]> granicus.if.org Git - postgresql/blob - src/backend/executor/execMain.c
Junkfilter logic to force a projection step during SELECT INTO was too
[postgresql] / src / backend / executor / execMain.c
1 /*-------------------------------------------------------------------------
2  *
3  * execMain.c
4  *        top level executor interface routines
5  *
6  * INTERFACE ROUTINES
7  *      ExecutorStart()
8  *      ExecutorRun()
9  *      ExecutorEnd()
10  *
11  *      The old ExecutorMain() has been replaced by ExecutorStart(),
12  *      ExecutorRun() and ExecutorEnd()
13  *
14  *      These three procedures are the external interfaces to the executor.
15  *      In each case, the query descriptor is required as an argument.
16  *
17  *      ExecutorStart() must be called at the beginning of execution of any
18  *      query plan and ExecutorEnd() should always be called at the end of
19  *      execution of a plan.
20  *
21  *      ExecutorRun accepts direction and count arguments that specify whether
22  *      the plan is to be executed forwards, backwards, and for how many tuples.
23  *
24  * Portions Copyright (c) 1996-2003, PostgreSQL Global Development Group
25  * Portions Copyright (c) 1994, Regents of the University of California
26  *
27  *
28  * IDENTIFICATION
29  *        $PostgreSQL: pgsql/src/backend/executor/execMain.c,v 1.229 2004/03/02 18:56:15 tgl Exp $
30  *
31  *-------------------------------------------------------------------------
32  */
33 #include "postgres.h"
34
35 #include "access/heapam.h"
36 #include "catalog/heap.h"
37 #include "catalog/namespace.h"
38 #include "commands/tablecmds.h"
39 #include "commands/trigger.h"
40 #include "executor/execdebug.h"
41 #include "executor/execdefs.h"
42 #include "miscadmin.h"
43 #include "optimizer/clauses.h"
44 #include "optimizer/var.h"
45 #include "parser/parsetree.h"
46 #include "utils/acl.h"
47 #include "utils/guc.h"
48 #include "utils/lsyscache.h"
49
50
51 typedef struct execRowMark
52 {
53         Relation        relation;
54         Index           rti;
55         char            resname[32];
56 } execRowMark;
57
58 typedef struct evalPlanQual
59 {
60         Index           rti;
61         EState     *estate;
62         PlanState  *planstate;
63         struct evalPlanQual *next;      /* stack of active PlanQual plans */
64         struct evalPlanQual *free;      /* list of free PlanQual plans */
65 } evalPlanQual;
66
67 /* decls for local routines only used within this module */
68 static void InitPlan(QueryDesc *queryDesc, bool explainOnly);
69 static void initResultRelInfo(ResultRelInfo *resultRelInfo,
70                                   Index resultRelationIndex,
71                                   List *rangeTable,
72                                   CmdType operation);
73 static TupleTableSlot *ExecutePlan(EState *estate, PlanState *planstate,
74                         CmdType operation,
75                         long numberTuples,
76                         ScanDirection direction,
77                         DestReceiver *dest);
78 static void ExecSelect(TupleTableSlot *slot,
79                    DestReceiver *dest,
80                    EState *estate);
81 static void ExecInsert(TupleTableSlot *slot, ItemPointer tupleid,
82                    EState *estate);
83 static void ExecDelete(TupleTableSlot *slot, ItemPointer tupleid,
84                    EState *estate);
85 static void ExecUpdate(TupleTableSlot *slot, ItemPointer tupleid,
86                    EState *estate);
87 static TupleTableSlot *EvalPlanQualNext(EState *estate);
88 static void EndEvalPlanQual(EState *estate);
89 static void ExecCheckRTEPerms(RangeTblEntry *rte);
90 static void ExecCheckXactReadOnly(Query *parsetree);
91 static void EvalPlanQualStart(evalPlanQual *epq, EState *estate,
92                                   evalPlanQual *priorepq);
93 static void EvalPlanQualStop(evalPlanQual *epq);
94
95 /* end of local decls */
96
97
98 /* ----------------------------------------------------------------
99  *              ExecutorStart
100  *
101  *              This routine must be called at the beginning of any execution of any
102  *              query plan
103  *
104  * Takes a QueryDesc previously created by CreateQueryDesc (it's not real
105  * clear why we bother to separate the two functions, but...).  The tupDesc
106  * field of the QueryDesc is filled in to describe the tuples that will be
107  * returned, and the internal fields (estate and planstate) are set up.
108  *
109  * If useCurrentSnapshot is true, run the query with the latest available
110  * snapshot, instead of the normal QuerySnapshot.  Also, if it's an update
111  * or delete query, check that the rows to be updated or deleted would be
112  * visible to the normal QuerySnapshot.  (This is a special-case behavior
113  * needed for referential integrity updates in serializable transactions.
114  * We must check all currently-committed rows, but we want to throw a
115  * can't-serialize error if any rows that would need updates would not be
116  * visible under the normal serializable snapshot.)
117  *
118  * If explainOnly is true, we are not actually intending to run the plan,
119  * only to set up for EXPLAIN; so skip unwanted side-effects.
120  *
121  * NB: the CurrentMemoryContext when this is called will become the parent
122  * of the per-query context used for this Executor invocation.
123  * ----------------------------------------------------------------
124  */
125 void
126 ExecutorStart(QueryDesc *queryDesc, bool useCurrentSnapshot, bool explainOnly)
127 {
128         EState     *estate;
129         MemoryContext oldcontext;
130
131         /* sanity checks: queryDesc must not be started already */
132         Assert(queryDesc != NULL);
133         Assert(queryDesc->estate == NULL);
134
135         /*
136          * If the transaction is read-only, we need to check if any writes are
137          * planned to non-temporary tables.
138          */
139         if (XactReadOnly && !explainOnly)
140                 ExecCheckXactReadOnly(queryDesc->parsetree);
141
142         /*
143          * Build EState, switch into per-query memory context for startup.
144          */
145         estate = CreateExecutorState();
146         queryDesc->estate = estate;
147
148         oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
149
150         /*
151          * Fill in parameters, if any, from queryDesc
152          */
153         estate->es_param_list_info = queryDesc->params;
154
155         if (queryDesc->plantree->nParamExec > 0)
156                 estate->es_param_exec_vals = (ParamExecData *)
157                         palloc0(queryDesc->plantree->nParamExec * sizeof(ParamExecData));
158
159         estate->es_instrument = queryDesc->doInstrument;
160
161         /*
162          * Make our own private copy of the current query snapshot data.
163          *
164          * This "freezes" our idea of which tuples are good and which are not for
165          * the life of this query, even if it outlives the current command and
166          * current snapshot.
167          */
168         if (useCurrentSnapshot)
169         {
170                 /* RI update/delete query --- must use an up-to-date snapshot */
171                 estate->es_snapshot = CopyCurrentSnapshot();
172                 /* crosscheck updates/deletes against transaction snapshot */
173                 estate->es_crosscheck_snapshot = CopyQuerySnapshot();
174         }
175         else
176         {
177                 /* normal query --- use query snapshot, no crosscheck */
178                 estate->es_snapshot = CopyQuerySnapshot();
179                 estate->es_crosscheck_snapshot = SnapshotAny;
180         }
181
182         /*
183          * Initialize the plan state tree
184          */
185         InitPlan(queryDesc, explainOnly);
186
187         MemoryContextSwitchTo(oldcontext);
188 }
189
190 /* ----------------------------------------------------------------
191  *              ExecutorRun
192  *
193  *              This is the main routine of the executor module. It accepts
194  *              the query descriptor from the traffic cop and executes the
195  *              query plan.
196  *
197  *              ExecutorStart must have been called already.
198  *
199  *              If direction is NoMovementScanDirection then nothing is done
200  *              except to start up/shut down the destination.  Otherwise,
201  *              we retrieve up to 'count' tuples in the specified direction.
202  *
203  *              Note: count = 0 is interpreted as no portal limit, i.e., run to
204  *              completion.
205  *
206  * ----------------------------------------------------------------
207  */
208 TupleTableSlot *
209 ExecutorRun(QueryDesc *queryDesc,
210                         ScanDirection direction, long count)
211 {
212         EState     *estate;
213         CmdType         operation;
214         DestReceiver *dest;
215         TupleTableSlot *result;
216         MemoryContext oldcontext;
217
218         /* sanity checks */
219         Assert(queryDesc != NULL);
220
221         estate = queryDesc->estate;
222
223         Assert(estate != NULL);
224
225         /*
226          * Switch into per-query memory context
227          */
228         oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
229
230         /*
231          * extract information from the query descriptor and the query
232          * feature.
233          */
234         operation = queryDesc->operation;
235         dest = queryDesc->dest;
236
237         /*
238          * startup tuple receiver
239          */
240         estate->es_processed = 0;
241         estate->es_lastoid = InvalidOid;
242
243         (*dest->rStartup) (dest, operation, queryDesc->tupDesc);
244
245         /*
246          * run plan
247          */
248         if (direction == NoMovementScanDirection)
249                 result = NULL;
250         else
251                 result = ExecutePlan(estate,
252                                                          queryDesc->planstate,
253                                                          operation,
254                                                          count,
255                                                          direction,
256                                                          dest);
257
258         /*
259          * shutdown receiver
260          */
261         (*dest->rShutdown) (dest);
262
263         MemoryContextSwitchTo(oldcontext);
264
265         return result;
266 }
267
268 /* ----------------------------------------------------------------
269  *              ExecutorEnd
270  *
271  *              This routine must be called at the end of execution of any
272  *              query plan
273  * ----------------------------------------------------------------
274  */
275 void
276 ExecutorEnd(QueryDesc *queryDesc)
277 {
278         EState     *estate;
279         MemoryContext oldcontext;
280
281         /* sanity checks */
282         Assert(queryDesc != NULL);
283
284         estate = queryDesc->estate;
285
286         Assert(estate != NULL);
287
288         /*
289          * Switch into per-query memory context to run ExecEndPlan
290          */
291         oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
292
293         ExecEndPlan(queryDesc->planstate, estate);
294
295         /*
296          * Must switch out of context before destroying it
297          */
298         MemoryContextSwitchTo(oldcontext);
299
300         /*
301          * Release EState and per-query memory context.  This should release
302          * everything the executor has allocated.
303          */
304         FreeExecutorState(estate);
305
306         /* Reset queryDesc fields that no longer point to anything */
307         queryDesc->tupDesc = NULL;
308         queryDesc->estate = NULL;
309         queryDesc->planstate = NULL;
310 }
311
312 /* ----------------------------------------------------------------
313  *              ExecutorRewind
314  *
315  *              This routine may be called on an open queryDesc to rewind it
316  *              to the start.
317  * ----------------------------------------------------------------
318  */
319 void
320 ExecutorRewind(QueryDesc *queryDesc)
321 {
322         EState     *estate;
323         MemoryContext oldcontext;
324
325         /* sanity checks */
326         Assert(queryDesc != NULL);
327
328         estate = queryDesc->estate;
329
330         Assert(estate != NULL);
331
332         /* It's probably not sensible to rescan updating queries */
333         Assert(queryDesc->operation == CMD_SELECT);
334
335         /*
336          * Switch into per-query memory context
337          */
338         oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
339
340         /*
341          * rescan plan
342          */
343         ExecReScan(queryDesc->planstate, NULL);
344
345         MemoryContextSwitchTo(oldcontext);
346 }
347
348
349 /*
350  * ExecCheckRTPerms
351  *              Check access permissions for all relations listed in a range table.
352  */
353 void
354 ExecCheckRTPerms(List *rangeTable)
355 {
356         List       *lp;
357
358         foreach(lp, rangeTable)
359         {
360                 RangeTblEntry *rte = lfirst(lp);
361
362                 ExecCheckRTEPerms(rte);
363         }
364 }
365
366 /*
367  * ExecCheckRTEPerms
368  *              Check access permissions for a single RTE.
369  */
370 static void
371 ExecCheckRTEPerms(RangeTblEntry *rte)
372 {
373         AclMode         requiredPerms;
374         Oid                     relOid;
375         AclId           userid;
376
377         /*
378          * If it's a subquery, recursively examine its rangetable.
379          */
380         if (rte->rtekind == RTE_SUBQUERY)
381         {
382                 ExecCheckRTPerms(rte->subquery->rtable);
383                 return;
384         }
385
386         /*
387          * Otherwise, only plain-relation RTEs need to be checked here.
388          * Function RTEs are checked by init_fcache when the function is
389          * prepared for execution. Join and special RTEs need no checks.
390          */
391         if (rte->rtekind != RTE_RELATION)
392                 return;
393
394         /*
395          * No work if requiredPerms is empty.
396          */
397         requiredPerms = rte->requiredPerms;
398         if (requiredPerms == 0)
399                 return;
400
401         relOid = rte->relid;
402
403         /*
404          * userid to check as: current user unless we have a setuid
405          * indication.
406          *
407          * Note: GetUserId() is presently fast enough that there's no harm in
408          * calling it separately for each RTE.  If that stops being true, we
409          * could call it once in ExecCheckRTPerms and pass the userid down
410          * from there.  But for now, no need for the extra clutter.
411          */
412         userid = rte->checkAsUser ? rte->checkAsUser : GetUserId();
413
414         /*
415          * For each bit in requiredPerms, apply the required check.  (We can't
416          * do this in one aclcheck call because aclcheck treats multiple bits
417          * as OR semantics, when we want AND.)
418          *
419          * We use a well-known cute trick for isolating the rightmost one-bit
420          * in a nonzero word.  See nodes/bitmapset.c for commentary.
421          */
422 #define RIGHTMOST_ONE(x) ((int32) (x) & -((int32) (x)))
423
424         while (requiredPerms != 0)
425         {
426                 AclMode         thisPerm;
427                 AclResult       aclcheck_result;
428
429                 thisPerm = RIGHTMOST_ONE(requiredPerms);
430                 requiredPerms &= ~thisPerm;
431
432                 aclcheck_result = pg_class_aclcheck(relOid, userid, thisPerm);
433                 if (aclcheck_result != ACLCHECK_OK)
434                         aclcheck_error(aclcheck_result, ACL_KIND_CLASS,
435                                                    get_rel_name(relOid));
436         }
437 }
438
439 /*
440  * Check that the query does not imply any writes to non-temp tables.
441  */
442 static void
443 ExecCheckXactReadOnly(Query *parsetree)
444 {
445         List       *lp;
446
447         /*
448          * CREATE TABLE AS or SELECT INTO?
449          *
450          * XXX should we allow this if the destination is temp?
451          */
452         if (parsetree->into != NULL)
453                 goto fail;
454
455         /* Fail if write permissions are requested on any non-temp table */
456         foreach(lp, parsetree->rtable)
457         {
458                 RangeTblEntry *rte = lfirst(lp);
459
460                 if (rte->rtekind == RTE_SUBQUERY)
461                 {
462                         ExecCheckXactReadOnly(rte->subquery);
463                         continue;
464                 }
465
466                 if (rte->rtekind != RTE_RELATION)
467                         continue;
468
469                 if ((rte->requiredPerms & (~ACL_SELECT)) == 0)
470                         continue;
471
472                 if (isTempNamespace(get_rel_namespace(rte->relid)))
473                         continue;
474
475                 goto fail;
476         }
477
478         return;
479
480 fail:
481         ereport(ERROR,
482                         (errcode(ERRCODE_READ_ONLY_SQL_TRANSACTION),
483                          errmsg("transaction is read-only")));
484 }
485
486
487 /* ----------------------------------------------------------------
488  *              InitPlan
489  *
490  *              Initializes the query plan: open files, allocate storage
491  *              and start up the rule manager
492  * ----------------------------------------------------------------
493  */
494 static void
495 InitPlan(QueryDesc *queryDesc, bool explainOnly)
496 {
497         CmdType         operation = queryDesc->operation;
498         Query      *parseTree = queryDesc->parsetree;
499         Plan       *plan = queryDesc->plantree;
500         EState     *estate = queryDesc->estate;
501         PlanState  *planstate;
502         List       *rangeTable;
503         Relation        intoRelationDesc;
504         bool            do_select_into;
505         TupleDesc       tupType;
506
507         /*
508          * Do permissions checks.  It's sufficient to examine the query's top
509          * rangetable here --- subplan RTEs will be checked during
510          * ExecInitSubPlan().
511          */
512         ExecCheckRTPerms(parseTree->rtable);
513
514         /*
515          * get information from query descriptor
516          */
517         rangeTable = parseTree->rtable;
518
519         /*
520          * initialize the node's execution state
521          */
522         estate->es_range_table = rangeTable;
523
524         /*
525          * if there is a result relation, initialize result relation stuff
526          */
527         if (parseTree->resultRelation != 0 && operation != CMD_SELECT)
528         {
529                 List       *resultRelations = parseTree->resultRelations;
530                 int                     numResultRelations;
531                 ResultRelInfo *resultRelInfos;
532
533                 if (resultRelations != NIL)
534                 {
535                         /*
536                          * Multiple result relations (due to inheritance)
537                          * parseTree->resultRelations identifies them all
538                          */
539                         ResultRelInfo *resultRelInfo;
540
541                         numResultRelations = length(resultRelations);
542                         resultRelInfos = (ResultRelInfo *)
543                                 palloc(numResultRelations * sizeof(ResultRelInfo));
544                         resultRelInfo = resultRelInfos;
545                         while (resultRelations != NIL)
546                         {
547                                 initResultRelInfo(resultRelInfo,
548                                                                   lfirsti(resultRelations),
549                                                                   rangeTable,
550                                                                   operation);
551                                 resultRelInfo++;
552                                 resultRelations = lnext(resultRelations);
553                         }
554                 }
555                 else
556                 {
557                         /*
558                          * Single result relation identified by
559                          * parseTree->resultRelation
560                          */
561                         numResultRelations = 1;
562                         resultRelInfos = (ResultRelInfo *) palloc(sizeof(ResultRelInfo));
563                         initResultRelInfo(resultRelInfos,
564                                                           parseTree->resultRelation,
565                                                           rangeTable,
566                                                           operation);
567                 }
568
569                 estate->es_result_relations = resultRelInfos;
570                 estate->es_num_result_relations = numResultRelations;
571                 /* Initialize to first or only result rel */
572                 estate->es_result_relation_info = resultRelInfos;
573         }
574         else
575         {
576                 /*
577                  * if no result relation, then set state appropriately
578                  */
579                 estate->es_result_relations = NULL;
580                 estate->es_num_result_relations = 0;
581                 estate->es_result_relation_info = NULL;
582         }
583
584         /*
585          * Detect whether we're doing SELECT INTO.  If so, set the force_oids
586          * flag appropriately so that the plan tree will be initialized with
587          * the correct tuple descriptors.
588          */
589         do_select_into = false;
590
591         if (operation == CMD_SELECT && parseTree->into != NULL)
592         {
593                 do_select_into = true;
594                 estate->es_select_into = true;
595                 estate->es_into_oids = parseTree->intoHasOids;
596         }
597
598         /*
599          * Have to lock relations selected for update
600          */
601         estate->es_rowMark = NIL;
602         if (parseTree->rowMarks != NIL)
603         {
604                 List       *l;
605
606                 foreach(l, parseTree->rowMarks)
607                 {
608                         Index           rti = lfirsti(l);
609                         Oid                     relid = getrelid(rti, rangeTable);
610                         Relation        relation;
611                         execRowMark *erm;
612
613                         relation = heap_open(relid, RowShareLock);
614                         erm = (execRowMark *) palloc(sizeof(execRowMark));
615                         erm->relation = relation;
616                         erm->rti = rti;
617                         snprintf(erm->resname, sizeof(erm->resname), "ctid%u", rti);
618                         estate->es_rowMark = lappend(estate->es_rowMark, erm);
619                 }
620         }
621
622         /*
623          * initialize the executor "tuple" table.  We need slots for all the
624          * plan nodes, plus possibly output slots for the junkfilter(s). At
625          * this point we aren't sure if we need junkfilters, so just add slots
626          * for them unconditionally.
627          */
628         {
629                 int                     nSlots = ExecCountSlotsNode(plan);
630
631                 if (parseTree->resultRelations != NIL)
632                         nSlots += length(parseTree->resultRelations);
633                 else
634                         nSlots += 1;
635                 estate->es_tupleTable = ExecCreateTupleTable(nSlots);
636         }
637
638         /* mark EvalPlanQual not active */
639         estate->es_topPlan = plan;
640         estate->es_evalPlanQual = NULL;
641         estate->es_evTupleNull = NULL;
642         estate->es_evTuple = NULL;
643         estate->es_useEvalPlan = false;
644
645         /*
646          * initialize the private state information for all the nodes in the
647          * query tree.  This opens files, allocates storage and leaves us
648          * ready to start processing tuples.
649          */
650         planstate = ExecInitNode(plan, estate);
651
652         /*
653          * Get the tuple descriptor describing the type of tuples to return.
654          * (this is especially important if we are creating a relation with
655          * "SELECT INTO")
656          */
657         tupType = ExecGetResultType(planstate);
658
659         /*
660          * Initialize the junk filter if needed.  SELECT and INSERT queries
661          * need a filter if there are any junk attrs in the tlist.      INSERT and
662          * SELECT INTO also need a filter if the plan may return raw disk tuples
663          * (else heap_insert will be scribbling on the source relation!).
664          * UPDATE and DELETE always need a filter, since there's always a junk
665          * 'ctid' attribute present --- no need to look first.
666          */
667         {
668                 bool            junk_filter_needed = false;
669                 List       *tlist;
670
671                 switch (operation)
672                 {
673                         case CMD_SELECT:
674                         case CMD_INSERT:
675                                 foreach(tlist, plan->targetlist)
676                                 {
677                                         TargetEntry *tle = (TargetEntry *) lfirst(tlist);
678
679                                         if (tle->resdom->resjunk)
680                                         {
681                                                 junk_filter_needed = true;
682                                                 break;
683                                         }
684                                 }
685                                 if (!junk_filter_needed &&
686                                         (operation == CMD_INSERT || do_select_into) &&
687                                         ExecMayReturnRawTuples(planstate))
688                                         junk_filter_needed = true;
689                                 break;
690                         case CMD_UPDATE:
691                         case CMD_DELETE:
692                                 junk_filter_needed = true;
693                                 break;
694                         default:
695                                 break;
696                 }
697
698                 if (junk_filter_needed)
699                 {
700                         /*
701                          * If there are multiple result relations, each one needs its
702                          * own junk filter.  Note this is only possible for
703                          * UPDATE/DELETE, so we can't be fooled by some needing a
704                          * filter and some not.
705                          */
706                         if (parseTree->resultRelations != NIL)
707                         {
708                                 PlanState **appendplans;
709                                 int                     as_nplans;
710                                 ResultRelInfo *resultRelInfo;
711                                 int                     i;
712
713                                 /* Top plan had better be an Append here. */
714                                 Assert(IsA(plan, Append));
715                                 Assert(((Append *) plan)->isTarget);
716                                 Assert(IsA(planstate, AppendState));
717                                 appendplans = ((AppendState *) planstate)->appendplans;
718                                 as_nplans = ((AppendState *) planstate)->as_nplans;
719                                 Assert(as_nplans == estate->es_num_result_relations);
720                                 resultRelInfo = estate->es_result_relations;
721                                 for (i = 0; i < as_nplans; i++)
722                                 {
723                                         PlanState  *subplan = appendplans[i];
724                                         JunkFilter *j;
725
726                                         j = ExecInitJunkFilter(subplan->plan->targetlist,
727                                                                                    ExecGetResultType(subplan),
728                                                           ExecAllocTableSlot(estate->es_tupleTable));
729                                         resultRelInfo->ri_junkFilter = j;
730                                         resultRelInfo++;
731                                 }
732
733                                 /*
734                                  * Set active junkfilter too; at this point ExecInitAppend
735                                  * has already selected an active result relation...
736                                  */
737                                 estate->es_junkFilter =
738                                         estate->es_result_relation_info->ri_junkFilter;
739                         }
740                         else
741                         {
742                                 /* Normal case with just one JunkFilter */
743                                 JunkFilter *j;
744
745                                 j = ExecInitJunkFilter(planstate->plan->targetlist,
746                                                                            tupType,
747                                                           ExecAllocTableSlot(estate->es_tupleTable));
748                                 estate->es_junkFilter = j;
749                                 if (estate->es_result_relation_info)
750                                         estate->es_result_relation_info->ri_junkFilter = j;
751
752                                 /* For SELECT, want to return the cleaned tuple type */
753                                 if (operation == CMD_SELECT)
754                                         tupType = j->jf_cleanTupType;
755                         }
756                 }
757                 else
758                         estate->es_junkFilter = NULL;
759         }
760
761         /*
762          * If doing SELECT INTO, initialize the "into" relation.  We must wait
763          * till now so we have the "clean" result tuple type to create the new
764          * table from.
765          *
766          * If EXPLAIN, skip creating the "into" relation.
767          */
768         intoRelationDesc = NULL;
769
770         if (do_select_into && !explainOnly)
771         {
772                 char       *intoName;
773                 Oid                     namespaceId;
774                 AclResult       aclresult;
775                 Oid                     intoRelationId;
776                 TupleDesc       tupdesc;
777
778                 /*
779                  * find namespace to create in, check permissions
780                  */
781                 intoName = parseTree->into->relname;
782                 namespaceId = RangeVarGetCreationNamespace(parseTree->into);
783
784                 aclresult = pg_namespace_aclcheck(namespaceId, GetUserId(),
785                                                                                   ACL_CREATE);
786                 if (aclresult != ACLCHECK_OK)
787                         aclcheck_error(aclresult, ACL_KIND_NAMESPACE,
788                                                    get_namespace_name(namespaceId));
789
790                 /*
791                  * have to copy tupType to get rid of constraints
792                  */
793                 tupdesc = CreateTupleDescCopy(tupType);
794
795                 intoRelationId = heap_create_with_catalog(intoName,
796                                                                                                   namespaceId,
797                                                                                                   tupdesc,
798                                                                                                   RELKIND_RELATION,
799                                                                                                   false,
800                                                                                                   ONCOMMIT_NOOP,
801                                                                                                   allowSystemTableMods);
802
803                 FreeTupleDesc(tupdesc);
804
805                 /*
806                  * Advance command counter so that the newly-created relation's
807                  * catalog tuples will be visible to heap_open.
808                  */
809                 CommandCounterIncrement();
810
811                 /*
812                  * If necessary, create a TOAST table for the into relation. Note
813                  * that AlterTableCreateToastTable ends with
814                  * CommandCounterIncrement(), so that the TOAST table will be
815                  * visible for insertion.
816                  */
817                 AlterTableCreateToastTable(intoRelationId, true);
818
819                 /*
820                  * And open the constructed table for writing.
821                  */
822                 intoRelationDesc = heap_open(intoRelationId, AccessExclusiveLock);
823         }
824
825         estate->es_into_relation_descriptor = intoRelationDesc;
826
827         queryDesc->tupDesc = tupType;
828         queryDesc->planstate = planstate;
829 }
830
831 /*
832  * Initialize ResultRelInfo data for one result relation
833  */
834 static void
835 initResultRelInfo(ResultRelInfo *resultRelInfo,
836                                   Index resultRelationIndex,
837                                   List *rangeTable,
838                                   CmdType operation)
839 {
840         Oid                     resultRelationOid;
841         Relation        resultRelationDesc;
842
843         resultRelationOid = getrelid(resultRelationIndex, rangeTable);
844         resultRelationDesc = heap_open(resultRelationOid, RowExclusiveLock);
845
846         switch (resultRelationDesc->rd_rel->relkind)
847         {
848                 case RELKIND_SEQUENCE:
849                         ereport(ERROR,
850                                         (errcode(ERRCODE_WRONG_OBJECT_TYPE),
851                                          errmsg("cannot change sequence \"%s\"",
852                                                   RelationGetRelationName(resultRelationDesc))));
853                         break;
854                 case RELKIND_TOASTVALUE:
855                         ereport(ERROR,
856                                         (errcode(ERRCODE_WRONG_OBJECT_TYPE),
857                                          errmsg("cannot change TOAST relation \"%s\"",
858                                                   RelationGetRelationName(resultRelationDesc))));
859                         break;
860                 case RELKIND_VIEW:
861                         ereport(ERROR,
862                                         (errcode(ERRCODE_WRONG_OBJECT_TYPE),
863                                          errmsg("cannot change view \"%s\"",
864                                                   RelationGetRelationName(resultRelationDesc))));
865                         break;
866         }
867
868         MemSet(resultRelInfo, 0, sizeof(ResultRelInfo));
869         resultRelInfo->type = T_ResultRelInfo;
870         resultRelInfo->ri_RangeTableIndex = resultRelationIndex;
871         resultRelInfo->ri_RelationDesc = resultRelationDesc;
872         resultRelInfo->ri_NumIndices = 0;
873         resultRelInfo->ri_IndexRelationDescs = NULL;
874         resultRelInfo->ri_IndexRelationInfo = NULL;
875         /* make a copy so as not to depend on relcache info not changing... */
876         resultRelInfo->ri_TrigDesc = CopyTriggerDesc(resultRelationDesc->trigdesc);
877         resultRelInfo->ri_TrigFunctions = NULL;
878         resultRelInfo->ri_ConstraintExprs = NULL;
879         resultRelInfo->ri_junkFilter = NULL;
880
881         /*
882          * If there are indices on the result relation, open them and save
883          * descriptors in the result relation info, so that we can add new
884          * index entries for the tuples we add/update.  We need not do this
885          * for a DELETE, however, since deletion doesn't affect indexes.
886          */
887         if (resultRelationDesc->rd_rel->relhasindex &&
888                 operation != CMD_DELETE)
889                 ExecOpenIndices(resultRelInfo);
890 }
891
892 /*
893  *              ExecContextForcesOids
894  *
895  * This is pretty grotty: when doing INSERT, UPDATE, or SELECT INTO,
896  * we need to ensure that result tuples have space for an OID iff they are
897  * going to be stored into a relation that has OIDs.  In other contexts
898  * we are free to choose whether to leave space for OIDs in result tuples
899  * (we generally don't want to, but we do if a physical-tlist optimization
900  * is possible).  This routine checks the plan context and returns TRUE if the
901  * choice is forced, FALSE if the choice is not forced.  In the TRUE case,
902  * *hasoids is set to the required value.
903  *
904  * One reason this is ugly is that all plan nodes in the plan tree will emit
905  * tuples with space for an OID, though we really only need the topmost node
906  * to do so.  However, node types like Sort don't project new tuples but just
907  * return their inputs, and in those cases the requirement propagates down
908  * to the input node.  Eventually we might make this code smart enough to
909  * recognize how far down the requirement really goes, but for now we just
910  * make all plan nodes do the same thing if the top level forces the choice.
911  *
912  * We assume that estate->es_result_relation_info is already set up to
913  * describe the target relation.  Note that in an UPDATE that spans an
914  * inheritance tree, some of the target relations may have OIDs and some not.
915  * We have to make the decisions on a per-relation basis as we initialize
916  * each of the child plans of the topmost Append plan.
917  *
918  * SELECT INTO is even uglier, because we don't have the INTO relation's
919  * descriptor available when this code runs; we have to look aside at a
920  * flag set by InitPlan().
921  */
922 bool
923 ExecContextForcesOids(PlanState *planstate, bool *hasoids)
924 {
925         if (planstate->state->es_select_into)
926         {
927                 *hasoids = planstate->state->es_into_oids;
928                 return true;
929         }
930         else
931         {
932                 ResultRelInfo *ri = planstate->state->es_result_relation_info;
933
934                 if (ri != NULL)
935                 {
936                         Relation        rel = ri->ri_RelationDesc;
937
938                         if (rel != NULL)
939                         {
940                                 *hasoids = rel->rd_rel->relhasoids;
941                                 return true;
942                         }
943                 }
944         }
945
946         return false;
947 }
948
949 /* ----------------------------------------------------------------
950  *              ExecEndPlan
951  *
952  *              Cleans up the query plan -- closes files and frees up storage
953  *
954  * NOTE: we are no longer very worried about freeing storage per se
955  * in this code; FreeExecutorState should be guaranteed to release all
956  * memory that needs to be released.  What we are worried about doing
957  * is closing relations and dropping buffer pins.  Thus, for example,
958  * tuple tables must be cleared or dropped to ensure pins are released.
959  * ----------------------------------------------------------------
960  */
961 void
962 ExecEndPlan(PlanState *planstate, EState *estate)
963 {
964         ResultRelInfo *resultRelInfo;
965         int                     i;
966         List       *l;
967
968         /*
969          * shut down any PlanQual processing we were doing
970          */
971         if (estate->es_evalPlanQual != NULL)
972                 EndEvalPlanQual(estate);
973
974         /*
975          * shut down the node-type-specific query processing
976          */
977         ExecEndNode(planstate);
978
979         /*
980          * destroy the executor "tuple" table.
981          */
982         ExecDropTupleTable(estate->es_tupleTable, true);
983         estate->es_tupleTable = NULL;
984
985         /*
986          * close the result relation(s) if any, but hold locks until xact
987          * commit.
988          */
989         resultRelInfo = estate->es_result_relations;
990         for (i = estate->es_num_result_relations; i > 0; i--)
991         {
992                 /* Close indices and then the relation itself */
993                 ExecCloseIndices(resultRelInfo);
994                 heap_close(resultRelInfo->ri_RelationDesc, NoLock);
995                 resultRelInfo++;
996         }
997
998         /*
999          * close the "into" relation if necessary, again keeping lock
1000          */
1001         if (estate->es_into_relation_descriptor != NULL)
1002                 heap_close(estate->es_into_relation_descriptor, NoLock);
1003
1004         /*
1005          * close any relations selected FOR UPDATE, again keeping locks
1006          */
1007         foreach(l, estate->es_rowMark)
1008         {
1009                 execRowMark *erm = lfirst(l);
1010
1011                 heap_close(erm->relation, NoLock);
1012         }
1013 }
1014
1015 /* ----------------------------------------------------------------
1016  *              ExecutePlan
1017  *
1018  *              processes the query plan to retrieve 'numberTuples' tuples in the
1019  *              direction specified.
1020  *
1021  *              Retrieves all tuples if numberTuples is 0
1022  *
1023  *              result is either a slot containing the last tuple in the case
1024  *              of a SELECT or NULL otherwise.
1025  *
1026  * Note: the ctid attribute is a 'junk' attribute that is removed before the
1027  * user can see it
1028  * ----------------------------------------------------------------
1029  */
1030 static TupleTableSlot *
1031 ExecutePlan(EState *estate,
1032                         PlanState *planstate,
1033                         CmdType operation,
1034                         long numberTuples,
1035                         ScanDirection direction,
1036                         DestReceiver *dest)
1037 {
1038         JunkFilter *junkfilter;
1039         TupleTableSlot *slot;
1040         ItemPointer tupleid = NULL;
1041         ItemPointerData tuple_ctid;
1042         long            current_tuple_count;
1043         TupleTableSlot *result;
1044
1045         /*
1046          * initialize local variables
1047          */
1048         slot = NULL;
1049         current_tuple_count = 0;
1050         result = NULL;
1051
1052         /*
1053          * Set the direction.
1054          */
1055         estate->es_direction = direction;
1056
1057         /*
1058          * Process BEFORE EACH STATEMENT triggers
1059          */
1060         switch (operation)
1061         {
1062                 case CMD_UPDATE:
1063                         ExecBSUpdateTriggers(estate, estate->es_result_relation_info);
1064                         break;
1065                 case CMD_DELETE:
1066                         ExecBSDeleteTriggers(estate, estate->es_result_relation_info);
1067                         break;
1068                 case CMD_INSERT:
1069                         ExecBSInsertTriggers(estate, estate->es_result_relation_info);
1070                         break;
1071                 default:
1072                         /* do nothing */
1073                         break;
1074         }
1075
1076         /*
1077          * Loop until we've processed the proper number of tuples from the
1078          * plan.
1079          */
1080
1081         for (;;)
1082         {
1083                 /* Reset the per-output-tuple exprcontext */
1084                 ResetPerTupleExprContext(estate);
1085
1086                 /*
1087                  * Execute the plan and obtain a tuple
1088                  */
1089 lnext:  ;
1090                 if (estate->es_useEvalPlan)
1091                 {
1092                         slot = EvalPlanQualNext(estate);
1093                         if (TupIsNull(slot))
1094                                 slot = ExecProcNode(planstate);
1095                 }
1096                 else
1097                         slot = ExecProcNode(planstate);
1098
1099                 /*
1100                  * if the tuple is null, then we assume there is nothing more to
1101                  * process so we just return null...
1102                  */
1103                 if (TupIsNull(slot))
1104                 {
1105                         result = NULL;
1106                         break;
1107                 }
1108
1109                 /*
1110                  * if we have a junk filter, then project a new tuple with the
1111                  * junk removed.
1112                  *
1113                  * Store this new "clean" tuple in the junkfilter's resultSlot.
1114                  * (Formerly, we stored it back over the "dirty" tuple, which is
1115                  * WRONG because that tuple slot has the wrong descriptor.)
1116                  *
1117                  * Also, extract all the junk information we need.
1118                  */
1119                 if ((junkfilter = estate->es_junkFilter) != NULL)
1120                 {
1121                         Datum           datum;
1122                         HeapTuple       newTuple;
1123                         bool            isNull;
1124
1125                         /*
1126                          * extract the 'ctid' junk attribute.
1127                          */
1128                         if (operation == CMD_UPDATE || operation == CMD_DELETE)
1129                         {
1130                                 if (!ExecGetJunkAttribute(junkfilter,
1131                                                                                   slot,
1132                                                                                   "ctid",
1133                                                                                   &datum,
1134                                                                                   &isNull))
1135                                         elog(ERROR, "could not find junk ctid column");
1136
1137                                 /* shouldn't ever get a null result... */
1138                                 if (isNull)
1139                                         elog(ERROR, "ctid is NULL");
1140
1141                                 tupleid = (ItemPointer) DatumGetPointer(datum);
1142                                 tuple_ctid = *tupleid;  /* make sure we don't free the
1143                                                                                  * ctid!! */
1144                                 tupleid = &tuple_ctid;
1145                         }
1146                         else if (estate->es_rowMark != NIL)
1147                         {
1148                                 List       *l;
1149
1150                 lmark:  ;
1151                                 foreach(l, estate->es_rowMark)
1152                                 {
1153                                         execRowMark *erm = lfirst(l);
1154                                         Buffer          buffer;
1155                                         HeapTupleData tuple;
1156                                         TupleTableSlot *newSlot;
1157                                         int                     test;
1158
1159                                         if (!ExecGetJunkAttribute(junkfilter,
1160                                                                                           slot,
1161                                                                                           erm->resname,
1162                                                                                           &datum,
1163                                                                                           &isNull))
1164                                                 elog(ERROR, "could not find junk \"%s\" column",
1165                                                          erm->resname);
1166
1167                                         /* shouldn't ever get a null result... */
1168                                         if (isNull)
1169                                                 elog(ERROR, "\"%s\" is NULL", erm->resname);
1170
1171                                         tuple.t_self = *((ItemPointer) DatumGetPointer(datum));
1172                                         test = heap_mark4update(erm->relation, &tuple, &buffer,
1173                                                                                         estate->es_snapshot->curcid);
1174                                         ReleaseBuffer(buffer);
1175                                         switch (test)
1176                                         {
1177                                                 case HeapTupleSelfUpdated:
1178                                                         /* treat it as deleted; do not process */
1179                                                         goto lnext;
1180
1181                                                 case HeapTupleMayBeUpdated:
1182                                                         break;
1183
1184                                                 case HeapTupleUpdated:
1185                                                         if (IsXactIsoLevelSerializable)
1186                                                                 ereport(ERROR,
1187                                                                                 (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
1188                                                                                  errmsg("could not serialize access due to concurrent update")));
1189                                                         if (!(ItemPointerEquals(&(tuple.t_self),
1190                                                                   (ItemPointer) DatumGetPointer(datum))))
1191                                                         {
1192                                                                 newSlot = EvalPlanQual(estate, erm->rti, &(tuple.t_self));
1193                                                                 if (!(TupIsNull(newSlot)))
1194                                                                 {
1195                                                                         slot = newSlot;
1196                                                                         estate->es_useEvalPlan = true;
1197                                                                         goto lmark;
1198                                                                 }
1199                                                         }
1200
1201                                                         /*
1202                                                          * if tuple was deleted or PlanQual failed for
1203                                                          * updated tuple - we must not return this
1204                                                          * tuple!
1205                                                          */
1206                                                         goto lnext;
1207
1208                                                 default:
1209                                                         elog(ERROR, "unrecognized heap_mark4update status: %u",
1210                                                                  test);
1211                                                         return (NULL);
1212                                         }
1213                                 }
1214                         }
1215
1216                         /*
1217                          * Finally create a new "clean" tuple with all junk attributes
1218                          * removed
1219                          */
1220                         newTuple = ExecRemoveJunk(junkfilter, slot);
1221
1222                         slot = ExecStoreTuple(newTuple,         /* tuple to store */
1223                                                                   junkfilter->jf_resultSlot,    /* dest slot */
1224                                                                   InvalidBuffer,                /* this tuple has no
1225                                                                                                                  * buffer */
1226                                                                   true);                /* tuple should be pfreed */
1227                 }
1228
1229                 /*
1230                  * now that we have a tuple, do the appropriate thing with it..
1231                  * either return it to the user, add it to a relation someplace,
1232                  * delete it from a relation, or modify some of its attributes.
1233                  */
1234                 switch (operation)
1235                 {
1236                         case CMD_SELECT:
1237                                 ExecSelect(slot,        /* slot containing tuple */
1238                                                    dest,        /* destination's tuple-receiver obj */
1239                                                    estate);
1240                                 result = slot;
1241                                 break;
1242
1243                         case CMD_INSERT:
1244                                 ExecInsert(slot, tupleid, estate);
1245                                 result = NULL;
1246                                 break;
1247
1248                         case CMD_DELETE:
1249                                 ExecDelete(slot, tupleid, estate);
1250                                 result = NULL;
1251                                 break;
1252
1253                         case CMD_UPDATE:
1254                                 ExecUpdate(slot, tupleid, estate);
1255                                 result = NULL;
1256                                 break;
1257
1258                         default:
1259                                 elog(ERROR, "unrecognized operation code: %d",
1260                                          (int) operation);
1261                                 result = NULL;
1262                                 break;
1263                 }
1264
1265                 /*
1266                  * check our tuple count.. if we've processed the proper number
1267                  * then quit, else loop again and process more tuples.  Zero
1268                  * numberTuples means no limit.
1269                  */
1270                 current_tuple_count++;
1271                 if (numberTuples && numberTuples == current_tuple_count)
1272                         break;
1273         }
1274
1275         /*
1276          * Process AFTER EACH STATEMENT triggers
1277          */
1278         switch (operation)
1279         {
1280                 case CMD_UPDATE:
1281                         ExecASUpdateTriggers(estate, estate->es_result_relation_info);
1282                         break;
1283                 case CMD_DELETE:
1284                         ExecASDeleteTriggers(estate, estate->es_result_relation_info);
1285                         break;
1286                 case CMD_INSERT:
1287                         ExecASInsertTriggers(estate, estate->es_result_relation_info);
1288                         break;
1289                 default:
1290                         /* do nothing */
1291                         break;
1292         }
1293
1294         /*
1295          * here, result is either a slot containing a tuple in the case of a
1296          * SELECT or NULL otherwise.
1297          */
1298         return result;
1299 }
1300
1301 /* ----------------------------------------------------------------
1302  *              ExecSelect
1303  *
1304  *              SELECTs are easy.. we just pass the tuple to the appropriate
1305  *              print function.  The only complexity is when we do a
1306  *              "SELECT INTO", in which case we insert the tuple into
1307  *              the appropriate relation (note: this is a newly created relation
1308  *              so we don't need to worry about indices or locks.)
1309  * ----------------------------------------------------------------
1310  */
1311 static void
1312 ExecSelect(TupleTableSlot *slot,
1313                    DestReceiver *dest,
1314                    EState *estate)
1315 {
1316         HeapTuple       tuple;
1317         TupleDesc       attrtype;
1318
1319         /*
1320          * get the heap tuple out of the tuple table slot
1321          */
1322         tuple = slot->val;
1323         attrtype = slot->ttc_tupleDescriptor;
1324
1325         /*
1326          * insert the tuple into the "into relation"
1327          *
1328          * XXX this probably ought to be replaced by a separate destination
1329          */
1330         if (estate->es_into_relation_descriptor != NULL)
1331         {
1332                 heap_insert(estate->es_into_relation_descriptor, tuple,
1333                                         estate->es_snapshot->curcid);
1334                 IncrAppended();
1335         }
1336
1337         /*
1338          * send the tuple to the destination
1339          */
1340         (*dest->receiveTuple) (tuple, attrtype, dest);
1341         IncrRetrieved();
1342         (estate->es_processed)++;
1343 }
1344
1345 /* ----------------------------------------------------------------
1346  *              ExecInsert
1347  *
1348  *              INSERTs are trickier.. we have to insert the tuple into
1349  *              the base relation and insert appropriate tuples into the
1350  *              index relations.
1351  * ----------------------------------------------------------------
1352  */
1353 static void
1354 ExecInsert(TupleTableSlot *slot,
1355                    ItemPointer tupleid,
1356                    EState *estate)
1357 {
1358         HeapTuple       tuple;
1359         ResultRelInfo *resultRelInfo;
1360         Relation        resultRelationDesc;
1361         int                     numIndices;
1362         Oid                     newId;
1363
1364         /*
1365          * get the heap tuple out of the tuple table slot
1366          */
1367         tuple = slot->val;
1368
1369         /*
1370          * get information on the (current) result relation
1371          */
1372         resultRelInfo = estate->es_result_relation_info;
1373         resultRelationDesc = resultRelInfo->ri_RelationDesc;
1374
1375         /* BEFORE ROW INSERT Triggers */
1376         if (resultRelInfo->ri_TrigDesc &&
1377           resultRelInfo->ri_TrigDesc->n_before_row[TRIGGER_EVENT_INSERT] > 0)
1378         {
1379                 HeapTuple       newtuple;
1380
1381                 newtuple = ExecBRInsertTriggers(estate, resultRelInfo, tuple);
1382
1383                 if (newtuple == NULL)   /* "do nothing" */
1384                         return;
1385
1386                 if (newtuple != tuple)  /* modified by Trigger(s) */
1387                 {
1388                         /*
1389                          * Insert modified tuple into tuple table slot, replacing the
1390                          * original.  We assume that it was allocated in per-tuple
1391                          * memory context, and therefore will go away by itself. The
1392                          * tuple table slot should not try to clear it.
1393                          */
1394                         ExecStoreTuple(newtuple, slot, InvalidBuffer, false);
1395                         tuple = newtuple;
1396                 }
1397         }
1398
1399         /*
1400          * Check the constraints of the tuple
1401          */
1402         if (resultRelationDesc->rd_att->constr)
1403                 ExecConstraints(resultRelInfo, slot, estate);
1404
1405         /*
1406          * insert the tuple
1407          */
1408         newId = heap_insert(resultRelationDesc, tuple,
1409                                                 estate->es_snapshot->curcid);
1410
1411         IncrAppended();
1412         (estate->es_processed)++;
1413         estate->es_lastoid = newId;
1414         setLastTid(&(tuple->t_self));
1415
1416         /*
1417          * process indices
1418          *
1419          * Note: heap_insert adds a new tuple to a relation.  As a side effect,
1420          * the tupleid of the new tuple is placed in the new tuple's t_ctid
1421          * field.
1422          */
1423         numIndices = resultRelInfo->ri_NumIndices;
1424         if (numIndices > 0)
1425                 ExecInsertIndexTuples(slot, &(tuple->t_self), estate, false);
1426
1427         /* AFTER ROW INSERT Triggers */
1428         ExecARInsertTriggers(estate, resultRelInfo, tuple);
1429 }
1430
1431 /* ----------------------------------------------------------------
1432  *              ExecDelete
1433  *
1434  *              DELETE is like UPDATE, we delete the tuple and its
1435  *              index tuples.
1436  * ----------------------------------------------------------------
1437  */
1438 static void
1439 ExecDelete(TupleTableSlot *slot,
1440                    ItemPointer tupleid,
1441                    EState *estate)
1442 {
1443         ResultRelInfo *resultRelInfo;
1444         Relation        resultRelationDesc;
1445         ItemPointerData ctid;
1446         int                     result;
1447
1448         /*
1449          * get information on the (current) result relation
1450          */
1451         resultRelInfo = estate->es_result_relation_info;
1452         resultRelationDesc = resultRelInfo->ri_RelationDesc;
1453
1454         /* BEFORE ROW DELETE Triggers */
1455         if (resultRelInfo->ri_TrigDesc &&
1456           resultRelInfo->ri_TrigDesc->n_before_row[TRIGGER_EVENT_DELETE] > 0)
1457         {
1458                 bool            dodelete;
1459
1460                 dodelete = ExecBRDeleteTriggers(estate, resultRelInfo, tupleid,
1461                                                                                 estate->es_snapshot->curcid);
1462
1463                 if (!dodelete)                  /* "do nothing" */
1464                         return;
1465         }
1466
1467         /*
1468          * delete the tuple
1469          */
1470 ldelete:;
1471         result = heap_delete(resultRelationDesc, tupleid,
1472                                                  &ctid,
1473                                                  estate->es_snapshot->curcid,
1474                                                  estate->es_crosscheck_snapshot,
1475                                                  true /* wait for commit */);
1476         switch (result)
1477         {
1478                 case HeapTupleSelfUpdated:
1479                         /* already deleted by self; nothing to do */
1480                         return;
1481
1482                 case HeapTupleMayBeUpdated:
1483                         break;
1484
1485                 case HeapTupleUpdated:
1486                         if (IsXactIsoLevelSerializable)
1487                                 ereport(ERROR,
1488                                                 (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
1489                                                  errmsg("could not serialize access due to concurrent update")));
1490                         else if (!(ItemPointerEquals(tupleid, &ctid)))
1491                         {
1492                                 TupleTableSlot *epqslot = EvalPlanQual(estate,
1493                                                            resultRelInfo->ri_RangeTableIndex, &ctid);
1494
1495                                 if (!TupIsNull(epqslot))
1496                                 {
1497                                         *tupleid = ctid;
1498                                         goto ldelete;
1499                                 }
1500                         }
1501                         /* tuple already deleted; nothing to do */
1502                         return;
1503
1504                 default:
1505                         elog(ERROR, "unrecognized heap_delete status: %u", result);
1506                         return;
1507         }
1508
1509         IncrDeleted();
1510         (estate->es_processed)++;
1511
1512         /*
1513          * Note: Normally one would think that we have to delete index tuples
1514          * associated with the heap tuple now..
1515          *
1516          * ... but in POSTGRES, we have no need to do this because the vacuum
1517          * daemon automatically opens an index scan and deletes index tuples
1518          * when it finds deleted heap tuples. -cim 9/27/89
1519          */
1520
1521         /* AFTER ROW DELETE Triggers */
1522         ExecARDeleteTriggers(estate, resultRelInfo, tupleid);
1523 }
1524
1525 /* ----------------------------------------------------------------
1526  *              ExecUpdate
1527  *
1528  *              note: we can't run UPDATE queries with transactions
1529  *              off because UPDATEs are actually INSERTs and our
1530  *              scan will mistakenly loop forever, updating the tuple
1531  *              it just inserted..      This should be fixed but until it
1532  *              is, we don't want to get stuck in an infinite loop
1533  *              which corrupts your database..
1534  * ----------------------------------------------------------------
1535  */
1536 static void
1537 ExecUpdate(TupleTableSlot *slot,
1538                    ItemPointer tupleid,
1539                    EState *estate)
1540 {
1541         HeapTuple       tuple;
1542         ResultRelInfo *resultRelInfo;
1543         Relation        resultRelationDesc;
1544         ItemPointerData ctid;
1545         int                     result;
1546         int                     numIndices;
1547
1548         /*
1549          * abort the operation if not running transactions
1550          */
1551         if (IsBootstrapProcessingMode())
1552                 elog(ERROR, "cannot UPDATE during bootstrap");
1553
1554         /*
1555          * get the heap tuple out of the tuple table slot
1556          */
1557         tuple = slot->val;
1558
1559         /*
1560          * get information on the (current) result relation
1561          */
1562         resultRelInfo = estate->es_result_relation_info;
1563         resultRelationDesc = resultRelInfo->ri_RelationDesc;
1564
1565         /* BEFORE ROW UPDATE Triggers */
1566         if (resultRelInfo->ri_TrigDesc &&
1567           resultRelInfo->ri_TrigDesc->n_before_row[TRIGGER_EVENT_UPDATE] > 0)
1568         {
1569                 HeapTuple       newtuple;
1570
1571                 newtuple = ExecBRUpdateTriggers(estate, resultRelInfo,
1572                                                                                 tupleid, tuple,
1573                                                                                 estate->es_snapshot->curcid);
1574
1575                 if (newtuple == NULL)   /* "do nothing" */
1576                         return;
1577
1578                 if (newtuple != tuple)  /* modified by Trigger(s) */
1579                 {
1580                         /*
1581                          * Insert modified tuple into tuple table slot, replacing the
1582                          * original.  We assume that it was allocated in per-tuple
1583                          * memory context, and therefore will go away by itself. The
1584                          * tuple table slot should not try to clear it.
1585                          */
1586                         ExecStoreTuple(newtuple, slot, InvalidBuffer, false);
1587                         tuple = newtuple;
1588                 }
1589         }
1590
1591         /*
1592          * Check the constraints of the tuple
1593          *
1594          * If we generate a new candidate tuple after EvalPlanQual testing, we
1595          * must loop back here and recheck constraints.  (We don't need to
1596          * redo triggers, however.      If there are any BEFORE triggers then
1597          * trigger.c will have done mark4update to lock the correct tuple, so
1598          * there's no need to do them again.)
1599          */
1600 lreplace:;
1601         if (resultRelationDesc->rd_att->constr)
1602                 ExecConstraints(resultRelInfo, slot, estate);
1603
1604         /*
1605          * replace the heap tuple
1606          */
1607         result = heap_update(resultRelationDesc, tupleid, tuple,
1608                                                  &ctid,
1609                                                  estate->es_snapshot->curcid,
1610                                                  estate->es_crosscheck_snapshot,
1611                                                  true /* wait for commit */);
1612         switch (result)
1613         {
1614                 case HeapTupleSelfUpdated:
1615                         /* already deleted by self; nothing to do */
1616                         return;
1617
1618                 case HeapTupleMayBeUpdated:
1619                         break;
1620
1621                 case HeapTupleUpdated:
1622                         if (IsXactIsoLevelSerializable)
1623                                 ereport(ERROR,
1624                                                 (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
1625                                                  errmsg("could not serialize access due to concurrent update")));
1626                         else if (!(ItemPointerEquals(tupleid, &ctid)))
1627                         {
1628                                 TupleTableSlot *epqslot = EvalPlanQual(estate,
1629                                                            resultRelInfo->ri_RangeTableIndex, &ctid);
1630
1631                                 if (!TupIsNull(epqslot))
1632                                 {
1633                                         *tupleid = ctid;
1634                                         tuple = ExecRemoveJunk(estate->es_junkFilter, epqslot);
1635                                         slot = ExecStoreTuple(tuple,
1636                                                                         estate->es_junkFilter->jf_resultSlot,
1637                                                                                   InvalidBuffer, true);
1638                                         goto lreplace;
1639                                 }
1640                         }
1641                         /* tuple already deleted; nothing to do */
1642                         return;
1643
1644                 default:
1645                         elog(ERROR, "unrecognized heap_update status: %u", result);
1646                         return;
1647         }
1648
1649         IncrReplaced();
1650         (estate->es_processed)++;
1651
1652         /*
1653          * Note: instead of having to update the old index tuples associated
1654          * with the heap tuple, all we do is form and insert new index tuples.
1655          * This is because UPDATEs are actually DELETEs and INSERTs and index
1656          * tuple deletion is done automagically by the vacuum daemon. All we
1657          * do is insert new index tuples.  -cim 9/27/89
1658          */
1659
1660         /*
1661          * process indices
1662          *
1663          * heap_update updates a tuple in the base relation by invalidating it
1664          * and then inserting a new tuple to the relation.      As a side effect,
1665          * the tupleid of the new tuple is placed in the new tuple's t_ctid
1666          * field.  So we now insert index tuples using the new tupleid stored
1667          * there.
1668          */
1669
1670         numIndices = resultRelInfo->ri_NumIndices;
1671         if (numIndices > 0)
1672                 ExecInsertIndexTuples(slot, &(tuple->t_self), estate, false);
1673
1674         /* AFTER ROW UPDATE Triggers */
1675         ExecARUpdateTriggers(estate, resultRelInfo, tupleid, tuple);
1676 }
1677
1678 static const char *
1679 ExecRelCheck(ResultRelInfo *resultRelInfo,
1680                          TupleTableSlot *slot, EState *estate)
1681 {
1682         Relation        rel = resultRelInfo->ri_RelationDesc;
1683         int                     ncheck = rel->rd_att->constr->num_check;
1684         ConstrCheck *check = rel->rd_att->constr->check;
1685         ExprContext *econtext;
1686         MemoryContext oldContext;
1687         List       *qual;
1688         int                     i;
1689
1690         /*
1691          * If first time through for this result relation, build expression
1692          * nodetrees for rel's constraint expressions.  Keep them in the
1693          * per-query memory context so they'll survive throughout the query.
1694          */
1695         if (resultRelInfo->ri_ConstraintExprs == NULL)
1696         {
1697                 oldContext = MemoryContextSwitchTo(estate->es_query_cxt);
1698                 resultRelInfo->ri_ConstraintExprs =
1699                         (List **) palloc(ncheck * sizeof(List *));
1700                 for (i = 0; i < ncheck; i++)
1701                 {
1702                         /* ExecQual wants implicit-AND form */
1703                         qual = make_ands_implicit(stringToNode(check[i].ccbin));
1704                         resultRelInfo->ri_ConstraintExprs[i] = (List *)
1705                                 ExecPrepareExpr((Expr *) qual, estate);
1706                 }
1707                 MemoryContextSwitchTo(oldContext);
1708         }
1709
1710         /*
1711          * We will use the EState's per-tuple context for evaluating
1712          * constraint expressions (creating it if it's not already there).
1713          */
1714         econtext = GetPerTupleExprContext(estate);
1715
1716         /* Arrange for econtext's scan tuple to be the tuple under test */
1717         econtext->ecxt_scantuple = slot;
1718
1719         /* And evaluate the constraints */
1720         for (i = 0; i < ncheck; i++)
1721         {
1722                 qual = resultRelInfo->ri_ConstraintExprs[i];
1723
1724                 /*
1725                  * NOTE: SQL92 specifies that a NULL result from a constraint
1726                  * expression is not to be treated as a failure.  Therefore, tell
1727                  * ExecQual to return TRUE for NULL.
1728                  */
1729                 if (!ExecQual(qual, econtext, true))
1730                         return check[i].ccname;
1731         }
1732
1733         /* NULL result means no error */
1734         return NULL;
1735 }
1736
1737 void
1738 ExecConstraints(ResultRelInfo *resultRelInfo,
1739                                 TupleTableSlot *slot, EState *estate)
1740 {
1741         Relation        rel = resultRelInfo->ri_RelationDesc;
1742         HeapTuple       tuple = slot->val;
1743         TupleConstr *constr = rel->rd_att->constr;
1744
1745         Assert(constr);
1746
1747         if (constr->has_not_null)
1748         {
1749                 int                     natts = rel->rd_att->natts;
1750                 int                     attrChk;
1751
1752                 for (attrChk = 1; attrChk <= natts; attrChk++)
1753                 {
1754                         if (rel->rd_att->attrs[attrChk - 1]->attnotnull &&
1755                                 heap_attisnull(tuple, attrChk))
1756                                 ereport(ERROR,
1757                                                 (errcode(ERRCODE_NOT_NULL_VIOLATION),
1758                                                  errmsg("null value in column \"%s\" violates not-null constraint",
1759                                         NameStr(rel->rd_att->attrs[attrChk - 1]->attname))));
1760                 }
1761         }
1762
1763         if (constr->num_check > 0)
1764         {
1765                 const char *failed;
1766
1767                 if ((failed = ExecRelCheck(resultRelInfo, slot, estate)) != NULL)
1768                         ereport(ERROR,
1769                                         (errcode(ERRCODE_CHECK_VIOLATION),
1770                                          errmsg("new row for relation \"%s\" violates check constraint \"%s\"",
1771                                                         RelationGetRelationName(rel), failed)));
1772         }
1773 }
1774
1775 /*
1776  * Check a modified tuple to see if we want to process its updated version
1777  * under READ COMMITTED rules.
1778  *
1779  * See backend/executor/README for some info about how this works.
1780  */
1781 TupleTableSlot *
1782 EvalPlanQual(EState *estate, Index rti, ItemPointer tid)
1783 {
1784         evalPlanQual *epq;
1785         EState     *epqstate;
1786         Relation        relation;
1787         HeapTupleData tuple;
1788         HeapTuple       copyTuple = NULL;
1789         bool            endNode;
1790
1791         Assert(rti != 0);
1792
1793         /*
1794          * find relation containing target tuple
1795          */
1796         if (estate->es_result_relation_info != NULL &&
1797                 estate->es_result_relation_info->ri_RangeTableIndex == rti)
1798                 relation = estate->es_result_relation_info->ri_RelationDesc;
1799         else
1800         {
1801                 List       *l;
1802
1803                 relation = NULL;
1804                 foreach(l, estate->es_rowMark)
1805                 {
1806                         if (((execRowMark *) lfirst(l))->rti == rti)
1807                         {
1808                                 relation = ((execRowMark *) lfirst(l))->relation;
1809                                 break;
1810                         }
1811                 }
1812                 if (relation == NULL)
1813                         elog(ERROR, "could not find RowMark for RT index %u", rti);
1814         }
1815
1816         /*
1817          * fetch tid tuple
1818          *
1819          * Loop here to deal with updated or busy tuples
1820          */
1821         tuple.t_self = *tid;
1822         for (;;)
1823         {
1824                 Buffer          buffer;
1825
1826                 if (heap_fetch(relation, SnapshotDirty, &tuple, &buffer, false, NULL))
1827                 {
1828                         TransactionId xwait = SnapshotDirty->xmax;
1829
1830                         /* xmin should not be dirty... */
1831                         if (TransactionIdIsValid(SnapshotDirty->xmin))
1832                                 elog(ERROR, "t_xmin is uncommitted in tuple to be updated");
1833
1834                         /*
1835                          * If tuple is being updated by other transaction then we have
1836                          * to wait for its commit/abort.
1837                          */
1838                         if (TransactionIdIsValid(xwait))
1839                         {
1840                                 ReleaseBuffer(buffer);
1841                                 XactLockTableWait(xwait);
1842                                 continue;
1843                         }
1844
1845                         /*
1846                          * We got tuple - now copy it for use by recheck query.
1847                          */
1848                         copyTuple = heap_copytuple(&tuple);
1849                         ReleaseBuffer(buffer);
1850                         break;
1851                 }
1852
1853                 /*
1854                  * Oops! Invalid tuple. Have to check is it updated or deleted.
1855                  * Note that it's possible to get invalid SnapshotDirty->tid if
1856                  * tuple updated by this transaction. Have we to check this ?
1857                  */
1858                 if (ItemPointerIsValid(&(SnapshotDirty->tid)) &&
1859                         !(ItemPointerEquals(&(tuple.t_self), &(SnapshotDirty->tid))))
1860                 {
1861                         /* updated, so look at the updated copy */
1862                         tuple.t_self = SnapshotDirty->tid;
1863                         continue;
1864                 }
1865
1866                 /*
1867                  * Deleted or updated by this transaction; forget it.
1868                  */
1869                 return NULL;
1870         }
1871
1872         /*
1873          * For UPDATE/DELETE we have to return tid of actual row we're
1874          * executing PQ for.
1875          */
1876         *tid = tuple.t_self;
1877
1878         /*
1879          * Need to run a recheck subquery.      Find or create a PQ stack entry.
1880          */
1881         epq = estate->es_evalPlanQual;
1882         endNode = true;
1883
1884         if (epq != NULL && epq->rti == 0)
1885         {
1886                 /* Top PQ stack entry is idle, so re-use it */
1887                 Assert(!(estate->es_useEvalPlan) && epq->next == NULL);
1888                 epq->rti = rti;
1889                 endNode = false;
1890         }
1891
1892         /*
1893          * If this is request for another RTE - Ra, - then we have to check
1894          * wasn't PlanQual requested for Ra already and if so then Ra' row was
1895          * updated again and we have to re-start old execution for Ra and
1896          * forget all what we done after Ra was suspended. Cool? -:))
1897          */
1898         if (epq != NULL && epq->rti != rti &&
1899                 epq->estate->es_evTuple[rti - 1] != NULL)
1900         {
1901                 do
1902                 {
1903                         evalPlanQual *oldepq;
1904
1905                         /* stop execution */
1906                         EvalPlanQualStop(epq);
1907                         /* pop previous PlanQual from the stack */
1908                         oldepq = epq->next;
1909                         Assert(oldepq && oldepq->rti != 0);
1910                         /* push current PQ to freePQ stack */
1911                         oldepq->free = epq;
1912                         epq = oldepq;
1913                         estate->es_evalPlanQual = epq;
1914                 } while (epq->rti != rti);
1915         }
1916
1917         /*
1918          * If we are requested for another RTE then we have to suspend
1919          * execution of current PlanQual and start execution for new one.
1920          */
1921         if (epq == NULL || epq->rti != rti)
1922         {
1923                 /* try to reuse plan used previously */
1924                 evalPlanQual *newepq = (epq != NULL) ? epq->free : NULL;
1925
1926                 if (newepq == NULL)             /* first call or freePQ stack is empty */
1927                 {
1928                         newepq = (evalPlanQual *) palloc0(sizeof(evalPlanQual));
1929                         newepq->free = NULL;
1930                         newepq->estate = NULL;
1931                         newepq->planstate = NULL;
1932                 }
1933                 else
1934                 {
1935                         /* recycle previously used PlanQual */
1936                         Assert(newepq->estate == NULL);
1937                         epq->free = NULL;
1938                 }
1939                 /* push current PQ to the stack */
1940                 newepq->next = epq;
1941                 epq = newepq;
1942                 estate->es_evalPlanQual = epq;
1943                 epq->rti = rti;
1944                 endNode = false;
1945         }
1946
1947         Assert(epq->rti == rti);
1948
1949         /*
1950          * Ok - we're requested for the same RTE.  Unfortunately we still have
1951          * to end and restart execution of the plan, because ExecReScan
1952          * wouldn't ensure that upper plan nodes would reset themselves.  We
1953          * could make that work if insertion of the target tuple were
1954          * integrated with the Param mechanism somehow, so that the upper plan
1955          * nodes know that their children's outputs have changed.
1956          *
1957          * Note that the stack of free evalPlanQual nodes is quite useless at the
1958          * moment, since it only saves us from pallocing/releasing the
1959          * evalPlanQual nodes themselves.  But it will be useful once we
1960          * implement ReScan instead of end/restart for re-using PlanQual
1961          * nodes.
1962          */
1963         if (endNode)
1964         {
1965                 /* stop execution */
1966                 EvalPlanQualStop(epq);
1967         }
1968
1969         /*
1970          * Initialize new recheck query.
1971          *
1972          * Note: if we were re-using PlanQual plans via ExecReScan, we'd need to
1973          * instead copy down changeable state from the top plan (including
1974          * es_result_relation_info, es_junkFilter) and reset locally
1975          * changeable state in the epq (including es_param_exec_vals,
1976          * es_evTupleNull).
1977          */
1978         EvalPlanQualStart(epq, estate, epq->next);
1979
1980         /*
1981          * free old RTE' tuple, if any, and store target tuple where
1982          * relation's scan node will see it
1983          */
1984         epqstate = epq->estate;
1985         if (epqstate->es_evTuple[rti - 1] != NULL)
1986                 heap_freetuple(epqstate->es_evTuple[rti - 1]);
1987         epqstate->es_evTuple[rti - 1] = copyTuple;
1988
1989         return EvalPlanQualNext(estate);
1990 }
1991
1992 static TupleTableSlot *
1993 EvalPlanQualNext(EState *estate)
1994 {
1995         evalPlanQual *epq = estate->es_evalPlanQual;
1996         MemoryContext oldcontext;
1997         TupleTableSlot *slot;
1998
1999         Assert(epq->rti != 0);
2000
2001 lpqnext:;
2002         oldcontext = MemoryContextSwitchTo(epq->estate->es_query_cxt);
2003         slot = ExecProcNode(epq->planstate);
2004         MemoryContextSwitchTo(oldcontext);
2005
2006         /*
2007          * No more tuples for this PQ. Continue previous one.
2008          */
2009         if (TupIsNull(slot))
2010         {
2011                 evalPlanQual *oldepq;
2012
2013                 /* stop execution */
2014                 EvalPlanQualStop(epq);
2015                 /* pop old PQ from the stack */
2016                 oldepq = epq->next;
2017                 if (oldepq == NULL)
2018                 {
2019                         /* this is the first (oldest) PQ - mark as free */
2020                         epq->rti = 0;
2021                         estate->es_useEvalPlan = false;
2022                         /* and continue Query execution */
2023                         return (NULL);
2024                 }
2025                 Assert(oldepq->rti != 0);
2026                 /* push current PQ to freePQ stack */
2027                 oldepq->free = epq;
2028                 epq = oldepq;
2029                 estate->es_evalPlanQual = epq;
2030                 goto lpqnext;
2031         }
2032
2033         return (slot);
2034 }
2035
2036 static void
2037 EndEvalPlanQual(EState *estate)
2038 {
2039         evalPlanQual *epq = estate->es_evalPlanQual;
2040
2041         if (epq->rti == 0)                      /* plans already shutdowned */
2042         {
2043                 Assert(epq->next == NULL);
2044                 return;
2045         }
2046
2047         for (;;)
2048         {
2049                 evalPlanQual *oldepq;
2050
2051                 /* stop execution */
2052                 EvalPlanQualStop(epq);
2053                 /* pop old PQ from the stack */
2054                 oldepq = epq->next;
2055                 if (oldepq == NULL)
2056                 {
2057                         /* this is the first (oldest) PQ - mark as free */
2058                         epq->rti = 0;
2059                         estate->es_useEvalPlan = false;
2060                         break;
2061                 }
2062                 Assert(oldepq->rti != 0);
2063                 /* push current PQ to freePQ stack */
2064                 oldepq->free = epq;
2065                 epq = oldepq;
2066                 estate->es_evalPlanQual = epq;
2067         }
2068 }
2069
2070 /*
2071  * Start execution of one level of PlanQual.
2072  *
2073  * This is a cut-down version of ExecutorStart(): we copy some state from
2074  * the top-level estate rather than initializing it fresh.
2075  */
2076 static void
2077 EvalPlanQualStart(evalPlanQual *epq, EState *estate, evalPlanQual *priorepq)
2078 {
2079         EState     *epqstate;
2080         int                     rtsize;
2081         MemoryContext oldcontext;
2082
2083         rtsize = length(estate->es_range_table);
2084
2085         epq->estate = epqstate = CreateExecutorState();
2086
2087         oldcontext = MemoryContextSwitchTo(epqstate->es_query_cxt);
2088
2089         /*
2090          * The epqstates share the top query's copy of unchanging state such
2091          * as the snapshot, rangetable, result-rel info, and external Param
2092          * info. They need their own copies of local state, including a tuple
2093          * table, es_param_exec_vals, etc.
2094          */
2095         epqstate->es_direction = ForwardScanDirection;
2096         epqstate->es_snapshot = estate->es_snapshot;
2097         epqstate->es_crosscheck_snapshot = estate->es_crosscheck_snapshot;
2098         epqstate->es_range_table = estate->es_range_table;
2099         epqstate->es_result_relations = estate->es_result_relations;
2100         epqstate->es_num_result_relations = estate->es_num_result_relations;
2101         epqstate->es_result_relation_info = estate->es_result_relation_info;
2102         epqstate->es_junkFilter = estate->es_junkFilter;
2103         epqstate->es_into_relation_descriptor = estate->es_into_relation_descriptor;
2104         epqstate->es_param_list_info = estate->es_param_list_info;
2105         if (estate->es_topPlan->nParamExec > 0)
2106                 epqstate->es_param_exec_vals = (ParamExecData *)
2107                         palloc0(estate->es_topPlan->nParamExec * sizeof(ParamExecData));
2108         epqstate->es_rowMark = estate->es_rowMark;
2109         epqstate->es_instrument = estate->es_instrument;
2110         epqstate->es_select_into = estate->es_select_into;
2111         epqstate->es_into_oids = estate->es_into_oids;
2112         epqstate->es_topPlan = estate->es_topPlan;
2113
2114         /*
2115          * Each epqstate must have its own es_evTupleNull state, but all the
2116          * stack entries share es_evTuple state.  This allows sub-rechecks to
2117          * inherit the value being examined by an outer recheck.
2118          */
2119         epqstate->es_evTupleNull = (bool *) palloc0(rtsize * sizeof(bool));
2120         if (priorepq == NULL)
2121                 /* first PQ stack entry */
2122                 epqstate->es_evTuple = (HeapTuple *)
2123                         palloc0(rtsize * sizeof(HeapTuple));
2124         else
2125                 /* later stack entries share the same storage */
2126                 epqstate->es_evTuple = priorepq->estate->es_evTuple;
2127
2128         epqstate->es_tupleTable =
2129                 ExecCreateTupleTable(estate->es_tupleTable->size);
2130
2131         epq->planstate = ExecInitNode(estate->es_topPlan, epqstate);
2132
2133         MemoryContextSwitchTo(oldcontext);
2134 }
2135
2136 /*
2137  * End execution of one level of PlanQual.
2138  *
2139  * This is a cut-down version of ExecutorEnd(); basically we want to do most
2140  * of the normal cleanup, but *not* close result relations (which we are
2141  * just sharing from the outer query).
2142  */
2143 static void
2144 EvalPlanQualStop(evalPlanQual *epq)
2145 {
2146         EState     *epqstate = epq->estate;
2147         MemoryContext oldcontext;
2148
2149         oldcontext = MemoryContextSwitchTo(epqstate->es_query_cxt);
2150
2151         ExecEndNode(epq->planstate);
2152
2153         ExecDropTupleTable(epqstate->es_tupleTable, true);
2154         epqstate->es_tupleTable = NULL;
2155
2156         if (epqstate->es_evTuple[epq->rti - 1] != NULL)
2157         {
2158                 heap_freetuple(epqstate->es_evTuple[epq->rti - 1]);
2159                 epqstate->es_evTuple[epq->rti - 1] = NULL;
2160         }
2161
2162         MemoryContextSwitchTo(oldcontext);
2163
2164         FreeExecutorState(epqstate);
2165
2166         epq->estate = NULL;
2167         epq->planstate = NULL;
2168 }