInfo->ri_TrigDesc->n_before_row[TRIGGER_EVENT_UPDATE] > 0)
1501         {
1502                 HeapTuple       newtuple;
1503
1504                 newtuple = ExecBRUpdateTriggers(estate, resultRelInfo,
1505                                                                                 tupleid, tuple,
1506                                                                                 estate->es_snapshot->curcid);
1507
1508                 if (newtuple == NULL)   /* "do nothing" */
1509                         return;
1510
1511                 if (newtuple != tuple)  /* modified by Trigger(s) */
1512                 {
1513                         /*
1514                          * Insert modified tuple into tuple table slot, replacing the
1515                          * original.  We assume that it was allocated in per-tuple
1516                          * memory context, and therefore will go away by itself. The
1517                          * tuple table slot should not try to clear it.
1518                          */
1519                         ExecStoreTuple(newtuple, slot, InvalidBuffer, false);
1520                         tuple = newtuple;
1521                 }
1522         }
1523
1524         /*
1525          * Check the constraints of the tuple
1526          *
1527          * If we generate a new candidate tuple after EvalPlanQual testing, we
1528          * must loop back here and recheck constraints.  (We don't need to
1529          * redo triggers, however.      If there are any BEFORE triggers then
1530          * trigger.c will have done mark4update to lock the correct tuple, so
1531          * there's no need to do them again.)
1532          */
1533 lreplace:;
1534         if (resultRelationDesc->rd_att->constr)
1535                 ExecConstraints(resultRelInfo, slot, estate);
1536
1537         /*
1538          * replace the heap tuple
1539          */
1540         result = heap_update(resultRelationDesc, tupleid, tuple,
1541                                                  &ctid,
1542                                                  estate->es_snapshot->curcid);
1543         switch (result)
1544         {
1545                 case HeapTupleSelfUpdated:
1546                         /* already deleted by self; nothing to do */
1547                         return;
1548
1549                 case HeapTupleMayBeUpdated:
1550                         break;
1551
1552                 case HeapTupleUpdated:
1553                         if (XactIsoLevel == XACT_SERIALIZABLE)
1554                                 ereport(ERROR,
1555                                                 (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
1556                                                  errmsg("could not serialize access due to concurrent update")));
1557                         else if (!(ItemPointerEquals(tupleid, &ctid)))
1558                         {
1559                                 TupleTableSlot *epqslot = EvalPlanQual(estate,
1560                                                            resultRelInfo->ri_RangeTableIndex, &ctid);
1561
1562                                 if (!TupIsNull(epqslot))
1563                                 {
1564                                         *tupleid = ctid;
1565                                         tuple = ExecRemoveJunk(estate->es_junkFilter, epqslot);
1566                                         slot = ExecStoreTuple(tuple,
1567                                                                         estate->es_junkFilter->jf_resultSlot,
1568                                                                                   InvalidBuffer, true);
1569                                         goto lreplace;
1570                                 }
1571                         }
1572                         /* tuple already deleted; nothing to do */
1573                         return;
1574
1575                 default:
1576                         elog(ERROR, "unrecognized heap_update status: %u", result);
1577                         return;
1578         }
1579
1580         IncrReplaced();
1581         (estate->es_processed)++;
1582
1583         /*
1584          * Note: instead of having to update the old index tuples associated
1585          * with the heap tuple, all we do is form and insert new index tuples.
1586          * This is because UPDATEs are actually DELETEs and INSERTs and index
1587          * tuple deletion is done automagically by the vacuum daemon. All we
1588          * do is insert new index tuples.  -cim 9/27/89
1589          */
1590
1591         /*
1592          * process indices
1593          *
1594          * heap_update updates a tuple in the base relation by invalidating it
1595          * and then inserting a new tuple to the relation.      As a side effect,
1596          * the tupleid of the new tuple is placed in the new tuple's t_ctid
1597          * field.  So we now insert index tuples using the new tupleid stored
1598          * there.
1599          */
1600
1601         numIndices = resultRelInfo->ri_NumIndices;
1602         if (numIndices > 0)
1603                 ExecInsertIndexTuples(slot, &(tuple->t_self), estate, false);
1604
1605         /* AFTER ROW UPDATE Triggers */
1606         ExecARUpdateTriggers(estate, resultRelInfo, tupleid, tuple);
1607 }
1608
1609 static const char *
1610 ExecRelCheck(ResultRelInfo *resultRelInfo,
1611                          TupleTableSlot *slot, EState *estate)
1612 {
1613         Relation        rel = resultRelInfo->ri_RelationDesc;
1614         int                     ncheck = rel->rd_att->constr->num_check;
1615         ConstrCheck *check = rel->rd_att->constr->check;
1616         ExprContext *econtext;
1617         MemoryContext oldContext;
1618         List       *qual;
1619         int                     i;
1620
1621         /*
1622          * If first time through for this result relation, build expression
1623          * nodetrees for rel's constraint expressions.  Keep them in the
1624          * per-query memory context so they'll survive throughout the query.
1625          */
1626         if (resultRelInfo->ri_ConstraintExprs == NULL)
1627         {
1628                 oldContext = MemoryContextSwitchTo(estate->es_query_cxt);
1629                 resultRelInfo->ri_ConstraintExprs =
1630                         (List **) palloc(ncheck * sizeof(List *));
1631                 for (i = 0; i < ncheck; i++)
1632                 {
1633                         qual = (List *) stringToNode(check[i].ccbin);
1634                         resultRelInfo->ri_ConstraintExprs[i] = (List *)
1635                                 ExecPrepareExpr((Expr *) qual, estate);
1636                 }
1637                 MemoryContextSwitchTo(oldContext);
1638         }
1639
1640         /*
1641          * We will use the EState's per-tuple context for evaluating
1642          * constraint expressions (creating it if it's not already there).
1643          */
1644         econtext = GetPerTupleExprContext(estate);
1645
1646         /* Arrange for econtext's scan tuple to be the tuple under test */
1647         econtext->ecxt_scantuple = slot;
1648
1649         /* And evaluate the constraints */
1650         for (i = 0; i < ncheck; i++)
1651         {
1652                 qual = resultRelInfo->ri_ConstraintExprs[i];
1653
1654                 /*
1655                  * NOTE: SQL92 specifies that a NULL result from a constraint
1656                  * expression is not to be treated as a failure.  Therefore, tell
1657                  * ExecQual to return TRUE for NULL.
1658                  */
1659                 if (!ExecQual(qual, econtext, true))
1660                         return check[i].ccname;
1661         }
1662
1663         /* NULL result means no error */
1664         return NULL;
1665 }
1666
1667 void
1668 ExecConstraints(ResultRelInfo *resultRelInfo,
1669                                 TupleTableSlot *slot, EState *estate)
1670 {
1671         Relation        rel = resultRelInfo->ri_RelationDesc;
1672         HeapTuple       tuple = slot->val;
1673         TupleConstr *constr = rel->rd_att->constr;
1674
1675         Assert(constr);
1676
1677         if (constr->has_not_null)
1678         {
1679                 int                     natts = rel->rd_att->natts;
1680                 int                     attrChk;
1681
1682                 for (attrChk = 1; attrChk <= natts; attrChk++)
1683                 {
1684                         if (rel->rd_att->attrs[attrChk - 1]->attnotnull &&
1685                                 heap_attisnull(tuple, attrChk))
1686                                 ereport(ERROR,
1687                                                 (errcode(ERRCODE_NOT_NULL_VIOLATION),
1688                                                  errmsg("null value for attribute \"%s\" violates NOT NULL constraint",
1689                                                                 NameStr(rel->rd_att->attrs[attrChk - 1]->attname))));
1690                 }
1691         }
1692
1693         if (constr->num_check > 0)
1694         {
1695                 const char         *failed;
1696
1697                 if ((failed = ExecRelCheck(resultRelInfo, slot, estate)) != NULL)
1698                         ereport(ERROR,
1699                                         (errcode(ERRCODE_CHECK_VIOLATION),
1700                                          errmsg("new row for relation \"%s\" violates CHECK constraint \"%s\"",
1701                                                         RelationGetRelationName(rel), failed)));
1702         }
1703 }
1704
1705 /*
1706  * Check a modified tuple to see if we want to process its updated version
1707  * under READ COMMITTED rules.
1708  *
1709  * See backend/executor/README for some info about how this works.
1710  */
1711 TupleTableSlot *
1712 EvalPlanQual(EState *estate, Index rti, ItemPointer tid)
1713 {
1714         evalPlanQual *epq;
1715         EState     *epqstate;
1716         Relation        relation;
1717         HeapTupleData tuple;
1718         HeapTuple       copyTuple = NULL;
1719         bool            endNode;
1720
1721         Assert(rti != 0);
1722
1723         /*
1724          * find relation containing target tuple
1725          */
1726         if (estate->es_result_relation_info != NULL &&
1727                 estate->es_result_relation_info->ri_RangeTableIndex == rti)
1728                 relation = estate->es_result_relation_info->ri_RelationDesc;
1729         else
1730         {
1731                 List       *l;
1732
1733                 relation = NULL;
1734                 foreach(l, estate->es_rowMark)
1735                 {
1736                         if (((execRowMark *) lfirst(l))->rti == rti)
1737                         {
1738                                 relation = ((execRowMark *) lfirst(l))->relation;
1739                                 break;
1740                         }
1741                 }
1742                 if (relation == NULL)
1743                         elog(ERROR, "could not find RowMark for RT index %u", rti);
1744         }
1745
1746         /*
1747          * fetch tid tuple
1748          *
1749          * Loop here to deal with updated or busy tuples
1750          */
1751         tuple.t_self = *tid;
1752         for (;;)
1753         {
1754                 Buffer          buffer;
1755
1756                 if (heap_fetch(relation, SnapshotDirty, &tuple, &buffer, false, NULL))
1757                 {
1758                         TransactionId xwait = SnapshotDirty->xmax;
1759
1760                         /* xmin should not be dirty... */
1761                         if (TransactionIdIsValid(SnapshotDirty->xmin))
1762                                 elog(ERROR, "t_xmin is uncommitted in tuple to be updated");
1763
1764                         /*
1765                          * If tuple is being updated by other transaction then we have
1766                          * to wait for its commit/abort.
1767                          */
1768                         if (TransactionIdIsValid(xwait))
1769                         {
1770                                 ReleaseBuffer(buffer);
1771                                 XactLockTableWait(xwait);
1772                                 continue;
1773                         }
1774
1775                         /*
1776                          * We got tuple - now copy it for use by recheck query.
1777                          */
1778                         copyTuple = heap_copytuple(&tuple);
1779                         ReleaseBuffer(buffer);
1780                         break;
1781                 }
1782
1783                 /*
1784                  * Oops! Invalid tuple. Have to check is it updated or deleted.
1785                  * Note that it's possible to get invalid SnapshotDirty->tid if
1786                  * tuple updated by this transaction. Have we to check this ?
1787                  */
1788                 if (ItemPointerIsValid(&(SnapshotDirty->tid)) &&
1789                         !(ItemPointerEquals(&(tuple.t_self), &(SnapshotDirty->tid))))
1790                 {
1791                         /* updated, so look at the updated copy */
1792                         tuple.t_self = SnapshotDirty->tid;
1793                         continue;
1794                 }
1795
1796                 /*
1797                  * Deleted or updated by this transaction; forget it.
1798                  */
1799                 return NULL;
1800         }
1801
1802         /*
1803          * For UPDATE/DELETE we have to return tid of actual row we're
1804          * executing PQ for.
1805          */
1806         *tid = tuple.t_self;
1807
1808         /*
1809          * Need to run a recheck subquery.      Find or create a PQ stack entry.
1810          */
1811         epq = estate->es_evalPlanQual;
1812         endNode = true;
1813
1814         if (epq != NULL && epq->rti == 0)
1815         {
1816                 /* Top PQ stack entry is idle, so re-use it */
1817                 Assert(!(estate->es_useEvalPlan) && epq->next == NULL);
1818                 epq->rti = rti;
1819                 endNode = false;
1820         }
1821
1822         /*
1823          * If this is request for another RTE - Ra, - then we have to check
1824          * wasn't PlanQual requested for Ra already and if so then Ra' row was
1825          * updated again and we have to re-start old execution for Ra and
1826          * forget all what we done after Ra was suspended. Cool? -:))
1827          */
1828         if (epq != NULL && epq->rti != rti &&
1829                 epq->estate->es_evTuple[rti - 1] != NULL)
1830         {
1831                 do
1832                 {
1833                         evalPlanQual *oldepq;
1834
1835                         /* stop execution */
1836                         EvalPlanQualStop(epq);
1837                         /* pop previous PlanQual from the stack */
1838                         oldepq = epq->next;
1839                         Assert(oldepq && oldepq->rti != 0);
1840                         /* push current PQ to freePQ stack */
1841                         oldepq->free = epq;
1842                         epq = oldepq;
1843                         estate->es_evalPlanQual = epq;
1844                 } while (epq->rti != rti);
1845         }
1846
1847         /*
1848          * If we are requested for another RTE then we have to suspend
1849          * execution of current PlanQual and start execution for new one.
1850          */
1851         if (epq == NULL || epq->rti != rti)
1852         {
1853                 /* try to reuse plan used previously */
1854                 evalPlanQual *newepq = (epq != NULL) ? epq->free : NULL;
1855
1856                 if (newepq == NULL)             /* first call or freePQ stack is empty */
1857                 {
1858                         newepq = (evalPlanQual *) palloc0(sizeof(evalPlanQual));
1859                         newepq->free = NULL;
1860                         newepq->estate = NULL;
1861                         newepq->planstate = NULL;
1862                 }
1863                 else
1864                 {
1865                         /* recycle previously used PlanQual */
1866                         Assert(newepq->estate == NULL);
1867                         epq->free = NULL;
1868                 }
1869                 /* push current PQ to the stack */
1870                 newepq->next = epq;
1871                 epq = newepq;
1872                 estate->es_evalPlanQual = epq;
1873                 epq->rti = rti;
1874                 endNode = false;
1875         }
1876
1877         Assert(epq->rti == rti);
1878
1879         /*
1880          * Ok - we're requested for the same RTE.  Unfortunately we still have
1881          * to end and restart execution of the plan, because ExecReScan
1882          * wouldn't ensure that upper plan nodes would reset themselves.  We
1883          * could make that work if insertion of the target tuple were
1884          * integrated with the Param mechanism somehow, so that the upper plan
1885          * nodes know that their children's outputs have changed.
1886          *
1887          * Note that the stack of free evalPlanQual nodes is quite useless at
1888          * the moment, since it only saves us from pallocing/releasing the
1889          * evalPlanQual nodes themselves.  But it will be useful once we
1890          * implement ReScan instead of end/restart for re-using PlanQual nodes.
1891          */
1892         if (endNode)
1893         {
1894                 /* stop execution */
1895                 EvalPlanQualStop(epq);
1896         }
1897
1898         /*
1899          * Initialize new recheck query.
1900          *
1901          * Note: if we were re-using PlanQual plans via ExecReScan, we'd need
1902          * to instead copy down changeable state from the top plan (including
1903          * es_result_relation_info, es_junkFilter) and reset locally changeable
1904          * state in the epq (including es_param_exec_vals, es_evTupleNull).
1905          */
1906         EvalPlanQualStart(epq, estate, epq->next);
1907
1908         /*
1909          * free old RTE' tuple, if any, and store target tuple where
1910          * relation's scan node will see it
1911          */
1912         epqstate = epq->estate;
1913         if (epqstate->es_evTuple[rti - 1] != NULL)
1914                 heap_freetuple(epqstate->es_evTuple[rti - 1]);
1915         epqstate->es_evTuple[rti - 1] = copyTuple;
1916
1917         return EvalPlanQualNext(estate);
1918 }
1919
1920 static TupleTableSlot *
1921 EvalPlanQualNext(EState *estate)
1922 {
1923         evalPlanQual *epq = estate->es_evalPlanQual;
1924         MemoryContext oldcontext;
1925         TupleTableSlot *slot;
1926
1927         Assert(epq->rti != 0);
1928
1929 lpqnext:;
1930         oldcontext = MemoryContextSwitchTo(epq->estate->es_query_cxt);
1931         slot = ExecProcNode(epq->planstate);
1932         MemoryContextSwitchTo(oldcontext);
1933
1934         /*
1935          * No more tuples for this PQ. Continue previous one.
1936          */
1937         if (TupIsNull(slot))
1938         {
1939                 evalPlanQual *oldepq;
1940
1941                 /* stop execution */
1942                 EvalPlanQualStop(epq);
1943                 /* pop old PQ from the stack */
1944                 oldepq = epq->next;
1945                 if (oldepq == NULL)
1946                 {
1947                         /* this is the first (oldest) PQ - mark as free */
1948                         epq->rti = 0;
1949                         estate->es_useEvalPlan = false;
1950                         /* and continue Query execution */
1951                         return (NULL);
1952                 }
1953                 Assert(oldepq->rti != 0);
1954                 /* push current PQ to freePQ stack */
1955                 oldepq->free = epq;
1956                 epq = oldepq;
1957                 estate->es_evalPlanQual = epq;
1958                 goto lpqnext;
1959         }
1960
1961         return (slot);
1962 }
1963
1964 static void
1965 EndEvalPlanQual(EState *estate)
1966 {
1967         evalPlanQual *epq = estate->es_evalPlanQual;
1968
1969         if (epq->rti == 0)                      /* plans already shutdowned */
1970         {
1971                 Assert(epq->next == NULL);
1972                 return;
1973         }
1974
1975         for (;;)
1976         {
1977                 evalPlanQual *oldepq;
1978
1979                 /* stop execution */
1980                 EvalPlanQualStop(epq);
1981                 /* pop old PQ from the stack */
1982                 oldepq = epq->next;
1983                 if (oldepq == NULL)
1984                 {
1985                         /* this is the first (oldest) PQ - mark as free */
1986                         epq->rti = 0;
1987                         estate->es_useEvalPlan = false;
1988                         break;
1989                 }
1990                 Assert(oldepq->rti != 0);
1991                 /* push current PQ to freePQ stack */
1992                 oldepq->free = epq;
1993                 epq = oldepq;
1994                 estate->es_evalPlanQual = epq;
1995         }
1996 }
1997
1998 /*
1999  * Start execution of one level of PlanQual.
2000  *
2001  * This is a cut-down version of ExecutorStart(): we copy some state from
2002  * the top-level estate rather than initializing it fresh.
2003  */
2004 static void
2005 EvalPlanQualStart(evalPlanQual *epq, EState *estate, evalPlanQual *priorepq)
2006 {
2007         EState     *epqstate;
2008         int                     rtsize;
2009         MemoryContext oldcontext;
2010
2011         rtsize = length(estate->es_range_table);
2012
2013         epq->estate = epqstate = CreateExecutorState();
2014
2015         oldcontext = MemoryContextSwitchTo(epqstate->es_query_cxt);
2016
2017         /*
2018          * The epqstates share the top query's copy of unchanging state such
2019          * as the snapshot, rangetable, result-rel info, and external Param info.
2020          * They need their own copies of local state, including a tuple table,
2021          * es_param_exec_vals, etc.
2022          */
2023         epqstate->es_direction = ForwardScanDirection;
2024         epqstate->es_snapshot = estate->es_snapshot;
2025         epqstate->es_range_table = estate->es_range_table;
2026         epqstate->es_result_relations = estate->es_result_relations;
2027         epqstate->es_num_result_relations = estate->es_num_result_relations;
2028         epqstate->es_result_relation_info = estate->es_result_relation_info;
2029         epqstate->es_junkFilter = estate->es_junkFilter;
2030         epqstate->es_into_relation_descriptor = estate->es_into_relation_descriptor;
2031         epqstate->es_param_list_info = estate->es_param_list_info;
2032         if (estate->es_topPlan->nParamExec > 0)
2033                 epqstate->es_param_exec_vals = (ParamExecData *)
2034                         palloc0(estate->es_topPlan->nParamExec * sizeof(ParamExecData));
2035         epqstate->es_rowMark = estate->es_rowMark;
2036         epqstate->es_instrument = estate->es_instrument;
2037         epqstate->es_force_oids = estate->es_force_oids;
2038         epqstate->es_topPlan = estate->es_topPlan;
2039         /*
2040          * Each epqstate must have its own es_evTupleNull state, but
2041          * all the stack entries share es_evTuple state.  This allows
2042          * sub-rechecks to inherit the value being examined by an
2043          * outer recheck.
2044          */
2045         epqstate->es_evTupleNull = (bool *) palloc0(rtsize * sizeof(bool));
2046         if (priorepq == NULL)
2047                 /* first PQ stack entry */
2048                 epqstate->es_evTuple = (HeapTuple *)
2049                         palloc0(rtsize * sizeof(HeapTuple));
2050         else
2051                 /* later stack entries share the same storage */
2052                 epqstate->es_evTuple = priorepq->estate->es_evTuple;
2053
2054         epqstate->es_tupleTable =
2055                 ExecCreateTupleTable(estate->es_tupleTable->size);
2056
2057         epq->planstate = ExecInitNode(estate->es_topPlan, epqstate);
2058
2059         MemoryContextSwitchTo(oldcontext);
2060 }
2061
2062 /*
2063  * End execution of one level of PlanQual.
2064  *
2065  * This is a cut-down version of ExecutorEnd(); basically we want to do most
2066  * of the normal cleanup, but *not* close result relations (which we are
2067  * just sharing from the outer query).
2068  */
2069 static void
2070 EvalPlanQualStop(evalPlanQual *epq)
2071 {
2072         EState     *epqstate = epq->estate;
2073         MemoryContext oldcontext;
2074
2075         oldcontext = MemoryContextSwitchTo(epqstate->es_query_cxt);
2076
2077         ExecEndNode(epq->planstate);
2078
2079         ExecDropTupleTable(epqstate->es_tupleTable, true);
2080         epqstate->es_tupleTable = NULL;
2081
2082         if (epqstate->es_evTuple[epq->rti - 1] != NULL)
2083         {
2084                 heap_freetuple(epqstate->es_evTuple[epq->rti - 1]);
2085                 epqstate->es_evTuple[epq->rti - 1] = NULL;
2086         }
2087
2088         MemoryContextSwitchTo(oldcontext);
2089
2090         FreeExecutorState(epqstate);
2091
2092         epq->estate = NULL;
2093         epq->planstate = NULL;
2094 }